Sample records for bulk heterojunction solar

  1. Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday,...

  2. MORPHOLOGY DEPENDENT SHORT CIRCUIT CURRENT IN BULK HETEROJUNCTION SOLAR CELL

    E-Print Network [OSTI]

    Alam, Muhammad A.

    MORPHOLOGY DEPENDENT SHORT CIRCUIT CURRENT IN BULK HETEROJUNCTION SOLAR CELL Biswajit Ray, Pradeep, West Lafayette, Indiana, USA ABSTRACT Polymer based bulk heterostructure (BH) solar cell offers a relatively inexpensive option for the future solar cell technology, provided its efficiency increases beyond

  3. "Plastic" Solar Cells: Self-Assembly of Bulk HeterojunctionNano...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Plastic" Solar Cells: Self-Assembly of Bulk Heterojunction Nano-Materials by Spontaneous Phase Separation October 20, 2009 at 3pm36-428 Alan Heeger Department of Chemistry,...

  4. The influence of molecular orientation on organic bulk heterojunction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The influence of molecular orientation on organic bulk heterojunction solar cells The influence of molecular orientation on organic bulk heterojunction solar cells Print Monday, 28...

  5. Device Characteristics of Bulk-Heterojunction Polymer Solar Cells (DMR-0819860)

    E-Print Network [OSTI]

    Petta, Jason

    Device Characteristics of Bulk-Heterojunction Polymer Solar Cells (DMR-0819860) H. Wang, E. Gomez University Polymer solar cells are important candidates for sustainable, low-cost energy generation of vertical compositional heterogeneities on charge transport in polymer solar cells via modular construction

  6. Inorganic Nanocrystal Bulk Heterojunctions - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Inorganic Nanocrystal Bulk Heterojunctions Brookhaven National Laboratory Contact BNL About This...

  7. Solvent polarity and nanoscale morphology in bulk heterojunction organic solar cells: A case study

    SciTech Connect (OSTI)

    Thomas, Ajith [Centre for Nano-Bio-Polymer Science and Technology, Department of Physics, St. Thomas College, Pala, Kerala 686574 (India); Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu 641046 (India); Elsa Tom, Anju; Ison, V. V., E-mail: isonvv@yahoo.in, E-mail: praveen@materials.iisc.ernet.in [Centre for Nano-Bio-Polymer Science and Technology, Department of Physics, St. Thomas College, Pala, Kerala 686574 (India); Rao, Arun D.; Varman, K. Arul; Ranjith, K.; Ramamurthy, Praveen C., E-mail: isonvv@yahoo.in, E-mail: praveen@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012 (India); Vinayakan, R. [Department of Chemistry, SVR NSS College Vazhoor, Kerala 686505 (India)

    2014-03-14T23:59:59.000Z

    Organic bulk heterojunction solar cells were fabricated under identical experimental conditions, except by varying the solvent polarity used for spin coating the active layer components and their performance was evaluated systematically. Results showed that presence of nitrobenzene-chlorobenzene composition governs the morphology of active layer formed, which is due to the tuning of solvent polarity as well as the resulting solubility of the P3HT:PCBM blend. Trace amount of nitrobenzene favoured the formation of better organised P3HT domains, as evident from conductive AFM, tapping mode AFM and surface, and cross-sectional SEM analysis. The higher interfacial surface area thus generated produced cells with high efficiency. But, an increase in the nitrobenzene composition leads to a decrease in cell performance, which is due to the formation of an active layer with larger size polymer domain networks with poor charge separation possibility.

  8. A compact physical model for morphology induced intrinsic degradation of organic bulk heterojunction solar cell

    E-Print Network [OSTI]

    Alam, Muhammad A.

    for an intrinsic degradation concern for bulk heterojunction type organic photovoltaic (BH-OPV) cells that involveA compact physical model for morphology induced intrinsic degradation of organic bulk-induced degradation in Si-based cell (Staebler-Wronski effect), Cu diffusion in thin film (copper indium gallium

  9. Ferroelectric field effect of the bulk heterojunction in polymer solar cells

    SciTech Connect (OSTI)

    Li, Meng; Ma, Heng, E-mail: hengma@henannu.edu.cn; Liu, Hairui; Jiang, Yurong [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Niu, Heying; Amat, Adil [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China)

    2014-06-23T23:59:59.000Z

    A ferroelectric field effect in the bulk heterojunction was found when an external electric field (EEF) was applied on the active layer of polymer solar cells (PSCs) during the annealing process of the active layer spin-coated with poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61} butyric acid methyl ester. For one direction field, the short circuit current density of PSCs was improved from 7.2 to 8.0?mA/cm{sup 2}, the power conversion efficiency increased from 2.4% to 2.8%, and the incident photon-to-current conversion efficiency increased from 42% to 49% corresponding to the different EEF magnitude. For an opposite direction field, the applied EEF brought a minus effect on the performance mentioned above. EEF treatment can orientate molecular ordering of the polymer, and change the morphology of the active layer. The authors suggest a explanation that the ferroelectric field has been built in the active layer, and therefore it plays a key role in PSCs system. A needle-like surface morphology of the active film was also discussed.

  10. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    SciTech Connect (OSTI)

    Gupta, Vinay, E-mail: drvinaygupta@netscape.net [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India) [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Upreti, Tanvi; Chand, Suresh [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India)] [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India)

    2013-12-16T23:59:59.000Z

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7?-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b?]dithiophene-2,6-diyl) bis(6-fluoro-4-(5?-hexyl-[2,2?-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc})?=?5.45?mA/cm{sup 2}, open circuit voltage (V{sub oc})?=?0.727?V, and fill factor (FF)?=?51%, and a power conversion efficiency?=?2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  11. Organic bulk heterojunction solar cells using poly,,2,5-bis,,3-tetradecyllthiophen-2-yl...thieno3,2,-bthiophene...

    E-Print Network [OSTI]

    McGehee, Michael

    . While the cost per watt of solar cell technology has steadily decreased in the past decade, an estimated the cost is to make solar cells with low-cost organic materials that can be processed from solutionOrganic bulk heterojunction solar cells using poly,,2,5-bis,,3-tetradecyllthiophen-2-yl...thieno3

  12. Thermal annealing study on P3HT: PCBM based bulk heterojunction organic solar cells using impedance spectroscopy

    SciTech Connect (OSTI)

    Gollu, Sankara Rao, E-mail: sankar.gollu@gmail.com [Plastic Electronics and Energy Lab (PEEL), Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Sharma, Ramakant, E-mail: diptig@iitb.ac.in; G, Srinivas, E-mail: diptig@iitb.ac.in; Gupta, Dipti, E-mail: diptig@iitb.ac.in [Plastic Electronics and Energy Lab (PEEL) Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2014-10-15T23:59:59.000Z

    Recently, Thermal annealing is an important process for bulk heterojunction organic solar cells (BHJ OSCs) to improve the device efficiency and performance of the organic solar cells. Here in, we have examined the changes in the efficiency and morphology of P3HT: PCBM film according to the thermal annealing temperature to find the changes during the annealing process by measuring the optical absorption, atomic force microscope and X-ray diffraction. We also investigated the effect of different annealing process conditions (without, pre- and post-annealing) on the device performance of the inverted bulk heterojunction organic solar cells consist the structure of ITO/ ZnO / P3HT: PCBM / MoO{sub 3}/ Al by measuring AC impedance characteristics. Particularly, the power conversion efficiency (PCE), crystalline nature of the polymer, light absorption and the surface smoothness of P3HT: PCBM films are significantly improved after the annealing process. These results indicated the improvement in terms of PCE, interface smoothness between the P3HT: PCBM and MoO{sub 3} layers of the post annealed device originated from the decrease of series resistance between P3HT: PCBM layer and Al electrodes, which could be due to decrease in the effective life time of charge carriers.

  13. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, J.M.

    1994-08-30T23:59:59.000Z

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  14. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1994-01-01T23:59:59.000Z

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  15. Selective observation of photo-induced electric fields inside different material components in bulk-heterojunction organic solar cell

    SciTech Connect (OSTI)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, S3-33 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)] [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, S3-33 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-01-06T23:59:59.000Z

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement at two laser wavelengths of 1000?nm and 860?nm, we investigated carrier behavior inside the pentacene and C{sub 60} component of co-deposited pentacene:C{sub 60} bulk-heterojunctions (BHJs) organic solar cells (OSCs). The EFISHG experiments verified the presence of two carrier paths for electrons and holes in BHJs OSCs. That is, two kinds of electric fields pointing in opposite directions are identified as a result of the selectively probing of SHG activation from C{sub 60} and pentacene. Also, under open-circuit conditions, the transient process of the establishment of open-circuit voltage inside the co-deposited layer has been directly probed, in terms of photovoltaic effect. The EFISHG provides an additional promising method to study carrier path of electrons and holes as well as dissociation of excitons in BHJ OSCs.

  16. Enhanced performance of polymer:fullerene bulk heterojunction solar cells upon graphene addition

    SciTech Connect (OSTI)

    Robaeys, Pieter, E-mail: pieter.robaeys@uhasselt.be; Dierckx, Wouter; Dexters, Wim; Spoltore, Donato; Drijkoningen, Jeroen [Institute for Materials Research (IMO), Hasselt University (Belgium); Bonaccorso, Francesco [Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge (United Kingdom); Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, 16163 Genova (Italy); Bourgeois, Emilie; D'Haen, Jan; Haenen, Ken; Manca, Jean V.; Nesladek, Milos [Institute for Materials Research (IMO), Hasselt University (Belgium); IMOMEC, IMEC vzw (Belgium); Liesenborgs, Jori; Van Reeth, Frank [Expertise centre for Digital Media (EDM), Hasselt University (Belgium); Lombardo, Antonio; Ferrari, Andrea C. [Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge (United Kingdom)

    2014-08-25T23:59:59.000Z

    Graphene has potential for applications in solar cells. We show that the short circuit current density of P3HT (Poly(3-hexylthiophene-2,5-diyl):PCBM((6,6)-Phenyl C61 butyric acid methyl ester) solar cells is enhanced by 10% upon the addition of graphene, with a 15% increase in the photon to electric conversion efficiency. We discuss the performance enhancement by studying the crystallization of P3HT, as well as the electrical transport properties. We show that graphene improves the balance between electron and hole mobilities with respect to a standard P3HT:PCBM solar cell.

  17. End-Capping Effect of a Narrow Bandgap Conjugated Polymer on Bulk Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Park, Jin Kuen [Univ. of California, Santa Barbara, CA (United States); Jo, Jang [Univ. of California, Santa Barbara, CA (United States); Seo, Jung Hwa [Univ. of California, Santa Barbara, CA (United States); Moon, Ji Seo [Univ. of California, Santa Barbara, CA (United States); Park, Yeong Don [Univ. of California, Santa Barbara, CA (United States); Lee, Kwanghee [Gwangiu Inst. of Science and Technology (Korea); Heeger, Alan J. [Univ. of California, Santa Barbara, CA (United States); Bazan, Guillermo C. [Univ. of California, Santa Barbara, CA (United States)

    2011-06-03T23:59:59.000Z

    Device performances of BHJ solar cells based on poly[(4,4-didodecyldithieno[3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(2,1,3-benzoxadiazole)-4,7-diyl]and PC??BM improve by capping the chain ends with thiophene fragments. This structural modification yields materials that are more thermally robust and that can be used in devices with thicker films – important considerations for enabling the mass production of plastic solar cells.

  18. Annealing dependent performance of organic bulk-heterojunction solar cells: A theoretical perspective

    E-Print Network [OSTI]

    Alam, Muhammad A.

    solar cell Process conditions a b s t r a c t Organic photovoltaic (OPV) technology promises efficiency/reliability, a systematic theoretical approach is required to optimize the underlying device for the optimization of process conditions, which might eventually lead to higher efficiency/reliability of the organic

  19. Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells

    E-Print Network [OSTI]

    Iza, Diana C; Muńoz-Rojas, David; Jia, Quanxi; Swartzentruber, Brian; MacManus-Driscoll, Judith L

    2012-11-27T23:59:59.000Z

    by radio frequency magnetron sputtering. J Mater Res 2005, 20:1574–1579. 55. Cui J: Zinc oxide nanowires. Mater Charact 2012, 64:43–52. 56. Fan Z, Wang D, Chang P-C, Tseng W-Y, Lu JG: ZnO nanowire field-effect transistor and oxygen sensing property. Appl... to 130 nm in diameter and ca. 800 nm in length. Figure 1d,e shows cross-sectional images of the solar cell devices produced herein, which will be discussed later. Results and discussion Firstly, we present the PL data on our samples together with IR...

  20. Charge density dependent nongeminate recombination in organic bulk heterojunction solar cells

    E-Print Network [OSTI]

    D. Rauh; C. Deibel; V. Dyakonov

    2012-03-27T23:59:59.000Z

    Apparent recombination orders exceeding the value of two expected for bimolecular recombination have been reported for organic solar cells in various publications. Two prominent explanations are bimolecular losses with a carrier concentration dependent prefactor due to a trapping limited mobility, and protection of trapped charge carriers from recombination by a donor--acceptor phase separation until reemission from these deep states. In order to clarify which mechanism is dominant we performed temperature and illumination dependent charge extraction measurements under open circuit as well as short circuit conditions at poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C$_{61}$butyric acid methyl ester (P3HT:PC$_{61}$BM) and PTB7:PC$_{71}$BM (Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  1. Sodium bromide electron-extraction layers for polymer bulk-heterojunction solar cells

    SciTech Connect (OSTI)

    Gao, Zhi; Qu, Bo, E-mail: bqu@pku.edu.cn; Xiao, Lixin; Chen, Zhijian [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China) [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); New Display Device and System Integration Collaborative Innovation Center of the West Coast of the Taiwan Strait, Fuzhou 350002 (China); Zhang, Lipei [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)] [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China) [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-03-10T23:59:59.000Z

    Inexpensive and non-toxic sodium bromide (NaBr) was introduced into polymer solar cells (PSCs) as the cathode buffer layer (CBL) and the electron extraction characteristics of the NaBr CBL were investigated in detail. The PSCs based on NaBr CBL with different thicknesses (i.e., 0?nm, 0.5?nm, 1?nm, and 1.5?nm) were prepared and studied. The optimal thickness of NaBr was 1?nm according to the photovoltaic data of PSCs. The open-circuit voltage (V{sub oc}), short-circuit current density (J{sub sc}), fill factor (FF), and power conversion efficiency (PCE) of the PSC with 1?nm NaBr were evaluated to be 0.58?V, 7.36?mA/cm{sup 2}, 0.63, and 2.70%, respectively, which were comparable to those of the reference device with the commonly used LiF. The optimized photovoltaic performance of PSC with 1?nm NaBr was ascribed to the improved electron transport and extraction capability of 1?nm NaBr in PSCs. In addition, the NaBr CBL could prevent the diffusion of oxygen and water vapor into the active layer and prolong the lifetime of the devices to some extent. Therefore, NaBr layer could be considered as a promising non-toxic CBL for PSCs in future.

  2. Sputtered Nickel Oxide Thin Film for Efficient Hole Transport Layer in Polymer-Fullerene Bulk-Heterojunction Organic Solar Cell

    SciTech Connect (OSTI)

    Widjonarko, N. E.; Ratcliff, E. L.; Perkins, C. L.; Sigdel, A. K.; Zakutayev, A.; Ndione, P. F.; Gillaspie, D. T.; Ginley, D. S.; Olson, D. C.; Berry, J. J.

    2012-03-01T23:59:59.000Z

    Bulk-heterojunction (BHJ) organic photovoltaics (OPV) are very promising thin film renewable energy conversion technologies due to low production cost by high-throughput roll-to-roll manufacturing, an expansive list of compatible materials, and flexible device fabrication. An important aspect of OPV device efficiency is good contact engineering. The use of oxide thin films for this application offers increased design flexibility and improved chemical stability. Here we present our investigation of radio frequency magnetron sputtered nickel oxide (NiO{sub x}) deposited from oxide targets as an efficient, easily scalable hole transport layer (HTL) with variable work-function, ranging from 4.8 to 5.8 eV. Differences in HTL work-function were not found to result in statistically significant changes in open circuit voltage (V{sub oc}) for poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM) BHJ device. Ultraviolet photoemission spectroscopy (UPS) characterization of the NiO{sub x} film and its interface with the polymer shows Fermi level alignment of the polymer with the NiO{sub x} film. UPS of the blend also demonstrates Fermi level alignment of the organic active layer with the HTL, consistent with the lack of correlation between V{sub oc} and HTL work-function. Instead, trends in j{sub sc}, V{sub oc}, and thus overall device performance are related to the surface treatment of the HTL prior to active layer deposition through changes in active layer thickness.

  3. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan

    2013-04-09T23:59:59.000Z

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  4. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI); Yang, Fan (Piscataway, NJ)

    2011-03-01T23:59:59.000Z

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  5. Mixed ternary heterojunction solar cell

    DOE Patents [OSTI]

    Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

    1992-08-25T23:59:59.000Z

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  6. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    DOE Patents [OSTI]

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25T23:59:59.000Z

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  7. Material Profile Influences in Bulk-Heterojunctions

    SciTech Connect (OSTI)

    Roehling, John D.; Rochester, Christopher W.; Ro, Hyun W.; Wang, Peng; Majewski, Jaroslaw; Batenburg, Kees J.; Arslan, Ilke; Delongchamp, Dean M.; Moule, Adam J.

    2014-10-01T23:59:59.000Z

    he morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualita-tively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fullerene concentration throughout the thickness of the film for all measurements. However, the abso-lute vertical concentration of fullerene is quantitatively different for the three measurements. The origin of the quantitative measurement differences is discussed. The authors thank Luna Innovations, Inc. for donating the endohedral fullerenes used in this study and Plextronics for the P3HT. They are gratefully thank the National Science Foundation Energy for Sustainability Program, Award No. 0933435. This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. This research was also supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.

  8. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27T23:59:59.000Z

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  9. Heterojunction solar cell with passivated emitter surface

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1994-05-31T23:59:59.000Z

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  10. Heterojunction solar cell with passivated emitter surface

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1994-01-01T23:59:59.000Z

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  11. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOE Patents [OSTI]

    Shtein, Max (Ann Arbor, MI); Yang, Fan (Princeton, NJ); Forrest, Stephen R. (Princeton, NJ)

    2008-10-14T23:59:59.000Z

    A method of fabricating an optoelectronic device comprises: depositing a first layer having protrusions over a first electrode, in which the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer; in which the smallest lateral dimension of the protrusions are between 1 to 5 times the exciton diffusion length of the first organic small molecule material; and depositing a second electrode over the second layer to form the optoelectronic device. A method of fabricating an organic optoelectronic device having a bulk heterojunction is also provided and comprises: depositing a first layer with protrusions over an electrode by organic vapor phase deposition; depositing a second layer on the first layer where the interface of the first and second layers forms a bulk heterojunction; and depositing another electrode over the second layer.

  12. Indium oxide/n-silicon heterojunction solar cells

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1982-12-28T23:59:59.000Z

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  13. Amorphous silicon/crystalline silicon heterojunctions: The future of high-efficiency silicon solar cells

    E-Print Network [OSTI]

    Firestone, Jeremy

    ;5 Record efficiencies #12;6 Diffused-junction solar cells Diffused-junction solar cell Chemical passivation to ~650 mV #12;7 Silicon heterojunction solar cells a-Si:H provides excellent passivation of c-Si surface Heterojunction solar cell Chemical passivation Chemical passivation #12;8 Voc and silicon heterojunction solar

  14. Absence of Structural Impact of Noble Nanoparticles on P3HT: PCBM Blends for Plasmon Enhanced Bulk-Heterojunction Organic Solar Cells Probed by Synchrotron Grazing Incidence X-Ray Diffraction

    E-Print Network [OSTI]

    Samuele Lilliu; Mejd Alsari; Oier Bikondoa; J. Emyr Macdonald; Marcus S. Dahlem

    2014-10-18T23:59:59.000Z

    The incorporation of noble metal nanoparticles, displaying localized surface plasmon resonance, in the active area of donor-acceptor bulk-heterojunction organic photovoltaic devices is an industrially compatible light trapping strategy, able to guarantee better absorption of the incident photons and give an efficiency improvement between 12% and 38%. In the present work, we investigate the effect of Au and Ag nanoparticles blended with P3HT: PCBM on the P3HT crystallization dynamics by synchrotron grazing incidence X-ray diffraction. We conclude that the presence of (1) 80nm Au, (2) mix of 5nm, 50nm, 80nm Au, (3) 40nm Ag, and (4) 10nm, 40nm, 60nm Ag colloidal nanoparticles, at different concentrations below 0.3 wt% in P3HT: PCBM blends, does not affect the behaviour of the blends themselves.

  15. Core/Shell heterojunction nanowire solar cell fabricated by lithographically patterned nanowire electrodeposition method

    E-Print Network [OSTI]

    Ghosh, Somnath

    2012-01-01T23:59:59.000Z

    width dependent study of Solar Cell parameters Mott-SchotkyCore/Shell NW based solar cells and NIR photodetectors. Thep-n heterojunction NW solar cells and detailed study of the

  16. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1984-03-13T23:59:59.000Z

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  17. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals

    E-Print Network [OSTI]

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, Antonios G.; Alivisatos, A. Paul

    2006-01-01T23:59:59.000Z

    polymer bulk heterojunction solar cells. Journal of PhysicalS. & Meissner, D. Hybrid solar cells based on nanoparticlesmodelling of organic solar cells: The dependence of internal

  18. Factors influencing photocurrent generation in organic bulk heterojunc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing photocurrent generation in organic bulk heterojunction solar cells: interfacial energetics and blend microstructure April 29, 2009 at 3pm36-428 Jenny Nelson...

  19. EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Ceder, Gerbrand

    materials for thin film solar cells such as CdTe and CIGS suffer from concerns over resource scarcity (eEARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1 conversion efficiencies should be increased. In terms of reducing module cost, thin film solar cells

  20. CNT-SI HETEROJUNCTION SOLAR CELLS WITH STRUCTURE-CONTROLLED SINGLE-WALL CARBON NANOTUBE FILMS

    E-Print Network [OSTI]

    Maruyama, Shigeo

    CNT-SI HETEROJUNCTION SOLAR CELLS WITH STRUCTURE- CONTROLLED SINGLE-WALL CARBON NANOTUBE FILMS solar cells. We proposed a water-vapor treatment to build up SWNTs to a self-assembled micro- honeycomb network for the application of solar cells [1]. The micro-honeycomb network consists of vertical

  1. CNT-Si heterojunction solar cell with single-walled carbon nanotubes Shigeo Maruyama

    E-Print Network [OSTI]

    Maruyama, Shigeo

    CNT-Si heterojunction solar cell with single-walled carbon nanotubes Shigeo Maruyama Department solar cells. We proposed a water vapor treatment to build up SWNTs to a self-assembled micro-honeycomb network for the application of solar cells [1]. The micro- honeycomb network consists of vertical

  2. Controlled Growth of Single-Walled Carbon Nanotubes for CNT-Si heterojunction solar cell

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Controlled Growth of Single-Walled Carbon Nanotubes for CNT-Si heterojunction solar cell Shigeo two different SWNT assemblies for SWNT-Si heterojuction solar cells. We proposed a water vapor treatment to build up SWNTs to a self-assembled micro-honeycomb network for the application of solar cells

  3. Characterization of the Polymer Energy Landscape in Polymer:Fullerene Bulk Heterojunctions with Pure and Mixed Phases

    E-Print Network [OSTI]

    McGehee, Michael

    Characterization of the Polymer Energy Landscape in Polymer:Fullerene Bulk Heterojunctions with Pure and Mixed Phases Sean Sweetnam, Kenneth R. Graham,, Guy O. Ngongang Ndjawa, Thomas Heumuller offsets between the charge transport energy levels in different morphological phases of polymer

  4. Comparing matched polymer:Fullerene solar cells made by solution-sequential processing and traditional blend casting: Nanoscale structure and device performance

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Bulk Heterojunction Solar Cells. J. Phys. Chem. C 2014, 118,Polythiophene:Fullerene Solar Cells. Phys. Rev. B 2008, 78,Polymer: Fullerene Solar Cells Using the External Quantum

  5. Light Trapping for High Efficiency Heterojunction Crystalline Si Solar Cells: Preprint

    SciTech Connect (OSTI)

    Wang, Q.; Xu, Y.; Iwaniczko, E.; Page, M.

    2011-04-01T23:59:59.000Z

    Light trapping plays an important role to achieve high short circuit current density (Jsc) and high efficiency for amorphous/crystalline Si heterojunction solar cells. Si heterojunction uses hydrogenated amorphous Si for emitter and back contact. This structure of solar cell posses highest open circuit voltage of 0.747 V at one sun for c-Si based solar cells. It also suggests that over 25% record-high efficiency is possible with further improvement of Jsc. Light trapping has two important tasks. The first one is to reduce the surface reflectance of light to zero for the solar spectrum that Si has a response. The second one is to increase the effective absorption length to capture all the photon. For Si heterojunction solar cell, surface texturing, anti-reflectance indium tin oxides (ITO) layer at the front and back are the key area to improve the light trapping.

  6. A C70-carbon nanotube complex for bulk heterojunction photovoltaic cells

    SciTech Connect (OSTI)

    Lau, Xinbo C.; Wang, Zhiqian; Mitra, Somenath, E-mail: Somenath.Mitra@njit.edu [Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)] [Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-09T23:59:59.000Z

    A C70 fullerene-multi-walled carbon nanotube (C70-CNT) complex has been used as a component of the photoactive layer in a bulk heterojunction photovoltaic cell. As compared to a control device with only C70, the addition of CNTs led to improvements in short circuit current density (J{sub sc}), open circuit voltage (V{sub oc}), and power conversion efficiency by 31.8, 17.5, and 69.5%, respectively. This device takes advantage of both the electron accepting feature of C70 and the high electron transport capability of CNTs. These results indicate that C70 decorated CNT is a promising additive for performance enhancement of polymer photovoltaic cells.

  7. Photoconductive Decay Lifetime and Suns-Voc Diagnostics of Efficient Heterojunction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal L.; Bauer, R.; Yan, H.-C.; Wang, Q.; Meier, D. L.

    2008-05-01T23:59:59.000Z

    We report results of minority carrier lifetime measurements for double-sided p-type Si heterojunction devices and compare Suns-Voc results to Light I-V measurements on 1 cm2 solar cell devices measured on an AM1.5 calibrated XT-10 solar simulator.

  8. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact

    E-Print Network [OSTI]

    Javey, Ali

    19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact Xingtian Yin, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, People's Republic of China Joint Center *S Supporting Information ABSTRACT: We demonstrate an InP heterojunction solar cell employing

  9. Controlled Growth of Single-Walled Carbon Nanotubes and Application to CNT-Si Heterojunction Solar Cells

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Controlled Growth of Single-Walled Carbon Nanotubes and Application to CNT-Si Heterojunction Solar assembly of SWNTs for SWNT-Si heterojunction solar cells will be discussed. We found the reversible to be encapsulated diatomic N2 molecules interior of SWNTs with the content of 1 at %. We address that the nitrogen

  10. Structural and Optical Investigations of GaN-Si Interface for a Heterojunction Solar Cell

    SciTech Connect (OSTI)

    Williams, Joshua J.; Jeffries, April M.; Bertoni, Mariana I.; Williamson, Todd L.; Bowden, Stuart G.; Honsberg, Christiana B.

    2014-06-08T23:59:59.000Z

    In recent years the development of heterojunction silicon based solar cells has gained much attention, lea largely by the efforts of Panasonic’s HIT cell. The success of the HIT cell prompts the scientific exploration of other thin film layers, besides the industrially accepted amorphous silicon. In this paper we report upon the use of gallium nitride, grown by MBE at “low temperatures” (~200°C), on silicon wafers as one possible candidate for making a heterojunction solar cell; the first approximation of band alignments between GaN and Si; and the material quality as determined by X-ray diffraction.

  11. Small Molecule Solution-Processed Bulk Heterojunction Solar Cells

    E-Print Network [OSTI]

    Candea, George

    , Laboratory of Polymer and Composite Technology, Lausanne A large source of interest in organic photovoltaics to lateral structures with sizes of about 300 nm. The UV-Vis absorbance spectra of a SQ:PCBM blend film:PCBM blends with varying composition and indicate an eutectic system. This might provide a strategy to obtain

  12. The influence of molecular orientation on organic bulk heterojunction solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2DandEnergy The Year onnanocrystals

  13. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1980-01-01T23:59:59.000Z

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  14. Spin Signatures of Photogenerated Radical Anions in Polymer-[70]Fullerene Bulk Heterojunctions: High Frequency Pulsed EPR Spectroscopy

    E-Print Network [OSTI]

    Oleg G. Poluektov; Salvatore Filippone; Nazario Martin; Andreas Sperlich; Carsten Deibel; Vladimir Dyakonov

    2011-10-07T23:59:59.000Z

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C60-PCBM), and two different soluble C70-derivates: C70-PCBM and diphenylmethano[70]fullerene oligoether (C70-DPM-OE). The first experimental identification of the negative polaron localized on the C70-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P+ and P- in PHT-C70 bulk heterojunctions. Comparing signals from C70-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C70 molecule.

  15. Spin Signatures of Photogenerated Radical Anions in Polymer-[70]Fullerene Bulk Heterojunctions: High Frequency Pulsed EPR Spectroscopy

    E-Print Network [OSTI]

    Poluektov, Oleg G; Martin, Nazario; Sperlich, Andreas; Deibel, Carsten; Dyakonov, Vladimir; 10.1021/jp1012347

    2011-01-01T23:59:59.000Z

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C60-PCBM), and two different soluble C70-derivates: C70-PCBM and diphenylmethano[70]fullerene oligoether (C70-DPM-OE). The first experimental identification of the negative polaron localized on the C70-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P+ and P- in PHT-C70 bulk heterojunctions. Comparing signals from C70-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized...

  16. Spin signatures of photogenerated radical anions in polymer-[70]fullerene bulk-heterojunctions : high-frequency pulsed EPR spectroscopy.

    SciTech Connect (OSTI)

    Poluektov, O. G.; Filippone, S.; Martin, N.; Sperlich, A.; Deibel, C.; Dyakonov, V. (Chemical Sciences and Engineering Division); (Univ. Complutense de Madrid); (Univ. of Wurzburg)

    2010-04-14T23:59:59.000Z

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C{sub 60}-PCBM), and two different soluble C{sub 70}-derivates: C{sub 70}-PCBM and diphenylmethano[70]fullerene oligoether (C{sub 70}-DPM-OE). The first experimental identification of the negative polaron localized on the C{sub 70}-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P{sup +} and P{sup -} in PHT-C{sub 70} bulk heterojunctions. Comparing signals from C{sub 70}-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C{sub 70} molecule.

  17. Spin Signatures of Photogenerated Radical Anions in Polymer?[70]Fullerene Bulk Heterojunctions: High Frequency Pulsed EPR Spectroscopy

    SciTech Connect (OSTI)

    Poluektov, Oleg G.; Pilippone, Salvatore; Martin, C. R.; Sperlich, Andreas; Deibel, Carsten; Dyakonov, Vladimir

    2010-01-01T23:59:59.000Z

    Charged polarons in thin films of polymer?fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C{sub 60}-PCBM), and two different soluble C{sub 70}-derivates: C{sub 70}-PCBM and diphenylmethano[70]fullerene oligoether (C{sub 70}-DPM-OE). The first experimental identification of the negative polaron localized on the C{sub 70}-cage in polymer?fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P{sup +} and P{sup ?} in PHT?C{sub 70} bulk heterojunctions. Comparing signals from C{sub 70}-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C{sub 70} molecule.

  18. Spin signatures of photogenerated radical anions in polymer-[70] fullerene bulk-heterojunctions : high-frequency pulsed EPR spectroscopy.

    SciTech Connect (OSTI)

    Poluektov, O. G.; Filippone, S.; Martin, N.; Sperlich, A.; Deibel, C.; Dyakonov, V. (Chemical Sciences and Engineering Division); (Univ. Complutense de Madrid); (Univ. of Wurzburg)

    2010-01-01T23:59:59.000Z

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C{sub 60}-PCBM), and two different soluble C{sub 70}-derivates: C{sub 70}-PCBM and diphenylmethano[70]fullerene oligoether (C{sub 70}-DPM-OE). The first experimental identification of the negative polaron localized on the C{sub 70}-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P{sup +} and P{sup -} in PHT-C{sub 70} bulk heterojunctions. Comparing signals from C{sub 70}-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C{sub 70} molecule.

  19. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Klem, John F. (Albuquerque, NM); Jones, Eric D. (Edgewood, NM)

    2001-01-01T23:59:59.000Z

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 0heterojunction can be epitaxially grown by either molecular beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). The InGaAsN/GaAs p-n heterojunction provides a high open-circuit voltage of up to 0.62 volts and an internal quantum efficiency of >70%.

  20. Controlled CVD Growth of Single-Walled Carbon Nanotubes and Application to CNT-Si Heterojunction Solar Cells

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Solar Cells Shigeo Maruyama Department of Mechanical Engineering, The University of Tokyo 113 controlled assembly of SWNTs for SWNT-Si heterojunction solar cells will be discussed. We found was found to be encapsulated diatomic N2 molecules interior of SWNTs with the content of 1 at %. We address

  1. Panoramic view of electrochemical pseudocapacitor and organic solar cell research in molecularly engineered energy materials (MEEM)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    al. The State of Organic Solar Cells?A Meta Analysis. Sol.Efficiency in Polymer Solar Cells. Adv. Funct. Mater. 2009,Bulk- Heterojunction Solar Cells. J. Phys. Chem. C 2011,

  2. Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Fisher, Frank

    Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

  3. Improved CNT-Si heterojunction solar cell with structured single-walled carbon nanotubes Shigeo Maruyama1

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Improved CNT-Si heterojunction solar cell with structured single-walled carbon nanotubes Shigeo of Tokyo, Japan 113-8656 2 Department of Applied Physics, Aalto University School of Science, Finland 3, mechanical, and thermal properties are expected to be the most promising materials for next-generation energy

  4. CuIn1-xGaxS2 thin film solar cells with ZnxCd1-xS as heterojunction partner Bhaskar Kumar

    E-Print Network [OSTI]

    Sites, James R.

    80523 ABSTRACT Copper indium gallium sulfide, CuIn1-xGaxS2 (CIGS2) solar cells prepared with chemicalCuIn1-xGaxS2 thin film solar cells with ZnxCd1-xS as heterojunction partner Bhaskar Kumar 1 , Parag/heterojunction partner/ ZnO/Cr/Ag contact fingers solar cells of area ~0.44 cm 2 were fabricated at FSEC

  5. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01T23:59:59.000Z

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more »between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  6. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01T23:59:59.000Z

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.

  7. Bifacial Si Heterojunction-Perovskite Organic-Inorganic Tandem to Produce Highly Efficient Solar Cell

    E-Print Network [OSTI]

    Asadpour, Reza; Khan, M Ryyan; Alam, Muhammad A

    2015-01-01T23:59:59.000Z

    As single junction thin-film technologies, both Si heterojunction (HIT) and Perovskite based solar cells promise high efficiencies at low cost. One expects that a tandem cell design with these cells connected in series will improve the efficiency further. Using a self-consistent numerical modeling of optical and transport characteristics, however, we find that a traditional series connected tandem design suffers from low Jsc due to band-gap mismatch and current matching constraints. It requires careful thickness optimization of Perovskite to achieve any noticeable efficiency gain. Specifically, a traditional tandem cell with state-of-the-art HIT (24%) and Perovskite (20%) sub-cells provides only a modest tandem efficiency of ~25%. Instead, we demonstrate that a bifacial HIT/Perovskite tandem design decouples the optoelectronic constraints and provides an innovative path for extraordinary efficiencies. In the bifacial configuration, the same state-of the-art sub-cells achieve a normalized output of 33%, exceed...

  8. Systematic optimization of quantum junction colloidal quantum dot solar Huan Liu, David Zhitomirsky, Sjoerd Hoogland, Jiang Tang, Illan J. Kramer et al.

    E-Print Network [OSTI]

    centers and photovoltaic degradation in polythiophene-fullerene bulk heterojunction solar cells APL: Org. Electron. Photonics 5, 204 (2012) Correlation between density of paramagnetic centers and photovoltaic degradation in polythiophene-fullerene bulk heterojunction solar cells Appl. Phys. Lett. 101, 103306 (2012

  9. Interfacial Engineering for Highly Efficient-Conjugated Polymer-Based Bulk Heterojunction Photovoltaic Devices

    SciTech Connect (OSTI)

    Alex Jen; David Ginger; Christine Luscombe; Hong Ma

    2012-04-02T23:59:59.000Z

    The aim of our proposal is to apply interface engineering approach to improve charge extraction, guide active layer morphology, improve materials compatibility, and ultimately allow the fabrication of high efficiency tandem cells. Specifically, we aim at developing: i. Interfacial engineering using small molecule self-assembled monolayers ii. Nanostructure engineering in OPVs using polymer brushes iii. Development of efficient light harvesting and high mobility materials for OPVs iv. Physical characterization of the nanostructured systems using electrostatic force microscopy, and conducting atomic force microscopy v. All-solution processed organic-based tandem cells using interfacial engineering to optimize the recombination layer currents vi. Theoretical modeling of charge transport in the active semiconducting layer The material development effort is guided by advanced computer modeling and surface/ interface engineering tools to allow us to obtain better understanding of the effect of electrode modifications on OPV performance for the investigation of more elaborate device structures. The materials and devices developed within this program represent a major conceptual advancement using an integrated approach combining rational molecular design, material, interface, process, and device engineering to achieve solar cells with high efficiency, stability, and the potential to be used for large-area roll-to-roll printing. This may create significant impact in lowering manufacturing cost of polymer solar cells for promoting clean renewable energy use and preventing the side effects from using fossil fuels to impact environment.

  10. Core/Shell heterojunction nanowire solar cell fabricated by lithographically patterned nanowire electrodeposition method

    E-Print Network [OSTI]

    Ghosh, Somnath

    2012-01-01T23:59:59.000Z

    Menke. Gold Core–Semiconductor Shell Nanowires Prepared bycarrier concentration in CIS shell at different depositionMerced Dissertation: Core/Shell Heterojunction Nanowires

  11. Rational design of hybrid organic solar cells

    E-Print Network [OSTI]

    Lentz, Levi (Levi Carl)

    2014-01-01T23:59:59.000Z

    In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. ...

  12. Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology| Nationalof big-dataInvestigation

  13. GaAsSb-based heterojunction tunnel diodes for tandem solar cell interconnects

    SciTech Connect (OSTI)

    Zolper, J.C.; Klem, J.F.; Plut, T.A.; Tigges, C.P.

    1995-01-01T23:59:59.000Z

    We report a new approach to tunnel junctions that employs a pseudomorphic GaAsSb layer to obtain a band alignment at a InGaAs or InAlAs p-n junction favorable for forward bias tunneling. Since the majority of the band offset between GaAsSb and InGaAs or InAlAs is in the valence band, when an GaAsSb layer is placed at an InGaAs or InAlAs p-n junction the tunneling distance is reduced and the tunneling current is increased. For all doping levels studied, the presence of the GaAsSb-layer enhanced the forward tunneling characteristics. In fact, in a InGaAs/GaAsSb tunnel diode a peak tunneling current sufficient for a 1000 sun intercell interconnect was achieved with p = 1.5{times}l0{sup 18} cm{sup -3} while a similarly doped all-InGaAs diode was rectifying. This approach affords a new degree of freedom in designing tunnel junctions for tandem solar cell interconnects. Previously only doping levels could be varied to control the tunneling properties. Our approach relaxes the doping requirements by employing a GaAsSb-based heterojunction.

  14. Bifacial Si Heterojunction-Perovskite Organic-Inorganic Tandem to Produce Highly Efficient Solar Cell

    E-Print Network [OSTI]

    Reza Asadpour; Raghu V. K. Chavali; M. Ryyan Khan; Muhammad A. Alam

    2015-05-15T23:59:59.000Z

    As single junction thin-film technologies, both Si heterojunction (HIT) and Perovskite based solar cells promise high efficiencies at low cost. One expects that a tandem cell design with these cells connected in series will improve the efficiency further. Using a self-consistent numerical modeling of optical and transport characteristics, however, we find that a traditional series connected tandem design suffers from low Jsc due to band-gap mismatch and current matching constraints. It requires careful thickness optimization of Perovskite to achieve any noticeable efficiency gain. Specifically, a traditional tandem cell with state-of-the-art HIT (24%) and Perovskite (20%) sub-cells provides only a modest tandem efficiency of ~25%. Instead, we demonstrate that a bifacial HIT/Perovskite tandem design decouples the optoelectronic constraints and provides an innovative path for extraordinary efficiencies. In the bifacial configuration, the same state-of the-art sub-cells achieve a normalized output of 33%, exceeding the bifacial HIT performance at practical albedo reflections. Unlike the traditional design, this bifacial design is relatively insensitive to Perovskite thickness variations, which may translate to simpler manufacture and higher yield.

  15. Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA) [Bellevue, WA; Chen, Wen S. (Seattle, WA) [Seattle, WA

    1985-08-13T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order ot about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

  16. Methods for forming thin-film heterojunction solar cells from I-III-VI{sub 2}

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-08-13T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI{sub 2} chalcopyrite ternary materials which is vacuum deposited in a thin ``composition-graded`` layer ranging from on the order of about 2.5 microns to about 5.0 microns ({approx_equal}2.5 {mu}m to {approx_equal}5.0 {mu}m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii) a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion occurs (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer. 16 figs.

  17. Methods for forming thin-film heterojunction solar cells from I-III-VI[sub 2

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1982-06-15T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same are disclosed, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (1) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI[sub 2] chalcopyrite ternary materials which is vacuum deposited in a thin composition-graded'' layer ranging from on the order of about 2.5 microns to about 5.0 microns ([approx equal]2.5[mu]m to [approx equal]5.0[mu]m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (2), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, is allowed.

  18. Methods for forming thin-film heterojunction solar cells from I-III-VI.sub. 2

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1982-01-01T23:59:59.000Z

    An improved thin-film, large area solar cell, and methods for forming the same, having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5.mu.m to .congruent.5.0.mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material; wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in The Government has rights in this invention pursuant to Contract No. EG-77-C-01-4042, Subcontract No. XJ-9-8021-1 awarded by the U.S. Department of Energy.

  19. Nanostructured architectures for colloidal quantum dot solar cells

    E-Print Network [OSTI]

    Jean, Joel, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    This thesis introduces a novel ordered bulk heterojunction architecture for colloidal quantum dot (QD) solar cells. Quantum dots are solution-processed nanocrystals whose tunable bandgap energies make them a promising ...

  20. Polymer solar cell by blade coating Yu-Han Chang a

    E-Print Network [OSTI]

    as that of inorganic solar cells, the potential of low-cost and roll- to-roll process on flexible substrates makesPolymer solar cell by blade coating Yu-Han Chang a , Shin-Rong Tseng a , Chun-Yu Chen a , Hsin cell Bulk hetero-junction Blade coating a b s t r a c t Polymer bulk hetero-junction solar cells

  1. Controlled Assembly of Hybrid Bulk-Heterojunction Solar Cells by Sequential Deposition

    E-Print Network [OSTI]

    Gur, Ilan; Fromer, Neil A.; Alivisatos, A. Paul

    2006-01-01T23:59:59.000Z

    C. ; Whiting, G. L. ; Alivisatos, A. P. Advanced FunctionalU. ; Dittmer, J. J. ; Alivisatos, A. P. Science 2002, 295,Milliron, D. J. ; Gur, I. ; Alivisatos, A. P. Mrs Bulletin

  2. "Plastic" Solar Cells: Self-Assembly of Bulk Heterojunction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship ProgramBiomass andTriangleNameANDProfessorDecember

  3. Improving the Performance of P3HT-Fullerene Solar Cells with Side-Chain-Functionalized Poly(thiophene) Additives: A New Paradigm for Polymer Design

    E-Print Network [OSTI]

    Lobez, Jose M.

    The motivation of this study is to determine if small amounts of designer additives placed at the polymer–fullerene interface in bulk heterojunction (BHJ) solar cells can influence their performance. A series of AB-alternating ...

  4. Dielectric nanostructures for broadband light trapping in organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Dielectric nanostructures for broadband light trapping in organic solar cells Aaswath Raman, Zongfu@stanford.edu Abstract: Organic bulk heterojunction solar cells are a promising candidate for low-cost next lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model

  5. Dye-doped polymer nanoparticles for flexible, bulk luminescent solar concentrators

    E-Print Network [OSTI]

    Rosenberg, Ron, S.B. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Bulk luminescent solar concentrators (LSC) cannot make use of Forster resonance energy transfer (FRET) due to necessarily low dye concentrations. In this thesis, we attempt to present a poly-vinylalcohol (PVA) waveguide ...

  6. Earth abundant materials for high efficiency heterojunction thin film solar cells

    E-Print Network [OSTI]

    Buonassisi, Tonio

    We investigate earth abundant materials for thin-film solar cells that can meet tens of terawatts level deployment potential. Candidate materials are identified by combinatorial search, large-scale electronic structure ...

  7. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    SciTech Connect (OSTI)

    Wagner, Hannes [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany); ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Ohrdes, Tobias [Institute for Solar Energy Research Hamelin (ISFH), 31860 Emmerthal (Germany); Dastgheib-Shirazi, Amir [Div. Photovoltaics, Department of Physics, University of Konstanz, 78457 Konstanz (Germany); Puthen-Veettil, Binesh; König, Dirk [ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Altermatt, Pietro P. [Department of Solar Energy, Institute Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2014-01-28T23:59:59.000Z

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl{sub 3} diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)–(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher V{sub oc}. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  8. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01T23:59:59.000Z

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  9. Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of I-III-VI.sub.2 chalcopyrite compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1983-01-01T23:59:59.000Z

    Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.

  10. An easy-to-fabricate low-temperature TiO{sub 2} electron collection layer for high efficiency planar heterojunction perovskite solar cells

    SciTech Connect (OSTI)

    Conings, B.; Baeten, L.; Jacobs, T.; Dera, R.; D’Haen, J.; Manca, J.; Boyen, H.-G. [Instituut voor Materiaalonderzoek, Universiteit Hasselt, Wetenschapspark 1, 3590 Diepenbeek (Belgium)

    2014-08-01T23:59:59.000Z

    Organometal trihalide perovskite solar cells arguably represent the most auspicious new photovoltaic technology so far, as they possess an astonishing combination of properties. The impressive and brisk advances achieved so far bring forth highly efficient and solution processable solar cells, holding great promise to grow into a mature technology that is ready to be embedded on a large scale. However, the vast majority of state-of-the-art perovskite solar cells contains a dense TiO{sub 2} electron collection layer that requires a high temperature treatment (>450?°C), which obstructs the road towards roll-to-roll processing on flexible foils that can withstand no more than ?150?°C. Furthermore, this high temperature treatment leads to an overall increased energy payback time and cumulative energy demand for this emerging photovoltaic technology. Here we present the implementation of an alternative TiO{sub 2} layer formed from an easily prepared nanoparticle dispersion, with annealing needs well within reach of roll-to-roll processing, making this technology also appealing from the energy payback aspect. Chemical and morphological analysis allows to understand and optimize the processing conditions of the TiO{sub 2} layer, finally resulting in a maximum obtained efficiency of 13.6% for a planar heterojunction solar cell within an ITO/TiO{sub 2}/CH{sub 3}NH{sub 3}PbI{sub 3-x}Cl{sub x}poly(3-hexylthiophene)/Ag architecture.

  11. High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH{sub 3}-based molecular beam epitaxy

    SciTech Connect (OSTI)

    Lang, J. R.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Speck, J. S. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Neufeld, C. J.; Mishra, U. K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2011-03-28T23:59:59.000Z

    High external quantum efficiency (EQE) p-i-n heterojunction solar cells grown by NH{sub 3}-based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorption measurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

  12. Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a

    E-Print Network [OSTI]

    Alam, Muhammad A.

    Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk heterojunction BHJ cells, and Cu In,Ga Se2 CIGS cells. All three device types exhibit a significant shunt leakage

  13. Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar

    E-Print Network [OSTI]

    Lin, Zhiqun

    Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock The effects of thermal and solvent vapor annealing on the photovoltaic performance of a new class of all and solvent vapor annealing on the photovoltaic performance of all- conjugated P3BHT21 diblock copolymers

  14. THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te-CdTe HETEROJUNCTIONS (1)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    195 THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te the theore- tical optimum for conversion of solar energy by the intrinsic photovoltaic effect and lower degradation rates to penetrating radiation and 2) shorter minority carrier lifetimes are per

  15. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells

    E-Print Network [OSTI]

    Heo, Jaeyeong

    We demonstrate a tunable electron-blocking layer to enhance the performance of an Earth-abundant metal-oxide solar-cell material. A 5 nm thick amorphous ternary metal-oxide buffer layer reduces interface recombination, ...

  16. Engineering Schottky Contacts in Open-Air Fabricated Heterojunction Solar Cells to Enable High Performance and Ohmic Charge Transport

    E-Print Network [OSTI]

    Hoye, Robert L. Z.; Heffernan, Shane; Ievskaya, Yulia; Sadhanala, Aditya; Flewitt, Andrew; Friend, Richard H.; MacManus-Driscol, Judith L.; Musselman, Kevin P.

    2014-11-24T23:59:59.000Z

    . Mater. 2010, 22, E254?E258. (10) Sarkar, K.; Braden, E. V.; Pogorzalek, S.; Yu, S.; Roth, S. V.; Mu?ller-Buschbaum, P. Monitoring Structural Dynamics of in Situ Spray-Deposited Zinc Oxide Films for Application in Dye-Sensitized Solar Cells. Chem... , 2112?2114. (17) Sarkar, K.; Braden, E. V.; Fro?schl, T.; Hu?sing, N.; Mu?ller- Buschbaum, P. Spray-Deposited Zinc Titanate Films Obtained via Sol?Gel Synthesis for Application in Dye-Sensitized Solar Cells. J. Mater. Chem. A 2014, 2, 15008?15014. (18...

  17. Bulk Energization of Electrons in Solar Flares by Alfv\\'en Waves

    E-Print Network [OSTI]

    Melrose, D B

    2013-01-01T23:59:59.000Z

    Bulk energization of electrons to $10\\,-\\,20\\,$keV in solar flares is attributed to dissipation of Alfv\\'en waves that transport energy and potential downward to an acceleration region near the chromosphere. The acceleration involves the parallel electric field that develops in the limit of inertial Alfv\\'en waves (IAWs). A two-potential model for IAWs is used to relate the parallel potential to the cross-field potential transported by the waves. We identify a maximum parallel potential in terms of a maximum current density that corresponds to the threshold for the onset of anomalous resistivity. This maximum is of order $10\\,$kV when the threshold is that for the Buneman instability. We argue that this restricts the cross-field potential in an Alfv\\'en wave to about $10\\,$kV. Effective dissipation requires a large number of up- and down-current paths associated with multiple Alfv\\'en waves. The electron acceleration occurs in localized, transient, anomalously-conducting regions (LTACRs) and is associated wit...

  18. Supersymmetry Across Nanoscale Heterojunction

    E-Print Network [OSTI]

    B. Bagchi; A. Ganguly; A. Sinha

    2010-02-13T23:59:59.000Z

    We argue that supersymmetric transformation could be applied across the heterojunction formed by joining of two mixed semiconductors. A general framework is described by specifying the structure of ladder operators at the junction for making quantitative estimation of physical quantities. For a particular heterojunction device, we show that an exponential grading inside a nanoscale doped layer is amenable to exact analytical treatment for a class of potentials distorted by the junctions through the solutions of transformed Morse-Type potentials.

  19. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    SciTech Connect (OSTI)

    Yu, D.; Kwabi, D.; Akogwu, O.; Du, J. [Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Oyewole, O. K. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete, Kwara State (Nigeria); Tong, T. [Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Electrical Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Anye, V. C.; Rwenyagila, E. [Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Asare, J.; Fashina, A. [Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria); Soboyejo, W. O. [Princeton Institute of Science and Technology of Materials, Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, New Jersey 08544 (United States); Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory (Nigeria)

    2014-08-21T23:59:59.000Z

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO{sub 2}) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices.

  20. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  1. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  2. Nanocrystalline heterojunction materials

    DOE Patents [OSTI]

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15T23:59:59.000Z

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  3. Copper oxide/N-silicon heterojunction photovoltaic device

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1982-01-01T23:59:59.000Z

    A photovoltaic device having characteristics of a high efficiency solar cell comprising a Cu.sub.x O/n-Si heterojunction. The Cu.sub.x O layer is formed by heating a deposited copper layer in an oxygen containing ambient.

  4. Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Soder, L.; Clark, C.; Pineda, I.

    2012-09-01T23:59:59.000Z

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, which may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.

  5. European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2DO.1.6 BULK LIFETIME ENHANCEMENT BY FIRING STEPS

    E-Print Network [OSTI]

    25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2DO.1.6 1 to getter metallic impurities and firing of silicon nitride (SiN) to induce hydrogen passivation. We analyse impurities and hydrogen bulk passivation, respectively. Additionally, the fired SiN layers have to ensure

  6. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    SciTech Connect (OSTI)

    Firdaus, Yuliar; Van der Auweraer, Mark, E-mail: mark.vanderauweraer@chem.kuleuven.be [Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Chemistry Department, KULeuven, Celestijnenlaan 200F, 2404, B-3001 Leuven (Belgium); Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David [Imec vzw, Kapeldreef 75, B-3001 Leuven (Belgium); Justo, Yolanda; Hens, Zeger [Physical Chemistry Laboratory, Ghent University, Krijgslaan 281-S3, 9000 Gent (Belgium)

    2014-09-07T23:59:59.000Z

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4?nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69?wt.?% PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4?nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.

  7. MG DOPING AND ALLOYING IN ZN3P2 HETEROJUNCTION SOLAR CELLS Gregory M. Kimball, Nathan S. Lewis, Harry A. Atwater

    E-Print Network [OSTI]

    Kimball, Gregory

    -Si) for thin film photovoltaics. We report the fabrication of Mg/Zn3P2 Schottky diodes with Voe values reaching 550 mV, Jse values up to 21.8 mAlcm 2 , and photovoltaic efficiency reaching 4.5%. Previous authors voltages > 500 mV without degradation in the blue response of the solar cell. These results indicate

  8. Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts

    E-Print Network [OSTI]

    Department of Materials Science and Engineering, 184 College Street, Toronto, Ontario M5S 3E4, Canada 3 of depleted-heterojunction colloidal quantum dot solar cells, we describe herein a strategy that replaces. © 2010 American Institute of Physics. doi:10.1063/1.3463037 Solar energy harvesting requires

  9. area photovoltaic solar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    major technological challenge which demands suitable materials and fabrication processes. Thin film polycrystalline heterojunction solar (more) Ahmad, E 1995-01-01 304 Overcoming...

  10. Improved heterojunction quality in Cu2O-based solar cells through the optimization of atmospheric pressure spatial atomic layer deposited Zn1-xMgxO

    E-Print Network [OSTI]

    Ievskaya, Yulia; Hoye, Robert L. Z.; Sadhanala, Aditya; Musselman, Kevin P.; MacManus-Driscoll, Judith L.

    2015-01-01T23:59:59.000Z

    films.12 Herein, we still refer to the reactor as an AP-SALD reactor because it has the same fundamental design principles as other AP-SALD reactors.11 We used our reactor to deposit the n-type layer for our solar cells, in particular zinc oxide... in Figure 2. This allows the metal oxide film to grow layer by layer. A detailed description of AP-SALD reactor design and operation can be found elsewhere.11,12 This approach allows the deposition to occur one to two orders of magnitude faster than...

  11. 2013 IREP Symposium-Bulk Power System Dynamics and Control IX (IREP), August 25-30, 2013, Rethymnon, Greece A Production Simulation Tool for Systems with an Integrated Concentrated Solar

    E-Print Network [OSTI]

    Gross, George

    , Rethymnon, Greece A Production Simulation Tool for Systems with an Integrated Concentrated Solar Plant2013 IREP Symposium-Bulk Power System Dynamics and Control ­IX (IREP), August 25-30, 2013 of the growing interest in effectively harnessing renewable energy resources. The concentrated solar plant (CSP

  12. Factors influencing photocurrent generation in organic bulk heterojunction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014FacilitiesSheet 300Office of

  13. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    J. The physics of solar cells; Imperial College Press,for organic polymer solar cells investigated to date. Thebulk heterojunction organic solar cells, blends of a p-type

  14. Tellurium-Containing Conjugated Materials for Solar Cells: From Sulfur to Tellurium

    SciTech Connect (OSTI)

    Park Y. S.; Kale, T.; Wu, Q.; Ocko, B.M.; Black, C.T., Grubbs, R.B.

    2013-04-03T23:59:59.000Z

    A series of diketopyrrolopyrrole(DPP)-based small molecules have been synthesized by palladium-catalyzed coupling reactions. Electron-donating moieties (benzothiophene, benzoselenophene, and benzotellurophene) are bridged by an electron-withdrawing DPP unit to generate donor-acceptor-donor (D-A-D) type molecules. We observe red-shifts in absorption spectra of these compounds by varying heteroatoms from sulfur to tellurium. In bulk heterojunction solar cells with [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor, we obtain power conversion efficiencies of 2.4% (benzothiophene), 4.1% (benzoselenophene), and 3.0% (benzotellurophene), respectively.

  15. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2012-09-01T23:59:59.000Z

    Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

  16. Current and lattice matched tandem solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1987-01-01T23:59:59.000Z

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  17. Sandia National Laboratories: Nanoscale Effects on Heterojunction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CoreShell Nanowires Nanoscale Effects on Heterojunction Electron Gases in GaNAlGaN CoreShell Nanowires Jeff Tsao participates in "Energy Efficiency and the Rebound Effect"...

  18. Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive

    SciTech Connect (OSTI)

    Suzuki, Atsushi; Zushi, Masahito; Suzuki, Hisato; Ogahara, Shinichi; Akiyama, Tsuyoshi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2014-02-20T23:59:59.000Z

    Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.

  19. Development and characterization of PCDTBT:CdSe QDs hybrid solar cell

    SciTech Connect (OSTI)

    Dixit, Shiv Kumar, E-mail: shivkumardixit.7@gmail.com; Bhatnagar, Chhavi, E-mail: shivkumardixit.7@gmail.com; Kumari, Anita, E-mail: shivkumardixit.7@gmail.com; Madhwal, Devinder, E-mail: shivkumardixit.7@gmail.com; Bhatnagar, P. K., E-mail: shivkumardixit.7@gmail.com; Mathur, P. C., E-mail: shivkumardixit.7@gmail.com [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 (India)

    2014-10-15T23:59:59.000Z

    Solar cell consisting of low band gap polymer poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10, 30-benzothiadiazole)] (PCDTBT) as donor and cadmium selenide/zinc sulphide (CdSe/ZnS) core shell quantum dots (QDs) as an acceptor has been developed. The absorption measurements show that the absorption coefficient increases in bulk heterojunction (BHJ) structure covering broad absorption spectrum (200nm–700nm). Also, the photoluminescence (PL) of the PCDTBT:QDs film is found to decrease by an order of magnitude showing a significant transfer of electrons to the QDs. With this approach and under broadband white light with an irradiance of 8.19 mW/cm{sup 2}, we have been able to achieve a power conversion efficiency (PCE) of 3.1 % with fill factor 0.42 for our typical solar cell.

  20. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01T23:59:59.000Z

    Rizzardo, E. ; Thang, S. H. Polymer 2008, 49, 1079-1131. (b)V. L. ; Pezdirtz, G. F. Polymer Letters 1965, 3, 977-984. [efficiencies of polymer/fullerene bulk heterojunction OPVs

  1. Multiscale Modeling and Simulation of Organic Solar Cells

    E-Print Network [OSTI]

    de Falco, Carlo; Sacco, Riccardo; Verri, Maurizio

    2012-01-01T23:59:59.000Z

    In this article, we continue our mathematical study of organic solar cells (OSCs) and propose a two-scale (micro- and macro-scale) model of heterojunction OSCs with interface geometries characterized by an arbitrarily complex morphology. The microscale model consists of a system of partial and ordinary differential equations in an heterogeneous domain, that provides a full description of excitation/transport phenomena occurring in the bulk regions and dissociation/recombination processes occurring in a thin material slab across the interface. The macroscale model is obtained by a micro-to-macro scale transition that consists of averaging the mass balance equations in the normal direction across the interface thickness, giving rise to nonlinear transmission conditions that are parametrized by the interfacial width. These conditions account in a lumped manner for the volumetric dissociation/recombination phenomena occurring in the thin slab and depend locally on the electric field magnitude and orientation. Usi...

  2. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    E-Print Network [OSTI]

    Winfree, Erik

    Rational Design of Zinc Phosphide Heterojunction Photovoltaics Thesis by Jeffrey Paul Bosco would meet me with the same energy and enthusiasm regarding the topic of zinc phosphide photovoltaics to the field of earth-abundant photovoltaics has been indispensable to my work. Greg also made a great mentor

  3. Nanofluidic Diodes Based on Nanotube Heterojunctions

    E-Print Network [OSTI]

    Yang, Peidong

    Nanofluidic Diodes Based on Nanotube Heterojunctions Ruoxue Yan, Wenjie Liang, Rong Fan devices has recently been implemented into the nanofluidic field for the active control of ion transport, a signature of ionic diode behavior. Such nanofluidic diodes could find applications in ion separation

  4. Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions

    E-Print Network [OSTI]

    Yang, Peidong

    Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions Ruoxue Yan, Wenjie loaded with R6G. Nanotube diode device fabrication Nanofluidic diode devices interfaced

  5. Structured SWNTs and Graphene for Solar Cells Kehang Cui, Takaaki Chiba, Xiao Chen, Shohei Chiashi and Shigeo Maruyama*

    E-Print Network [OSTI]

    Maruyama, Shigeo

    of heterojunction solar cells and dye-sensitized solar cells (DSSCs). The structure of SWNTs was controlled nanotubes, Micro-honeycomb, SWNT-Si solar cell, Dye-sensitized solar cell, Graphene 1. Introduction Single and structural simplicity. Dye-sensitized solar cells (DSSCs)6 have the advantages of relatively high PCE values

  6. Unraveling the Role of Morphology on Organic Solar Cell Performance

    E-Print Network [OSTI]

    Biswajit Ray; Pradeep R. Nair; Muhammad A. Alam

    2010-11-03T23:59:59.000Z

    Polymer based organic photovoltaic (OPV) technology offers a relatively inexpensive option for solar energy conversion provided its efficiency increases beyond the current level (6-7%) along with significant improvements in operational lifetime. The critical aspect of such solar cells is the complex morphology of distributed bulk heterojunctions, which plays the central role in the conversion of photo-generated excitons to electron-hole pairs. However, the fabrication conditions that can produce the optimal morphology are still unknown due to the lack of quantitative understanding of the effects of process variables on the cell morphology. In this article, we develop a unique process-device co-simulation framework based on phase-field model for phase separation coupled with self-consistent drift-diffusion transport to quantitatively explore the effects of the process conditions (e.g., annealing temperature, mixing ratio, anneal duration) on the organic solar cell performance. Our results explain experimentally observed trends of open circuit voltage and short circuit current that would otherwise be deemed anomalous from the perspective of conventional solar cells. In addition to providing an optimization framework for OPV technology, our morphology-aware modeling approach is ideally suited for a wide class of problems involving porous materials, block co-polymers, polymer colloids, OLED devices etc.

  7. Organic solar cells: An overview focusing on active layer morphology Travis L. Benanti & D. Venkataraman*

    E-Print Network [OSTI]

    Venkataraman, Dhandapani "DV"

    Review Organic solar cells: An overview focusing on active layer morphology Travis L. Benanti & D/acceptor blend, morphology, photovoltaic devices, plastic solar cells, thin films Abstract Solar cells heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief

  8. Semiconductor heterojunction band offsets and charge neutrality

    E-Print Network [OSTI]

    Lee, Chomsik

    1989-01-01T23:59:59.000Z

    = 33&Pb = 3 3&PAB = 35 1 . aI M 0 A 0. ? 1 2. 0. Energy(eV) 1 2. 0 0. ? 1 0. Energy(eV) 1 2. Figure 4. 4. Local density of states, parameters for this case are s, = ? 7, s?= 1, s, = l&sp 7~Pa = 4~A = 4)DAB ? .35. -12. 0. Energy(eV) 0... Signature of APS Member Roland E. Allen Department of Physics'- Texas A&M University ' College Station, TX 77843 s p ~ CX3 SEMICONDUCTOR HETEROJUNCTION BAND OFFSETS AND CHARGE NEUTRALITY A Thesis by CHOMSIK LEE Submitted to the Oflice of Graduate...

  9. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    SciTech Connect (OSTI)

    Chauhan, A. K., E-mail: akchau@barc.gov.in, E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-03-31T23:59:59.000Z

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ?2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  10. Scattering in a varying mass PT symmetric double heterojunction

    E-Print Network [OSTI]

    Anjana Sinha; R. Roychoudhury

    2013-06-10T23:59:59.000Z

    We observe that the reflection and transmission coefficients of a particle within a double, PT symmetric heterojunction with spatially varying mass, show interesting features, depending on the degree of non Hermiticity, although there is no spontaneous breakdown of PT symmetry. The potential profile in the intermediate layer is considered such that it has a non vanishing imaginary part near the heterojunctions. Exact analytical solutions for the wave function are obtained, and the reflection and transmission coefficients are plotted as a function of energy, for both left as well as right incidence. As expected, the spatial dependence on mass changes the nature of the scattering solutions within the heterojunctions, and the space-time (PT) symmetry is responsible for the left-right asymmetry in the reflection and transmission coefficients. However, the non vanishing imaginary component of the potential near the heterojunctions gives new and interesting results.

  11. Scaling of SiGe Heterojunction Bipolar Transistors

    E-Print Network [OSTI]

    Rieh, Jae-Sung

    Scaling of SiGe Heterojunction Bipolar Transistors JAE-SUNG RIEH, SENIOR MEMBER, IEEE, DAVID-century. This paper inves- tigates the impacts of scaling on SiGe heterojunction bipolar tran- sistors (HBTs), which), epitaxial-base Si BJTs (Epi Si BJT), SiGe HBTs (SiGe HBT), and SiGe HBTs with carbon-doped base (SiGeC HBT

  12. Numerical Modeling of CIGS Solar Cells: Definition of the Baseline and

    E-Print Network [OSTI]

    Sites, James R.

    Thesis Numerical Modeling of CIGS Solar Cells: Definition of the Baseline and Explanation our supervision by Markus Gloeckler entitled "Numerical Modeling of CIGS Solar Cells: Definition. A three-layer structure, simulating a Cu(InGa)Se2 (CIGS) heterojunction solar cell, was set up using

  13. Silicon epitaxy below 200C: Towards thin crystalline solar cells R. Carioua,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Silicon epitaxy below 200°C: Towards thin crystalline solar cells R. Carioua,b , R. Ruggeria,c , P spectroscopic ellipsometry and HRTEM measurements. Moreover, we build heterojunction solar cells with intrinsic of current devices. KEYWORDS Silicon epitaxy, RF-PECVD, low temperature, thin crystalline solar cells

  14. Performance optimization of solar cells based on colloidal lead sulfide nanocrystals

    SciTech Connect (OSTI)

    Ulfa, Maria, E-mail: mu.ulfa@gmail.com [Department of Physics, Bandung Institute of Technology (ITB), Jalan Ganesha 10 Bandung 40132, Bandung (Indonesia)

    2014-02-24T23:59:59.000Z

    Colloidal semiconducting quantum dot nanocrystals (NCs) have attracted extensive interest as active building-block for low-cost solution-processed photovoltaic due to their size tunable absorption from the visible to near IR. Among various nanocrystal composition, lead sulfide (PbS), having a bulk bandgap of 0.41 eV, are particularly attractive for photovoltaic applications due to their excellent photosensitivity in the near IR. Starting from colloidal synthesis, in this project functional solar cells are fabricated and characterized based on the nearly monodispersed colloidal PbS nanocrystals that we synthesized. These NC-solar cells are fabricated under a “depleted heterojunction” device architecture containing a planar “tipe II” heretojunction formed by a layer of electron-transporting TiO{sub 2} and a layer of PbS NCs. Relevant structural, optical, and electrical characterizations are performed on NCs and their devices. To understand the operational mechanism of these NC-based solar cells, various material and device aspects are investigated in this work aiming for optimized photovoltaic performance. These aspects include the effect of: (1) NC dimensions (and thus their band gaps); (2) passivation of surface traps through post-synthesis treatments; (3) NC surface ligand-exchange; and (4) interfacial modifications at the heterojunction. The most optimized photovoltaic performance is found after combining the surface trap passivation strategy by halides, ligand-exchange by 3-mercaptopropionic acids, and interfacial TiCl4 treatment, leading to a peak open-circuit voltage of 0.53 V, a short-circuit current density of 14.03 mAcm{sup ?2}, and a power conversion efficiency of 3.25%.

  15. Heterojunction for Multi-Junction Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeatHenry Hurwitz,HermannPhotovoltaic

  16. Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics

    E-Print Network [OSTI]

    Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics Sushobhan-bandgap semiconducting heterojunctions on silicon. Here, we present a wide-bandgap heterojunction--between titanium oxide and crystalline silicon--where the titanium oxide is deposited via a metal-organic chemical vapor deposition

  17. Current- and lattice-matched tandem solar cell

    DOE Patents [OSTI]

    Olson, J.M.

    1985-10-21T23:59:59.000Z

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

  18. SciTech Connect: Material Profile Influences in Bulk-Heterojunctions

    Office of Scientific and Technical Information (OSTI)

    Sustainability Program, Award No. 0933435. This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of...

  19. Electronic structure and transition energies in polymer-fullerene bulk heterojunctions

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Electronic Structure and Transition Energies in Polymer?the HOMO and LUMO energy levels and transition energies haveand charge-transfer transition energies. The interface band

  20. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

    2002-01-01T23:59:59.000Z

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  1. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn; Kunets, Vasyl P.; Trigwell, Steven; Couraud, Arthur; Rioux, Julien; Boyer, Cyril; Nteziyaremye, Valens; Dervishi, Enkeleda; et al

    2011-01-01T23:59:59.000Z

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, whilemore »the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.« less

  2. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    SciTech Connect (OSTI)

    Saini, Viney [Univ. of Arkansas, Little Rock, AR (United States); Li, Zhongrui [Univ. of Arkansas, Little Rock, AR (United States); Bourdo, Shawn [Univ. of Arkansas, Little Rock, AR (United States); Kunets, Vasyl P. [Univ. of Arkansas, Fayetteville, AR (United States); Trigwell, Steven [ASRC Aerospace Corp., Kennedy Space Center, FL (United States); Couraud, Arthur [Univ. of Arkansas, Little Rock, AR (United States) and Ecole d'Ingenieurs de CESI-EIA, La Couronne (France); Rioux, Julien [Univ. of Arkansas, Little Rock, AR (United States) and Ecole d'Ingenieurs du CESI-EIA, La Couronne (France); Boyer, Cyril [Univ. of Arkansas, Little Rock, AR (United States) and Ecole d'Ingenieurs du CESI-EIA, La Couronne (France); Nteziyaremye, Valens [Univ. of Arkansas, Little Rock, AR (United States); Dervishi, Enkeleda [Univ. of Arkansas, Little Rock, AR (United States); Biris, Alexandru R. [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Salamo, Gregory J. [Univ. of Arkansas, Fayetteville, AR (United States); Viswanathan, Tito [Univ. of Arkansas, Little Rock, AR (United States); Biris, Alexandru S. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-01-13T23:59:59.000Z

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.

  3. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saini, Viney [Univ. of Arkansas, Little Rock, AR (United States); Li, Zhongrui [Univ. of Arkansas, Little Rock, AR (United States); Bourdo, Shawn [Univ. of Arkansas, Little Rock, AR (United States); Kunets, Vasyl P. [Univ. of Arkansas, Fayetteville, AR (United States); Trigwell, Steven [ASRC Aerospace Corp., Kennedy Space Center, FL (United States); Couraud, Arthur [Univ. of Arkansas, Little Rock, AR (United States) and Ecole d'Ingenieurs de CESI-EIA, La Couronne (France); Rioux, Julien [Univ. of Arkansas, Little Rock, AR (United States) and Ecole d'Ingenieurs du CESI-EIA, La Couronne (France); Boyer, Cyril [Univ. of Arkansas, Little Rock, AR (United States) and Ecole d'Ingenieurs du CESI-EIA, La Couronne (France); Nteziyaremye, Valens [Univ. of Arkansas, Little Rock, AR (United States); Dervishi, Enkeleda [Univ. of Arkansas, Little Rock, AR (United States); Biris, Alexandru R. [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Salamo, Gregory J. [Univ. of Arkansas, Fayetteville, AR (United States); Viswanathan, Tito [Univ. of Arkansas, Little Rock, AR (United States); Biris, Alexandru S. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-01-13T23:59:59.000Z

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.

  4. Solar steam generation by heat localization

    E-Print Network [OSTI]

    Ghasemi, Hadi

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated ...

  5. Macroscopic and direct light propulsion of bulk graphene material

    E-Print Network [OSTI]

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01T23:59:59.000Z

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  6. Buffer transport mechanisms in intentionally carbon doped GaN heterojunction field effect transistors

    SciTech Connect (OSTI)

    Uren, Michael J.; Cäsar, Markus; Kuball, Martin [Center for Device Thermography and Reliability, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Gajda, Mark A. [NXP Semiconductors, Bramhall Moor Lane, Hazel Grove, Stockport SK7 5BJ (United Kingdom)

    2014-06-30T23:59:59.000Z

    Temperature dependent pulsed and ramped substrate bias measurements are used to develop a detailed understanding of the vertical carrier transport in the buffer layers in a carbon doped GaN power heterojunction field effect transistor. Carbon doped GaN and multiple layers of AlGaN alloy are used in these devices to deliver an insulating and strain relieved buffer with high breakdown voltage capability. However, understanding of the detailed physical mechanism for its operation is still lacking. At the lowest electric fields (<10 MV/m), charge redistribution within the C doped layer is shown to occur by hole conduction in the valence band with activation energy 0.86?eV. At higher fields, leakage between the two-dimensional electron gas and the buffer dominates occurring by a Poole-Frenkel mechanism with activation energy ?0.65?eV, presumably along threading dislocations. At higher fields still, the strain relief buffer starts to conduct by a field dependent process. Balancing the onset of these leakage mechanisms is essential to allow the build-up of positive rather than negative space charge, and thus minimize bulk-related current-collapse in these devices.

  7. Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    1 Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar. The devices investigated were first, second and third-generation Silicon- Germanium (SiGe) Heterojunction-engineered SiGe technology [1] have potential advantages when compared with Complementary Metal Oxide

  8. Cross-sectional Scanning Tunneling Microscopy and Spectroscopy of InGaP/GaAs Heterojunctions

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Cross-sectional Scanning Tunneling Microscopy and Spectroscopy of InGaP/GaAs Heterojunctions Y Abstract Compositionally abrupt InGaP/GaAs heterojunctions grown by gas-source molecular beam epitaxy have the InGaP layer show non-uniform In and Ga distribution. About 1.5 nm of transition region

  9. Center for Quantum Science and Engineering Weekly Seminar

    E-Print Network [OSTI]

    Wu, Yih-Min

    , 14:30 ~ 15:30 TITLE Probe Nanoscale Morphologies of Bulk Heterojunction Polymer Solar Cell from cells are promising renewable energy sources because of their low production cost, high mechanical Sinica PLACE Rm716, CCMS & New Physics Building, NTU Abstract Bulk heterojunction (BHJ) polymer solar

  10. The following contribution was presented at the 28. European PV Solar Energy Conference and Exhibition

    E-Print Network [OSTI]

    influences the short-circuit current density JSC due to absorption losses in the amorphous layers5 and also of the front grid decrease the short-circuit current. The fill factor is strongly influenced by the front grid-Si:H/c-Si heterojunction solar cells: open-circuit voltage and fill factor effects from a-Si:H layer thickness and front

  11. Bulk Power Transmission Study

    E-Print Network [OSTI]

    John, T.

    BULK POWER TRANSMISSION STUDY TOMMY JOH~ P. E. Manager of Resource Recovery Waste Management of North America, Inc. Houston, Texas Texans now have a choice. We can become more efficient and maintain our standard of living, or we can... continue business as usual and watch our standard of living erode from competition from other regions. In the past, except for improving reliability, there was no need for a strong transmission system. When Texas generation was primarily gas fueled...

  12. Experimental determination of band offsets of NiO-based thin film heterojunctions

    SciTech Connect (OSTI)

    Kawade, Daisuke; Sugiyama, Mutsumi, E-mail: mutsumi@rs.noda.tus.ac.jp [Faculty of Science and Technology/Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Chichibu, Shigefusa F. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980–8577 (Japan)

    2014-10-28T23:59:59.000Z

    The energy band diagrams of NiO-based solar cell structures that use various n-type oxide semiconductors such as ZnO, Mg{sub 0.3}Zn{sub 0.7}O, Zn{sub 0.5}Sn{sub 0.5}O, In{sub 2}O{sub 3}:Sn (ITO), SnO{sub 2}, and TiO{sub 2} were evaluated by photoelectron yield spectroscopy. The valence band discontinuities were estimated to be 1.6?eV for ZnO/NiO and Mg{sub 0.3}Zn{sub 0.7}O/NiO, 1.7?eV for Zn{sub 0.5}Sn{sub 0.5}O/NiO and ITO/NiO, and 1.8?eV for SnO{sub 2}/NiO and TiO{sub 2}/NiO heterojunctions. By using the valence band discontinuity values and corresponding energy bandgaps of the layers, energy band diagrams were developed. Judging from the band diagram, an appropriate solar cell consisting of p-type NiO and n-type ZnO layers was deposited on ITO, and a slight but noticeable photovoltaic effect was obtained with an open circuit voltage (V{sub oc}) of 0.96?V, short circuit current density (J{sub sc}) of 2.2??A/cm{sup 2}, and fill factor of 0.44.

  13. GaN/Cu[subscript 2]O Heterojunctions for Photovoltaic Applications

    E-Print Network [OSTI]

    Hering, K.P.

    Several growth methods were employed to investigate the photovoltaic behavior of GaN/Cu[subscript 2]O heterojunctions by depositing cuprous oxide thin films on top of gallium nitride templates. The templates consist of a ...

  14. Influence of oriented topological defects on the mechanical properties of carbon nanotube heterojunctions

    SciTech Connect (OSTI)

    Lee, We-Jay [National Center for High-Performance Computing; Chang, Jee-Gong [National Center for High-Performance Computing; Yang, An-Cheng [National Center for High-Performance Computing; Wang, Yeng-Tseng [National Center for High-Performance Computing; Su, Wan-Sheng [National Center for High-Performance Computing; Wang, Cai-Zhuang [Ames Laboratory; Ho, Kai-Ming [Ames Laboratory

    2013-10-10T23:59:59.000Z

    The mechanical properties of finite-length (5,0)/(8,0) single-walled carbon nanotube (SWCNT) heterojunctions with manipulated topological defects are investigated using molecular dynamics simulation calculations. The results show that the mechanical properties and deformation behavior of SWCNT heterojunctions are mainly affected not only by the diameter of the thinner segment of the SWCNT heterojunction but also by the orientation of the heptagon-heptagon (7-7) pair in the junction region. Moreover, the orientation of the 7-7 pair strongly affects those properties in the compression loading than those in tensile loading. Finally, it is found that the location of buckling deformation in the heterojunctions is dependent on the orientation of the 7-7 pair in the compression.

  15. Detailed study of N,N'-(diisopropylphenyl)- terrylene-3,4:11,12-bis(dicarboximide) as electron acceptor for solar cells application

    E-Print Network [OSTI]

    Gorenflot, Julien; Baumann, Andreas; Rauh, Daniel; Vasilev, Aleksey; Li, Chen; Baumgarten, Martin; Deibel, Carsten; Dyakonov, Vladimir

    2011-01-01T23:59:59.000Z

    We report on terrylene-3,4:11,12-bis(dicarboximide) (TDI) as electron acceptor for bulk-heterojunction solar cells using poly(3-hexyl thiophene) (P3HT) as complementary donor component. Enhanced absorption was observed in the blend compared to pure P3HT. As shown by the very efficient photoluminescence (PL) quenching, the generated excitons are collected at the interface between the donor and acceptor, where they separate into charges which we detect by photoinduced absorption and electron-spin resonance (ESR). Time-of-flight (TOF) photoconductivity measurements reveal a good electron mobility of 10-3 cm2 V-1 s-1 in the blend. Nevertheless, the photocurrent in solar cells was found to be surprisingly low. Supported by the external quantum efficiency (EQE) spectrum as well as morphological studies by way of X-ray diffraction and atomic force microscopy, we explain our observation by the formation of a TDI hole blocking layer at the anode interface which prevents the efficiently generated charges to be extracte...

  16. InAs=InGaP=GaAs heterojunction power Schottky rectifiers

    E-Print Network [OSTI]

    Woodall, Jerry M.

    InAs=InGaP=GaAs heterojunction power Schottky rectifiers A. Chen, M. Young and J.M. Woodall A low-matched InGaP on GaAs, to make a high-temperature power rectifier. The LT molecular beam epitaxy technique enables the formation of an abrupt interface between InAs and InGaP. This heterojunction rectifier

  17. GaN/AlGaN heterojunction infrared detector responding in 814 and 2070 m ranges

    E-Print Network [OSTI]

    Perera, A. G. Unil

    GaN/AlGaN heterojunction infrared detector responding in 8­14 and 20­70 m ranges G. Ariyawansa, M October 2006 A GaN/AlGaN heterojunction interfacial work function internal photoemission infrared detector, the work demonstrates 54 m 5.5 THz operation of the detector based on 1s­2p± transition of Si donors in GaN

  18. Band offsets at heterojunctions and the charge neutrality condition

    E-Print Network [OSTI]

    Taferner, Waltraud Teresa

    1990-01-01T23:59:59.000Z

    P InSb ZnSe Znte Gap indirect indirect indirect indirect direct indirect direct direct direct direct direct direct E4 (eV) O'K 0. 76 1. 13 2. 30 1. 88 1. 55 2. 35 0. 78 0. 43 1. 41 0. 23 2. 68 2. 56 If the atoms of a...&' ?r&rl c!?? &'nt h&: R . F. . X I 1 e n t C. 'k&r&ic &?f l'nn&rr&it&ee) l. H. B. r&ss (:& I e m h e r! R. R. L?cchese (lvlpmhe& ) etta. g R. AIT&&J?' &t t (Ifead of Department) May 1990 ABSTRACT Band OfFsets at Heterojunctions...

  19. CsBr/GaN Heterojunction Photoelectron Source

    SciTech Connect (OSTI)

    Maldonado, J.R.; /Stanford U., Elect. Eng. Dept.; Liu, Z.; Sun, Y.; /SLAC, SSRL; Schuetter, S.; /Wisconsin U., Madison; Pianetta, P.; /SLAC, SSRL; Pease, R.F.W.; /Stanford U., Elect. Eng. Dept.

    2009-04-30T23:59:59.000Z

    Experimental results on a new CsBr/GaN heterojunction photocathode structure are presented. The results indicate a fourfold improvement in photoyield relative to CsBr/Cr photocathodes. A model is presented based on intraband states in CsBr and electron injection from the GaN (with 1% addition of indium) substrate to explain the observed photoyield enhancement. The photocathode lifetime at high current density (>40 A/cm{sup 2}) is limited by laser heating of the small illuminated area. Calculations are presented for sapphire and diamond substrates, indicating a factor of 20 reduction in temperature for the latter. The results are encouraging for the realization of a high photoyield photocathode operating at high current density with long lifetime.

  20. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01T23:59:59.000Z

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  1. Do the Defects Make It Work? Defect Engineering in Pi-Conjugated Polymers and Their Solar Cells: Preprint

    SciTech Connect (OSTI)

    Wang, D.; Reese, M.; Kopidakis N.; Gregg, B. A.

    2008-05-01T23:59:59.000Z

    The charged defect density in common pi-conjugated polymers such as poly(3-hexylthiophene), P3HT, is around 1018 cm-3. Despite, or perhaps because of, this huge defect density, bulk heterojunction solar cells made from these polymers and a C60 derivative such as PCBM exhibit some of the highest efficiencies (~5%) yet obtained in solid state organic photovoltaic cells. We discuss defects in molecular organic semiconductors and in pi-conjugated polymers. These defects can be grouped in two categories, covalent and noncovalent. Somewhat analogous to treating amorphous silicon with hydrogen, we introduce chemical methods to modify the density and charge of the covalent defects in P3HT by treating it with electrophiles such as dimethyl sulfate and nucleophiles such as sodium methoxide. The effects of these treatments on the electrical and photovoltaic properties and stability of organic PV cells is discussed in terms of the change in the number and chemical properties of the defects. Finally, we address the question of whether the efficiency of OPV cells requires the presence of these defects which function as adventitious p-type dopants. Their presence relieves the resistance limitations usually encountered in cleaner organic semiconductors and can create built-in electric fields at junctions.

  2. 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, Sept. 2008 PROGRESS IN THE SURFACE PASSIVATION OF SILICON SOLAR CELLS

    E-Print Network [OSTI]

    23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, Sept. 2008 PROGRESS typically lead to a sig- nificant degradation of the bulk lifetime [3]. Hence, low- temperature surface

  3. Band alignment engineering in organized rrP3HT/C60 bulk heterojunction Arnaud Maillard

    E-Print Network [OSTI]

    Rochefort, Alain

    ­5]. However, the power conversion efficiency of organic photovoltaic cells has to reach a minimal 10% target [10­12]. Therefore, before attaining the 10% target with high-efficiency BHJ organic photovoltaic) molecule is more often used in high-efficiency organic photovoltaic cells [4]. Nevertheless, one may assume

  4. Bulk measurement of copper and sodium content in CuIn(0.7)Ga(0.3)Se(2) (CIGS) solar cells with nanosecond pulse length laser induced breakdown spectroscopy (LIBS)

    E-Print Network [OSTI]

    Kowalczyk, Jeremy M D; DeAngelis, Alexander; Kaneshiro, Jess; Mallory, Stewart A; Chang, Yuancheng; Gaillard, Nicolas

    2013-01-01T23:59:59.000Z

    In this work, we show that laser induced breakdown spectroscopy (LIBS) with a nanosecond pulse laser can be used to measure the copper and sodium content of CuIn(0.7)Ga(0.3)Se(2) (CIGS) thin film solar cells on molybdenum. This method has four significant advantages over methods currently being employed: the method is inexpensive, measurements can be taken in times on the order of one second, without high vacuum, and at distances up to 5 meters or more. The final two points allow for in-line monitoring of device fabrication in laboratory or industrial environments. Specifically, we report a linear relationship between the copper and sodium spectral lines from LIBS and the atomic fraction of copper and sodium measured via secondary ion mass spectroscopy (SIMS), discuss the ablation process of this material with a nanosecond pulse laser compared to shorter pulse duration lasers, and examine the depth resolution of nanosecond pulse LIBS.

  5. Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M Abstract Scanning tunneling microscopy and spectroscopy are used to study InGaP/GaAs heterojunctions computation of the tunnel current. Curve fitting of theory to experiment is performed. Using an InGaP band gap

  6. Method for making graded I-III-VI.sub.2 semiconductors and solar cell obtained thereby

    DOE Patents [OSTI]

    Devaney, Walter E. (Seattle, WA)

    1987-08-04T23:59:59.000Z

    Improved cell photovoltaic conversion efficiencies are obtained by the simultaneous elemental reactive evaporation process of Mickelsen and Chen for making semiconductors by closer control of the evaporation rates and substrate temperature during formation of the near contact, bulk, and near junction regions of a graded I-III-VI.sub.2, thin film, semiconductor, such as CuInSe.sub.2 /(Zn,Cd)S or another I-III-VI.sub.2 /II-VI heterojunction.

  7. Finite element simulations of compositionally graded InGaN solar cells G.F. Brown a,b,n

    E-Print Network [OSTI]

    Wu, Junqiao

    , a highly conductive p-type GaN layer provides the hole contact while absorption takes place in the lowerFinite element simulations of compositionally graded InGaN solar cells G.F. Brown a,b,n , J.W. Ager Keywords: Device modeling InGaN Composition grading Heterojunction a b s t r a c t The solar power

  8. Multiscale modeling of solar cells with interface phenomena

    E-Print Network [OSTI]

    Foster, David H; Peszynska, Malgorzata; Schneider, Guenter

    2013-01-01T23:59:59.000Z

    We describe a mathematical model for heterojunctions in semiconductors which can be used, e.g., for modeling higher efficiency solar cells. The continuum model involves well-known drift-diffusion equations posed away from the interface. These are coupled with interface conditions with a nonhomogeneous jump for the potential, and Robin-like interface conditions for carrier transport. The interface conditions arise from approximating the interface region by a lower-dimensional manifold. The data for the interface conditions are calculated by a Density Functional Theory (DFT) model over a few atomic layers comprising the interface region. We propose a domain decomposition method (DDM) approach to decouple the continuum model on subdomains which is implemented in every step of the Gummel iteration. We show results for CIGS/CdS, Si/ZnS, and Si/GaAs heterojunctions.

  9. Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure

    SciTech Connect (OSTI)

    Xing, Juanjuan, E-mail: xingjuanjuan@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Takeguchi, Masaki [Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Hashimoto, Ayako [Electron Microscopy Group, Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Global Research Center for Environment and Energy Based on Nanomaterials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cao, Junyu; Ye, Jinhua [International Center for Materials Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-04-21T23:59:59.000Z

    Photovoltaic behavior of a CaFe{sub 2}O{sub 4}/ZnFe{sub 2}O{sub 4} p-n multi-junction was investigated with electron holography combined with an in situ light irradiation system. Potential profiles of the samples with and without light irradiation were extracted to measure the open circuit photovoltage generated either by the whole heterojunction superstructure or from each p-n junction. Investigation on the variation in the energy band configuration under light irradiation revealed the mechanism involved in the photoelectric effect, with respect to the properties of the heterojunction and its periodic quantum structure.

  10. Scattering states of a particle, with position-dependent mass, in a double heterojunction

    E-Print Network [OSTI]

    Anjana Sinha

    2011-11-17T23:59:59.000Z

    In this work we obtain the exact analytical scattering solutions of a particle (electron or hole) in a semiconductor double heterojunction - potential well / barrier - where the effective mass of the particle varies with position inside the heterojunctions. It is observed that the spatial dependence of mass within the well / barrier introduces a nonlinear component in the plane wave solutions of the continuum states. Additionally, the transmission coefficient is found to increase with increasing energy, finally approaching unity, whereas the reflection coefficient follows the reverse trend and goes to zero.

  11. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered...

  12. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

  13. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  14. Abengoa Solar, Inc. (Mojave Solar) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa...

  15. CBC Reduction in InP Heterojunction Bipolar Transistor with Selectively Implanted Collector Pedestal

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    CBC Reduction in InP Heterojunction Bipolar Transistor with Selectively Implanted Collector-3812 Fax: (805) 893-8714 Email: yingda@ece.ucsb.edu The base-collector junction capacitance (Cbc) is a key with a collector pedestal under the HBT's intrinsic region by using selective ion implantation and MBE regrowth

  16. IEEE BCTM1.3 Explorations for High Performance SiGe-HeterojunctionBipolar

    E-Print Network [OSTI]

    Technische Universiteit Delft

    IEEE BCTM1.3 Explorations for High Performance SiGe-HeterojunctionBipolar Transistor Integration P.Deixler@philips.com,Phone: -1 505 858 2960 Abstract We present a SiGe HBT integration-study, introducing a low-complexity integration-scheme. We demonstrate a stepped box-like SiGe base-profile designed to reduce reverse Early

  17. Solar Rights

    Broader source: Energy.gov [DOE]

    In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors...

  18. Micro-Honeycomb Network Structure of Single-Walled Carbon Nanotubes for Heterojunction Solar Cell

    E-Print Network [OSTI]

    Maruyama, Shigeo

    as insulating layer and Pd as electrode. By using the hot water technique [7], the removal of micro-way to the electrode. Part of this work was financially supported by Grant-in-Aid for Scientific Research (22226006

  19. Core/Shell heterojunction nanowire solar cell fabricated by lithographically patterned nanowire electrodeposition method

    E-Print Network [OSTI]

    Ghosh, Somnath

    2012-01-01T23:59:59.000Z

    O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien,Harder, K. Y. Lau, and A. Yariv, Appl. Phys. Lett. , 40:124,

  20. Full electronic structure across a polymer heterojunction solar cell Johannes Frisch,a

    E-Print Network [OSTI]

    Peters, Achim

    ,1,3-benzothiadiazole) (PFTBTT) with the performance of these bilayers in organic photovoltaic cells (OPVCs the number of new high-potential polymers for good photovoltaic performance is steadily increasing conversion efficiency of organic polymer-based photovoltaic cells (OPVCs) improved significantly in the past

  1. Core/Shell heterojunction nanowire solar cell fabricated by lithographically patterned nanowire electrodeposition method

    E-Print Network [OSTI]

    Ghosh, Somnath

    2012-01-01T23:59:59.000Z

    variation of (a) Short circuit current (I sc ) density (mA/of ~0.68 V and short circuit current (I sc ) in the range ofeither case. Only short circuit current was observed in both

  2. Core/Shell heterojunction nanowire solar cell fabricated by lithographically patterned nanowire electrodeposition method

    E-Print Network [OSTI]

    Ghosh, Somnath

    2012-01-01T23:59:59.000Z

    Au NW width to electrodeposition time Nickel contact Au NWelectrodeposition time..49 3.3 Optical microscope image at 100X maggnifictaion showing the Au NWs connected to the Nickel

  3. Charm contribution to bulk viscosity

    E-Print Network [OSTI]

    M. Laine; Kiyoumars A. Sohrabi

    2015-02-24T23:59:59.000Z

    In the range of temperatures reached in future heavy ion collision experiments, hadronic pair annihilations and creations of charm quarks may take place within the lifetime of the plasma. As a result, charm quarks may increase the bulk viscosity affecting the early stages of hydrodynamic expansion. Assuming thermalization, we estimate the charm contribution to bulk viscosity within the same effective kinetic theory framework in which the light parton contribution has been computed previously. The time scale at which this physics becomes relevant is related to the width of the transport peak associated with the trace anomaly correlator, and is found to be 600 MeV.

  4. Bulk Viscosity of Interacting Hadrons

    E-Print Network [OSTI]

    A. Wiranata; M. Prakash

    2009-09-16T23:59:59.000Z

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.

  5. Heterojunction band offsets and dipole formation at BaTiO{sub 3}/SrTiO{sub 3} interfaces

    SciTech Connect (OSTI)

    Balaz, Snjezana [Department of Physics and Astronomy, Youngstown State University, One University Plaza, Youngstown, Ohio 44555 (United States)] [Department of Physics and Astronomy, Youngstown State University, One University Plaza, Youngstown, Ohio 44555 (United States); Zeng, Zhaoquan [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States)] [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States); Brillson, Leonard J. [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States) [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States); Department of Physics, The Ohio State University, 191 West Woodruff, Columbus, Ohio 43210 (United States)

    2013-11-14T23:59:59.000Z

    We used a complement of photoemission and cathodoluminescence techniques to measure formation of the BaTiO{sub 3} (BTO) on SrTiO{sub 3} (STO) heterojunction band offset grown monolayer by monolayer by molecular beam epitaxy. X-ray photoemission spectroscopy (XPS) provided core level and valence band edge energies to monitor the valence band offset in-situ as the first few crystalline BTO monolayers formed on the STO substrate. Ultraviolet photoemission spectroscopy (UPS) measured Fermi level positions within the band gap, work functions, and ionization potentials of the growing BTO film. Depth-resolved cathodoluminescence spectroscopy measured energies and densities of interface states at the buried heterojunction. Kraut-based XPS heterojunction band offsets provided evidence for STO/BTO heterojunction linearity, i.e., commutativity and transitivity. In contrast, UPS and XPS revealed a large dipole associated either with local charge transfer or strain-induced polarization within the BTO epilayer.

  6. Highmobility inverted selectively doped heterojunctions Hadas Shtrikman, M. Heiblum, K. Seo, D. E. Galbi, and L. Osterling

    E-Print Network [OSTI]

    Heiblum, Mordehai "Moty"

    Highmobility inverted selectively doped heterojunctions Hadas Shtrikman, M. Heiblum, K. Seo, D. E Hadas Shtrikman,a) M. Heiblum, K. Seo, D. E. Galbi, and L. Osterling IBM, ThomasJ. Watson Research

  7. Bulk viscosity and deflationary universes

    E-Print Network [OSTI]

    J. A. S. Lima; R. Portugal; I. Waga

    2007-08-24T23:59:59.000Z

    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  8. Bulk Hydrogen Strategic Directions for

    E-Print Network [OSTI]

    Economics Storage Performance Issues Market and Institutional Issues Storage Devices and Technologies-board) Develop new materials to address unique H2 leakage and Embrittlement Considerations Develop Smart Sensors Formations. #12;Breakout Session - Bulk Hydrogen Storage "Take home" messages Economics Cost of Storage vis

  9. Hanford Bulk Vitrification Technology Status

    SciTech Connect (OSTI)

    Witwer, Keith S.; Dysland, Eric J.; Bagaasen, Larry M.; Schlahta, Stephan N.; Kim, Dong-Sang; Schweiger, Michael J.; Hrma, Pavel R.

    2007-01-25T23:59:59.000Z

    Research and testing was initiated in 2003 to support the selection of a supplemental treatment technology for Hanford low-activity wastes (LAWs). AMEC’s bulk vitrification process was chosen for full-scale demonstration, and the Demonstration Bulk Vitrification System (DBVS) project was started in 2004. Also known as in-container vitrification™ (ICV™), the bulk vitrification process combines soil, liquid LAW, and additives (B2O3 and ZrO2); dries the mixture; and then vitrifies the material in a batch feed-while-melt process in a refractory lined steel container. The DBVS project was initiated with the intent to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat LAW from Tank 241-S-109 at the U.S. Department of Energy (DOE) Hanford Site. AMEC is adapting its ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DBVS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. Since the beginning of the selection process in 2003, testing has utilized crucible-scale, engineering-scale, and full-scale bulk vitrification equipment. Crucible-scale testing, coupled with engineering-scale testing, helps establish process limitations of selected glass formulations. Full-scale testing provides critical design verification of the ICV™ process both before and during operation of the demonstration facility. Initial testing focused on development and validation of the baseline equipment configuration and glass formulation. Subsequent testing was focused on improvements to the baseline configuration. Many improvements have been made to the bulk vitrification system equipment configuration and operating methodology since its original inception. Challenges have been identified and met as part of the parallel testing and design process. A 100% design package for the pilot plant is complete and has been submitted to DOE for review. Additional testing will be performed to support both the DBVS project and LAW treatment for the full Hanford mission. In the near term, this includes testing some key equipment components such as the waste feed dryer and other integrated subsystems, as well as waste form process improvements. Additional testing will be conducted to verify that the system is adaptive to changing feed streams. This paper discusses the progress of the bulk vitrification system from its inception to its current state-of-the-art. Specific attention will be given to the testing and process design improvements that have been completed over the last year. These include the completion of full-scale ICV™ Test FS38C as well as process improvements to the feeding method, temperature control, and molten ionic salt separation control.

  10. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    in bulk, which is why many solar companies and utilities aresolar farms. Today it is widely acknowledged by power producers, utility companies and

  11. Modelling of bulk superconductor magnetization

    E-Print Network [OSTI]

    Ainslie, M. D.; Fujishiro, H.

    2015-03-30T23:59:59.000Z

    synchronous motor. It may also be possible to use superconducting materials of different Tcs and a dual cooling system to develop an in-situ FC magnetization process for YBCO bulk plates using the superconducting stator coils of an electric machine... . Furthermore, the relative ease of fabrication of MgB2 materials, as well as their long coherence length [10], lower anisotropy and strongly linked supercurrent flow in untextured polycrystalline samples [11,12], has enabled a number of different processing...

  12. Heterojunction thin films based on multifunctional metal oxides for photovoltaic application

    SciTech Connect (OSTI)

    Prabhu, M.; Soundararajan, N.; Ramachandran, K. [School of Physics, Madurai Kamaraj University, Madurai - 625021 (India); Marikkannan, M.; Mayandi, J. [School of Chemistry, Madurai Kamaraj University, Madurai - 625021 (India)

    2014-04-24T23:59:59.000Z

    Metal oxides based multifunctional heterojunction thin films of ZnO/SnO{sub 2} and ZnO/SnO{sub 2}/CuO QDs were prepared by spin-coating technique. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The optical absorption studies revealed that the film thickness has considerable effect on the band gap values and is found to be in the range of 3.73–3.48 eV. The photoluminescence spectra showed several weak visible emission peaks related to the deep level defects (450-575 nm). Finally, the current density-voltage (J-V) characteristic of ZnO/SnO{sub 2}/CuO QDs (ZSCI) based heterojunction thin film coated on ITO is also reported.

  13. High-performance InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Tsai, J.-H. [National Kaohsiung Normal University, Department of Electronic Engineering (China)], E-mail: jhtsai@nknucc.nknu.edu.tw; Chiu, S.-Y.; Lour, W.-S. [National Taiwan Ocean University, Department of Electrical Engineering (China); Guo, D.-F. [Air Force Academy, Department of Electronic Engineering (China)

    2009-07-15T23:59:59.000Z

    In this article, a novel InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor is first demonstrated. Though the valence band discontinuity at InGaP/GaAs heterojunction is relatively large, the addition of a {delta}-doped sheet between two spacer layers at the emitter-base (E-B) junction effectively eliminates the potential spike and increases the confined barrier for electrons, simultaneously. Experimentally, a high current gain of 25 and a relatively low E-B offset voltage of 60 mV are achieved. The offset voltage is much smaller than the conventional InGaP/GaAs pnp HBT. The proposed device could be used for linear amplifiers and low-power complementary integrated circuit applications.

  14. Thin-film polycrystalline n-ZnO/p-CuO heterojunction

    SciTech Connect (OSTI)

    Lisitski, O. L.; Kumekov, M. E.; Kumekov, S. E. [Satpaev Kazakh National Technical University (Kazakhstan)], E-mail: skumekov@mail.ru; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2009-06-15T23:59:59.000Z

    Results of X-ray diffraction and spectral-optical studies of n-ZnO and p-CuO films deposited by gas-discharge sputtering with subsequent annealing are presented. It is shown that, despite the difference in the crystal systems, the polycrystallinity of n-ZnO and p-CuO films enables fabrication of a heterojunction from this pair of materials.

  15. Free carrier accumulation at cubic AlGaN/GaN heterojunctions Q. Y. Wei,1

    E-Print Network [OSTI]

    As, Donat Josef

    ) substrate,7 with GaN and AlGaN layer thickness of 600 nm and 30 nm, respectively. The layer thicknessFree carrier accumulation at cubic AlGaN/GaN heterojunctions Q. Y. Wei,1 T. Li,1 J. Y. Huang,1 F. A (Received 24 February 2012; accepted 19 March 2012; published online 3 April 2012) Cubic Al0.3Ga0.7N/GaN

  16. Hanford bulk vitrification technology status

    SciTech Connect (OSTI)

    Witwer, K.S.; Dysland, E.J. [AMEC Nuclear Holdings Ltd., GeoMelt Division, Richland, Washington (United States); Bagaasen, L.M.; Schlahta, S.; Kim, D.S.; Schweiger, M.J.; Hrma, P. [Pacific Northwest National Laboratory, Richland, Washington (United States)

    2007-07-01T23:59:59.000Z

    Research and testing was initiated in 2003 to support the selection of a supplemental treatment technology for Hanford low-activity wastes (LAWs). AMEC's bulk vitrification process was chosen for full-scale demonstration, and the Demonstration Bulk Vitrification System (DBVS) project was started in 2004. Also known as In-Container Vitrification{sup TM} (ICV{sup TM}), the bulk vitrification process combines soil, liquid LAW, and additives (B{sub 2}O{sub 3} and ZrO{sub 2}); dries the mixture; and then vitrifies the material in a batch feed-while-melt process within a disposable, refractory-lined steel container. The DBVS project was initiated with the intent to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat LAW from Tank 241-S-109 at the U.S. Department of Energy (DOE) Hanford Site. Since the beginning of the selection process in 2003, testing has utilized crucible-scale, engineering-scale, and full-scale bulk vitrification equipment. Crucible-scale testing, coupled with engineering-scale testing, helps establish process limitations of selected glass formulations. Full-scale testing provides critical design verification of the ICV{sup TM} process both before and during operation of the demonstration facility. Initial testing focused on development and validation of the melt container and the glass formulation. Subsequent testing was focused on improvements to the baseline configuration. Challenges have been identified and met as part of the parallel testing and design process. A 100% design package for the pilot plant is complete and has been submitted to DOE for review. Additional testing will be performed to support both the DBVS project and LAW treatment for the full Hanford mission. In the near term, this includes testing some key equipment components such as the waste feed mixer-dryer and other integrated subsystems, as well as waste form process improvements. Additional testing will be conducted to verify that the system is adaptive to changing feed streams. This paper discusses the progress of the bulk vitrification system from its inception to its current state-of- the-art. Specific attention will be given to the testing and process design improvements that have been completed over the last year. These include the completion of full-scale ICV{sup TM} Test FS38C as well as process improvements to the feeding method, temperature control, and molten ionic salt separation control. AMEC is adapting its ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL) and design support from DMJN H and N. CH2M HILL Hanford Group, Inc. is the Prime Contractor for the DOE Office of River Protection for the DBVS contract. (authors)

  17. Microstructured anti-reflection surface design for the omni-directional solar cells

    E-Print Network [OSTI]

    Zhou, Weidong

    Microstructured anti-reflection surface design for the omni-directional solar cells Li Chen for the formation of hemispherical structures as an omni-directional anti-reflection (omni-AR) coating in solar cell current in such hemispherical solar cells hence enhanced to 1.5 times of bulk silicon solar cells

  18. NRG Solar (California Valley Solar Ranch) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) Location: San...

  19. Solar Easements

    Broader source: Energy.gov [DOE]

    Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

  20. Impact of surface morphology of Si substrate on performance of Si/ZnO heterojunction devices grown by atomic layer deposition technique

    SciTech Connect (OSTI)

    Hazra, Purnima; Singh, Satyendra Kumar [Department of Electronics and Communication Engineering, Motilal Neheru National Institute of Technology, Allahabad 211004 (India); Jit, Satyabrata, E-mail: sjit.ece@itbhu.ac.in [Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi 221005 (India)

    2015-01-01T23:59:59.000Z

    In this paper, the authors have investigated the structural, optical, and electrical characteristics of silicon nanowire (SiNW)/zinc oxide (ZnO) core–shell nanostructure heterojunctions and compared their characteristics with Si/ZnO planar heterojunctions to investigate the effect of surface morphology of Si substrate in the characteristics of Si/ZnO heterojunction devices. In this work, ZnO thin film was conformally deposited on both p-type ?100? planar Si substrate and substrate with vertically aligned SiNW arrays by atomic layer deposition (ALD) method. The x-ray diffraction spectra show that the crystalline structures of Si/ZnO heterojunctions are having (101) preferred orientation, whereas vertically oriented SiNW/ZnO core–shell heterojunctions are having (002)-oriented wurtzite crystalline structures. The photoluminescence (PL) spectra of Si/ZnO heterojunctions show a very sharp single peak at 377?nm, corresponding to the bandgap of ZnO material with no other defect peaks in visible region; hence, these devices can have applications only in UV region. On the other hand, SiNW/ZnO heterojunctions are having band-edge peak at 378?nm along with a broad emission band, spreading almost throughout the entire visible region with a peak around 550?nm. Therefore, ALD-grown SiNW/ZnO heterojunctions can emit green and red light simultaneously. Reflectivity measurement of the heterojunctions further confirms the enhancement of visible region peak in the PL spectra of SiNW/ZnO heterojunctions, as the surface of the SiNW/ZnO heterojunctions exhibits extremely low reflectance (<3%) in the visible wavelength region compared to Si/ZnO heterojunctions (>20%). The current–voltage characteristics of both Si/ZnO and SiNW/ZnO heterojunctions are measured with large area ohmic contacts on top and bottom of the structure to compare the electrical characteristics of the devices. Due to large surface to-volume ratio of SiNW/ZnO core–shell heterojunction devices, the output current rating is about 130 times larger compared to their planar version at 2 V forward bias voltage. This higher output current rating can be exploited for fabricating high-performance nanoelectronic and optoelectronic devices in near future.

  1. InP Nanowire/Polymer Hybrid Clint J. Novotny, Edward T. Yu, and Paul K. L. Yu*

    E-Print Network [OSTI]

    Yu, Edward T.

    in conjugated polymer hybrid solar cells as well as in nanowire- based dye-sensitized solar cells10 factor of 0.44, thus showing promise as an alternative to current polymer solar cell designs produced in the polymer will be lost to recombina- tion. Bulk organic heterojunction solar cells attempt

  2. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Appendix C - Appendix 0 - Solar Radiation Glossary. ConversSolar Data a. Solar Radiation. , , . , . . , , , , . , . . .

  3. COARSE-GRAINED REFRACTORY INCLUSIONS: CONDENSATES, EVAPORATION RESIDUES, OR BOTH? EVIDENCE FROM MAJOR ELEMENT BULK COMPOSITIONS. S. B. Simon, D. S. Ebel, L. Grossman1

    E-Print Network [OSTI]

    Grossman, Lawrence

    COARSE-GRAINED REFRACTORY INCLUSIONS: CONDENSATES, EVAPORATION RESIDUES, OR BOTH? EVIDENCE FROM from bulk equilibrium condensates calculated for a gas of solar composition. Literature data for major expected from equilibrium condensation. We also performed thermodynamic calculations to evaluate the degree

  4. Community Shared Solar with Solarize

    Broader source: Energy.gov [DOE]

    An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

  5. Comparison of majority carrier charge transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions

    SciTech Connect (OSTI)

    Price, Michelle J.; Foley, Justin M. [Applied Physics Program, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040 (United States); May, Robert A. [Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165 (United States); Maldonado, Stephen [Applied Physics Program, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040 (United States); Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, Michigan 48109-1055 (United States)

    2010-08-23T23:59:59.000Z

    Two sets of silicon (Si) heterojunctions with either Au or PEDOT:PSS contacts have been prepared to compare interfacial majority carrier charge transfer processes at Si/metal and Si/polymer heterojunctions. Current-voltage (J-V) responses at a range of temperatures, wavelength-dependent internal quantum yields, and steady-state J-V responses under illumination for these devices are reported. The cumulative data suggest that the velocity of majority carrier charge transfer, v{sub n}, is several orders of magnitude smaller at n-Si/PEDOT:PSS contacts than at n-Si/Au junctions, resulting in superior photoresponse characteristics for these inorganic/organic heterojunctions.

  6. High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction

    SciTech Connect (OSTI)

    Su, Longxing; Zhang, Quanlin; Chen, Mingming; Su, Yuquan; Zhu, Yuan; Xiang, Rong; Gui, Xuchun [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wu, Tianzhun, E-mail: tz.wu@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Tang, Zikang, E-mail: phzktang@ust.hk [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2014-08-18T23:59:59.000Z

    Lattice-match p-GaN and n-ZnO bilayers were heteroepitaxially grown on the c-sapphire substrate by metal organic chemical vapor deposition and molecular beam epitaxy technique, respectively. X-ray diffraction and photoluminescence investigations revealed the high crystal quality of the bilayer films. Subsequently, a p-GaN/n-ZnO heterojunction photodetector was fabricated. The p-n junction exhibited a clear rectifying I-V characteristic with a turn-on voltage of 3.7?V. At zero-bias voltage, the peak responsivity was 0.68?mA/W at 358?nm, which is one of the best performances reported for p-GaN/n-ZnO heterojunction detectors due to the excellent crystal quality of the bilayer films. These show that the high-performance p-GaN/n-ZnO heterojunction diode is potential for applications of portable UV detectors without driving power.

  7. Nanofluidics, from bulk to interfaces

    E-Print Network [OSTI]

    Lyderic Bocquet; Elisabeth Charlaix

    2009-09-03T23:59:59.000Z

    Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest of scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at the nanometer scales. Why is the nanometer scale specific ? What fluid properties are probed at nanometric scales ? In other words, why 'nanofluidics' deserves its own brand name ? In this critical review, we will explore the vast manifold of length scales emerging for the fluid behavior at the nanoscales, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occuring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed.

  8. CONVENE IGERT ConvEne IGERT Publications (updated March 1, 2013)

    E-Print Network [OSTI]

    Bigelow, Stephen

    ) 480­492 [doi] 43. A. D. Ostrowsk, B. F. Lin, M. V. Tirrell, and P. C. Ford, Liposome Encapsulation a Solution-Processed Small-Molecule Bulk Hetero- junction Solar Cell, Adv. Mater. 24 (2012) 2135­2141. [doi processable small molecule bulk heterojunction solar cells via solvent additives, RSC Adv. 2 (2012) 2232

  9. Scattering states of a particle, with position-dependent mass, in a ${\\cal{PT}}$ symmetric heterojunction

    E-Print Network [OSTI]

    Anjana Sinha

    2012-04-11T23:59:59.000Z

    The study of a particle with position-dependent effective mass (pdem), within a double heterojunction is extended into the complex domain --- when the region within the heterojunctions is described by a non Hermitian ${\\cal{PT}}$ symmetric potential. After obtaining the exact analytical solutions, the reflection and transmission coefficients are calculated, and plotted as a function of the energy. It is observed that at least two of the characteristic features of non Hermitian ${\\cal{PT}}$ symmetric systems --- viz., left / right asymmetry and anomalous behaviour at spectral singularity, are preserved even in the presence of pdem. The possibility of charge conservation is also discussed.

  10. Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

  11. Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions

    SciTech Connect (OSTI)

    Zhang, Bingpo; Cai, Chunfeng; Zhu, He; Wu, Feifei; Ye, Zhenyu; Chen, Yongyue; Li, Ruifeng; Kong, Weiguang; Wu, Huizhen, E-mail: hzwu@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-04-21T23:59:59.000Z

    Narrow-gap lead telluride crystal is an important thermoelectric and mid-infrared material in which phonon functionality is a critical issue to be explored. In this Letter, efficient phonon blockage by forming a polar CdTe/PbTe heterojunction is explicitly observed by Raman scattering. The unique phonon screening effect can be interpreted by recent discovery of high-density two dimensional electrons at the polar CdTe/PbTe(111) interface which paves a way for design and fabrication of thermoelectric devices.

  12. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Distributed Bio-Oil...

  13. Bulk viscosity in kaon condensed matter

    E-Print Network [OSTI]

    Debarati Chatterjee; Debades Bandyopadhyay

    2007-05-30T23:59:59.000Z

    We investigate the effect of $K^-$ condensed matter on bulk viscosity and r-mode instability in neutron stars. The bulk viscosity coefficient due to the non-leptonic process $n \\rightleftharpoons p + K^-$ is studied here. In this connection, equations of state are constructed within the framework of relativistic field theoretical models where nucleon-nucleon and kaon-nucleon interactions are mediated by the exchange of scalar and vector mesons. We find that the bulk viscosity coefficient due to the non-leptonic weak process in the condensate is suppressed by several orders of magnitude. Consequently, kaon bulk viscosity may not damp the r-mode instability in neutron stars.

  14. Hyperon bulk viscosity in strong magnetic fields

    E-Print Network [OSTI]

    Monika Sinha; Debades Bandyopadhyay

    2009-06-06T23:59:59.000Z

    We study the bulk viscosity of neutron star matter including $\\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\\Lambda$ hyperons and direct Urca processes are calculated here. In the presence of a strong magnetic field of $10^{17}$ G, the hyperon bulk viscosity coefficient is reduced whereas bulk viscosity coefficients due to direct Urca processes are enhanced compared with their field free cases when many Landau levels are populated by protons, electrons and muons.

  15. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells

    SciTech Connect (OSTI)

    Liu, Feng; Zhu, Jun, E-mail: zhujzhu@gmail.com, E-mail: sydai@ipp.ac.cn; Wei, Junfeng; Li, Yi; Lv, Mei [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Shangfeng [Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Zhang, Bing; Yao, Jianxi [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Dai, Songyuan, E-mail: zhujzhu@gmail.com, E-mail: sydai@ipp.ac.cn [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China)

    2014-06-23T23:59:59.000Z

    Organo-metal halide perovskite solar cells based on planar architecture have been reported to achieve remarkably high power conversion efficiency (PCE, >16%), rendering them highly competitive to the conventional silicon based solar cells. A thorough understanding of the role of each component in solar cells and their effects as a whole is still required for further improvement in PCE. In this work, the planar heterojunction-based perovskite solar cells were simulated with the program AMPS (analysis of microelectronic and photonic structures)-1D. Simulation results revealed a great dependence of PCE on the thickness and defect density of the perovskite layer. Meanwhile, parameters including the work function of the back contact as well as the hole mobility and acceptor density in hole transport materials were identified to significantly influence the performance of the device. Strikingly, an efficiency over 20% was obtained under the moderate simulation conditions.

  16. Wind and Solar Curtailment: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Bird, L.; Milligan, M.; Speer, B.; Wang, X.; Carlini, E. M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Menemenlis, N.; Orths, A.; Pineda, I.; Smith, J. C.; Soder, L.; Sorensen, P.; Altiparmakis, A.; Yoh, Y.

    2013-09-01T23:59:59.000Z

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.

  17. Bulk Storage Program Compliance Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Bulk Storage Program Compliance Written Program Cornell University 5/8/2013 #12;Bulk Storage.......................................................... 5 4.2.2 Aboveground Petroleum Storage Tanks­ University activities/operations designed to prevent releases of oil from Aboveground Petroleum Storage Tanks (ASTs) required to comply with following

  18. Robust Superlubricity in Graphene/hBN Heterojunctions Itai Leven, Dana Krepel, Ortal Shemesh, and Oded Hod*

    E-Print Network [OSTI]

    Hod, Oded

    Robust Superlubricity in Graphene/hBN Heterojunctions Itai Leven, Dana Krepel, Ortal Shemesh: The sliding energy landscape of the heterogeneous graphene/h- BN interface is studied by means of the registry index. For a graphene flake sliding on top of h-BN, the anisotropy of the sliding energy corrugation

  19. Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices

    E-Print Network [OSTI]

    Atwater, Harry

    Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices Jeffrey and AZO transparent conductive oxides did not. Applications to novel PV devices incorporating low electron-ray diffraction, zinc compounds. I. INTRODUCTION The growing interest in scalable, thin-film photovoltaics (PV

  20. Negative capacitance in GaN/AlGaN heterojunction dual-band detectors L. E. Byrum,1

    E-Print Network [OSTI]

    Dietz, Nikolaus

    Negative capacitance in GaN/AlGaN heterojunction dual-band detectors L. E. Byrum,1 G. Ariyawansa,1 online 2 September 2009 A study of trap states in n+ -GaN/AlGaN heterostructures using electrical related absorption centers attributed to shallow Si-donor pinned to the AlGaN barrier , N-vacancy/ C

  1. Solar synthesis of advanced materials: A solar industrial program initiative

    SciTech Connect (OSTI)

    Lewandowski, A.

    1992-06-01T23:59:59.000Z

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  2. Study of band bending effect in Dye Sensitized Solar Cell through Constant-Current-Discharging Voltage Decay

    E-Print Network [OSTI]

    Wang, Xiaoqi

    2012-01-01T23:59:59.000Z

    A measurement method of constant-current-discharging voltage decay is established to characterize the band bending effect in the heterojunction of conducting glass/TiO2 for typical dye-sensitized solar cells. Furthermore, a dark-state electron transport regarding the TiO2 conduction band bending is proposed based upon the viewpoints of thermionic emission mechanism, which suggests an origin of the band bending effect in a theoretical model. This model quantitatively agrees well with our experimental results and indicates that both the Fermi level decay in TiO2 and the potential difference across the heterojunction will lead to the TiO2 conduction band bending downwards.

  3. Prototype of a Scalable Core-Shell Cu{sub 2}O/TiO{sub 2} Solar Cell

    SciTech Connect (OSTI)

    Li, Dongdong; Chien, Chung-Jen; Deora, Suvil; Chang, Pai-Chun; Moulin, Etienne; Lu, Jia Grace

    2011-01-01T23:59:59.000Z

    Titanium oxide (TiO{sub 2}) nanotube membranes are synthesized via a two-step anodization method. The conductivity at the crystallized barrier layer is enhanced by NH{sub 4}Cl treatment. This facilitates electrodeposition of Cu{sub 2}O into TiO{sub 2} nanotubes, creating Cu{sub 2}O/TiO{sub 2}p–n heterojunctions in the radial direction. The photovoltaic performances benefit from the increased junction interface as well as the efficient pathway for separated charges to transport through the one-dimensional channel. Such heterojunction system serves as a promising candidate for solid-state solar cell due to its scalability, abundancy, low cost and environmental friendly nature. In addition, this versatile process can be conducted on various materials with the potential applications in photovoltaics, supercapacitor, battery, catalyst, etc.

  4. Solar Rights

    Broader source: Energy.gov [DOE]

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  5. Nano-Confinement Induced Chain Alignment in Ordered P3HT

    E-Print Network [OSTI]

    Hu, Wenchuang "Walter"

    as cost- effective functional materials for organic electronic devices such as solar cells1,2 and field as well. For example, in bulk heterojunction (BHJ) solar cell structures, control of nanomor- phology and favorably. In BHJ solar cells, the hole mobility is just on the order of 10 4 cm2 /V · s, which

  6. The Bulk Viscosity of a Pion Gas

    E-Print Network [OSTI]

    Egang Lu; Guy D. Moore

    2011-01-31T23:59:59.000Z

    We compute the bulk viscosity of a gas of pions at temperatures below the QCD crossover temperature, for the physical value of pion mass, to lowest order in chiral perturbation theory. Bulk viscosity is controlled by number-changing processes which become exponentially slow at low temperatures when the pions become exponentially dilute, leading to an exponentially large bulk viscosity zeta ~ (F_0^8/m_\\pi^5) exp(2m_\\pi/T), where F_0 = 93 MeV is the pion decay constant.

  7. Bulk viscosity of N=2* plasma

    E-Print Network [OSTI]

    Alex Buchel; Chris Pagnutti

    2009-03-02T23:59:59.000Z

    We use gauge theory/string theory correspondence to study the bulk viscosity of strongly coupled, mass deformed SU(N_c) N=4 supersymmetric Yang-Mills plasma, also known as N=2^* gauge theory. For a wide range of masses we confirm the bulk viscosity bound proposed in arXiv:0708.3459. For a certain choice of masses, the theory undergoes a phase transition with divergent specific heat c_V ~ |1-T_c/T|^(-1/2). We show that, although bulk viscosity rapidly grows as T -> T_c, it remains finite in the vicinity of the critical point.

  8. Impact of increased penetration of wind and PV solar resources on the

    E-Print Network [OSTI]

    to the BES through a power electronic inverter · Residential roof top PV solar also has an inverter whichImpact of increased penetration of wind and PV solar resources on the bulk power system Vijay;Wind and PV solar grid interface · Modern wind turbine generators are typically rated between 1.5 MW

  9. A photonic nano-architecture is designed to enhance solar water splitting effi-

    E-Print Network [OSTI]

    Steiner, Ullrich

    energy into hydrogen. However, the solar- to-H2 conversion efficiency is still very low due to rapid bulk artificial photosynthesis routes using solar energy to produce H2 or other fuels is an attractive scientificA photonic nano-architecture is designed to enhance solar water splitting effi- ciency

  10. INVESTIGATION OF BULK POWER MIDWEST REGION

    E-Print Network [OSTI]

    Laughlin, Robert B.

    INVESTIGATION OF BULK POWER MARKETS MIDWEST REGION November 1, 2000 The analyses and conclusions Energy Regulatory Commission, any individual Commissioner, or the Commission itself #12;3-i Contents Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 A. Description of the Midwest

  11. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    emissions prices? How would CO2 regulations impact coal, gas, electricity, & SO2 markets? 3. Disruptions1 Decision Models for Bulk Energy Transportation Networks Electrical Engineering Professor Jim Mc: · integrated fuel, electricity networks · environmental impacts · electricity commodity markets · behavior

  12. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  13. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

  14. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS...

  15. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+...

  16. Quantum dot Ge/TiO{sub 2} heterojunction photoconductor fabrication and performance

    SciTech Connect (OSTI)

    Church, Carena P.; Carter, Sue A., E-mail: sacarter@ucsc.edu [Department of Physics, University of California Santa Cruz, Santa Cruz, California 95064 (United States); Muthuswamy, Elayaraja; Kauzlarich, Susan M. [Department of Chemistry, University of California Davis, Davis, California 95616 (United States)] [Department of Chemistry, University of California Davis, Davis, California 95616 (United States); Zhai, Guangmei [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024 (China)] [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024 (China)

    2013-11-25T23:59:59.000Z

    Spun cast TiO{sub 2}-Ge quantum dot (QD) heterojunction type photodetectors have been fabricated and characterized, with interest paid to photocurrent enhancements related to device design. Performance as a function of absorber layer thickness, QD size, and back contact is investigated. We have achieved ultra-thin (?200?nm) devices with photocurrents at 0.5?V of 10{sup ?4} A cm{sup ?2} while the thickest devices have photocurrents at 0.5?V of 10{sup ?2} A cm{sup ?2} with on-off ratios >100, which represents 5 orders of magnitude increase in photocurrents over previously fabricated Ge QD devices. At 0.5?V bias, the currents in our devices are competitive with thin-film Ge photovoltaics.

  17. Thin film heterojunction photovoltaic cells and methods of making the same

    DOE Patents [OSTI]

    Basol, Bulent M. (Los Angeles, CA); Tseng, Eric S. (Los Angeles, CA); Rod, Robert L. (Los Angeles, CA)

    1983-06-14T23:59:59.000Z

    A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.

  18. CdS/PbSe heterojunction for high temperature mid-infrared photovoltaic detector applications

    SciTech Connect (OSTI)

    Weng, Binbin, E-mail: binbinweng@ou.edu, E-mail: shi@ou.edu; Qiu, Jijun; Zhao, Lihua; Chang, Caleb [The School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Shi, Zhisheng, E-mail: binbinweng@ou.edu, E-mail: shi@ou.edu [The School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Nanolight, Inc., Norman, Oklahoma 73069 (United States)

    2014-03-24T23:59:59.000Z

    n-CdS/p-PbSe heterojunction is investigated. A thin CdS film is deposited by chemical bath deposition on top of epitaxial PbSe film by molecular beam epitaxy on Silicon. Current-voltage measurements demonstrate very good junction characteristics with rectifying ratio of ?178 and ideality factor of 1.79 at 300?K. Detectors made with such structure exhibit mid-infrared spectral photoresponse at room temperature. The peak responsivity R{sub ?} and specific detectivity D{sup *} are 0.055?A/W and 5.482?×?10{sup 8}?cm·Hz{sup 1/2}/W at ??=?4.7??m under zero-bias photovoltaic mode. Temperature-dependent photoresponse measurements show abnormal intensity variation below ?200?K. Possible reasons for this phenomenon are also discussed.

  19. Thin-film solar cell fabricated on a flexible metallic substrate

    DOE Patents [OSTI]

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30T23:59:59.000Z

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  20. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOE Patents [OSTI]

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30T23:59:59.000Z

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  1. FABRICATION OF A TITANIUM MICROELECTRODE CHIP TO INVESTIGATE BULK TITANIUM

    E-Print Network [OSTI]

    MacDonald, Noel C.

    FABRICATION OF A TITANIUM MICROELECTRODE CHIP TO INVESTIGATE BULK TITANIUM MICROMACHININING, USA Abstract Bulk titanium has a number of attractive characteristics that are favorable of a microelectrode chip for particle trapping and fundamental microfluidic studies. Keywords: bulk titanium

  2. Solar Car

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Des Moines Central Academy Middle School students compete in the Solar Car Challenge at the National Science Bowl, May 2 in Washington D.C.

  3. Solar Rights

    Broader source: Energy.gov [DOE]

    Maine law requires that any municipal ordinance, bylaw, or regulation adopted after September 30, 2009 regulating solar energy devices on residential property follow certain requirements. The rules...

  4. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  5. Regulatory Roadmap Workshop for Federal Bulk Transmission Regulations...

    Open Energy Info (EERE)

    for bulk transmission. Date: Tuesday, 29 July, 2014 - 09:30 - 15:30 Location: NREL Education Center Auditorium Golden, Colorado Groups: Federal Bulk Transmission Regulatory...

  6. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  7. Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  8. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    Thermoelectrics: Direct Solar Thermal Energy Conversion”,are working on solar thermal energy to generate electriccooling for CPUs, solar thermal energy harvesting, solid-

  9. Vertical integration of an InGaAsP/InP heterojunction bipolar transistor and a double heterostructure laser

    SciTech Connect (OSTI)

    Chen, T.R.; Utaka, K.; Zhuang, Y.H.; Liu, Y.Y.; Yariv, A.

    1987-04-06T23:59:59.000Z

    A double heterostructure InGaAsP/InP mesa laser and a mass transport laser were integrated vertically with an InGaAsP/InP double heterojunction bipolar transistor, resulting in the first realization of laser operation in a vertical integration. Laser thresholds as low as 17 mA and an output laser power of over 30 mW were observed. A new type of bistable laser and electro-optical switching were demonstrated.

  10. A vertical monolithic combination of an InGaAsP/InP laser and a heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Chen, T.R.; Utaka, K.; Zhuang, Y.; Liu, Y.Y.; Yariv, A.

    1987-06-01T23:59:59.000Z

    A DH InGaAsP/InP mesa laser and a DH InGaAsP/InP mass-transport laser were successfully put together with an InGaAsP/InP heterojunction bipolar transistor in a vertical configuration. A laser threshold current as low as 17 mA and an output laser power of over 30 mW were achieved. Base injection current-controlled optical bistability and optical switching were demonstrated.

  11. Fabrication technology of heterojunctions in the lattice of a 2D photonic crystal based on macroporous silicon

    SciTech Connect (OSTI)

    Zharova, Yu. A., E-mail: piliouguina@mail.ioffe.ru; Fedulova, G. V.; Astrova, E. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Baldycheva, A. V. [University of Dublin, Trinity College, Department of Electronic and Electrical Engineering (Ireland); Tolmachev, V. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Perova, T. S. [University of Dublin, Trinity College, Department of Electronic and Electrical Engineering (Ireland)

    2011-08-15T23:59:59.000Z

    Design and fabrication technology of a microcavity structure based on a double heterojunction in macroporous silicon is suggested. The fabrication process of a strip of a 2D photonic crystal constituted by a finite number of lattice periods and the technique for defect formation by local opening of macropores on the substrate side, followed by filling of these macropores with a nematic liquid crystal, are considered.

  12. Boston, Massachusetts: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given. The City of Boston and its Solar America Cities program, Solar Boston, are helping to debunk the myth that solar energy is only feasible in the southern latitudes. Boston has some of the highest energy prices in the country and will likely be one of the first locations where solar power achieves grid parity with conventional energy technologies. Solar Boston is facilitating the rapid development of solar energy projects and infrastructure in the short-term, and is preparing for the rapid market growth that is expected with the imminent arrival of grid parity over the long-term. Solar Boston developed the strategy for achieving Mayor Menino's goal of installing 25 MW of solar energy throughout Boston by 2015. Through Solar Boston, the city has developed a strategy for the installation of solar technology throughout Boston, including mapping feasible locations, preparing a permitting guide, and planning the citywide bulk purchase, financing, and installation of solar technology. The city has also worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing initiatives. The resulting accomplishments include the following: (1) Created an online map of current local renewable energy projects with a tool to allow building owners to calculate their rooftop solar potential. The map is currently live at http://gis.cityofboston.gov/solarboston/. (2) Supported the city's Green Affordable Housing Program (GAHP), in partnership with the Department of Neighborhood Development (DND). Under GAHP, the city is installing more than 150 kW of PV on 200 units of affordable housing. DND requires that all new city-funded affordable housing be LEED silver certified and built solar-ready. (3) Defined solar's role in emergency preparedness with the Boston Mayor's Office of Emergency Preparedness. (4) Worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing mechanisms. Solar Boston partners include DOE, MTC, local utilities and unions, an anonymous foundation, and a broad range of local, regional, and national clean-energy stakeholders. Solar Boston kicked off its partner program on January 10, 2008, sponsoring a workshop on 'Thinking BIG about Boston's Solar Energy Future,' to discuss how state, utility, and municipal programs can work together. Presentations were given by Solar Boston, Keyspan/National Grid, NSTAR, and MTC.

  13. MoS{sub 2}@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties

    SciTech Connect (OSTI)

    Tan, Ying-Hua; Yu, Ke, E-mail: yk5188@263.net; Li, Jin-Zhu; Fu, Hao; Zhu, Zi-Qiang [Key Laboratory of Polar Materials and Devices (Ministry of Education of China), Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2014-08-14T23:59:59.000Z

    The molybdenum disulfide (MoS{sub 2})@ZnO nano-heterojunctions were successfully fabricated through a facile three-step synthetic process: prefabrication of the ZnO nanoparticles, the synthesis of MoS{sub 2} nanoflowers, and the fabrication of MoS{sub 2}@ZnO heterojunctions, in which ZnO nanoparticles were uniformly self-assembled on the MoS{sub 2} nanoflowers by utilizing polyethyleneimine as a binding agent. The photocatalytic activities of the composite samples were evaluated by monitoring the photodegradation of methylene blue (MB). Compared with pure MoS{sub 2} nanoflowers, the composites show higher adsorption capability in dark and better photocatalytic efficiency due to the increased specific surface area and improved electron-hole pair separation. After irradiation for 100?min, the remaining MB in solution is about 7.3%. Moreover, the MoS{sub 2}@ZnO heterojunctions possess enhanced field emission properties with lower turn-on field of 3.08?V ?m{sup ?1}and lower threshold field of 6.9?V ?m{sup ?1} relative to pure MoS{sub 2} with turn-on field of 3.65?V ?m{sup ?1} and threshold field of 9.03?V ?m{sup ?1}.

  14. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

    2000-01-01T23:59:59.000Z

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  15. Thermal relics in cosmology with bulk viscosity

    E-Print Network [OSTI]

    A. Iorio; G. Lambiase

    2014-11-28T23:59:59.000Z

    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, that cannot be explained by the conventional cosmology and particle physics.

  16. Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: improved interface quality and solar cell performance

    E-Print Network [OSTI]

    Ievskaya, Y.; Hoye, R. L. Z.; Sadhanala, A.; Musselman, K.; MacManus-Driscoll, J. L.

    2014-01-01T23:59:59.000Z

    tail (Early view), Adv. Energy Mater. (2014). [8] A.J. Kronemeijer, V. Pecunia, D. Venkateshvaran, M. Nikolka, A. Sadhanala, J. Moriarty, M. Szumilo, H. Sirringhaus, Two-dimensional carrier distribution in top-gate polymer field-effect transistors... conditions and (b) optimized conditions of ZnO AALD deposition. Multiple whisker-, rod- and flower-like formations are present in the standard device. 0.1 0.2 0.3 0.4 0.5 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 0 Voltage V / V C ur re nt d en si ty J / m A cm ?2...

  17. Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling

    E-Print Network [OSTI]

    Fenning, David P.

    The evolution during silicon solar cell processing of performance-limiting iron impurities is investigated with synchrotron-based x-ray fluorescence microscopy. We find that during industrial phosphorus diffusion, bulk ...

  18. New Approachesfor Bulk Power System Restoration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    New Approachesfor Bulk Power System Restoration by AbbasKETABI M.Sc in Electrical EngineeringUniversity of Technology Department of Electrical Engineering, Teheran, Iran Supervisors: SHARIF Professor: Ali M. RANJBAR and complexity. Both factors increase the risk of major power outages. After a blackout, power needs

  19. Bulk viscosity in a cold CFL superfluid

    E-Print Network [OSTI]

    Cristina Manuel; Felipe Llanes-Estrada

    2007-07-18T23:59:59.000Z

    We compute one of the bulk viscosity coefficients of cold CFL quark matter in the temperature regime where the contribution of mesons, quarks and gluons to transport phenomena is Boltzmann suppressed. In that regime dissipation occurs due to collisions of superfluid phonons, the Goldstone modes associated to the spontaneous breaking of baryon symmetry. We first review the hydrodynamics of relativistic superfluids, and remind that there are at least three bulk viscosity coefficients in these systems. We then compute the bulk viscosity coefficient associated to the normal fluid component of the superfluid. In our analysis we use Son's effective field theory for the superfluid phonon, amended to include scale breaking effects proportional to the square of the strange quark mass m_s. We compute the bulk viscosity at leading order in the scale breaking parameter, and find that it is dominated by collinear splitting and joining processes. The resulting transport coefficient is zeta=0.011 m_s^4/T, growing at low temperature T until the phonon fluid description stops making sense. Our results are relevant to study the rotational properties of a compact star formed by CFL quark matter.

  20. Solar Rights

    Broader source: Energy.gov [DOE]

    According to state law, effective July 1, 2008, community associations in Virginia generally may not prohibit a homeowner from installing or using a solar energy collection device on their property...

  1. 2011 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimAdv. Mater. 2011, XX, 17 1 www.advmat.de

    E-Print Network [OSTI]

    Geohegan, David B.

    and formation of a nanoscale interpenetrating network of P3HT/PCBM via phase separation tuning is one Ridge, TN 37831, USA DOI: 10.1002/adma.201103361 Polymer bulk heterojunction (BHJ) solar cells have of the critical issues to achieve high-efficiency polymer BHJ solar cells with improved stability. In an effort

  2. Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism

    E-Print Network [OSTI]

    Xiong, Qihua

    organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles Appl. Phys arrays AIP Conf. Proc. 1447, 361 (2012); 10.1063/1.4710029 Spectral conversion for solar cell efficiency are attracting many attentions due to their potential for low-cost, high-throughput processing. However

  3. 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim COMMUNICATION

    E-Print Network [OSTI]

    McGehee, Michael

    lifetimes greater than 3­4 years. Here we present a detailed operating lifetime study of encapsulated solar and degradation of bulk heterojunction solar cells (BHJs) based on poly(para-phenylene vinylene) (PPV)[8 when state-of-the-art encapsulation with a glass-on-glass architecture is used.[16] Assuming negligible

  4. 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1351wileyonlinelibrary.com www.MaterialsViews.com

    E-Print Network [OSTI]

    McGehee, Michael

    8% for polymer-fullerene bulk heterojunction solar cells[4] and a lifetime approaching 7 years was demonstrated for glass encapsulated devices based on polymer-fullerene blends of PCDTBT and PC71BM.[5] However, in order to take full advantage of the cost reductions of organic solar cells from roll- to-roll printing

  5. Inovateus Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7OpenInnovative Solutions Unlimited,Inovateus Solar

  6. Flix Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,and WildlifeFlashFlintFlix Solar Jump to:

  7. Electroluminescence from ZnO/Si heterojunctions fabricated by PLD with bias voltage application

    SciTech Connect (OSTI)

    Seno, Yuuki; Konno, Daisuke; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi [Electronics and Information Systems, Akita Prefectural Univ. Yuri-honjo, Akita 015-0055 (Japan)

    2014-02-21T23:59:59.000Z

    Electroluminescence (EL) for ZnO films has been investigated by fabricating n-ZnO/p-Si heterojunctions and changing the VI/II (O/Zn) ratio of the films. In the photoluminescence (PL) spectra, both the near band edge (NBE) emission and the defect-related emission were observed, while in the EL spectra only defect-related emission was observed. The EL spectra were divided into three components: green (550 nm), yellow (618 nm) and red (700 nm) bands; and their intensities were compared. As the VI/II (O/Zn) ratio was increased, the red band emission intensity decreased and the green band emission intensity increased. This implies that the oxygen and the zinc vacancies are related to the red and the green band emissions, respectively. Electron transitions from the conduction band minimum (Ec) to the deep energy levels of these vacancies are suggested to cause the red and the green luminescences while the energy levels of the Zn interstitials are close to the Ec in the band gap and no NBE emission is observed.

  8. Design, fabrication, and analysis of p-channel arsenide/antimonide hetero-junction tunnel transistors

    SciTech Connect (OSTI)

    Rajamohanan, Bijesh, E-mail: bor5067@psu.edu; Mohata, Dheeraj; Hollander, Matthew; Datta, Suman [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Zhu, Yan; Hudait, Mantu [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Jiang, Zhengping; Klimeck, Gerhard [Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

    2014-01-28T23:59:59.000Z

    In this paper, we demonstrate InAs/GaSb hetero-junction (hetJ) and GaSb homo-junction (homJ) p-channel tunneling field effect transistors (pTFET) employing a low temperature atomic layer deposited high-? gate dielectric. HetJ pTFET exhibited drive current of 35 ?A/?m in comparison to homJ pTFET, which exhibited drive current of 0.3 ?A/?m at V{sub DS}?=??0.5?V under DC biasing conditions. Additionally, with pulsing of 1 ?s gate voltage, hetJ pTFET exhibited enhanced drive current of 85 ?A/?m at V{sub DS}?=??0.5?V, which is the highest reported in the category of III-V pTFET. Detailed device characterization was performed through analysis of the capacitance-voltage characteristics, pulsed current-voltage characteristics, and x-ray diffraction studies.

  9. Hetero-junction photovoltaic device and method of fabricating the device

    DOE Patents [OSTI]

    Aytug, Tolga; Christen, David K; Paranthaman, Mariappan Parans; Polat, Ozgur

    2014-02-10T23:59:59.000Z

    A hetero-junction device and fabrication method in which phase-separated n-type and p-type semiconductor pillars define vertically-oriented p-n junctions extending above a substrate. Semiconductor materials are selected for the p-type and n-type pillars that are thermodynamically stable and substantially insoluble in one another. An epitaxial deposition process is employed to form the pillars on a nucleation layer and the mutual insolubility drives phase separation of the materials. During the epitaxial deposition process, the orientation is such that the nucleation layer initiates propagation of vertical columns resulting in a substantially ordered, three-dimensional structure throughout the deposited material. An oxidation state of at least a portion of one of the p-type or the n-type semiconductor materials is altered relative to the other, such that the band-gap energy of the semiconductor materials differ with respect to stoichiometric compositions and the device preferentially absorbs particular selected bands of radiation.

  10. Asymmetric Electron Transport at Monolayer-Bilayer Heterojunctions of Epitaxial Graphene

    SciTech Connect (OSTI)

    Li, An-Ping [ORNL] [ORNL; Clark, Kendal W [ORNL] [ORNL; Zhang, Xiaoguang [ORNL] [ORNL; Gu, Gong [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); He, Guowei [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU); Feenstra, Randall [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU)

    2014-01-01T23:59:59.000Z

    The symmetry of the graphene honeycomb lattice is a key element determining many of graphene s unique electronic properties, such as the linear energy-momentum dispersion and the suppressed backscattering 1,2. However, line defects in large-scale epitaxial graphene films, such as grain boundaries, edges, surface steps, and changes in layer thickness, often break the sublatttice symmetry and can impact transport properties of graphene profoundly 3-6. Here we report asymmetric electron transport upon polarity reversal at individual monolayer-bilayer (ML-BL) boundaries in epitaxial graphene on SiC (0001), revealed by scanning tunneling potentiometry. A greater voltage drop is observed when the current flows from BL to ML graphene than in the reverse direction, and the difference remains nearly unchanged with increasing current. This is not a typical nonlinear conductance due to electron transmission through an asymmetric potential. Rather, it indicates the opening of a dynamic energy gap at the Fermi energy due to the Coulomb interaction between the injected nonequilibrium electron density and the pseudospin polarized Friedel oscillation charge density at the boundary. This intriguing heterojunction transport behavior opens a new avenue towards novel quantum functions such as quantum switching.

  11. Self-aligned InGaP/GaAs heterojunction bipolar transistors for microwave power application

    SciTech Connect (OSTI)

    Ren, F.; Abernathy, C.R.; Pearton, S.J.; Lothian, J.R.; Wisk, P.W.; Fullowan, T.R.; Youngkai Chen (AT and T Bell Labs., Murray Hill, NJ (United States)); Yang, L.W.; Fu, S.T.; Brozovich, R.S. (General Electric Co., Syracuse, NY (USSR))

    1993-07-01T23:59:59.000Z

    As an alternative to AlGaAs/GaAs heterojunction bipolar transistors (HBT's) for microwave applications, InGaP/ GaAs HBT's with carbon-doped base layers grown by metal organic molecular beam epitaxy (MOMBE) are demonstrated with excellent dc, RF, and microwave performance. As previously reported, with a 700-[angstrom]-thick base layer (135-[Omega]/[open square] sheet resistance), a dc current gain of 25, and cutoff frequency and maximum frequency of oscillation above 70 GHz were measured for a 2 [times] 5-[mu]m[sup 2] emitter area device. A device with 12 cells, each consisting of a 2 [times] 15-[mu] m[sup 2] emitter area device for a total emitter area of 360 [mu] m[sup 2], was power tested at 4 GHz under continuous-wave (CW) bias condition. The device delivered 0.6-W output power with 13-dB linear gain and a power-added efficiency of 50%.

  12. Measurement of the valence band-offset in a PbSe/ZnO heterojunction by x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Li Lin; Qiu Jijun; Weng Binbin; Yuan Zijian; Shi Zhisheng [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Li Xiaomin; Gan Xiaoyan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Sellers, Ian R. [Deparment of Physics, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2012-12-24T23:59:59.000Z

    A heterojunction of PbSe/ZnO has been grown by molecular beam epitaxy. X-ray photoelectron spectroscopy was used to directly measure the valence-band offset (VBO) of the heterojunction. The VBO, {Delta}E{sub V}, was determined as 2.51 {+-} 0.05 eV using the Pb 4p{sup 3/2} and Zn 2p{sup 3/2} core levels as a reference. The conduction-band offset, {Delta}E{sub C}, was, therefore, determined to be 0.59 {+-} 0.05 eV based on the above {Delta}E{sub V} value. This analysis indicates that the PbSe/ZnO heterojunction forms a type I (Straddling Gap) heterostructure.

  13. Determination of subband energies and 2DEG characteristics of Al{sub x}Ga{sub 1?x}N/GaN heterojunctions using variational method

    SciTech Connect (OSTI)

    Manouchehri, Farzin; Valizadeh, Pouya; Kabir, M. Z., E-mail: kabir@encs.concordia.ca [Department of Electrical and Computer Engineering, Concordia University, Montreal, H3G 1M8 (Canada)

    2014-03-15T23:59:59.000Z

    A physics-based model based on the variational method for analyzing the two dimensional electron gas (2DEG) characteristics of polar AlGaN/GaN heterojunctions is developed. The 2DEG carrier concentration, the first and second energy subbands, and the position of the Fermi energy level are calculated for various barrier thicknesses, Al mole fractions, background dopant concentrations, and gate voltages for gated AlGaN/GaN heterojunctions. The results are in good agreement with the data reported based on self-consistent method. Whereas the aforementioned report has dealt with specific values of Al mole fraction, barrier thickness, and unintentional doping level, the present work provides a basis for calculating the 2DEG characteristics for the full range of these parameters. Furthermore, according to the proposed model, the applicability of the triangular approximation of the quantum well in AlGaN/GaN heterojunctions is evaluated.

  14. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    for Reno, Nevada . . . . . (Q) Solar Data for China Lake/using Nominal Solar Profiles China Lake/Inyokern ANGLE OFStations - China Lake, Edwards Monthly Latitude: Jan SOLAR

  15. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  16. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    Figure 6.3: Birds-eye view of solar array deployment siteBirds-eye 7. Birds-eye view of of solar solar array array

  17. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  18. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    for Daily Solar Radiation Data. Proceedings of the 1977from total horizontal radiation data, they both suffer froma. SOLAR RADIATION Solar radiation data provide a measure of

  19. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    2.1.2 European Solar Radiation Atlas (ESRA)for supplementing solar radiation network data,” FinalEstimating incident solar radiation at the surface from geo-

  20. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  1. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

  2. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Solar Energy Laboratory 1303 Engineering Research Building UniversitySolar Energy Laboratory 1303 Engineering Research laboratory UniversitySolar Energy Group, Energy and Lawrence Berkeley Laboratory University

  3. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01T23:59:59.000Z

    Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish them

  4. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar Molten Salt Test Loop Commissioning On October 10, 2012, in Concentrating Solar Power, EC, Energy, News, News & Events, Renewable Energy, Solar The Molten Salt Test Loop...

  5. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Data for San Vicente Reservoir (l) Solar Data for BarrettDiego Monthly Solar Data, Barrett Reservoir Latitude: Janmonth. (L) SOLAR DATA FOR BARRETT RESERVOIR Nearby Climate

  6. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect (OSTI)

    Pan, Andrew, E-mail: pandrew@ucla.edu [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Chui, Chi On [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2014-08-07T23:59:59.000Z

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  7. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming leg, Carol

    2010-06-08T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  8. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  9. Bulk viscosity in heavy ion collision

    E-Print Network [OSTI]

    Victor Roy; A. K. Chaudhuri

    2012-01-20T23:59:59.000Z

    The effect of a temperature dependent bulk viscosity to entropy density ratio~($\\zeta/s$) along with a constant shear viscosity to entropy density ratio~($\\eta/s$) on the space time evolution of the fluid produced in high energy heavy ion collisions have been studied in a relativistic viscous hydrodynamics model. The boost invariant Israel-Stewart theory of causal relativistic viscous hydrodynamics is used to simulate the evolution of the fluid in 2 spatial and 1 temporal dimension. The dissipative correction to the freezeout distribution for bulk viscosity is calculated using Grad's fourteen moment method. From our simulation we show that the method is applicable only for $\\zeta/s<0.004$.

  10. More stable hybrid organic solar cells deposited on amorphous Si electron transfer layer

    SciTech Connect (OSTI)

    Samiee, Mehran; Modtland, Brian; Dalal, Vikram L., E-mail: vdalal@iastate.edu [Iowa State University, Dept. of Electrical and Computer Engineering, Ames, Iowa 50011 (United States); Aidarkhanov, Damir [Nazarbayev University, Astana (Kazakhstan)

    2014-05-26T23:59:59.000Z

    We report on defect densities, performance, and stability of organic/inorganic hybrid solar cells produced using n-doped inorganic amorphous silicon-carbide layers as the electron transport layer (ETL). The organic material was poly-3-hexyl-thiophene (P3HT) and heterojunction was formed using phenyl-C{sub 71}-Butyric-Acid-Methyl Ester (PCBM). For comparison, inverted solar cells fabricated using Cs{sub 2}CO{sub 3} as ETL were fabricated. Defect densities and subgap quantum efficiency curves were found to be nearly identical for both types of cells. The cells were subjected to 2xsun illumination and it was found that the cells produced using doped a-Si as ETL were much more stable than the cells produced using Cs{sub 2}CO{sub 3}.

  11. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01T23:59:59.000Z

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  12. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01T23:59:59.000Z

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  13. Accelerating universes driven by bulk particles

    SciTech Connect (OSTI)

    Brito, F.A. [Departamento de Fisica, Universidade Federal de Campina Grande, 58109-970 Campina Grande, Paraiba (Brazil); Cruz, F.F.; Oliveira, J.F.N. [Departamento de Matematica, Universidade Regional do Cariri, 63040-000 Juazeiro do Norte, Ceara (Brazil)

    2005-04-15T23:59:59.000Z

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory.

  14. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20T23:59:59.000Z

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  15. Jms solar handel gmbh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson,Information PV CorpJms solar handel

  16. Interias Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to: navigation, search Name: Interias Solar

  17. California Solar Initiative- Solar Thermal Program

    Broader source: Energy.gov [DOE]

    Originally restricted to just solar water heaters, the prorgam was expanded by CPUC Decision 13-02-018 in February 2013 to include other solar thermal technologies, including solar process heatin...

  18. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2 Solar Background Document 2Solar

  19. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  20. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    Utah's solar easement provisions are similar to easement provisions in many other states. Parties may voluntarily enter into written solar easement contracts that are enforceable by law. An...

  1. CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership

    E-Print Network [OSTI]

    CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39 Installations happen where process is easier #12;EVERGREEN STATE SOLAR PARTNERSHIP Commerce NWSEEDEdmonds

  2. ACCELERATION AND ENRICHMENT OF 3 IMPULSIVE SOLAR FLARES BY ELECTRON FIREHOSE

    E-Print Network [OSTI]

    ACCELERATION AND ENRICHMENT OF 3 He IN IMPULSIVE SOLAR FLARES BY ELECTRON FIREHOSE WAVES G. Paesold A new mechanism for acceleration and enrichment of 3 He during impulsive solar flares is presented. Low of the free energy stored in a temperature anisotropy (Te > Te ) of the bulk energized electron population

  3. Characteristics of Novel InGaAsN Double Heterojunction Bipolar Transistors

    SciTech Connect (OSTI)

    LI,N.Y.; CHANG,PING-CHIH; BACA,ALBERT G.; LAROCHE,J.R.; REN,F.; ARMOUR,E.; SHARPS,P.R.; HOU,H.Q.

    2000-08-01T23:59:59.000Z

    The authors demonstrate, for the first time, both functional Pnp AlGaAs/InGaAsN/GaAs (Pnp InGaAsN) and Npn InGaP/InGaAsN/GaAs (Npn InGaAsN) double heterojunction bipolar transistors (DHBTs) using a 1.2 eV In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} as the base layer for low-power electronic applications. The Pnp InGaAsN DHBT has a peak current gain ({beta}) of 25 and a low turn-on voltage (V{sub ON}) of 0.79 V. This low V{sub ON} is {approximately} 0.25 V lower than in a comparable Pnp AlGAAs/GaAs HBT. For the Npn InGaAsN DHBT, it has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in an InGaP/GaAs HBT. A peak {beta} of 7 with nearly ideal I-V characteristics has been demonstrated. Since GaAs is used as the collector of both Npn and Pnp InGaAsN DHBTs, the emitter-collector breakdown voltage (BV{sub CEO}) are 10 and 12 V, respectively, consistent with the BV{sub CEO} of Npn InGaP/GaAs and Pnp AlGaAs/GaAs HBTs of comparable collector thickness and doping level. All these results demonstrate the potential of InGaAsN DHBTs as an alternative for application in low-power electronics.

  4. The Economic Case for Bulk Energy Storage in Transmission Systems

    E-Print Network [OSTI]

    The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

  5. Bulk viscosity of gauge theory plasma at strong coupling

    E-Print Network [OSTI]

    Alex Buchel

    2007-09-01T23:59:59.000Z

    We propose a lower bound on bulk viscosity of strongly coupled gauge theory plasmas. Using explicit example of the N=2^* gauge theory plasma we show that the bulk viscosity remains finite at a critical point with a divergent specific heat. We present an estimate for the bulk viscosity of QGP plasma at RHIC.

  6. Bulk viscosity and r-modes of neutron stars

    E-Print Network [OSTI]

    Debarati Chatterjee; Debades Bandyopadhyay

    2008-08-08T23:59:59.000Z

    The bulk viscosity due to the non-leptonic process involving hyperons in $K^-$ condensed matter is discussed here. We find that the bulk viscosity is modified in a superconducting phase. Further, we demonstrate how the exotic bulk viscosity coefficient influences $r$-modes of neutron stars which might be sources of detectable gravitational waves.

  7. EVIDENCE FOR MAGNESIUM ISOTOPE HETEROGENEITY IN THE SOLAR PROTOPLANETARY DISK

    SciTech Connect (OSTI)

    Larsen, Kirsten K.; Trinquier, Anne; Paton, Chad; Schiller, Martin; Wielandt, Daniel; Connelly, James N.; Nordlund, Ake; Krot, Alexander N.; Bizzarro, Martin [Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350 (Denmark); Ivanova, Marina A. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow 119991 (Russian Federation)

    2011-07-10T23:59:59.000Z

    With a half-life of 0.73 Myr, the {sup 26}Al-to-{sup 26}Mg decay system is the most widely used short-lived chronometer for understanding the formation and earliest evolution of the solar protoplanetary disk. However, the validity of {sup 26}Al-{sup 26}Mg ages of meteorites and their components relies on the critical assumption that the canonical {sup 26}Al/{sup 27}Al ratio of {approx}5 x 10{sup -5} recorded by the oldest dated solids, calcium-aluminium-rich inclusions (CAIs), represents the initial abundance of {sup 26}Al for the solar system as a whole. Here, we report high-precision Mg-isotope measurements of inner solar system solids, asteroids, and planets demonstrating the existence of widespread heterogeneity in the mass-independent {sup 26}Mg composition ({mu}{sup 26}Mg*) of bulk solar system reservoirs with solar or near-solar Al/Mg ratios. This variability may represent heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk at the time of CAI formation and/or Mg-isotope heterogeneity. By comparing the U-Pb and {sup 26}Al-{sup 26}Mg ages of pristine solar system materials, we infer that the bulk of the {mu}{sup 26}Mg* variability reflects heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk. We conclude that the canonical value of {approx}5 x 10{sup -5} represents the average initial abundance of {sup 26}Al only in the CAI-forming region, and that large-scale heterogeneity-perhaps up to 80% of the canonical value-may have existed throughout the inner solar system. If correct, our interpretation of the Mg-isotope composition of inner solar system objects precludes the use of the {sup 26}Al-{sup 26}Mg system as an accurate early solar system chronometer.

  8. Lateral heterojunction photodetector consisting of molecular organic and colloidal quantum dot thin films

    E-Print Network [OSTI]

    exception being the dye- sensitized solar cell.3 Owing to its unique geometry, the present device also and that is sensitized across visible wavelengths by a thin film of colloidal CdSe nanocrystal quantum dots QDs . High

  9. Towards bulk based preconditioning for quantum dotcomputations

    SciTech Connect (OSTI)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang

    2006-05-25T23:59:59.000Z

    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  10. Bulk viscosity effects on elliptic flow

    E-Print Network [OSTI]

    G. S. Denicol; T. Kodama; T. Koide; Ph. Mota

    2009-09-30T23:59:59.000Z

    The effects of bulk viscosity on the elliptic flow $v_{2}$ are studied using realistic equation of state and realistic transport coefficients. We find that thebulk viscosity acts in a non trivial manner on $v_{2}$. At low $p_{T}$, the reduction of $v_{2}$ is even more effective compared to the case of shear viscosity, whereas at high $p_{T}$, an enhancement of $v_{2}$ compared to the ideal case is observed. We argue that this is caused by the competition of the critical behavior of the equation of state and the transport coefficients.

  11. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C.

    1991-01-01T23:59:59.000Z

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235 }U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs.

  12. RAPID/Bulk Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnline Permitting SystemsBulk

  13. UMORE PARK -INTEGRATING SOLAR Overview, Solar Optimization & Technologies, & Recommendations

    E-Print Network [OSTI]

    Netoff, Theoden

    : Introduction 3 UMore Park Overview 4 Solar Optimization 7 Passive Solar 8 Solar Technologies 10 District Solar research and development of renewable resource technologies. Integrating passive design techniques as wellUMORE PARK - INTEGRATING SOLAR Overview, Solar Optimization & Technologies, & Recommendations

  14. Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements

    SciTech Connect (OSTI)

    Nalwa, Kanwar

    2012-11-03T23:59:59.000Z

    Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase in photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 ?m), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.

  15. Band offsets of TiZnSnO/Si heterojunction determined by x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Sun, R. J.; Jiang, Q. J.; Yan, W. C.; Feng, L. S.; Lu, B.; Ye, Z. Z. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Li, X. F. [Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072 (China); Li, X. D. [Xinyi PV Products (Anhui) Holdings LTD, Xinyi PV Glass Industrial Zone, No. 2 Xinyi Road, ETDZ, Wuhu 241009 (China); Lu, J. G., E-mail: lujianguo@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072 (China)

    2014-09-28T23:59:59.000Z

    X-ray photoelectron spectroscopy (XPS) was utilized to measure the valence band offset (?E{sub V}) of the TiZnSnO (TZTO)/Si heterojunction. TZTO films were deposited on Si (100) substrates using magnetron sputtering at room temperature. By using the Zn 2p{sub 3/2} and Sn 3d{sub 5/2} energy levels as references, the value of ?E{sub V} was calculated to be 2.69 ± 0.1 eV. Combining with the experimental optical energy band gap of 3.98 eV for TZTO extracted from the UV-vis transmittance spectrum, the conduction band offset (?E{sub C}) was deduced to be 0.17 ± 0.1 eV at the interface. Hence, the energy band alignment of the heterojunction was determined accurately, showing a type-I form. This will be beneficial for the design and application of TZTO/Si hybrid devices.

  16. InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Chang, P. C. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Baca, A. G. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Li, N. Y. [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States)] [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States); Xie, X. M. [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States)] [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States); Hou, H. Q. [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States)] [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States); Armour, E. [Emcore Corporation, Somerset, New Jersey 08873 (United States)] [Emcore Corporation, Somerset, New Jersey 08873 (United States)

    2000-04-17T23:59:59.000Z

    We have demonstrated a functional NpN double-heterojunction bipolar transistor (DHBT) using InGaAsN for the base layer. The InGaP/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs DHBT has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs heterojunction bipolar transistor (HBT). The lower turn-on voltage is attributed to the smaller band gap (1.20 eV) of metalorganic chemical vapor deposition-grown In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} base layer. GaAs is used for the collector; thus the breakdown voltage (BV{sub CEO}) is 10 V, consistent with the BV{sub CEO} of InGaP/GaAs HBTs of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger conduction band discontinuity between InGaAsN and GaAs, a graded InGaAs layer with {delta} doping is inserted at the base-collector junction. The improved device has a peak current gain of seven with ideal current-voltage characteristics. (c) 2000 American Institute of Physics.

  17. Effect of High-Voltage Heterojunction Bipolar Transistor Collector Design on f(T) and f(MAX)

    SciTech Connect (OSTI)

    Ashby, C.I.H.; Baca, A.G.; Chang, P.C.; Hietala, V.M.

    1999-03-02T23:59:59.000Z

    High-speed InGaP/GaAs heterojunction bipolar transistors (HBTs) for high-voltage circuit applications have been investigated. In order to obtain ideal IV characteristics, a lightly doped (N{sub DC} = 7.5 x 10{sup 15} cm{sup {minus}3}) thick (W{sub C} = 3.5 {micro}m) layer of GaAs was used as the collector layer. The devices fabricated have shown breakdown voltage exceeding 65 V. Device operated at up to a 60V bias, which is the highest operating voltage reported up to date for single heterojunction HBTs. Peak {line_integral}{sub T} and {line_integral}{sub MAX} values of 18 GHz and 29 GHz, respectively, have been achieved on a device with emitter area of 4x 12.5 {micro}m{sup 2}. Both {line_integral}{sub T} and {line_integral}{sub Max} degrades with higher bias, which is related to the elongation of the collector depletion width.

  18. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 11, NO. 10, OCTOBER 2001 401 Reliability of Microwave SiGe/Si Heterojunction

    E-Print Network [OSTI]

    Rieh, Jae-Sung

    of Microwave SiGe/Si Heterojunction Bipolar Transistors Zhenqiang Ma, Student Member, IEEE, Pallab Bhattacharya, Member, IEEE, and Edward T. Croke Abstract--The degradation behavior of NPN Si/SiGe/Si het- erojunction, REID, SiGe HBT. I. INTRODUCTION THE FAVORABLE high-frequency characteristics exhib- ited by Si/SiGe

  19. The Bulk Channel in Thermal Gauge Theories

    E-Print Network [OSTI]

    Harvey B. Meyer

    2010-02-17T23:59:59.000Z

    We investigate the thermal correlator of the trace of the energy-momentum tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral function in that channel, whose low-frequency part determines the bulk viscosity. We focus on the thermal modification of the spectral function, $\\rho(\\omega,T)-\\rho(\\omega,0)$. Using the operator-product expansion we give the high-frequency behavior of this difference in terms of thermodynamic potentials. We take into account the presence of an exact delta function located at the origin, which had been missed in previous analyses. We then combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean correlator to determine the intervals of frequency where the spectral density is enhanced or depleted by thermal effects. We find evidence that the thermal spectral density is non-zero for frequencies below the scalar glueball mass $m$ and is significantly depleted for $m\\lesssim\\omega\\lesssim 3m$.

  20. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08T23:59:59.000Z

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  1. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07T23:59:59.000Z

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  2. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Environmental Management (EM)

    Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar...

  3. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Energy Savers [EERE]

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities,...

  4. SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment

    E-Print Network [OSTI]

    Brownstone, Rob

    SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University..................................................................................................................... 1 2 Solar Resource Assessment ........................................................................................... 2 2.1 Solar Radiation

  5. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  6. Ann Arbor, Michigan: Solar in Action (Brochure), Solar America...

    Broader source: Energy.gov (indexed) [DOE]

    Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Ann Arbor, Michigan: Solar in Action (Brochure), Solar America...

  7. Berkeley, California: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Berkeley, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Berkeley, California: Solar in Action (Brochure), Solar America...

  8. Austin, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy...

  9. Knoxville, Tennessee: Solar in Action (Brochure), Solar America...

    Energy Savers [EERE]

    Knoxville, Tennessee: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Knoxville, Tennessee: Solar in Action (Brochure), Solar America...

  10. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Broader source: Energy.gov (indexed) [DOE]

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

  11. Binding energy of singlet excitons and charge transfer complexes in MDMO-PPV:PCBM solar cells

    E-Print Network [OSTI]

    Kern, Julia; Deibel, Carsten; Dyakonov, Vladimir

    2011-01-01T23:59:59.000Z

    The influence of an external electric field on the photoluminescence intensity of singlet excitons and charge transfer complexes is investigated for a poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) diode and a bulk heterojunction of the PPV in combination with [6,6]-phenyl-C61 butyric acid methylester (PCBM), respectively. The experimental data is related to the dissociation probability derived from the Onsager-Braun model. In this way, a lower limit for the singlet exciton binding energy of MDMO-PPV is determined as (327 +- 30) meV, whereas a significantly lower value of (203 +- 18) meV is extracted for the charge transfer complex in a MDMO-PPV:PCBM blend.

  12. Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson,Information PV Corp JSPV aka Solar PV

  13. Solar Neutrinos

    E-Print Network [OSTI]

    R. G. H. Robertson

    2006-02-05T23:59:59.000Z

    Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

  14. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS...

  15. Solar collector

    SciTech Connect (OSTI)

    Dostrovsky, I.

    1981-02-10T23:59:59.000Z

    A solar collector unit comprises a body of rigid thermally insulating material having a surface in the shape of about half a cylindrical parabola, the parabolic surface being provided with a reflective surface, a conduit being positioned with its long axis in the median plane of the parabola, said conduit serving as conduit for the heat-exchange medium, the surface of said conduit facing the parabolic surface being a selective surface, a transparent cover being provided on top of the device.

  16. Rotary adsorbers for continuous bulk separations

    DOE Patents [OSTI]

    Baker, Frederick S. (Oak Ridge, TN)

    2011-11-08T23:59:59.000Z

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  17. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14T23:59:59.000Z

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50-1/2 inches high by 24-1/2 inches in outside diameter. With contents the gross weight of the BTSP is 650 lbs. The BTSP is designed for the safe shipment of 150 grams of tritium in a solid or gaseous state. To comply with the federal regulations that govern Type B shipping packages, the BTSP is designed so that it will not lose tritium at a rate greater than the limits stated in 10CFR 71.51 of 10{sup -6} A2 per hour for the 'Normal Conditions of Transport' (NCT) and an A2 in 1 week under 'Hypothetical Accident Conditions' (HAC). Additionally, since the BTSP design incorporates a valve as part of the tritium containment boundary, secondary containment features are incorporated in the CV Lid to protect against gas leakage past the valve as required by 10CFR71.43(e). This secondary containment boundary is designed to provide the same level of containment as the primary containment boundary when subjected to the HAC and NCT criteria.

  18. On bulk viscosity and moduli decay

    E-Print Network [OSTI]

    M. Laine

    2010-11-21T23:59:59.000Z

    This pedagogically intended lecture, one of four under the header "Basics of thermal QCD", reviews an interesting relationship, originally pointed out by Bodeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form.

  19. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.

    2013-10-10T23:59:59.000Z

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  20. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization

    SciTech Connect (OSTI)

    Yap, Yoke Khin

    2013-03-14T23:59:59.000Z

    Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up to 3000 degree Celsius by laser ablation) and explosive chemicals. During the award period, we have successfully developed a simple chemical vapor deposition (CVD) technique to grow BNNTs at 1100-1200 degree Celsius without using dangerous chemicals. A series of common catalyst have then been identified for the synthesis of BNNTs and CNTs. Both of these breakthroughs have led to our preliminary success in growing two types of BNNT/CNT junctions and two additional new nanostructures: 1) branching BNNT/CNT junctions and 2) co-axial BNNT/CNT junctions, 3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNT/graphene junctions. We have started to understand their structural, compositional, and electronic properties. Latest results indicate that the branching BNNT/CNT junctions and QDs-BNNTs are functional as room-temperature tunneling devices. We have submitted the application of a renewal grant to continue the study of these new energy efficient materials. Finally, this project has also strengthened our collaborations with multiple Department of Energy�s Nanoscale Science Research Centers (NSRCs), including the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, and the Center for Integrated Nanotechnologies (CINTs) at Sandia National Laboratories and Los Alamos National Laboratory. Results obtained during the current funding period have led to the publication of twelve peer reviewed articles, three review papers, two book and one encyclopedia chapters, and thirty eight conference/seminar presentation. One US provisional patent and one international patent have also been filed.

  1. bulk power system | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZoloHome Dc's picture Submittedbulk

  2. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29T23:59:59.000Z

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  3. Solar neutrinos and the solar composition problem

    E-Print Network [OSTI]

    Carlos Pena-Garay; Aldo Serenelli

    2008-11-16T23:59:59.000Z

    Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

  4. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou areInnovationPriorityImpulseSolarThermal

  5. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9,AwardGradsSites Pending Transfer toSocial MediaSoilSolar Access

  6. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01T23:59:59.000Z

    of organic based solar cells and distinguish them from theirof nanocrystal-based solar cells. No one approach orNov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional

  7. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01T23:59:59.000Z

    Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

  8. Solar Energy Entrepreneurs

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region May 31, 2012 #12;Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region Meeting Objectives growth · Make our region an increasingly stronger hub for solar power You

  9. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  10. Solar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Using Passive Solar Design to Save Money and Energy You can harness solar energy to heat and cool your home through passive solar design. October 10, 2014...

  11. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    and William A. Beckman, Solar Energy Thermal Processes (JohnWiley, Inc" New York. Solar Energy Thermal Processes. John1977): SOLCOST, Solar Energy Design Program for Non-Thermal

  12. JEA- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    The JEA Solar Incentive Program provides rebates to JEA's residential customers who install new and retrofit solar hot water heaters on their homes. The rebate is worth $800 for new solar thermal...

  13. Raman scattering characterization of Ga1_xAlxAs/GaAs heterojunctions: Epilayer and interface

    E-Print Network [OSTI]

    Woodall, Jerry M.

    be gained from several aspects of the spectrum including linewidths, violations of polarization selection of such devices and structures as cw room-temperature injection lasers, super- lattices, high efficiency solar phase epitaxy (LPE) method including the saturated melt mode and rapid cool modification. Signals were

  14. ENVIRONMENTAL BIOTECHNOLOGY Effect of bulk liquid BOD concentration on activity

    E-Print Network [OSTI]

    Nerenberg, Robert

    BOD. FISH results indicated increasing abundance of heterotrophs with increasing bulk liquid BOD); however, competition of heterotrophs and nitrifiers in biofilm systems limits nitrification rates

  15. Optimization Online - Real-Time Dispatchability of Bulk Power ...

    E-Print Network [OSTI]

    Wei Wei

    2015-03-16T23:59:59.000Z

    Mar 16, 2015 ... Real-Time Dispatchability of Bulk Power Systems with Volatile Renewable Generations. Wei Wei (wei-wei04 ***at*** mails.tsinghua.edu.cn)

  16. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOE Patents [OSTI]

    Liu, Chain T.

    2003-05-13T23:59:59.000Z

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  17. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    in bulk thermoelectric materials", M. Mater. Res. Soc.Thermoelectricity", Materials Reserach Society Symposium,Johnson, D. C. , Eds. Materials Research Society: Boston,

  18. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

  19. Bulk viscosity of QCD matter near the critical temperature

    E-Print Network [OSTI]

    D. Kharzeev; K. Tuchin

    2007-05-29T23:59:59.000Z

    Kubo's formula relates bulk viscosity to the retarded Green's function of the trace of the energy-momentum tensor. Using low energy theorems of QCD for the latter we derive the formula which relates the bulk viscosity to the energy density and pressure of hot matter. We then employ the available lattice QCD data to extract the bulk viscosity as a function of temperature. We find that close to the deconfinement temperature bulk viscosity becomes large, with viscosity-to-entropy ratio zeta/s about 1.

  20. On Eling-Oz formula for the holographic bulk viscosity

    E-Print Network [OSTI]

    Alex Buchel

    2011-05-09T23:59:59.000Z

    Recently Eling and Oz [1] proposed a simple formula for the bulk viscosity of holographic plasma. They argued that the formula is valid in the high temperature (near-conformal) regime, but is expected to break down at low temperatures. We point out that the formula is in perfect agreement with the previous computations of the bulk viscosity of the cascading plasma [2,3], as well as with the previous computations of the bulk viscosity of N=2^* plasma [4,5]. In the latter case it correctly reproduces the critical behaviour of the bulk viscosity in the vicinity of the critical point with the vanishing speed of sound.

  1. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates. Peak internal quantum efficiency (IQE) values of greater than 80% are...

  2. SOLAR-BLIND PYROMETRIC TEMPERATURE MEASUREMENT UNDER CONCENTRATED SOLAR

    E-Print Network [OSTI]

    SOLAR-BLIND PYROMETRIC TEMPERATURE MEASUREMENT UNDER CONCENTRATED SOLAR IRRADIATION Markus Pfänder1 temperature, pyrometric temperature measurement, solar-blind ------------------------------------ 1 #12-called solar-blind spectral measurement ranges, where the contribution of reflected solar radiation

  3. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Sřren Řstergaard Jensen Miroslav Bosanac Solar Energy Centre within the project "Connectable solar air collector/PVT collector" (Sammenkoblelig luftsolfanger

  4. Solar Industry At Work: Streamlining Home Solar Installation...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar...

  5. Physics of gate leakage current in N-polar InAlN/GaN heterojunction field effect transistors

    SciTech Connect (OSTI)

    Goswami, Arunesh; Trew, Robert J.; Bilbro, Griff L. [ECE Department, Box 7911, North Carolina State University, Raleigh, North Carolina 27695-7911 (United States)

    2014-10-28T23:59:59.000Z

    A physics based model of the gate leakage current in N-polar InAlN/GaN heterojunction field effect transistors is demonstrated. The model is based on the space charge limited current flow dominated by the effects of deep traps in the InAlN surface layer. The model predicts accurately the gate-leakage measurement data of the N-polar InAlN/GaN device with InAlN cap layer. In the pinch-off state, the gate leakage current conduction through the surface of the device in the drain access region dominates the current flow through the two dimensional electron gas channel. One deep trap level and two levels of shallow traps are extracted by fitting the model results with measurement data.

  6. Solar skylight

    DOE Patents [OSTI]

    Adamson, James C. (Osprey La., Rumson, NJ 07760)

    1984-01-01T23:59:59.000Z

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  7. Solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1982-01-01T23:59:59.000Z

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  8. Your Solar Home

    Broader source: Energy.gov [DOE]

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  9. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    direct solar radiation onto the PEC cell and tracking isTracking Concentration…………………….39 Figure 1.20: PV-RO System……………………………………………………………..42 Figure 1.21: Solar

  10. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov (indexed) [DOE]

    eere.energy.gov * energy.govsunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving...

  11. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    modeling of solar steam- generators, solar water heating systems, Heating Ventilating and Air Conditioning (HVAC) systems, wind speed predictions, control in power generation systems,

  12. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov [DOE]

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  13. Solar Energy Technologies Office

    Broader source: Energy.gov [DOE]

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  14. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On April 1, 2014, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Solar Newsletter, Systems Analysis Geoff Klise (in Sandia's Earth Systems...

  15. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration, Infrastructure Security, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter, Systems Engineering Matthew Reno, a Sandian and an...

  16. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June 7, we began beam profiling the NSTTF field heliostat beam....

  17. Solar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    February 14, 2014 The Ivanpah Solar Energy Generating System was dedicated on Thursday, February 13, 2014. | Photo courtesy of MingassonGetty Images for Bechtel. Making Solar...

  18. Department of Energy - Solar

    Broader source: Energy.gov (indexed) [DOE]

    307 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

  19. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis A research team that included...

  20. Solar radiation resource assessment

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  1. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

  2. PV Solar Ready

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boudra: This report presents guidelines for designing and building new houses that are Solar Ready. Following Solar Ready guidelines will streamline the process of equipping these...

  3. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  4. Residential Solar Rights

    Broader source: Energy.gov [DOE]

    In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar...

  5. Solar in Cold, Cloudy Climates

    Broader source: Energy.gov [DOE]

    Presentation delivered by Chuck Marken during the 2009 Northeastern Solar Cities Conference Solar Survey session.

  6. Solar Easements & Local Option Solar Rights Laws

    Broader source: Energy.gov [DOE]

    The New York General City, Town, and Village codes also allow local zoning districts to make regulations regarding solar access that provide for "the accommodation of solar energy systems and...

  7. Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...

    Broader source: Energy.gov (indexed) [DOE]

    October 2011 Solar in Action Philadelphia was designated by the U.S. Department of Energy (DOE) on March 28, 2008, as Solar America City. At that time, the city presented a...

  8. Thermodynamic properties of bulk and confined water

    SciTech Connect (OSTI)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienza della Terra Universitŕ di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienza della Terra Universitŕ di Messina and CNISM, I-98168 Messina (Italy); Mallamace, Domenico [Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universitŕ di Messina, I-98166 Messina (Italy); Vasi, Sebastiano; Vasi, Cirino [IPCF-CNR, I-98166 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States)

    2014-11-14T23:59:59.000Z

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ? 225 K). The second, T{sup *} ? 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient ?{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  9. Bulk viscous cosmology: statefinder and entropy

    E-Print Network [OSTI]

    M. Hu; Xin He Meng

    2005-11-23T23:59:59.000Z

    The statefinder diagnostic pair is adopted to differentiate viscous cosmology models and it is found that the trajectories of these viscous cosmology models on the statefinder pair $s-r$ plane are quite different from those of the corresponding non-viscous cases. Particularly for the quiessence model, the singular properties of state parameter $w=-1$ are obviously demonstrated on the statefinder diagnostic pair planes. We then discuss the entropy of the viscous / dissipative cosmology system which may be more practical to describe the present cosmic observations as the perfect fluid is just a global approximation to the complicated cosmic media in current universe evolution. When the bulk viscosity takes the form of $\\zeta=\\zeta_{1}\\dot{a}/a$($\\zeta_{1}$ is constant), the relationship between the entropy $S$ and the redshift $z$ is explicitly given out. We find that the entropy of the viscous cosmology is always increasing and consistent with the thermodynamics arrow of time for the universe evolution. With the parameter constraints from fitting to the 157 gold data of supernova observations, it is demonstrated that this viscous cosmology model is rather well consistent to the observational data at the lower redshifts, and together with the diagnostic statefinder pair analysis it is concluded that the viscous cosmic models tend to the favored $\\Lambda$CDM model in the later cosmic evolution, agreeable to lots of cosmological simulation results, especially to the fact of confidently observed current accelerating cosmic expansion.

  10. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01T23:59:59.000Z

    Solar Energy Materials and Solar Cells 93(10): 1728-1723,Solar Energy Materials and Solar Cells 92(8) 39. Sima, C.Y. , Warta, W. , Dunlop, E.D. Solar Cell efficiency tables (

  11. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect (OSTI)

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05T23:59:59.000Z

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 ?m is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large discrepancies in predicting cloud water in the SC case, suggesting that an explicit calculation of diffusion growth with predicted supersaturation is necessary for further improvements of the bulk microphysics scheme. Lastly, a larger rain evaporation rate below cloud is found in the bulk scheme in comparison to the SBM simulation, which could contribute to a lower surface precipitation in the bulk scheme.

  12. High open-circuit voltage in heterojunction photovoltaics containing a printed colloidal quantum-dot photosensitive layer

    E-Print Network [OSTI]

    Arango, Alexi Cosmos, 1975-

    2010-01-01T23:59:59.000Z

    Within four to seven years, electricity generated from solar cells will cost less than grid electricity, making it the cleanest, cheapest, and most abundant energy source on the planet. The rise of solar energy, however, ...

  13. Solar-wind minor ions: recent observations

    SciTech Connect (OSTI)

    Bame, S.J.

    1982-01-01T23:59:59.000Z

    During the years following the Solar Wind Four Conference at Burghausen our knowledge of the solar wind ion composition and dynamics has grown. There have been some surprises, and our understanding of the evolution of the solar wind has been improved. Systematic studies have shown that the minor ions generally travel with a common bulk speed and have temperatures roughly proportional to their masses. It has been determined that the /sup 3/He/sup + +/ content varies greatly; /sup 3/He/sup + +///sup 4/He/sup + +/ ranges from as high as 10/sup 2/ values to below 2 x 10/sup -4/. In some solar wind flows which can be related to energetic coronal events, the minor ions are found in unusual ionization states containing Fe/sup 16 +/ as a prominent ion, showing that the states were formed at unusually high temperatures. Unexpectedly, in a few flows substantial quantities of /sup 4/He/sup +/ have been detected, sometimes with ions identifiable as O/sup 2 +/ and O/sup 3 +/. Surprisingly, in some of these examples the ionization state is mixed showing that part of the plasma escaped the corona without attaining the usual million-degree temperatures while other parts were heated more nearly in the normal manner. Additionally, detailed studies of the minor ions have increased our understanding of the coronal expansion. For example, such studies have contributed to identifying near equatorial coronal streamers as the source of solar wind flows between high speed streams.

  14. Bulk Vitrification Castable Refractory Block Protection Study

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01T23:59:59.000Z

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the penetration of molten salt. Out of several refractory tile candidates, only greystone and fused-cast alumina-zirconia-silica (AZS) refractory remained intact and well bonded to the CRB after firing to 1000 C. The deformation of the refractory-tile composite was avoided by prefiring the greystone tile to 800 C. Condensed vapors did not penetrate the tiles, but Re salts condensed on their surface. Refractory corrosion tests indicated that a 0.25-inch-thick greystone tile would not corrode during a BV melt. Tiles can reduce both vapor penetration and molten salt penetration, but vapor deposition above the melt line will occur even on tiles. The Tc/Re transport scenario was outlined as follows. At temperatures below 700 C, molten ionic salt (MIS) that includes all the Tc/Re penetrates, by capillarity, from the feed into the CRB open porosity. At approximately 750 C, the MIS decomposes through the loss of NOx, leaving mainly sulfate and chloride salts. The Na2O formed in the decomposition of the nitrates reacts with insoluble grains in the feed and with the aluminosilicates in the CRB to form more viscous liquids that reduce further liquid penetration into the CRB. At 800 to 1000 C, a continuous glass phase traps the remains of the MIS in the form of inclusions in the bulk glass melt. At 1000 to 1200 C, the salt inclusions in the glass slowly dissolve but also rise to the surface. The Tc/Re salts also evaporate from the free surface of the glass melt that is rapidly renewed by convective currents. The vapors condense on cooler surfaces in the upper portion of the CRB, the box lid, and the off-gas system.

  15. BULK MICROMACHINED TITANIUM MICROMIRROR DEVICE WITH SLOPING ELECTRODE GEOMETRY

    E-Print Network [OSTI]

    MacDonald, Noel C.

    BULK MICROMACHINED TITANIUM MICROMIRROR DEVICE WITH SLOPING ELECTRODE GEOMETRY Masa P. Rao1 , Marco micromachined hybrid torsional micromirror device composed of titanium mirror structures bonded to an underlying time, high aspect ratio micromachining capability in bulk titanium; and 2) the High Aspect Ratio

  16. Role of Cavitation in Bulk Ultrasound Ablation: A Histologic Study

    E-Print Network [OSTI]

    Mast, T. Douglas

    Role of Cavitation in Bulk Ultrasound Ablation: A Histologic Study Chandra Priya Karunakaran, Mark of Cincinnati, Cincinnati, Ohio Abstract. The role of cavitation in bulk ultrasound ablation has been evaluated-ablate probe at 31 W/cm2 for 20 minutes under normal and elevated ambient pressures. A 1 MHz passive cavitation

  17. Silicon bulk micromachined hybrid dimensional artifact.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01T23:59:59.000Z

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  18. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOE Patents [OSTI]

    Menchhofer, Paul A. (Clinton, TN); Montgomery, Frederick C. (Oak Ridge, TN); Baker, Frederick S. (Oak Ridge, TN)

    2011-11-08T23:59:59.000Z

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  19. Comparison of sub-micron Si:SiGe heterojunction nFETs to Si nMOSFET in present-day technologies

    E-Print Network [OSTI]

    Papavassiliou, Christos

    Comparison of sub-micron Si:SiGe heterojunction nFETs to Si nMOSFET in present-day technologies K.K. Maiti Abstract The measured performance of sub-micron Si:SiGe Schottky gated HFETs is compared to Si n frequency is given as a function of input power. The evaluation highlights the current immaturity of the Si:SiGe

  20. InGaP/GaAs/InGaP double-heterojunction bipolar transistors grown by solid-source molecular-beam epitaxy with a valved phosphorus cracker

    E-Print Network [OSTI]

    Woodall, Jerry M.

    InGaP/GaAs/InGaP double-heterojunction bipolar transistors grown by solid-source molecular; accepted 17 November 1995 The growth and device characterization of an InGaP/GaAs double-quality phosphorus-containing compounds.1­4 The growth of high-performance InGaP/ GaAs and InGaAs/InP single

  1. Graded-base InGaN/GaN heterojunction bipolar light-emitting transistors B. F. Chu-Kung,a

    E-Print Network [OSTI]

    Asbeck, Peter M.

    Graded-base InGaN/GaN heterojunction bipolar light-emitting transistors B. F. Chu-Kung,a M. Feng, G; published online 25 August 2006 The authors report radiative recombination from a graded-base InGaN/GaN microwave power has been obtained from GaN field-effect transistors, very few operational GaN-based HBTs

  2. Cubic AlGaN/GaN Hetero-Junction Field-Effect Transistors with Normally-on and Normally-off

    E-Print Network [OSTI]

    As, Donat Josef

    Cubic AlGaN/GaN Hetero-Junction Field-Effect Transistors with Normally-on and Normally-effect transistors (HFETs) in GaN technology. HFET structures were fabricated of non-polar cubic AlGaN/GaN hetero insulation of 3C-SiC was realized by Ar+ implantation before c-AlGaN/GaN growth. HFETs with normally

  3. Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Bhat, Thirumaleshwara N.; Rajpalke, Mohana K.; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore- 560012 (India); Roul, Basanta; Kumar, Mahesh [Materials Research Centre, Indian Institute of Science, Bangalore- 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore-560013 (India)

    2011-11-01T23:59:59.000Z

    Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic ({beta}) and hexagonal ({alpha}) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 deg. C when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 deg. C. Core-level photoelectron spectroscopy of Si{sub x}N{sub y} layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors ({approx}1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively.

  4. Nonpolar cubic AlGaN/GaN heterojunction field-effect transistor on Ar+ implanted 3CSiC ,,001...

    E-Print Network [OSTI]

    As, Donat Josef

    through the substrate. Cubic AlGaN/GaN heterostructures were grown in a RibeNonpolar cubic AlGaN/GaN heterojunction field-effect transistor on Ar+ implanted 3C­SiC ,,001... E HFET was fabricated of nonpolar cubic AlGaN/GaN grown on Ar+ implanted 3C­SiC 001 by molecular beam

  5. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01T23:59:59.000Z

    improving efficiencies of solar photovoltaic technologies.quantum efficiency (EQE) of the associated photovoltaic

  6. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    solar photovoltaics (PV) in electric power systems utilizingphotovoltaics (PV) in traditional electric power systems,”

  7. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

  8. SOLAR ENERGY Andrew Blakers

    E-Print Network [OSTI]

    SOLAR ENERGY Andrew Blakers Director, Centre for Sustainable Energy Systems Australian National Solar energy is special. It is vast, ubiquitous and indefinitely sustainable. The solar resource utilised by photovoltaics and solar heat is hundreds of times larger than all other energy resources

  9. ENERGIA SOLAR Introduccio

    E-Print Network [OSTI]

    Batiste, Oriol

    ENERGIA SOLAR · Introducci´o · Usos t`ermics. Baixa temperatura · Sistemes de conversi´o t) Cuines Solars http://www.solarcooking.org #12;DESSALADORS SOLARS #12;APLICACIONS T`ERMIQUES BAIXA TEMPERATURA Col.lectors solars plans per a ACS #12;CONVERSI´O DIRECTA EN ELECTRICITAT C`el.lules i panells

  10. INTRODUCTIONTOTHE SOLAR ATMOSPHERE

    E-Print Network [OSTI]

    ? #12;WHAT ISTHE SOLAR ATMOSPHERE? #12;#12;1-D MODEL ATMOSPHERE · Averaged over space and time · GoodINTRODUCTIONTOTHE SOLAR ATMOSPHERE D. Shaun Bloomfield Trinity College Dublin #12;OUTLINE · What is the solar atmosphere? · How is the solar atmosphere observed? · What structures exist and how do they evolve

  11. Solar Policy Environment: Houston

    Broader source: Energy.gov [DOE]

    The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

  12. Solar Policy Environment: Sacramento

    Broader source: Energy.gov [DOE]

    The City of Sacramento and the greater Sacramento region is the home of a long standing history of commitment to solar. Sacramento Solar Access seeks to further widespread adoption of solar energy by addressing current market barriers and preparing, through design guidelines and education, the infrastructure that will optimize solar production in the future.

  13. Fabrication and characterization of n-type aluminum-boron co-doped ZnO on p-type silicon (n-AZB/p-Si) heterojunction diodes

    SciTech Connect (OSTI)

    Kumar, Vinod, E-mail: vinod.phy@gmail.com [Department of Physics, University of the Free State, Bloemfontein ZA-9300 (South Africa); Singh, Neetu [Department of Electronic Science, University of Delhi South Campus, New Delhi 110 021 (India); Department of Electronics, Keshav Mahavidyalaya, University of Delhi 110 034 (India); Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi 110 021 (India); Ntwaeaborwa, Odireleng M.; Swart, Hendrik C. [Department of Physics, University of the Free State, Bloemfontein ZA-9300 (South Africa)

    2013-11-15T23:59:59.000Z

    Graphical abstract: - Highlights: • n-AZB/p-Si heterojunction diodes were formed. • n-AZB/p-Si diode annealed at 700 °C showed best rectifying behavior. • Zn{sub 2}SiO{sub 4} was formed at 800 °C. • n and ?{sub b} were estimated to be 1.63 and 0.4 eV, respectively, at 700 °C. • Tailoring of BG was attributed to annealing induced stresses in the films. - Abstract: In this paper, the growth of n-type aluminum boron co-doped ZnO (n-AZB) on a p-type silicon (p-Si) substrate by sol–gel method using spin coating technique is reported. The n-AZB/p-Si heterojunctions were annealed at different temperatures ranging from 400 to 800 °C. The crystallite size of the AZB nanostructures was found to vary from 28 to 38 nm with the variation in annealing temperature. The band gap of the AZB decreased from 3.29 to 3.27 eV, with increasing annealing temperature from 400 to 700 °C and increased to 3.30 eV at 800 °C probably due to the formation of Zn{sub 2}SiO{sub 4} at the interface. The band gap variation is explained in terms of annealing induced stress in the AZB. The n-AZB/p-Si heterojunction exhibited diode behavior. The best rectifying behavior was exhibited at 700 °C.

  14. Running heading: Bulk density of a clayey subsoil Increase in the bulk density of a Grey Clay subsoil by

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Running heading: Bulk density of a clayey subsoil Increase in the bulk density of a Grey Clay of the prisms were coated by material similar in composition to the topsoil and separated from as the profile dries over summer leading to widening of cracks between prismatic peds, (2) infilling of cracks

  15. Solar Policy Environment: Pittsburgh

    Broader source: Energy.gov [DOE]

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  16. Boston Massachusetts: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boston, Massachusetts Includes case studies on: * Incorporating Solar into Emergency Preparedness Planning * Developing the Boston Solar Map October 2011 Solar in Action Boston was...

  17. Salt Lake City, Utah: Solar in Action (Brochure), Solar America...

    Broader source: Energy.gov (indexed) [DOE]

    a lack of understanding about solar contributed to preventing the widespread adoption of solar energy in all markets. Salt Lake City's prior solar successes with support from...

  18. SciTech Connect: Solar Energy Education. Solar solutions: Reader...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar solutions: Reader, Part III Citation Details In-Document Search Title: Solar Energy Education. Solar solutions: Reader, Part III You are accessing a document from the...

  19. International Solar Consulting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IES Jump to:PartnershipPowerConsulting

  20. GroSolar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska:Gridley, California:Iowa: EnergyGroSolar

  1. Brane-Bulk energy exchange and agegraphic dark energy

    E-Print Network [OSTI]

    Ahmad Sheykhi

    2010-02-06T23:59:59.000Z

    We consider the agegraphic models of dark energy in a braneworld scenario with brane-bulk energy exchange. We assume that the adiabatic equation for the dark matter is satisfied while it is violated for the agegraphic dark energy due to the energy exchange between the brane and the bulk. Our study shows that with the brane-bulk interaction, the equation of state parameter of agegraphic dark energy on the brane, $w_D$, can have a transition from normal state where $w_D >-1 $ to the phantom regime where $w_D energy always satisfies $w^{\\mathrm{eff}}_D\\geq-1$.

  2. Neutrino mass, bulk majoron and neutrinoless double beta decay

    E-Print Network [OSTI]

    R. N. Mohapatra; A. Perez-Lorenzana; C. A. de S. Pires

    2000-08-15T23:59:59.000Z

    A new economical model for neutrino masses is proposed in the context of brane bulk scenarios for particle physics, where global B-L symmetry of the standard model is broken spontaneously by a gauge singlet Higgs field in the bulk. This leads to a bulk majoron whose KK excitations may make it visible if neutrinoless double beta decay if the string scale is close to a TeV. It also leads to neutron-anti-neutron oscillation process with transition times which can be in the range accessible to proposed experiments.

  3. Bulk viscosity, chemical equilibration and flow at RHIC

    E-Print Network [OSTI]

    Thomas Schaefer; Kevin Dusling

    2012-10-15T23:59:59.000Z

    We study the effects of bulk viscosity on p_T spectra and elliptic flow in heavy ion collisions at RHIC. We argue that direct effect of the bulk viscosity on the evolution of the velocity field is small, but corrections to the freezeout distributions can be significant. These effects are dominated by chemical non-equilibration in the hadronic phase. We show that a non-zero bulk viscosity in the range $\\zeta/s \\lsim 0.05$ improves the description of spectra and flow at RHIC.

  4. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01T23:59:59.000Z

    collaborating on a Solar Programmatic Environmental ImpactEconomic, and Environmental Benefits of the Solar AmericaEnergy and Environmental Benefits of Concentrating Solar

  5. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  6. Bright Ideas in Solar Energy

    E-Print Network [OSTI]

    Melville, Jo

    2014-01-01T23:59:59.000Z

    Molten Nitrate Salt for Solar Energy Storage. Retrieved frommore-efficiently Solar Energy Industries Association (2012-year-review Solar Energy Industries Association (

  7. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01T23:59:59.000Z

    96 4.3.2 Customer Solar Leaseagreement financing, customer solar lease financing,eligible Minimum solar or customer-sited requirement Extra

  8. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  9. Solar Impulsive Energetic Electron Events

    E-Print Network [OSTI]

    Wang, Linghua

    2009-01-01T23:59:59.000Z

    coronal mass ejections and solar energetic proton events, J.Voyager observations of solar wind proton temperature:1- 10Howard (2004), Variability of solar eruptions during cycle

  10. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01T23:59:59.000Z

    10MW Thin Film Solar Power Plant for Sempra Generation. ”2009). “Concentrating solar power plants of the southwest1.11. Concentrating solar power plants of the southwest

  11. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

  12. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia developed the Solar Glare Hazard Analysis Tool...

  13. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat can also be efficiently and cheaply stored to produce electricity when the sun ... Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar...

  14. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

  15. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01T23:59:59.000Z

    the shipments of two companies, BP Solar and Mitsubishiaddition, funding to solar companies increased dramaticallyand expansions of solar companies. Greater debt financing is

  16. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Research Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  17. First Solar Corporate Template 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Copyright 2013, First Solar, Inc. Why Are We Backtracking? 3 Copyright 2013, First Solar, Inc. Shading Response * First Solar modules are laid-out in landscape...

  18. Sandia National Laboratories: Solar Mirrors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Mirrors Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software & Tools Resources Contacts News Concentrating Solar Power...

  19. Solar Easements and Rights Laws

    Broader source: Energy.gov [DOE]

    Solar access provisions in the General Laws of Massachusetts allow for the creation of voluntary solar easements to protect solar exposure and authorizes zoning rules that prohibit unreasonable...

  20. Solar Design Workbook

    SciTech Connect (OSTI)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01T23:59:59.000Z

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  1. Resonant circular photogalvanic effect in GaN/AlGaN heterojunctions B. Wittmann,1 L. E. Golub,2 S. N. Danilov,1 J. Karch,1 C. Reitmaier,1 Z. D. Kvon,3 N. Q. Vinh,4 A. F. G. van der Meer,4

    E-Print Network [OSTI]

    Ganichev, Sergey

    Resonant circular photogalvanic effect in GaN/AlGaN heterojunctions B. Wittmann,1 L. E. Golub,2 S circular photogalvanic effect is observed in wurtzite 0001 -oriented GaN low-dimensional structures excited electrons at resonant intersubband optical transitions in a GaN/AlGaN heterojunction. The signal reverses

  2. Homebuyer Solar Option and Solar Offset Program

    Broader source: Energy.gov [DOE]

    Senate Bill 1 of 2006, which established the statewide California Solar Initiative, also required the California Energy Commission (CEC) to implement regulations that require sellers of production...

  3. Solar buildings. Overview: The Solar Buildings Program

    SciTech Connect (OSTI)

    Not Available

    1998-04-01T23:59:59.000Z

    Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

  4. Thin film solar cell including a spatially modulated intrinsic layer

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

    1989-03-28T23:59:59.000Z

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  5. Johanna Solar Technology GmbH JST | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson,Information PV CorpJms solar

  6. Mechanical Properties of Bulk Metallic Glasses and Composites

    E-Print Network [OSTI]

    Lee, M.L.

    We have studied the mechanical properties of monolithic bulk metallic glasses and composite in the La based alloys. La???yAl??(Cu, Ni)y (y=24 to 32) alloy systems was used to cast the ...

  7. High-power-density spot cooling using bulk thermoelectrics

    E-Print Network [OSTI]

    Zhang, Y; Shakouri, A; Zeng, G H

    2004-01-01T23:59:59.000Z

    model, the cooling power densities of the devices can alsothe cooling power densities 2–24 times. Experimentally, the14 4 OCTOBER 2004 High-power-density spot cooling using bulk

  8. Photonic integration in a commercial scaled bulk-CMOS process

    E-Print Network [OSTI]

    Kaertner, Franz X.

    We demonstrate the first photonic chip designed for a commercial bulk CMOS process (65 nm-node) using standard process layers combined with post-processing, enabling dense photonic integration with high-performance ...

  9. Structural and economic analysis of capesize bulk carriers

    E-Print Network [OSTI]

    Hadjiyiannis, Nicholas

    2010-01-01T23:59:59.000Z

    Structural failures of bulk carriers continue to account for the loss of many lives every year. Capes are particularly vulnerable to cracking because of their large length, their trade in high density cargos, and the high ...

  10. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    developments in bulk thermoelectric materials", M. Mater.and M. D. Drsselhaus, "Thermoelectric figure of merit of aO'Quinn, " Thin-film thermoelectric devices with high room-

  11. Bulk Viscosity Effects in Event-by-Event Relativistic Hydrodynamics

    E-Print Network [OSTI]

    Jacquelyn Noronha-Hostler; Gabriel S. Denicol; Jorge Noronha; Rone P. G. Andrade; Frederique Grassi

    2013-05-10T23:59:59.000Z

    Bulk viscosity effects on the collective flow harmonics in heavy ion collisions are investigated, on an event by event basis, using a newly developed 2+1 Lagrangian hydrodynamic code named v-USPhydro which implements the Smoothed Particle Hydrodynamics (SPH) algorithm for viscous hydrodynamics. A new formula for the bulk viscous corrections present in the distribution function at freeze-out is derived starting from the Boltzmann equation for multi-hadron species. Bulk viscosity is shown to enhance the collective flow Fourier coefficients from $v_2(p_T)$ to $v_5(p_T)$ when $% p_{T}\\sim 1-3$ GeV even when the bulk viscosity to entropy density ratio, $% \\zeta/s$, is significantly smaller than $1/(4\\pi)$.

  12. Bulk viscosity in nuclear and quark matter: A short review

    E-Print Network [OSTI]

    Hui Dong; Nan Su; Qun Wang

    2007-03-05T23:59:59.000Z

    The history and recent progresses in the study of bulk viscosity in nuclear and quark matter are reviewed. The constraints from baryon number conservation and electric neutrality in quark matter on particle densities and fluid velocity divergences are discussed.

  13. Efficient Bulk Data Replication for the Earth System Grid

    E-Print Network [OSTI]

    Sim, Alex

    2010-01-01T23:59:59.000Z

    Bulk Data Replication for the Earth System Grid Alex Sim 1 ,CA 94720, USA Abstract The Earth System Grid (ESG) communityNetLogger 1. Introduction The Earth System Grid (ESG) [1

  14. abdominal bulking mass: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y. Burnier; M. Laine 2013-11-13 4 Neutrino mass, bulk majoron and neutrinoless double beta decay HEP - Phenomenology (arXiv) Summary: A new economical model for neutrino...

  15. Supply chain management in the dry bulk shipping industry

    E-Print Network [OSTI]

    Nicholson, Bryan E. (Bryan Edward)

    2006-01-01T23:59:59.000Z

    This paper is intended to show the importance of supply chain management in the dry-bulk shipping industry. A hypothetical company, the Texas Grain and Bakery Corporation, was created. The values and calculations used are ...

  16. Bulk viscosity and the conformal anomaly in the pion gas

    E-Print Network [OSTI]

    D. Fernandez-Fraile; A. Gomez Nicola

    2009-02-27T23:59:59.000Z

    We calculate the bulk viscosity of the massive pion gas within Unitarized Chiral Perturbation Theory. We obtain a low temperature peak arising from explicit conformal breaking due to the pion mass and another peak near the critical temperature, dominated by the conformal anomaly through gluon condensate terms. The correlation between bulk viscosity and conformal breaking supports a recent QCD proposal. We discuss the role of resonances, heavier states and large-$N_c$ counting.

  17. Costs, Savings and Financing Bulk Tanks on Texas Dairy Farms.

    E-Print Network [OSTI]

    Moore, Donald S.; Stelly, Randall; Parker, Cecil A.

    1958-01-01T23:59:59.000Z

    \\ BULLETIN 904 MAY 1958 .t(. :a ,s - / cwdh\\@ Costs, Savi~gs;.itd Financing Bulk Tanks on Texas Dairy Farms . ?. I I 1 i I I ! ,:ravings in hauling - 10 cents I \\ \\ 1 \\ savings in hauling - 15 cents -----------____--- 'savings... in hauling - 20 cents Annual production, 1,000 pounds Estimated number of years required for savings from a bulk tank to equal additional costs at different levels of production and savings in hauling costs. TEXAS AGRICULTURAL EXPERIMEN'T STATION R. D...

  18. Cosmic No Hair for Braneworlds with a Bulk Dilaton Field

    E-Print Network [OSTI]

    James E. Lidsey; David Seery

    2005-09-22T23:59:59.000Z

    Braneworld cosmology supported by a bulk scalar field with an exponential potential is developed. A general class of separable backgrounds for both single and two-brane systems is derived, where the bulk metric components are given by products of world-volume and bulk coordinates and the world-volumes represent any anisotropic and inhomogeneous solution to an effective four-dimensional Brans-Dicke theory of gravity. We deduce a cosmic no hair theorem for all ever expanding, spatially homogeneous Bianchi world-volumes and find that the spatially flat and isotropic inflationary scaling solution represents a late-time attractor when the bulk potential is sufficiently flat. The dependence of this result on the separable nature of the bulk metric is investigated by applying the techniques of Hamilton-Jacobi theory to five-dimensional Einstein gravity. We employ the spatial gradient expansion method to determine the asymptotic form of the bulk metric up to third-order in spatial gradients. It is found that the condition for the separable form of the metric to represent the attractor of the system is precisely the same as that for the four-dimensional world-volume to isotropize. We also derive the fourth-order contribution to the Hamilton-Jacobi generating functional. Finally, we conclude by placing our results within the context of the holographic approach to braneworld cosmology.

  19. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01T23:59:59.000Z

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  20. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01T23:59:59.000Z

    heat exchangers, and solar cells," Sci-Tech News, vol. 65,Solar Energy Materials and Solar Cells, vol. 86, pp. 451-Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,

  1. Pacific Northwest Solar Radiation Data

    E-Print Network [OSTI]

    Oregon, University of

    Pacific Northwest Solar Radiation Data UO SOLAR MONITORING LAB Physics Department -- Solar Energy Center 1274 University of Oregon Eugene, Oregon 97403-1274 April 1, 1999 #12;Hourly solar radiation data

  2. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar power Recent Solar Highlights On October 31, 2012, in View all Solar Energy News Molten Salt Test Loop Commissioning On October 10, 2012, in Concentrating Solar Power, EC,...

  3. BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH

    E-Print Network [OSTI]

    BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

  4. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

  5. High time resolution observations of the solar wind and backstreaming ions in the earth's foreshock region

    SciTech Connect (OSTI)

    Formisano, V.; Orsini, S.; Bonifazi, C.; Egidi, A.; Moreno, G.

    1980-05-01T23:59:59.000Z

    The interaction of the solar wind with ions backstreaming from the earth's bow shock is studied at high time resolution. It turns out that the bulk velocity of the solar wind oscillates, both in magnitude and direction, with typical periods of approx.1 minute in presence of the 'diffuse' ion population. Oscillations of comparable periods are also observed in the angular distribution and energy spectrum of the diffuse ions.

  6. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  7. Junior Solar Sprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Junior Solar Sprint Overview The Junior Solar Sprint (JSS) Car Competition is a classroom-based, hands-on educational program for 6th, 7th, and 8th grade students. Student teams...

  8. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov (indexed) [DOE]

    SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

  9. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Owners of solar photovoltaic (PV) systems and solar water heating systems in Colorado are required to obtain a building permit before their systems may be installed. Permits are handled at the l...

  10. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01T23:59:59.000Z

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  11. Solar America Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Capacity (MW) 0.1494 20 Baseline (2006) 0.3181 1 0.069 150 2009-2010 2014-2015 BP Solar International Inc. Reaching Grid Parity Using BP Solar Crystalline Silicon Technology...

  12. CT Solar Loan

    Broader source: Energy.gov [DOE]

    The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered...

  13. Solar Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    For both residential and non-residential systems, the exemption applies to solar-energy systems that utilize solar radiation to produce energy designed to provide heating, cooling, hot water and/or...

  14. Solar Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In Missouri, solar energy systems not held for resale are exempt from state, local, and county property taxes. As enacted in July 2013, the law does not define solar energy systems.

  15. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Owners of solar photovoltaic (PV) systems and solar water heating systems in Arizona are required to obtain a building permit before their systems may be installed. Permits are handled at the...

  16. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Initiative to decrease total cost of solar energy systems by 75% by 2020 and make solar energy cost-competitive with ... Page 3 of 1612345...10...Last Last...

  17. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

  18. InGaP/InGaAsN/GaAs NpN double heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Xie, X.M.; Sharps, P.R.; Hou, H.Q.

    2000-01-10T23:59:59.000Z

    The authors have demonstrated a functional NpN double heterojunction bipolar transistor (DHBT) using InGaAsN for base layer. The InGaP/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs DHBT has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs HBT. The lower V{sub ON} is attributed to the smaller bandgap (E{sub g}=1.20eV) of MOCVD grown In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} base layer. GaAs is used for the collector; thus the BV{sub CEO} is 10 V, consistent with the BV{sub CEO} of InGaP/GaAs Hbts of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger {triangle}E{sub C} between InGaAsN and GaAs, a graded InGaAs layer with {delta}-doping is inserted at the base-collector junction. The improved device has a peak current gain of 7 with ideal IV characteristics.

  19. Macromolecular Reaction Engineering Control of Bulk Propylene Polymerizations Operated with Multiple Catalysts through

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Macromolecular Reaction Engineering Control of Bulk Propylene Polymerizations Operated: Control of Bulk Propylene Polymerizations Operated with Multiple Catalysts through Controller: Abstract: This article presents a model to describe the dynamic behavior of bulk propylene polymerizations

  20. SOLAR ENERGY POTENTIALS

    E-Print Network [OSTI]

    Loreta N. Gashi; Sabedin A. Meha; Besnik A. Duriqi; Fatos S. Haxhimusa

    In recent years solar energy has experienced phenomenal growth due to the technological improvements resulting in cost reductions and also governments policies supportive of renewable energy development and utilization. In this paper we will present possibilities for development and deployment of solar energy. We will use Kosovo to compare the existing power production potential and future possible potential by using solar energy.

  1. 7Name ________________________________ Solar Electricity.

    E-Print Network [OSTI]

    be attached directly to the outer surface of a satellite, or can be found on `solar panels' that the satellite. If the satellite is not big enough, additional solar panels may be needed to supply the electricity) The solar cells produce 0.03 watts per square cm, so the power available is 39819 x 0.03 = 1194 watts

  2. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26T23:59:59.000Z

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  3. Your Community With Solar

    E-Print Network [OSTI]

    Powering Your Community With Solar: Overcoming Market and Implementation Barriers Lessons from successful Solarize campaigns help communities seize volume discounts through collective purchasing The first Solarize program began in Portland, Oregon, as a grassroots campaign for collective SunShot will work

  4. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  5. Cool Earth Solar

    SciTech Connect (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22T23:59:59.000Z

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  6. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    Quantifying PV power output variability,” Solar Energy, vol.each solar sen at node i, P(t) the total power output of theSolar Forecasting Historically, traditional power generation technologies such as fossil and nu- clear power which were designed to run in stable output

  7. Solar Policy Environment: Milwaukee

    Broader source: Energy.gov [DOE]

    The City of Milwaukee’s SAC Initiative, Milwaukee Shines, works to reduce informational, economic and procedural barriers to the widespread adoption of solar energy systems. While the City of Milwaukee and its partners have demonstrated commitment and experience in implementing solar technologies, Milwaukee Shines aims to enhance these efforts and make solar a viable alternative throughout the region.

  8. Solar Policy Environment: Tucson

    Broader source: Energy.gov [DOE]

    The Tucson Solar Initiative seeks to institutionalize the value of nine years of solar energy development experience, secure the promise of renewable energy investment funds, facilitate the installation of a significant volume of installations in the community and establish a mechanism for sustainable solar integration for the future.

  9. Conservation and solar guidelines

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01T23:59:59.000Z

    Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar buildings. The guidelines are based on balancing the incremental cost/benefit of conservation and passive solar strategies. Tables are given for 90 cities in the US and the results are also displayed on maps. An example is included.

  10. Petrovay: Solar physics Solar wind and heliosphere THE SOLAR WIND AND THE HELIOSPHERE

    E-Print Network [OSTI]

    Petrovay, KristĂłf

    with high first ionization potential are underrepresented in solar wind. Probable cause: ambipolar diffusion: Solar physics Solar wind and heliosphere Potential explanation: belt due to higher pressurePetrovay: Solar physics Solar wind and heliosphere THE SOLAR WIND AND THE HELIOSPHERE 1951: First

  11. Dark goo: Bulk viscosity as an alternative to dark energy

    E-Print Network [OSTI]

    Jean-Sebastien Gagnon; Julien Lesgourgues

    2011-09-16T23:59:59.000Z

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an "effective" pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local equilibrium today for viscous effects to be important.

  12. Dark goo: Bulk viscosity as an alternative to dark energy

    E-Print Network [OSTI]

    Gagnon, Jean-Sebastien

    2011-01-01T23:59:59.000Z

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an "effective" pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local eq...

  13. Bulk emission of scalars by a rotating black hole

    E-Print Network [OSTI]

    M. Casals; S. R. Dolan; P. Kanti; E. Winstanley

    2008-07-17T23:59:59.000Z

    We study in detail the scalar-field Hawking radiation emitted into the bulk by a higher-dimensional, rotating black hole. We numerically compute the angular eigenvalues, and solve the radial equation of motion in order to find transmission factors. The latter are found to be enhanced by the angular momentum of the black hole, and to exhibit the well-known effect of superradiance. The corresponding power spectra for scalar fields show an enhancement with the number of dimensions, as in the non-rotating case. We compute the total mass loss rate of the black hole for a variety of black-hole angular momenta and bulk dimensions, and find that, in all cases, the bulk emission remains significantly smaller than the brane emission. The angular-momentum loss rate is also computed and found to have a smaller value in the bulk than on the brane. We present accurate bulk-to-brane emission ratios for a range of scenarios.

  14. Nano-crystalline p-ZnGa{sub 2}Te{sub 4}/n-Si as a new heterojunction diode

    SciTech Connect (OSTI)

    Sakr, G.B. [Nano-Science Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)] [Nano-Science Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Fouad, S.S. [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)] [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Nano-Science Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Semicondcutor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel Basset, D.M. [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)] [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yakuphanoglu, F. [Physics Department, Faculty of Science and Arts, Firat University, Elazig (Turkey)] [Physics Department, Faculty of Science and Arts, Firat University, Elazig (Turkey)

    2013-02-15T23:59:59.000Z

    Graphical abstract: Display Omitted Highlights: ? ZnGa{sub 2}Te{sub 4}/Si thin film was prepared by thermal evaporation technique. ? XRD and AFM graphs support the nano-crystalline of the studied device. ? Dark current–voltage characteristics of the heterojunction diode were investigated. ? Electrical parameters and conduction mechanism were determined. ? Conduction mechanisms were controlled by TE, SCLC and TCLC. -- Abstract: In this communication, ZnGa{sub 2}Te{sub 4} thin film was prepared by thermal evaporation technique on n-Si substrate. P-ZnGa{sub 2}Te{sub 4}/n-Si heterojunction diode was fabricated. The structure of ZnGa{sub 2}Te{sub 4} thin film was checked by XRD pattern and confirmed by AFM micrographs. The dark current–voltage characteristics of the heterojunction diode were investigated to determine the electrical parameters and conduction mechanism as a function of forward and reverse biasing conditions in the range (?10 V to 10 V) at temperature interval (303–423 K). The conduction mechanism was controlled by thermionic emission, space charge limited (SCLC) and trap-charge limited current (TCLC) mechanisms. The basic parameters such as the series resistance R{sub s}, the shunt resistance R{sub sh}, the ideality factor n and the barrier height ?{sub b} of the diode, the total density of trap states N{sub 0} and the exponential trapping distribution P{sub o} were determined. The obtained results showed that ZnGa{sub 2}Te{sub 4} is a good candidate for the applications of electronic devices.

  15. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11T23:59:59.000Z

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  16. Heavy-ion broad-beam and microprobe studies of single-event upsets in 0.20 um SiGe heterojunction bipolar transistors and circuits.

    SciTech Connect (OSTI)

    Fritz, Karl (Mayo Foundation, Rochester, MN); Irwin, Timothy J. (Jackson & Tull Chartered Engineers, Washington, DC); Niu, Guofu (Auburn University, Auburn, AL); Fodness, Bryan (SGT, Inc., Greenbelt, MD); Carts, Martin A. (Raytheon ITSS, Greenbelt, MD); Marshall, Paul W. (Brookneal, VA); Reed, Robert A. (NASA/GSFC, Greenbelt, MD); Gilbert, Barry (Mayo Foundation, Rochester, MN); Randall, Barbara (Mayo Foundation, Rochester, MN); Prairie, Jason (Mayo Foundation, Rochester, MN); Riggs, Pam (Mayo Foundation, Rochester, MN); Pickel, James C. (PR& T, Inc., Fallbrook, CA); LaBel, Kenneth (NASA/GSFC, Greenbelt, MD); Cressler, John D. (Georgia Institute of Technology, Atlanta, GA); Krithivasan, Ramkumar (Georgia Institute of Technology, Atlanta, GA); Dodd, Paul Emerson; Vizkelethy, Gyorgy

    2003-09-01T23:59:59.000Z

    Combining broad-beam circuit level single-event upset (SEU) response with heavy ion microprobe charge collection measurements on single silicon-germanium heterojunction bipolar transistors improves understanding of the charge collection mechanisms responsible for SEU response of digital SiGe HBT technology. This new understanding of the SEU mechanisms shows that the right rectangular parallele-piped model for the sensitive volume is not applicable to this technology. A new first-order physical model is proposed and calibrated with moderate success.

  17. Preparation of bulk superhard B-C-N nanocomposite compact

    DOE Patents [OSTI]

    Zhao, Yusheng (Los Alamos, NM); He, Duanwei (Sichuan, CN)

    2011-05-10T23:59:59.000Z

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  18. Bulk Viscosity and Particle Creation in the Inflationary Cosmology

    E-Print Network [OSTI]

    Mehdi Eshaghi; Nematollah Riazi; Ahmad Kiasatpour

    2015-04-29T23:59:59.000Z

    We study particle creation in the presence of bulk viscosity of cosmic fluid in the early universe within the framework of open thermodynamical systems. Since the first-order theory of non-equilibrium thermodynamics is non-causal and unstable, we try to solve the bulk viscosity equation of the cosmic fluid with particle creation through the full causal theory. By adopting an appropriate function for particle creation rate of "Creation of Cold Dark Matter" model, we obtain analytical solutions which do not suffer from the initial singularity and are in agreement with equivalent solutions of Lambda-CDM model. We constrain the free parameter of particle creation in our model based on recent Planck data. It is also found that the inflationary solution is driven by bulk viscosity with or without particle creation.

  19. Bulk Viscosity, Decaying Dark Matter, and the Cosmic Acceleration

    E-Print Network [OSTI]

    James R. Wilson; Grant J. Mathews; George M. Fuller

    2006-09-25T23:59:59.000Z

    We discuss a cosmology in which cold dark-matter particles decay into relativistic particles. We argue that such decays could lead naturally to a bulk viscosity in the cosmic fluid. For decay lifetimes comparable to the present hubble age, this bulk viscosity enters the cosmic energy equation as an effective negative pressure. We investigate whether this negative pressure is of sufficient magnitude to account fo the observed cosmic acceleration. We show that a single decaying species in a flat, dark-matter dominated cosmology without a cosmological constant cannot reproduce the observed magnitude-redshift relation from Type Ia supernovae. However, a delayed bulk viscosity, possibly due to a cascade of decaying particles may be able to account for a significant fraction of the apparent cosmic acceleration. Possible candidate nonrelativistic particles for this scenario include sterile neutrinos or gauge-mediated decaying supersymmetric particles.

  20. Bulk Viscosity and Particle Creation in the Inflationary Cosmology

    E-Print Network [OSTI]

    Eshaghi, Mehdi; Kiasatpour, Ahmad

    2015-01-01T23:59:59.000Z

    We study particle creation in the presence of bulk viscosity of cosmic fluid in the early universe within the framework of open thermodynamical systems. Since the first-order theory of non-equilibrium thermodynamics is non-causal and unstable, we try to solve the bulk viscosity equation of the cosmic fluid with particle creation through the full causal theory. By adopting an appropriate function for particle creation rate of "Creation of Cold Dark Matter" model, we obtain analytical solutions which do not suffer from the initial singularity and are in agreement with equivalent solutions of Lambda-CDM model. We constrain the free parameter of particle creation in our model based on recent Planck data. It is also found that the inflationary solution is driven by bulk viscosity with or without particle creation.