National Library of Energy BETA

Sample records for buildings structures infrastructures

  1. Sustainable Buildings and Infrastructure | Department of Energy

    Office of Environmental Management (EM)

    Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure "A sustainable society is one which satisfies its needs without diminishing the prospects of ...

  2. Revitalizing Y-12's Infrastructure: Building 9995 | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Revitalizing Y-12's Infrastructure: Building 9995 Friday, May 6, 2016 - 11:15am Y-12 National Security Complex in Oak Ridge, TN. Y-12's Analytical Chemistry Operations provides comprehensive analytical services in support of the site's core missions, environmental compliance and overall worker health and safety. ACO scientists, for example, analyze impurity levels to ensure the materials destined for nuclear weapons or naval reactor fuel are of suitably high

  3. Positioning the electric utility to build information infrastructure

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

  4. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The facility houses equipment such as glove box, fume hoods, oxygen-free nanopure water system and ultrasonic processors. Schlenk-type techniques are routinely used...

  5. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure (D2SA) Co-Chairs: Christopher Beggio, Sandia National Laboratories Robin Goldstone, Lawrence Livermore National Laboratories 1 Contributors * Bill Allcock, Argonne Leadership Computing Facility * Chris Beggio, Sandia National Laboratories * Clay England, Oak Ridge Leadership Computing Facility * Doug Fuller, Oak Ridge Leadership Computing Facility * Robin Goldstone, Lawrence Livermore National Laboratory * Jason Hick, National Energy Research Scientific Computing Center * Kyle

  6. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micro-grid for a Safe, Secure, E cient, and Cost-e ective Electric Power Infrastructure !"#$%"&%'&"&()*+%,-./-"(&*"0.-"+.-1&.,2-"+2$&01&!"#$%"&3.-,.-"+%.#4&"&5.67822$& 9"-+%#&3.(,"#14&:.-&+82&;#%+2$&!+"+2'&<2,"-+(2#+&.:&=#2-/1>'&?"+%.#"*&?)6*2"-&

  7. Structured Adaptive Mesh Refinement Application Infrastructure

    Energy Science and Technology Software Center (OSTI)

    2010-07-15

    SAMRAI is an object-oriented support library for structured adaptice mesh refinement (SAMR) simulation of computational science problems, modeled by systems of partial differential equations (PDEs). SAMRAI is developed and maintained in the Center for Applied Scientific Computing (CASC) under ASCI ITS and PSE support. SAMRAI is used in a variety of application research efforts at LLNL and in academia. These applications are developed in collaboration with SAMRAI development team members.

  8. Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|Speedshop

    SciTech Connect (OSTI)

    Miller, Barton

    2014-06-30

    Peta-scale computing environments pose significant challenges for both system and application developers and addressing them required more than simply scaling up existing tera-scale solutions. Performance analysis tools play an important role in gaining this understanding, but previous monolithic tools with fixed feature sets have not sufficed. Instead, this project worked on the design, implementation, and evaluation of a general, flexible tool infrastructure supporting the construction of performance tools as pipelines of high-quality tool building blocks. These tool building blocks provide common performance tool functionality, and are designed for scalability, lightweight data acquisition and analysis, and interoperability. For this project, we built on Open|SpeedShop, a modular and extensible open source performance analysis tool set. The design and implementation of such a general and reusable infrastructure targeted for petascale systems required us to address several challenging research issues. All components needed to be designed for scale, a task made more difficult by the need to provide general modules. The infrastructure needed to support online data aggregation to cope with the large amounts of performance and debugging data. We needed to be able to map any combination of tool components to each target architecture. And we needed to design interoperable tool APIs and workflows that were concrete enough to support the required functionality, yet provide the necessary flexibility to address a wide range of tools. A major result of this project is the ability to use this scalable infrastructure to quickly create tools that match with a machine architecture and a performance problem that needs to be understood. Another benefit is the ability for application engineers to use the highly scalable, interoperable version of Open|SpeedShop, which are reassembled from the tool building blocks into a flexible, multi-user interface set of tools. This set of

  9. Energy efficient building structure and panel therefor

    SciTech Connect (OSTI)

    Carroll, Th.J.; Paisley, J.K.

    1984-08-28

    A building structure is constructed from a plurality of sheathed, foam cored structural panels which are adapted to receive solar energy conversion or heat storage devices and are adapted to be connected in an air flow loop to provide integral heating and/or cooling systems for the building structure.

  10. Understanding Building Infrastructure and Building Operation through DOE Asset Score Model: Lessons Learned from a Pilot Project

    SciTech Connect (OSTI)

    Wang, Na; Goel, Supriya; Gorrissen, Willy J.; Makhmalbaf, Atefe

    2013-06-24

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system to help building owners to evaluate the as-built physical characteristics (including building envelope, the mechanical and electrical systems) and overall building energy efficiency, independent of occupancy and operational choices. The energy asset score breaks down building energy use information by simulating building performance under typical operating and occupancy conditions for a given use type. A web-based modeling tool, the energy asset score tool facilitates the implementation of the asset score system. The tool consists of a simplified user interface built on a centralized simulation engine (EnergyPlus). It is intended to reduce both the implementation cost for the users and increase modeling standardization compared with an approach that requires users to build their own energy models. A pilot project with forty-two buildings (consisting mostly offices and schools) was conducted in 2012. This paper reports the findings. Participants were asked to collect a minimum set of building data and enter it into the asset score tool. Participants also provided their utility bills, existing ENERGY STAR scores, and previous energy audit/modeling results if available. The results from the asset score tool were compared with the building energy use data provided by the pilot participants. Three comparisons were performed. First, the actual building energy use, either from the utility bills or via ENERGY STAR Portfolio Manager, was compared with the modeled energy use. It was intended to examine how well the energy asset score represents a buildings system efficiencies, and how well it is correlated to a buildings actual energy consumption. Second, calibrated building energy models (where they exist) were used to examine any discrepancies between the asset score model and the pilot participant buildings [known] energy use pattern. This comparison examined the end use

  11. Building up rhetorical structure trees

    SciTech Connect (OSTI)

    Marcu, D.

    1996-12-31

    I use the distinction between the nuclei and the satellites that pertain to discourse relations to introduce a compositionality criterion for discourse trees. I provide a first-order formalization of rhetorical structure trees and, on its basis, I derive an algorithm that constructs all the valid rhetorical trees that can be associated with a given discourse.

  12. Project Final Report: Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|SpeedShop

    SciTech Connect (OSTI)

    Galarowicz, James

    2014-01-06

    In this project we created a community tool infrastructure for program development tools targeting Petascale class machines and beyond. This includes tools for performance analysis, debugging, and correctness tools, as well as tuning and optimization frameworks. The developed infrastructure provides a comprehensive and extensible set of individual tool building components. We started with the basic elements necessary across all tools in such an infrastructure followed by a set of generic core modules that allow a comprehensive performance analysis at scale. Further, we developed a methodology and workflow that allows others to add or replace modules, to integrate parts into their own tools, or to customize existing solutions. In order to form the core modules, we built on the existing Open|SpeedShop infrastructure and decomposed it into individual modules that match the necessary tool components. At the same time, we addressed the challenges found in performance tools for petascale systems in each module. When assembled, this instantiation of community tool infrastructure provides an enhanced version of Open|SpeedShop, which, while completely different in its architecture, provides scalable performance analysis for petascale applications through a familiar interface. This project also built upon and enhances capabilities and reusability of project partner components as specified in the original project proposal. The overall project teams work over the project funding cycle was focused on several areas of research, which are described in the following sections. The reminder of this report also highlights related work as well as preliminary work that supported the project. In addition to the project partners funded by the Office of Science under this grant, the project team included several collaborators who contribute to the overall design of the envisioned tool infrastructure. In particular, the project team worked closely with the other two DOE NNSA laboratories

  13. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New

  14. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    SciTech Connect (OSTI)

    Patrick O'Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests

  15. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    SciTech Connect (OSTI)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  16. Sustainable Buildings and Infrastructure

    Broader source: Energy.gov [DOE]

    "A sustainable society is one which satisfies its needs without diminishing the prospects of future generations."- Lester R. Brown, Founder and President, Worldwatch Institute

  17. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    SciTech Connect (OSTI)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities.

  18. Building structure and building panel and method of controlling appearance and lighting of a building

    SciTech Connect (OSTI)

    McGlew, J. J.; McGlew Jr., J. J. B.

    1985-05-07

    A construction device comprises a panel which may be used for a structural member in either an interior or exterior wall and which has a side with a transparent wall. The transparent wall forms an exposed exterior surface. A chamber is defined behind the exterior surface either directly adjacent it or spaced therefrom. A fluid is positioned in the space and is selected for the characteristic that is to be imparted to the space, for example it may be of a particular color, insulation characteristic, heat transfer characteristic, reflection characteristic, light absorption characteristic, strength characteristic, shielding characteristic either in respect to magnetic, electronic or heat conditions, etc. The arrangement is such that when the fluid is behind the transparent wall it permits the wall to be used for example as a solar panel or as a transparent window panel if desired. In addition the fluid may contain a color which may change the appearance of the wall as visible through the transparent face and in fact many desirable characteristics may be imparted to the surface and these characteristics may be readily changed. By constructing the panel so that it is connected to a pump for circulating the fluid through it the constructional device may be used either as a sun shield or sun heat absorber or it may be used as a decorative interior wall or as an exterior building surface which may have its color characteristic changed regularly.

  19. Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures: A Sourcebook for Architects

    SciTech Connect (OSTI)

    2009-01-18

    Sourcebook for architects on building-integrated photovoltaic designs covering commercial and institutional structures.

  20. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    SciTech Connect (OSTI)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    2011-01-01

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities

  1. Securing Infrastructure from High Explosive Threats

    SciTech Connect (OSTI)

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  2. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Historically, only Industrial Facilities (ISO 50003 Industry - light to medium and ... is allowing Commercial Buildings (ISO 50003 - Buildings and Building Complexes) ...

  3. Before the House Transportation and Infrastructure Subcommittee on Economic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development, Public Buildings, and Emergency Management | Department of Energy Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management By: Drury Crawley, Office of Energy

  4. Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  5. Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Assurance - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  6. Crystal J. Rodarte-Romero-Engineering safer structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As part of the Lab's Civil, Structural, and Architectural (CSA) Team, she helps ensure that buildings, systems, utilities and infrastructure are designed and constructed to be ...

  7. Load test of the 272W Building high bay roof deck and support structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-09-28

    This reports the results of the Load Test of the 272W Building High Bay Roof Deck and Support Structure.

  8. NREL: Energy Analysis - Electric Infrastructure Systems Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Buildings Electric Infrastructure Systems Energy Sciences Geothermal Hydrogen and Fuel Cells Solar Vehicles and Fuels Research Wind Geospatial Analysis Key Activities ...

  9. Hydrogen Distribution and Delivery Infrastructure Basics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Before hydrogen can become a mainstream energy carrier, we must first develop and build the infrastructure (e.g. the miles of transmission and distribution pipelines, bulk storage ...

  10. Chapter V: Improving Shared Transport Infrastructures

    Broader source: Energy.gov (indexed) [DOE]

    -38 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 ... coordination will improve energy system efficiency and build resiliency to ...

  11. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    SciTech Connect (OSTI)

    Mattoon, C.M.; Beck, B.R.; Patel, N.R.; Summers, N.C.; Hedstrom, G.W.; Brown, D.A.

    2012-12-15

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it

  12. Seattle Structure Named WAN Sustainable Building of 2013

    Broader source: Energy.gov [DOE]

    World Architecture News (WAN) recently named the Bullit Center in Seattle, Washington, as the WAN Sustainable Building of the Year.

  13. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect (OSTI)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  14. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  15. Infrastructure Institutional Change Principle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Institutional Change Principle Infrastructure Institutional Change Principle Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior. The physical structures, technologies, systems, and processes that constitute the infrastructure of

  16. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  17. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-7809W to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision Important applications of these capabilities include performing assessment of facility vulnerabilities and resultant consequences of a range of attack scenarios related to nuclear facilities after

  18. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision the capability set needed to address safe and secure management of these radioactive materials includes a broad set of engineering and scientific disciplines such as physics; nuclear, mechanical, civil, and systems engineering; and chemistry. In addition, Sandia has a tool set that enhances the ability to perform high level

  19. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. Energy Infrastructure Events and Expansions Infrastructure Security...

    Broader source: Energy.gov (indexed) [DOE]

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. ...

  2. Building.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in ITER refers to plant systems located outside the Tokamak Building. A thick wall ... The cooling water system provides for the rejection of heat from a variety of ITER systems ...

  3. Parallel adaptive fluid-structure interaction simulation of explosions impacting on building structures

    SciTech Connect (OSTI)

    Deiterding, Ralf; Wood, Stephen L

    2013-01-01

    We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space-time refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algorithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed in detail. Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective fluid-structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verifying the coupled fluid-structure solver and assessing its parallel scalability, the detailed structural analysis of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion in a realistic multistory building are presented.

  4. Y-12 and the 2000 decade ? infrastructure reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consolidated storage scheme for these materials. "Part of the Infrastructure Reduction campaign involves the deactivation and eventual demolition of a large building known as...

  5. Argonne's Resilient Infrastructure Initiative | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Resilient Infrastructure Initiative Share Topic Energy Energy efficiency Building design Security Facility security Browse By - Any - General Argonne Information Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy

  6. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    SciTech Connect (OSTI)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  7. Strategic plan for infrastructure optimization

    SciTech Connect (OSTI)

    Donley, C.D.

    1998-05-27

    This document represents Fluor Daniel Hanford`s and DynCorp`s Tri-Cities Strategic Plan for Fiscal Years 1998--2002, the road map that will guide them into the next century and their sixth year of providing safe and cost effective infrastructure services and support to the Department of Energy (DOE) and the Hanford Site. The Plan responds directly to the issues raised in the FDH/DOE Critical Self Assessment specifically: (1) a strategy in place to give DOE the management (systems) and physical infrastructure for the future; (2) dealing with the barriers that exist to making change; and (3) a plan to right-size the infrastructure and services, and reduce the cost of providing services. The Plan incorporates initiatives from several studies conducted in Fiscal Year 1997 to include: the Systems Functional Analysis, 200 Area Water Commercial Practices Plan, $ million Originated Cost Budget Achievement Plan, the 1OO Area Vacate Plan, the Railroad Shutdown Plan, as well as recommendations from the recently completed Review of Hanford Electrical Utility. These and other initiatives identified over the next five years will result in significant improvements in efficiency, allowing a greater portion of the infrastructure budget to be applied to Site cleanup. The Plan outlines a planning and management process that defines infrastructure services and structure by linking site technical base line data and customer requirements to work scope and resources. The Plan also provides a vision of where Site infrastructure is going and specific initiatives to get there.

  8. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    SciTech Connect (OSTI)

    Sadtler, Bryce F

    2009-05-20

    favorability for interface nucleation at different facets of the nanorod and the stability of the interfaces during growth of the secondary material (Cu2S or Ag2S) within the CdS nanocrystal. The physical properties of the CdS-Ag2S and CdS-Cu2S binary nanorods are discussed in terms of the electronic structure of their components and the heterostructure morphology.

  9. Interdependence of Electricity System Infrastructure and Natural...

    Office of Environmental Management (EM)

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - ...

  10. BUILDING STRONG

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BUILDER NNSA Achieves Major Milestone in BUILDER Implementation WASHINGTON, D.C. - The Department of Energy's National Nuclear Security Administration (DOE/NNSA) achieved a major milestone in improving the management of the Nuclear Security Enterprise's infrastructure through the successful migration of all current information on building

    BUILDING STRONG ® Communications * Division and District Command level strategic involvement * Increased communication * Refined business processes *

  11. INL High Performance Building Strategy

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  12. Hearing Before the House Transportation and Infrastructure Subcommittee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Development, Public Buildings, and Emergency Management | Department of Energy Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Hearing Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management 4-14-16_Patricia_Hoffman FT HT&I (94.61 KB) More Documents & Publications Testimony Of Patricia Hoffman, Assistant Secretary For Electricity

  13. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  14. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National Governors ...

  15. Geographically-Based Infrastructure Analysis

    Broader source: Energy.gov (indexed) [DOE]

    January 26, 2006 Geographically-Based Infrastructure Analysis (GIA) Utilizes GIS, ... Geographically-based Infrastructure Analysis GIS Transportation Technologies & Systems ...

  16. Preliminary Dynamic Siol-Structure-Interaction Analysis for the Waste Handling Building

    SciTech Connect (OSTI)

    G. Wagenblast

    2000-05-01

    The objective of this analysis package is to document a preliminary dynamic seismic evaluation of a simplified design concept of the Wade Handling Building (WHB). Preliminary seismic ground motions and soil data will be used. Loading criteria of the WHB System Design Description will be used. Detail design of structural members will not be performed.. The results of the analysis will be used to determine preliminary sizes of structural concrete and steel members and to determine whether the seismic response of the structure is within an acceptable level for future License Application design of safety related facilities. In order to complete this preliminary dynamic evaluation to meet the Site Recommendation (SR) schedule, the building configuration was ''frozen in time'' as the conceptual design existed in October 1999. Modular design features and dry or wet waste storage features were intentionally excluded from this preliminary dynamic seismic evaluation. The document was prepared in accordance with the Development Plan for the ''Preliminary/Dynamic Soil Structure Interaction Analysis for the Waste Handling Building'' (CRWMS M&O 2000b), which was completed, in accordance with AP-2.13Q, ''Technical Product Development Planning''.

  17. Intelligent Buildings

    SciTech Connect (OSTI)

    Brambley, Michael R.; Armstrong, Peter R.; Kintner-Meyer, Michael CW; Pratt, Robert G.; Katipamula, Srinivas

    2001-01-01

    The topic of "intelligent buildings" (IBs) emerged in the early 1980s. Since, the term has been used to represent a variety of related, yet differing topics, each with a slightly different focus and purpose. Wiring and networking-infrastructure companies emphasize the cabling requirements for communication in intelligent buildings and the need to accommodate future needs for higher-speed broadband. Lucent (Lucent 2000) for example, defines an IB as "...one with a completely integrated wiring architecture. A single cabling system that handles all information traffic - voice, data, video, even the big building management systems."

  18. Infrastructure Development- Building America Top Innovations

    Broader source: Energy.gov [DOE]

    Top Innovations in this category include research results that have influenced codes and standards and improvements in education and the transaction process.

  19. Transmission Infrastructure Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRANSMISSION INFRASTRUCTURE PROGRAM DOE Tribal Energy Summit 2015 SECRETARYOF ENERGY'S FINANCING ROUNDTABLE Tracey A. LeBeau Senior Vice President & Transmission Infrastructure Program Manager 1 Program Description Western's Loan Authority * $3.25 billion permanent authority (revolving) * Goal: Attract investment in infrastructure & address market needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective of Market Need(s) * Ensure Funds Revolve 2 Recent

  20. Hydrogen Infrastructure Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Strategies Prof. Joan Ogden University of California, Davis Presented at the NREL Workshop on Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Sacramento, CA April 3, 2008 H 2 2 H 2 TRANSITION => MULTIPLE TRANSITIONS Vehicle technology Fuel Supply infrastructure New, low carbon primary supply ALL ALT FUELS/VEHICLES FACE THESE ISSUES TO SOME DEGREE FIRST STEPS OF THESE TRANSITIONS ARE UNDERWAY (Though Not Exclusively Tied to H 2 ) FOCUS OF

  1. Fuzzy architecture assessment for critical infrastructure resilience

    SciTech Connect (OSTI)

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systems architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.

  2. "smart water" infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart water" infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  3. Infrastructure Impacts | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content top National Population, Economic, and Infrastructure Impacts of Pandemic Influenza with Strategic Recommendations Posted by Admin on Mar 2, 2012 in | Comments 0...

  4. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  5. Infrastructure Institutional Change Principle

    Office of Energy Efficiency and Renewable Energy (EERE)

    Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior.

  6. Site Support Program Plan Infrastructure Program

    SciTech Connect (OSTI)

    1995-09-26

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  7. Hearing Before the House Transportation and Infrastructure Subcommitte...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hearing Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management 4-14-16PatriciaHoffman FT HT&I (94.61 ...

  8. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    Electricity Infrastructure Operations Center Jump to: navigation, search Logo: Electricity Infrastructure Operations Center Name Electricity Infrastructure Operations Center...

  9. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    PNNL Electricity Infrastructure Operations Center (Redirected from Electricity Infrastructure Operations Center) Jump to: navigation, search Logo: Electricity Infrastructure...

  10. IPHE Infrastructure Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fuelin

  11. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center (OSTI)

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  12. IPHE Infrastructure Workshop Proceedings

    SciTech Connect (OSTI)

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  13. Modernizing Infrastructure Permitting

    Broader source: Energy.gov [DOE]

    On May 14, 2014, the Obama Administration released a comprehensive plan to accelerate and expand Federal infrastructure permitting reform government-wide. The Office of Electricity Delivery and Energy Reliability is actively engaged in this process for transmission development.

  14. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating ...

  15. Infrastructure Improvements - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Improvements As the designated Community Reuse Organization for the Department of Energy's (DOE) Savannah River Site (SRS), our 22-member citizen-led Board of Directors has undertaken a study to point out the critical need for improving the deteriorating infrastructure at SRS. Priority attention needs to be made now to maximize SRS contributions and potential in the years ahead. SRS has all the assets required in people, land, expertise and community support to continue to play a

  16. Hydrogen and Infrastructure Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of Energy Fuel Cell Technologies Program Fuel Cells: Diverse Fuels and Applications More than $40 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects to deploy up to 1,000 fuel cells Recovery Act Funding for Fuel Cells COMPANY AWARD APPLICATION Delphi Automotive $2.4 M Auxiliary Power FedEx

  17. Infrastructure Security Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Executive Summary Energy, Climate, and Infrastructure Executive Summary / 3 Message from the VP Rick Stulen, Vice President Energy, Climate, & Infrastructure Security SMU Access to reliable, affordable, and sustainable sources of energy is essential for all modern economies. Since the late 1950s, we Americans have not been energy self-sufficient. Our addiction to foreign oil and fossil fuels puts our economy, our environment, and ultimately our national security at risk. Furthermore, there

  18. Location and Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facts, Figures » Location and Infrastructure Location and Infrastructure The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 Aerial View of Los Alamos National Laboratory The central Laboratory technical area is featured in this aerial view. Boundary Peak, separating the Santa Fe National Forest and

  19. infrastructure | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies.

  20. Infrastructure Development and Financial Analysis

    Broader source: Energy.gov [DOE]

    Infrastructure Development and Financial Analysis quantifies the total costs of scenarios for developing the hydrogen infrastructure, including production, delivery, and utilization. By combining...

  1. MFC Communications Infrastructure Study

    SciTech Connect (OSTI)

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  2. Pushing the Envelope: A Case Study of Building the First Manufactured Home Using Structural Insulated Panels

    SciTech Connect (OSTI)

    Baechler, Michael C.; Hadley, Donald L.; Sparkman, Ronald; Lubliner, Michael

    2002-06-01

    This paper for the ACEEE Summer Study describes construction of the first manufactured home ever produced from structural insulated panels. The home was built in July 2000 by Champion Enterprises at its Silverton, Oregon, plant. The house was completed on the assembly line in 9 days including a 300-mile road test. The paper examines the design and approval process leading to the project, the manufacturing process and its adjustment to SIPs, and the transportation and energy performance of the house after it was built. PNNL coordinated this project and conducted long-term monitoring on the house. The WSU Energy Program conducted building diagnostics testing once the house was occupied. PNNLs and WSUs involvement was funded by the U.S. DOE Building America Program. The Oregon Office of Energy conducted blower door and duct blaster tests. The completed home was estimated to reduce energy consumption by 50% and to have twice the structural strength required by HUD code for manufactured homes. The demonstration proved that the manufactured home production line could support SIPs production simultaneously with traditional construction and without major modifications, the line work in parallel with SIPs and traditional materials. The project revealed severl possibilities for further improving cost and time savings with SIPs construction, that might translate into increased capacity.

  3. Assessing Vulnerabilities, Risks, and Consequences of Damage to Critical Infrastructure

    SciTech Connect (OSTI)

    Suski, N; Wuest, C

    2011-02-04

    Since the publication of 'Critical Foundations: Protecting America's Infrastructure,' there has been a keen understanding of the complexity, interdependencies, and shared responsibility required to protect the nation's most critical assets that are essential to our way of life. The original 5 sectors defined in 1997 have grown to 18 Critical Infrastructures and Key Resources (CIKR), which are discussed in the 2009 National Infrastructure Protection Plan (NIPP) and its supporting sector-specific plans. The NIPP provides the structure for a national program dedicated to enhanced protection and resiliency of the nation's infrastructure. Lawrence Livermore National Laboratory (LLNL) provides in-depth, multi-disciplinary assessments of threat, vulnerability, and consequence across all 18 sectors at scales ranging from specific facilities to infrastructures spanning multi-state regions, such as the Oil and Natural Gas (ONG) sector. Like many of the CIKR sectors, the ONG sector is comprised of production, processing, distribution, and storage of highly valuable and potentially dangerous commodities. Furthermore, there are significant interdependencies with other sectors, including transportation, communication, finance, and government. Understanding the potentially devastating consequences and collateral damage resulting from a terrorist attack or natural event is an important element of LLNL's infrastructure security programs. Our work began in the energy sector in the late 1990s and quickly expanded other critical infrastructure sectors. We have performed over 600 physical assessments with a particular emphasis on those sectors that utilize, store, or ship potentially hazardous materials and for whom cyber security is important. The success of our approach is based on building awareness of vulnerabilities and risks and working directly with industry partners to collectively advance infrastructure protection. This approach consists of three phases: The Pre

  4. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  5. Pennsylvania Regional Infrastructure Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CTC Team 1 Pennsylvania Regional Infrastructure Project Presentation by: The Concurrent Technologies Corporation (CTC) Team January 6, 2004 The CTC Team 2 Presentation Outline Introduction of CTC Team CTC Background Technical Approach - CTC Team Member Presentations Conclusions The CTC Team 3 The CTC Project Team Concurrent Technologies Corporation Program Management and Coordination Hydrogen Delivery and Storage Material Development Hydrogen Sensors Concurrent Technologies Corporation Program

  6. Final Report on National NGV Infrastructure

    SciTech Connect (OSTI)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the

  7. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  8. Urban Heat Islands: Cool Roof Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cool Roof Infrastructure Urban Heat Islands: Cool Roof Infrastructure Lead Performer: Lawrence Berkeley National Laboratory - U.S.-China Clean Energy Research Center Project Partners: -- Guangdong Provincial Academy of Building Research - Guangdong, China -- Chongqing University - Chongqing, China -- Research Institute of Standards and Norms - China -- Chinese Academy of Sciences - Beijing, China DOE Funding: $795,000 Project Term: Jan. 2011 - Dec. 2015 Project Objective The U.S.-China Clean

  9. Green Infrastructure for Arid Communities

    Broader source: Energy.gov [DOE]

    On March 24, 2015, from 1:00pm – 2:30pm EDT, EPA's Green Infrastructure Program will launch our 2015 Webcast Series with the webinar Green Infrastructure for Arid Communities. This webinar aims to...

  10. E15 and Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 and Infrastructure K. Moriarty National Renewable Energy Laboratory J. Yanowitz Ecoengineering, Inc. Produced under direction of Renewable Fuels Association by the National Renewable Energy Laboratory (NREL) under Technical Services Agreement No. TSA 14-665 and Task No. WTJZ.1000. Strategic Partnership Project Report NREL/TP-5400-64156 May 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for

  11. Development of a public key infrastructure across multiple enterprises

    SciTech Connect (OSTI)

    Sharick, T.M.; Long, J.P.; Desind, B.J.

    1997-05-01

    Main-stream applications are beginning to incorporate public key cryptography. It can be difficult to deploy this technology without a robust infrastructure to support it. It can also be difficult to deploy a public key infrastructure among multiple enterprises when different applications and standards must be supported. This discussion chronicles the efforts by a team within the US Department of Energy`s Nuclear Weapons Complex to build a public key infrastructure and deploy applications that use it. The emphasis of this talk will be on the lessons learned during this effort and an assessment of the overall impact of this technology.

  12. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  13. International Hydrogen Infrastructure Update Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download the presentation slides from the Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Update" held on August 30, 2016.

  14. In Situ Nuclear Characterization Infrastructure

    SciTech Connect (OSTI)

    James A. Smith; J. Rory Kennedy

    2011-11-01

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  15. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  16. Nuclear hybrid energy infrastructure

    SciTech Connect (OSTI)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  17. Upcoming Webinar December 16: International Hydrogen Infrastructure...

    Office of Environmental Management (EM)

    Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges ...

  18. Hydrogen Infrastructure Market Readiness Workshop: Preliminary...

    Broader source: Energy.gov (indexed) [DOE]

    Preliminary results from the Hydrogen Infrastructure Market Readiness Workshop held ... More Documents & Publications Hydrogen Infrastructure Market Readiness: Opportunities and ...

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Environmental Management (EM)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE ...

  20. International Hydrogen Infrastructure Challenges Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE ...

  1. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Transport Infrastructure Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure Mainstreaming...

  2. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities ...

  3. Webinar: International Hydrogen Infrastructure Challenges Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Webinar: International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and ...

  4. Kerala Industrial Infrastructure Development Corporation Kinfra...

    Open Energy Info (EERE)

    Kerala Industrial Infrastructure Development Corporation Kinfra Jump to: navigation, search Name: Kerala Industrial Infrastructure Development Corporation (Kinfra) Place:...

  5. Agenda: Enhancing Energy Infrastructure Resiliency and Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities A Public Meeting ...

  6. Microsoft Word - Critical Infrastructure Security and Resilience...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013 CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE MONTH, 2013 - - - - - - - BY THE ...

  7. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  8. Assessment of Structural Resistance of building 4862 to Earthquake and Tornado Forces [SEC 1 and 2

    SciTech Connect (OSTI)

    METCALF, I.L.

    1999-12-06

    This report presents the results of work done for Hanford Engineering Laboratory under contract Y213-544-12662. LATA performed an assessment of building 4862 resistance to earthquake and tornado forces.

  9. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced

  10. GIS-Based Infrastructure Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GIS-Based Infrastructure Modeling Hydrogen Scenario Meeting August 9-10, 2006 Keith Parks, NREL GIS-Based Infrastructure Modeling * Station Analysis - Selection Criteria - Los Angeles * By 2015 (10 & 20 Station Layouts) * By 2025 (100 & 600 Station Layouts) - NYC * Early Infrastructure (20 stations) Comparison * Station Layouts (SMR, Liquid, Pipeline) * Delivery Discussion Station Selection Criteria * Consumer strategy attributes rated good and above * Proximal to major civic airports *

  11. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building We're creating infrastructure, refining materials and assembling technologies that accommodate our constantly changing world. Home > Impact > Building A Quirky Idea: Turning Patents Into Consumer Products In April 2013, GE and Quirky announced a partnership that introduces a whole new way of inventing. We teamed up with Quirky, the... Read More » Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking far, far into the future, a team of scientists

  12. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building We're creating infrastructure, refining materials and assembling technologies that accommodate our constantly changing world. Home > Impact > Building Rio 2016 Olympic Games' technologies You cannot imagine how far GE reaches into the Rio 2016 Olympic Games. The technologies (visible and invisible) that will light,... Read More » Bringing a Digital Mindset to Manufacturing The digital age will provide manufacturing insights that will save money and transform how we work across

  13. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building We're creating infrastructure, refining materials and assembling technologies that accommodate our constantly changing world. Home > Impact > Building Global Research and GE Capital: Middle Market Collaboration In 2013, a partnering initiative between Global Research and GE Capital resulted in dozens of middle market companies... Read More » How Green Is Green? GE's Global Research Center's Ecoassessment Center of Excellence was created to study the impact of GE products and

  14. Innovative Financing for Green Infrastructure

    Broader source: Energy.gov [DOE]

    Topic OverviewFinancing green infrastructure is critical to taking projects from planning to implementation and beyond, including sustaining operations and maintenance. This 90-minute webcast will...

  15. Resilient Infrastructure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On February 13, 2013, the White House released Presidential Policy Directive (PPD) 21 - Critical Infrastructure Security and Resilience. Its objective is to advance "a national ...

  16. Science Laboratories Infrastructure (SLI) Program | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Science Laboratories Infrastructure (SLI) Program Operations Program Management (OPM) OPM Home About Science Laboratories Infrastructure (SLI) Program Current Projects Safeguards & Security (S&S) Program Sustainability Contact Information Operations Program Management U.S. Department of Energy SC-33/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-8429 F: (301) 903-7047 More Information » Science Laboratories Infrastructure (SLI) Program

  17. Load test of the 277W Building high bay roof deck and support structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-12-02

    The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

  18. Load test of the 3701U Building roof deck and support structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-09-14

    The 3701U Building roof area was load tested according to the approved load-test procedure. The 3701U Building is located in the 300 Area of the Hanford Site and has the following characteristics: Roof deck--metal decking supported by steel purlins; Roof membrane--tar and gravel; Roof slope--flat (<10 deg); and Roof elevation--height of about 12.5 ft. The 3701U Building was visited in August 1992 for a visual inspection, but because of insulation an inspection could not be performed. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access. The test procedure called for the use of a remotely-controlled robot. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

  19. Sandia Energy - Sandia Builds Android-Based Network to Study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Study Cyber Disruptions Home Infrastructure Security Cyber News News & Events Cybersecurity Technologies Research Laboratory Sandia Builds Android-Based Network to Study...

  20. Distributed Data Integration Infrastructure

    SciTech Connect (OSTI)

    Critchlow, T; Ludaescher, B; Vouk, M; Pu, C

    2003-02-24

    The Internet is becoming the preferred method for disseminating scientific data from a variety of disciplines. This can result in information overload on the part of the scientists, who are unable to query all of the relevant sources, even if they knew where to find them, what they contained, how to interact with them, and how to interpret the results. A related issue is keeping up with current trends in information technology often taxes the end-user's expertise and time. Thus instead of benefiting from this information rich environment, scientists become experts on a small number of sources and technologies, use them almost exclusively, and develop a resistance to innovations that can enhance their productivity. Enabling information based scientific advances, in domains such as functional genomics, requires fully utilizing all available information and the latest technologies. In order to address this problem we are developing a end-user centric, domain-sensitive workflow-based infrastructure, shown in Figure 1, that will allow scientists to design complex scientific workflows that reflect the data manipulation required to perform their research without an undue burden. We are taking a three-tiered approach to designing this infrastructure utilizing (1) abstract workflow definition, construction, and automatic deployment, (2) complex agent-based workflow execution and (3) automatic wrapper generation. In order to construct a workflow, the scientist defines an abstract workflow (AWF) in terminology (semantics and context) that is familiar to him/her. This AWF includes all of the data transformations, selections, and analyses required by the scientist, but does not necessarily specify particular data sources. This abstract workflow is then compiled into an executable workflow (EWF, in our case XPDL) that is then evaluated and executed by the workflow engine. This EWF contains references to specific data source and interfaces capable of performing the desired

  1. Cyber and physical infrastructure interdependencies.

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  2. Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    2007-10-15

    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  3. Thermal Spray Coatings for Coastal Infrastructure

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

    1997-11-01

    Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

  4. Advanced Metering Infrastructure Security Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. Advanced Metering Infrastructure Security

  5. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    SciTech Connect (OSTI)

    Yu, Charley; Kamboj, Sunita; Wang, Cheng; Cheng, Jing-Jy

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  6. Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy August 2011 OE/ISER Report 8/31/11 i For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about information in this report

  7. The Fermilab data storage infrastructure

    SciTech Connect (OSTI)

    Jon A Bakken et al.

    2003-02-06

    Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

  8. Effects of Various Blowout Panel Configurations on the Structural Response of LANL Building 16-340 to Internal Explosions

    SciTech Connect (OSTI)

    Jason P. Wilke

    2005-09-30

    The risk of accidental detonation is present whenever any type of high explosives processing activity is performed. These activities are typically carried out indoors to protect processing equipment from the weather and to hide possibly secret processes from view. Often, highly strengthened reinforced concrete buildings are employed to house these activities. These buildings may incorporate several design features, including the use of lightweight frangible blowout panels, to help mitigate blast effects. These panels are used to construct walls that are durable enough to withstand the weather, but are of minimal weight to provide overpressure relief by quickly moving outwards and creating a vent area during an accidental explosion. In this study the behavior of blowout panels under various blast loading conditions was examined. External loadings from explosions occurring in nearby rooms were of primary interest. Several reinforcement systems were designed to help blowout panels resist failure from external blast loads while still allowing them to function as vents when subjected to internal explosions. The reinforcements were studied using two analytical techniques, yield-line analysis and modal analysis, and the hydrocode AUTODYN. A blowout panel reinforcement design was created that could prevent panels from being blown inward by external explosions. This design was found to increase the internal loading of the building by 20%, as compared with nonreinforced panels. Nonreinforced panels were found to increase the structural loads by 80% when compared to an open wall at the panel location.

  9. Clean Energy Infrastructure Educational Initiative

    SciTech Connect (OSTI)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master's Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master's Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research

  10. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  11. Energy Department Infrastructure Improvement Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    On March 22, 2012, the President issued Executive Order 13604 (EO), which is intended to improve the performance of Federal agencies in the permitting and review of infrastructure projects.  Among...

  12. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rush Robinett Energy &Infrastructure Future Group Sandia National Laboratories rdrobin@sandia.gov Energy & Infrastructure Future Overview 2 Sandia's Core Purpose "Helping our Nation Secure a Peaceful and Free World through Technology" * National Security Laboratory * Broad mission in developing science and technology applications to meet our rapidly changing, complex national security challenges * Safety, security and reliability of our nation's nuclear weapon stockpile 3

  13. infrastructure | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Infrastructure The Storage Infrastructure Technology Area research effort is carrying out regional characterization and small- and large-scale field projects to demonstrate that different storage types in various formation classes, distributed over different geographic regions, both onshore and offshore, have the capability to permanently store CO2 and provide the basis for commercial-scale CO2 projects. Research is needed to prove adequate injectivity, available storage resource, and

  14. Infrastructure and Operations | National Nuclear Security Administrati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure and Operations NNSA's missions require a secure production and laboratory infrastructure meeting immediate and long term needs. The Associate Administrator for ...

  15. Final Report - Hydrogen Delivery Infrastructure Options Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Hydrogen Delivery Infrastructure Options Analysis Final Report - Hydrogen Delivery Infrastructure Options Analysis This report, by the Nexant team, documents an in-depth analysis ...

  16. Webinar August 30: International Hydrogen Infrastructure Update...

    Energy Savers [EERE]

    Webinar August 30: International Hydrogen Infrastructure Update Webinar August 30: International Hydrogen Infrastructure Update August 23, 2016 - 2:07pm Addthis The Energy ...

  17. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and ...

  18. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Environmental Management (EM)

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April ...

  19. National Template: Hydrogen Vehicle and Infrastructure Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) National Template: Hydrogen Vehicle and Infrastructure Codes and ...

  20. IPHE Infrastructure Workshop - Workshop Proceedings, February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA ...

  1. Office of Infrastructure Planning & Analysis | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Office of Infrastructure Planning & Analysis Office of Infrastructure Planning & Analysis...

  2. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  3. Resilient Infrastructure Publications | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Interdependencies. An Approach to Critical Infrastructure Resilience Petit, F., Wallace, K., and Phillips, J., January 2014, An Approach to Critical Infrastructure Resilience. ...

  4. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Home Infrastructure Security Energy Transportation Energy Facilities Partnership Capabilities News News &...

  5. Report: Natural Gas Infrastructure Implications of Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the ...

  6. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop ...

  7. Infrastructure and Operations | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies....

  8. Water Supply Infrastructure System Surety

    SciTech Connect (OSTI)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  9. Hydrogen Vehicles and Fueling Infrastructure in China | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fueling Infrastructure in China Hydrogen Vehicles and Fueling Infrastructure in China Presentation given by Jinyang Zheng of Zhejiang University at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_10_zheng.pdf (1.35 MB) More Documents & Publications Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop

  10. National Computational Infrastructure for Lattice Gauge Theory

    SciTech Connect (OSTI)

    Brower, Richard C.

    2014-04-15

    SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io

  11. Buildings | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results

  12. Agent-based modeling of complex infrastructures

    SciTech Connect (OSTI)

    North, M. J.

    2001-06-01

    Complex Adaptive Systems (CAS) can be applied to investigate complex infrastructures and infrastructure interdependencies. The CAS model agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) allow investigation of the electric power infrastructure, the natural gas infrastructure and their interdependencies.

  13. Vulnerability and Mitigation Studies for Infrastructure

    SciTech Connect (OSTI)

    Glascoe, L; Noble, C; Morris, J

    2007-08-02

    The summary of this presentation is that: (1) We do end-to-end systems analysis for infrastructure protection; (2) LLNL brings interdisciplinary subject matter expertise to infrastructure and explosive analysis; (3) LLNL brings high-fidelity modeling capabilities to infrastructure analysis for use on high performance platforms; and (4) LLNL analysis of infrastructure provides information that customers and stakeholders act on.

  14. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect (OSTI)

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  15. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  16. Hydrogen Regional Infrastructure Program in Pennsylvania

    Broader source: Energy.gov [DOE]

    Hydrogen Regional Infrastructure Program in Pennsylvania. Objectives: Capture data pertinent to H2 delivery in PA

  17. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-06-10

    This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

  18. Chapter V: Improving Shared Transport Infrastructures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -38 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter V: Improving Shared Transport Infrastructures QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 6-1 Chapter VI This chapter takes a broader look at the current energy trade and the continuing integration of energy markets and infrastructure in the North American region. Its discussion includes cross-border infrastructure with Canada and Mexico, impacts of

  19. Consumers (Consumer Acceptance and Charging Infrastructure) Consumer Acceptance Group A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONSUMERS (CONSUMER ACCEPTANCE AND CHARGING INFRASTRUCTURE) EV Everywhere Workshop July 30, 2012 Consumer Acceptance Group A Breakout Session #1 - Brainstorm Consumer Acceptance Barriers * Building category awareness * "Butts in the seat" * \Car sharing & rental * DOE should run a pilot project with rental car & car sharing companies to subsidize initial integration of Evs into those fleets * Social media * Groupon coupons - need to use the breadth of available social media

  20. 2009 Infrastructure Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass program‘s Infrastructure platform review meeting, held on February 19, 2009, at the Marriott Residence Inn, National Harbor, Maryland.

  1. Revitalizing the Infrastructure: Building 9995 | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. proved reserves of crude oil and lease condensate, crude oil, and lease condensate, 2004-14 million barrels Revisions a Net of Sales b New Reservoir Proved d Change Net and and New Field Discoveries Total c Estimated Reserves from Adjustments Revisions Adjustments Acquisitions Extensions Discoveries in Old Fields Discoveries Production 12/31 Prior Year Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 2004 80 444 524 37 731 36 159 926 2,001 22,592 -514 2005 237 558 795 327 946 209 57 1,212

  2. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  3. CERC-BEE Cool Roofs and Urban Heat Islands: infrastructure and anti-soiling coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ronnen Levinson, Staff Scientist, LBNL RMLevinson@LBL.gov Scott Hunter, Senior Research Scientist, ORNL HunterSR@ORNL.gov CERC-BEE Cool Roofs and Urban Heat Islands: infrastructure and anti-soiling coatings 2014 Building Technologies Office Peer Review 2 Project Summary (Cool Roof Infrastructure) Timeline: Start date: January 2011 Planned end date: December 2015 Key Milestones 1. Initiate natural exposure trials in many Chinese cities for roof product rating (6/2014) 2. Start black/white/garden

  4. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect (OSTI)

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    The population growth coupled with increasing urbanization is predicted to exert a huge demand on the growth and retrofit of urban infrastructure, particularly in water and energy systems. The U.S. population is estimated to grow by 23% (UN, 2009) between 2005 and 2030. The corresponding increases in energy and water demand were predicted as 14% (EIA, 2009) and 20% (Elcock, 2008), respectively. The water-energy nexus needs to be better understood to satisfy the increased demand in a sustainable manner without conflicting with environmental and economic constraints. Overall, 4% of U.S. power generation is used for water distribution (80%) and treatment (20%). 3% of U.S. water consumption (100 billion gallons per day, or 100 BGD) and 40% of U.S. water withdrawal (340 BGD) are for thermoelectric power generation (Goldstein and Smith, 2002). The water demand for energy production is predicted to increase most significantly among the water consumption sectors by 2030. On the other hand, due to the dearth of conventional water sources, energy intensive technologies are increasingly in use to treat seawater and brackish groundwater for water supply. Thus comprehending the interrelation and interdependency between water and energy system is imperative to evaluate sustainable water and energy supply alternatives for cities. In addition to the water-energy nexus, decentralized or distributed concept is also beneficial for designing sustainable water and energy infrastructure as these alternatives require lesser distribution lines and space in a compact urban area. Especially, the distributed energy infrastructure is more suited to interconnect various large and small scale renewable energy producers which can be expected to mitigate greenhouse gas (GHG) emissions. In the case of decentralized water infrastructure, on-site wastewater treatment facility can provide multiple benefits. Firstly, it reduces the potable water demand by reusing the treated water for non-potable uses

  5. infrastructure

    National Nuclear Security Administration (NNSA)

    insulated roofs and more energy efficient HVAC systems. The cool roof has high solar reflectance, so it emits absorbed solar radiation back into the atmosphere, which...

  6. Forecourt and Gas Infrastructure Optimization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecourt and Gas Infrastructure Optimization Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland 2 Analysis of Market Demand and Supply Variations Supply Side Variations: Central Production Plant Outages - Scheduled yearly maintenance: Typically 5 to 10 consecutive days each year - Unscheduled maintenance outages: Indeterminate time and length - Natural disasters: A few days? Demand side variations - Hourly at refueling sites - Day to day at refueling

  7. Hydrogen Delivery Infrastructure Option Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC This presentation does not contain any proprietary or confidential information Tan-Ping Chen Nexant Jim Campbell Bhadra Grover Air Liquide Stefan Unnasch TIAX Glyn Hazelden GTI Graham Moore Chevron Matt Ringer NREL Ray Hobbs Pinnacle West 2 Presentation Outline Project Background Knowledge Collected and

  8. DOEs Building Technologies Office Technology-to-Market (T2M...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Building Technologies Office (BTO) Ecosystem Clean Energy Innovation Infrastructure ... What does this model look like in BTO? * INFORM: - Utilize the BTO ecosystem to scope R&D ...

  9. Building Energy Asset Score: Building Owners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Owners Building Energy Asset Score: Building Owners The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. View information

  10. Webinar: International Hydrogen Infrastructure Update | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Webinar: International Hydrogen Infrastructure Update Webinar: International Hydrogen Infrastructure Update August 30, 2016 12:00PM to 1:00PM EDT FCTO will present a webinar entitled "International Hydrogen Infrastructure Update" on Tuesday, August 30 from 12 to 1 p.m. Eastern Daylight Time (EDT). This webinar will discuss the status of international hydrogen infrastructure deployment. The webinar will introduce the current status of the technology in several countries,

  11. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Controlled Hydrogen Fleet & Infrastructure Analysis National FCEV Learning Demonstration: All Composite Data Products National Hydrogen Learning ...

  12. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Costs Hydrogen and Infrastructure Costs Presentation by Fred Joseck, U.S. Department of Energy Fuel Cell Technologies Program, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. wkshp_market_readiness_joseck.pdf (659.13 KB) More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California

  13. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect (OSTI)

    Berscheid, Alan P.

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  14. International Hydrogen Infrastructure Challenges Workshop Summary - NOW,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEDO, and DOE | Department of Energy Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Download presentation slides from the DOE Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE" held on December 16, 2013. International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Webinar Slides

  15. Transmission Infrastructure Investment Projects (2009) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Transmission Infrastructure Investment Projects (2009) More Documents & Publications Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation...

  16. Infrastructure at the Savannah River Site:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Infrastructure Security and Energy Restoration (ISER) Infrastructure Security and Energy Restoration (ISER) Infrastructure Security and Energy Restoration (ISER) Helping to Ensure a Secure and Reliable Flow of Energy to the Nation Applying the Department of Energy's technical expertise to help ensure the security, resiliency and survivability of key energy assets and critical energy infrastructure. We work with the Department of Homeland Security, the Federal Energy Regulatory

  17. Agent-based Infrastructure Interdependency Model

    Energy Science and Technology Software Center (OSTI)

    2003-10-01

    The software is used to analyze infrastructure interdependencies. Agent-based modeling is used for the analysis.

  18. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  19. Hydrogen Infrastructure Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies Hydrogen Infrastructure Strategies Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California ogden.pdf (4.18 MB) More Documents & Publications Geographically-Based Infrastructure Analysis for California H2FIRST Reference Station Design Task: Project Deliverable 2-2 Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

  20. State Experience in Hydrogen Infrastructure in California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experience in Hydrogen Infrastructure in California Gerhard H Achtelik Jr. February 17, 2011 Hydrogen Infrastructure Market Readiness Workshop California Environmental Protection Agency Air Resources Board Agenda  California Station History  Approach for State Solicitations  Stations under Construction  Recently Awarded  Learnings  Other Considerations that Impact Hydrogen Infrastructure stations decommissioned (9) public access stations (5) private access stations (10) under

  1. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ... Water ......",33,32,6,8,"Q",24,"Q","N" "Propane ......",502,489,179,40,59...

  2. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect (OSTI)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  3. CBECS Buildings Characteristics --Revised Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial

  4. Energy: Critical Infrastructure and Key Resources Sector-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key ...

  5. Energy Critical Infrastructure and Key Resources Sector-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy Critical Infrastructure and Key ...

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while

  7. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  8. Mesh infrastructure for coupled multiprocess geophysical simulations

    SciTech Connect (OSTI)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about the mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.

  9. Use of composite materials, health monitoring and self-healing concepts to refurbish our civil and military infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Delong, Waylon Anthony; White, Scott; Yepez, Esteban; Rackow, Kirk A.; Reedy, Earl David, Jr.

    2007-09-01

    An unavoidable by-product of a metallic structure's use is the appearance of crack, corrosion, erosion and other flaws. Economic barriers to the replacement of these structures have created an aging civil and military infrastructure and placed even greater demands on efficient and safe repair and inspection methods. As a result of Homeland Security issues and these aging infrastructure concerns, increased attention has been focused on the rapid repair and preemptive reinforcement of structures such as buildings and bridges. This Laboratory Directed Research and Development (LDRD) program established the viability of using bonded composite patches to repair metallic structures. High modulus fiber-reinforced polymer (FRP) material may be used in lieu of mechanically fastened metallic patches or welds to reinforce or repair damaged structures. Their use produces a wide array of engineering and economic advantages. Current techniques for strengthening steel structures have several drawbacks including requiring heavy equipment for installation, poor fatigue performance, and the need for ongoing maintenance due to continued corrosion attack or crack growth. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are currently no rehabilitation options. Applications include such diverse structures as: buildings, bridges, railroad cars, trucks and other heavy machinery, steel power and communication towers, pipelines, factories, mining equipment, ships, tanks and other military vehicles. This LDRD also proved the concept of a living infrastructure by developing custom sensors and self-healing chemistry and linking this technology with the application of advanced composite materials. Structural Health Monitoring (SHM) systems and mountable, miniature sensors were designed to continuously or periodically assess structural integrity. Such systems are able to detect

  10. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    SciTech Connect (OSTI)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    2010-09-15

    Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction

  11. Analyzing water/wastewater infrastructure interdependencies.

    SciTech Connect (OSTI)

    Gillette, J. L.; Fisher, R. E.; Peerenboom, J. P.; Whitfield, R. G.

    2002-03-26

    This paper describes four general categories of infrastructure interdependencies (physical, cyber, geographic, and logical) as they apply to the water/wastewater infrastructure, and provides an overview of one of the analytic approaches and tools used by Argonne National Laboratory to evaluate interdependencies. Also discussed are the dimensions of infrastructure interdependency that create spatial, temporal, and system representation complexities that make analyzing the water/wastewater infrastructure particularly challenging. An analytical model developed to incorporate the impacts of interdependencies on infrastructure repair times is briefly addressed.

  12. Cyber Threats to Nuclear Infrastructures

    SciTech Connect (OSTI)

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  13. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  14. CNG and Fleets: Building Your Business Case

    SciTech Connect (OSTI)

    2015-09-01

    Two online resources help fleets evaluate the economic soundness of a compressed natural gas program. The National Renewable Energy Laboratory's (NREL's) Vehicle Infrastructure and Cash-Flow Evaluation (VICE 2.0) model and the accompanying report, Building a Business Case for Compressed Natural Gas in Fleet Applications, are uniquely designed for fleet managers considering an investment in CNG and can help ensure wise investment decisions about CNG vehicles and infrastructure.

  15. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  16. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  17. Climate Change and Infrastructure, Urban Systems, and Vulnerabilities

    SciTech Connect (OSTI)

    Wilbanks, Thomas J; Fernandez, Steven J

    2014-01-01

    associated with climate change that can disrupt infrastructure services, often cascading across infrastructures because of extensive interdependencies threatening health and local economies, especially in areas where human populations and economic activities are concentrated in urban areas. Vulnerabilities are especially large where infrastructures are subject to multiple stresses, beyond climate change alone; when they are located in areas vulnerable to extreme weather events; and if climate change is severe rather than moderate. But the report also notes that there are promising approaches for risk management, based on emerging lessons from a number of innovative initiatives in U.S. cities and other countries, involving both structural and non-structural (e.g., operational) options.

  18. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Simulation Protocols (Building America Benchmark) - Building America Top Innovation House Simulation Protocols (Building America Benchmark) - Building America Top Innovation ...

  19. The Walls Come Tumbling Down: Decontamination and Demolition of 29 Manhattan Project and Cold War-Era Buildings and Structures at Los Alamos National Laboratory-12301

    SciTech Connect (OSTI)

    Chaloupka, Allan B.; Finn, Kevin P.; Parsons, Duane A.

    2012-07-01

    When the nation's top scientists and military leaders converged on Los Alamos, New Mexico in the 1943, to work on the Manhattan Project, the facilities they used to conduct their top-secret work were quickly constructed and located in the middle of what eventually became the Los Alamos town site. After one of these early facilities caught on fire, it seemed wise to build labs and production facilities farther away from the homes of the town's residents. They chose to build facilities on what was then known as Delta Prime (DP) Mesa and called it Technical Area 21, or TA-21. With wartime urgency, a number of buildings were built at TA-21, some in as little as a few months. Before long, DP Mesa was populated with several nondescript metal and cinder-block buildings, including what became, immediately following the war, the world's first plutonium production facility. TA-21 also housed labs that used hazardous chemicals and analyzed americium, tritium and plutonium. TA-21 was a bustling center of research and production for the next several decades. Additional buildings were built there in the 1960's, but by the 1990's many of them had reached the end of their service lives. Labs and offices were moved to newer, more modern buildings. When Los Alamos National Laboratory received $212 million in funding from the American Recovery and Reinvestment Act in July 2009 for environmental cleanup projects, about $73 million of the funds were earmarked to decontaminate and demolish 21 of the old buildings at TA-21. Although some D and D of TA-21 buildings was performed in the 1990's, many of the facilities at DP Site remained relatively untouched for nearly three decades following their final operational use. In 2006, there were over three dozen buildings or structures on the mesa to be removed so that soil cleanup could be completed (and the land made available for transfer and reuse). The total footprint of buildings across the mesa was approximately 18,580 m{sup 2} (200

  20. Sustainable Federal Buildings and Campuses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Sustainable Federal Buildings and Campuses Sustainable Federal Buildings and Campuses An air-intake structure outside this high-performance federal building lowers ...

  1. Mercantile Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are...

  2. Education Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high...

  3. Better Buildings

    Broader source: Energy.gov [DOE]

    The Better Buildings Initiative aims to make commercial and industrial buildings 20% more energy efficient by 2020 and accelerate private sector investment in energy efficiency.

  4. Building Energy Asset Score: Utilities and Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities and Energy Efficiency Program Administrators Building Energy Asset Score: ... and structural energy efficiency of commercial and multifamily residential buildings. ...

  5. Pennsylvania Regional Infrastructure Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pennsylvania Regional Infrastructure Project Pennsylvania Regional Infrastructure Project Presentation by 11-Wang to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. 11_wang_infra.pdf (9.72 MB) More Documents & Publications Hydrogen Regional Infrastructure Program in Pennsylvania Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop Delivery Tech Team

  6. National Infrastructure Protection Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Infrastructure Protection Plan National Infrastructure Protection Plan Protecting the critical infrastructure and key resources (CI/KR) of the United States is essential to the Nation's security, public health and safety, economic vitality, and way of life. Attacks on CI/KR could significantly disrupt the functioning of government and business alike and produce cascading effects far beyond the targeted sector and physical location of the incident. Direct terrorist attacks and natural,

  7. DOE Extends Portsmouth Infrastructure Support Services Contract |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Portsmouth Infrastructure Support Services Contract DOE Extends Portsmouth Infrastructure Support Services Contract July 17, 2015 - 12:00pm Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy (DOE) today announced that it is extending its contract for Infrastructure Support Services at the Portsmouth Gaseous Diffusion Plant site for a period of six months. The contract period for the current

  8. Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350)

    SciTech Connect (OSTI)

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Martinez-Camara, Eduardo; Jimenez-Macias, Emilio

    2015-11-15

    The European Committee for Standardization (CEN) through its Technical Committee CEN/TC-350 is developing a series of standards for assessing the building sustainability, at both product and building levels. The practical application of the selection (decision making) of structural alternatives made by one-way slabs leads to an intermediate level between the product and the building. Thus the present study addresses this problem of decision making, following the CEN guidelines and incorporating relevant aspects of architectural design into residential construction. A life cycle assessment (LCA) is developed in order to obtain valid information for the decision making process (the LCA was developed applying CML methodology although Ecoindicator99 was used in order to facilitate the comparison of the values); this information (the carbon footprint values) is contrasted with other databases and with the information from the Environmental Product Declaration (EPD) of one of the lightening materials (expanded polystyrene), in order to validate the results. Solutions of different column disposition and geometries are evaluated in the three pillars of sustainable construction on residential construction: social, economic and environmental. The quantitative analysis of the variables used in this study enables and facilitates an objective comparison in the design stage by a responsible technician; the application of the proposed methodology reduces the possible solutions to be evaluated by the expert to 12.22% of the options in the case of low values of the column index and to 26.67% for the highest values. - Highlights: • Methodology for selection of structural alternatives in buildings with one-way slabs • Adapted to CEN guidelines (CEN/TC-350) for assessing the building sustainability • LCA is developed in order to obtain valid information for the decision making process. • Results validated comparing carbon footprint, databases and Env. Product Declarations

  9. Offshore Infrastructure Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Infrastructure Associates Inc Region: Puerto Rico Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  10. Acquasol Infrastructure Limited | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Acquasol Infrastructure Limited Place: Adelaide, South Australia, Australia Zip: 5000 Sector: Solar Product: Adelaide based solar thermal project and...

  11. CHP: Enabling Resilient Energy Infrastructure - Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    infrastructure resiliency, business continuity, and emergency planning and operations. ... Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in ...

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  13. Tarini Infrastructure Ltd | Open Energy Information

    Open Energy Info (EERE)

    Place: New Delhi, Delhi (NCT), India Zip: 110024 Sector: Hydro Product: New Delhi-based small hydro project developer. References: Tarini Infrastructure Ltd.1 This article is a...

  14. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    Panel at the U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure ... More Documents & Publications Bio-Derived Liquids to Hydrogen Distributed Reforming ...

  15. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen, Fuel Cells and Infrastructure Technologies program's 2002 annual progress report. 33098.pdf (22.09 MB) More Documents & Publications Webinar: Photosynthesis for Hydrogen ...

  16. Hydrogen Delivery Infrastructure Analysis, Options and Trade...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting ...

  17. International Hydrogen Infrastructure Challenges Workshop Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO and ... of Intent to expand the network of hydrogen filling stations in Germany * overall ...

  18. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupdreportoutcaci.pdf More Documents & Publications EV Everywhere...

  20. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C ...

  1. Green Infrastructure Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    allowing the Department of Business, Economic Development, and Tourism to issue Green Infrastructure Bonds to secture low-cost financing for clean energy installations,...

  2. Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape...

    Open Energy Info (EERE)

    ARCGIS Shape File, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape File, all Countries...

  3. Wyoming Infrastructure Authority | Open Energy Information

    Open Energy Info (EERE)

    Name: Wyoming Infrastructure Authority Abbreviation: WIA Address: 200 E. 17th Street, Unit B Place: Cheyenne, WY Zip: 82001 Year Founded: 2004 Phone Number: (307) 635-3573...

  4. Financing Tribal Energy Infrastructure & Energy Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization Infrastructure (EOI) www.projectseastar.org WHERE WHAT Tribe's role? * Entrepreneur * Investor * Government WHO Want's the money: * Private Entity * Public Entity * ...

  5. Energy Infrastructure Modeling and Analysis (EIMA) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal decision-making related to critical infrastructure, and emergency response and recovery, and support the ... the next-generation of system planning and operations ...

  6. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for ...

  7. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but ...

  8. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation slides from the Fuel Cell Technologies Office webinar "2nd International Hydrogen Infrastructure Challenges Webinar" held on March 10, 2015. 2nd International Hydrogen ...

  9. Infrastructure and Facilities Management | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    backlog of old facilities, reduction of excess facilities and utility construction. ... real property), and infrastructure planning and line item construction sub-programs. ...

  10. Alternative Transportation Refueling Infrastructure in the U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lack of adequate refueling infrastructure is a major barrier to the success of alternative motor fuels. A transition from fossil petroleum to alternative, low-carbon transportation ...

  11. International Symposium For Next Generation Infrastructure

    Broader source: Energy.gov [DOE]

    The International Symposium for Next Generation Infrastructure is designed to support the rapidly expanding international research community seeking to understand the interactions between...

  12. Alternative Ways of Financing Infrastructure Investment: Potential...

    Open Energy Info (EERE)

    Ways of Financing Infrastructure Investment: Potential for 'Novel' Financing Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Ways of Financing...

  13. National Critical Infrastructure Security and Resilience Month...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistant Secretary, Office of Electricity Delivery & Energy Reliability November is National Critical Infrastructure Security and Resilience Month, a time during which we ...

  14. Safety, Security & Resilience of Energy Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of Energy Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ...

  15. Final Report- Hydrogen Delivery Infrastructure Options Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides in-depth analysis of various hydrogen delivery options to determine the most cost effective infrastructure and R&D efforts for the long term.

  16. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  17. Policy Option for Hydrogen Vehicles and Infrastructure

    Broader source: Energy.gov [DOE]

    Presentation by Stefan Unnasch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  18. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Presentation by Matt Most, Encana Natural Gas, ...

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  20. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  1. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  2. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr.

    1995-09-01

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  3. Meeting Hanford's Infrastructure Requirements - 12505

    SciTech Connect (OSTI)

    Flynn, Karen

    2012-07-01

    Hanford, by all accounts, is an enormous and complex project, with thousands of disparate, but co-mingled activities in motion on any given day. The primary target of the mission at Hanford is cleanup of the 586 square-mile site, but there is the equally vital mission of site services and infrastructure. Without functions like the well-maintained site roads, electricity, water, and emergency management services, not a single cleanup project could be undertaken. As the cleanup projects evolve - with new work-scope emerging, while existing projects are completed - there becomes a very real need to keep projects integrated and working to the same 'blueprint'. And the Hanford blueprint extends for years and includes myriad variables that come with meeting the challenges and complexities associated with Hanford cleanup. Because of an innovative and unique contracting strategy, the Department of Energy (DOE) found a way to keep the cleanup projects un-encumbered from the side task of having to self-provide their individual essential site services, thus allowing the cleanup contractors to concentrate their efforts on their primary mission of cleaning up the site. These infrastructure and support services also need to be provided efficiently and cost effectively - done primarily through 'right-sizing' efforts. The real innovation came when DOE had the foresight to include a second provision in this contract which specifically asked for a specialized role of site integrator and innovator, with a special emphasis placed on providing substantial cost savings for the government. The need for a true site integrator function was necessitated by the ever-increasing complexity of projects at Hanford and the progression of cleanup at others. At present, there are two main DOE offices overseeing the cleanup work and six primary contractors performing that work. Each of these contractors works to separate schedules and cleanup milestones, and the nature of the cleanup differs, but

  4. Infrastructure & Sustainability | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Infrastructure & Sustainability Los Alamos National Laboratory receives Presidential Award as a climate champion Los Alamos National Laboratory recently received a second presidential award as a climate champion. From left are: Mathew Moury, Associate Under Secretary for Environment, Health, Safety and Security; Michael Sweitzer, NNSA; Josh Silverman, Director, DOE Office of Sustainability Support; Christy... Office of National Infrastructure & Sustainability The Office of National

  5. Hydrogen Regional Infrastructure Program in Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhD Melissa Klingenberg, PhD Hydrogen Program Hydrogen Program Air Products and Chemicals, Inc. (APCI) Hydrogen Separation Hydrogen Sensors Resource Dynamics Corporation (RDC) Tradeoff/Sensitivity Analyses of Hydrogen Delivery Approaches EDO Fiber Science High Pressure/High Strength Composite Material Development and Prototyping CTC * Program Management * Hydrogen

  6. Building America Research Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To the right of this building is another large building shaded in gray, and to the left is a smaller structure shaded in gray. Building Energy Optimization Software (BEopt): This ...

  7. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)"

  8. Fluxnet Synthesis Dataset Collaboration Infrastructure

    SciTech Connect (OSTI)

    Agarwal, Deborah A.; Humphrey, Marty; van Ingen, Catharine; Beekwilder, Norm; Goode, Monte; Jackson, Keith; Rodriguez, Matt; Weber, Robin

    2008-02-06

    The Fluxnet synthesis dataset originally compiled for the La Thuile workshop contained approximately 600 site years. Since the workshop, several additional site years have been added and the dataset now contains over 920 site years from over 240 sites. A data refresh update is expected to increase those numbers in the next few months. The ancillary data describing the sites continues to evolve as well. There are on the order of 120 site contacts and 60proposals have been approved to use thedata. These proposals involve around 120 researchers. The size and complexity of the dataset and collaboration has led to a new approach to providing access to the data and collaboration support and the support team attended the workshop and worked closely with the attendees and the Fluxnet project office to define the requirements for the support infrastructure. As a result of this effort, a new website (http://www.fluxdata.org) has been created to provide access to the Fluxnet synthesis dataset. This new web site is based on a scientific data server which enables browsing of the data on-line, data download, and version tracking. We leverage database and data analysis tools such as OLAP data cubes and web reports to enable browser and Excel pivot table access to the data.

  9. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  10. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.