Sample records for buildings structures infrastructures

  1. BUILDING INSPECTION Building, Infrastructure, Transportation

    E-Print Network [OSTI]

    BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

  2. Optimal Dynamic Strategy of Building a Hydrogen Infrastructure in Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2005-01-01T23:59:59.000Z

    of Building a Hydrogen Infrastructure in Beijing Zhenhongthe on-going Hydrogen Infrastructure Transition (HIT)build up a regional hydrogen infrastructure while minimizing

  3. Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau University--The emergence of cloud computing infrastructures brings new ways to build and manage computing systems objectives. First, leveraging virtualization and cloud computing infrastruc- tures to build distributed large

  4. EL Program: Earthquake Risk Reduction in Buildings and Infrastructure

    E-Print Network [OSTI]

    Magee, Joseph W.

    1 EL Program: Earthquake Risk Reduction in Buildings and Infrastructure Program Manager: John R. Hayes, Jr., 301 975 5640 Strategic Goal: Disaster-Resilient Buildings, Infrastructure, and Communities to earthquake engineering, including performance-based tools, guidelines, and standards for designing buildings

  5. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    and Demand Response in Commercial Building,” Report No.Demand Response Infrastructure for Commercial Buildings MaryDemand Response Infrastructure for Commercial Buildings Mary

  6. Sustainable Buildings and Infrastructure | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Buildings Implementation Plan DOE Sustainable Buildings and Campuses USGBC Roadmap to Sustainable Government Buildings DOE Greening Federal Facilities, Resource Guide...

  7. Building Smart Ci2es & Smart Infrastructures Karl Henrik Johansson

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    11/3/11 1 Building Smart Ci2es & Smart Infrastructures Karl Henrik Johansson #12;11/3/11 2 Smart City Informa2on and Communica2on Technologies Why now Towards Smart Infrastructures Info Web Sensor Web Ac2on Web · Internet · WWW

  8. Assuring the Performance of Buildings and Infrastructures: Report of Discussions

    SciTech Connect (OSTI)

    Hunter, Regina L.

    1999-05-28T23:59:59.000Z

    How to ensure the appropriate performance of our built environment in the face of normal conditions, natural hazards, and malevolent threats is an issue of emerging national and international importance. As the world population increases, new construction must be increasingly cost effective and at the same time increasingly secure, safe, and durable. As the existing infrastructure ages, materials and techniques for retrofitting must be developed in parallel with improvements in design, engineering, and building codes for new construction. Both new and renovated structures are more often being subjected to the scrutiny of risk analysis. An international conference, "Assuring the Performance of Buildings and Infrastructures," was held in May 1997 to address some of these issues. The conference was co-sponsored by the Architectural Engineering Division of the American Society of Civil Engineers (ASCE), the American Institute of Architects, and Sandia National Laboratories and convened in Albuquerque, NM. Many of the papers presented at the conference are found within this issue of Techno20~. This paper presents some of the major conference themes and summarizes discussions not found in the other papers.

  9. Sustainable Infrastructure Practices -Green Building Design, page 1 of 2 UC SANTA BARBARA

    E-Print Network [OSTI]

    Bigelow, Stephen

    Sustainable Infrastructure Practices - Green Building Design, page 1 of 2 UC SANTA BARBARA Sustainable Infrastructure Practices - Green Building Design Contact: Administrative Services Revision: Effective July 1, 2012 Supersedes Green Building Design Interim Policy: June1, 2010 through June 30, 2012

  10. The 5th Dimension: Building Blocks for Smart Infrastructures

    E-Print Network [OSTI]

    artifact. Obviously, since the books only pass the energy field of the reader for a few seconds, any formThe 5th Dimension: Building Blocks for Smart Infrastructures Marc Langheinrich ETH Zurich Institute example of such an interaction in 5D would be the following scenario: two "smart" (i.e., tagged) books

  11. Sustainable Buildings and Infrastructure | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrialSupportingAlbedofsidentoihonorsSustainability:

  12. Building Energy Supply Infrastructures and Urban Sustained Development of Shenyang

    E-Print Network [OSTI]

    Feng, G.; Wang, Y.; Gao, Y.

    2006-01-01T23:59:59.000Z

    Urban energy supply is a necessary infrastructure of civic development. Shenyang is an old industrial-based center in the northeast. Its development influences the economic development of the whole old northeast industry base. This paper analyses...

  13. LOCAL ACTORS BUILD BROADBAND INFRASTRUCTURE Ingjerd Skogseid, Western Norway Research Institute, Postboks 163, 6851 Sogndal, Norway,

    E-Print Network [OSTI]

    Hanseth, Ole

    LOCAL ACTORS BUILD BROADBAND INFRASTRUCTURE Ingjerd Skogseid, Western Norway Research Institute, Postboks 163, 6851 Sogndal, Norway, Ingjerd.Skogseid@vestforsk.no Ole Hanseth, Department of informatics, University of Oslo, Norway, Ole.Hanseth@ifi.uio.no Abstract This paper explores how local actors can play

  14. Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

  15. Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial Buildings

    E-Print Network [OSTI]

    Gupta, Rajesh

    Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial.agarwal@cs.cmu.edu ABSTRACT Commercial buildings contribute to 19% of the primary energy consumption in the US, with HVAC systems accounting for 39.6% of this usage. To reduce HVAC energy use, prior studies have pro- posed using

  16. Structural building response review

    SciTech Connect (OSTI)

    Not Available

    1980-01-15T23:59:59.000Z

    The integrity of a nuclear power plant during a postulated seismic event is required to protect the public against radiation. Therefore, a detailed set of seismic analyses of various structures and equipment is performed while designing a nuclear power plant. This report describes the structural response analysis method, including the structural model, soil-structure interaction as it relates to structural models, methods for seismic structural analysis, numerical integration methods, methods for non-seismic response analysis approaches for various response combinations, structural damping values, nonlinear response, uncertainties in structural properties, and structural response analysis using random properties. The report describes the state-of-the-art in these areas for nuclear power plants. It also details the past studies made at Sargent and Lundy to evaluate different alternatives and the conclusions reached for the specific purposes that those studies were intended. These results were incorporated here because they fall into the general scope of this report. The scope of the present task does not include performing new calculations.

  17. Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|Speedshop

    SciTech Connect (OSTI)

    Miller, Barton

    2014-06-30T23:59:59.000Z

    Peta-scale computing environments pose significant challenges for both system and application developers and addressing them required more than simply scaling up existing tera-scale solutions. Performance analysis tools play an important role in gaining this understanding, but previous monolithic tools with fixed feature sets have not sufficed. Instead, this project worked on the design, implementation, and evaluation of a general, flexible tool infrastructure supporting the construction of performance tools as “pipelines” of high-quality tool building blocks. These tool building blocks provide common performance tool functionality, and are designed for scalability, lightweight data acquisition and analysis, and interoperability. For this project, we built on Open|SpeedShop, a modular and extensible open source performance analysis tool set. The design and implementation of such a general and reusable infrastructure targeted for petascale systems required us to address several challenging research issues. All components needed to be designed for scale, a task made more difficult by the need to provide general modules. The infrastructure needed to support online data aggregation to cope with the large amounts of performance and debugging data. We needed to be able to map any combination of tool components to each target architecture. And we needed to design interoperable tool APIs and workflows that were concrete enough to support the required functionality, yet provide the necessary flexibility to address a wide range of tools. A major result of this project is the ability to use this scalable infrastructure to quickly create tools that match with a machine architecture and a performance problem that needs to be understood. Another benefit is the ability for application engineers to use the highly scalable, interoperable version of Open|SpeedShop, which are reassembled from the tool building blocks into a flexible, multi-user interface set of tools. This set of tools targeted at Office of Science Leadership Class computer systems and selected Office of Science application codes. We describe the contributions made by the team at the University of Wisconsin. The project built on the efforts in Open|SpeedShop funded by DOE/NNSA and the DOE/NNSA Tri-Lab community, extended Open|Speedshop to the Office of Science Leadership Class Computing Facilities, and addressed new challenges found on these cutting edge systems. Work done under this project at Wisconsin can be divided into two categories, new algorithms and techniques for debugging, and foundation infrastructure work on our Dyninst binary analysis and instrumentation toolkits and MRNet scalability infrastructure.

  18. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    E-Print Network [OSTI]

    Terwilliger, T. C.; Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England

    2008-01-01T23:59:59.000Z

    Iterative model-building, structure refinement, and densitytool for iterative model- building, structure refinement andusing RESOLVE or TEXTAL model- building, RESOLVE statistical

  19. The Structure of Tradeoffs in Model Building

    E-Print Network [OSTI]

    Weisberg, Michael

    The Structure of Tradeoffs in Model Building John Matthewson Australia National University Michael of model building depending on their theoretical goals (1966). His own discussion argued that a three three types of tradeoff relevant for model building. After giving definitions for these, we investigate

  20. Building a Network of SME for a Global PSS Infrastructure in Complex High-Tech Systems: Example of Urban Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building a Network of SME for a Global PSS Infrastructure in Complex High-Tech Systems: Example is then applied to the case of urban PSS. Keywords: Network of SME, PSS Organization, Machine and facilitating maintenance. Dynamic high-technology Small and Medium Enterprises (SME) propose innovative

  1. MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes

    SciTech Connect (OSTI)

    TANNER,DANELLE M.; SMITH,NORMAN F.; IRWIN,LLOYD W.; EATON,WILLIAM P.; HELGESEN,KAREN SUE; CLEMENT,J. JOSEPH; MILLER,WILLIAM M.; MILLER,SAMUEL L.; DUGGER,MICHAEL T.; WALRAVEN,JEREMY A.; PETERSON,KENNETH A.

    2000-01-01T23:59:59.000Z

    The burgeoning new technology of Micro-Electro-Mechanical Systems (MEMS) shows great promise in the weapons arena. We can now conceive of micro-gyros, micro-surety systems, and micro-navigators that are extremely small and inexpensive. Do we want to use this new technology in critical applications such as nuclear weapons? This question drove us to understand the reliability and failure mechanisms of silicon surface-micromachined MEMS. Development of a testing infrastructure was a crucial step to perform reliability experiments on MEMS devices and will be reported here. In addition, reliability test structures have been designed and characterized. Many experiments were performed to investigate failure modes and specifically those in different environments (humidity, temperature, shock, vibration, and storage). A predictive reliability model for wear of rubbing surfaces in microengines was developed. The root causes of failure for operating and non-operating MEMS are discussed. The major failure mechanism for operating MEMS was wear of the polysilicon rubbing surfaces. Reliability design rules for future MEMS devices are established.

  2. Building Out Alternative Fuel Retail Infrastructure: Government Fleet Spillovers in E85

    E-Print Network [OSTI]

    Corts, Kenneth S.

    2009-01-01T23:59:59.000Z

    biodiesel, hydrogen, and plug-in electric vehicles and their fueling infrastructure would be useful. Each technology

  3. Outsourcing the Design of Structural Building Components

    E-Print Network [OSTI]

    Swearingin, Adam V.

    2008-05-16T23:59:59.000Z

    component design work stateside. vi 1 Introduction The outsourcing of structural building component design has recently become available to component manufacturers in the United States. These manufacturers of metal plate connected (MPC) wood roof... of the effectiveness of outsourcing as a means of fulfilling the design requirements of MPC wood trusses. Although 1 this report does not evaluate other structural building components (i.e., i- joists, engineered wood beams and wall panels), the analysis provided...

  4. Lively Infrastructure

    E-Print Network [OSTI]

    Amin, Ash

    2014-10-06T23:59:59.000Z

    and slack within and across the city’s infrastructural networks (Lahoud, 2010; Vale and Campanella, 2005; Batty, 2013). Importantly, this writing shows that there is nothing purely technical or mechanical about even the most digitised infrastructures... given to, and commanded by, building a house piece by piece when time and resource allow, the measures taken to pirate water and electricity, build sanitary pits, and make indoor or outdoor showers and kitchens, making a house into a home...

  5. 4th International Conference on Structural Health Monitoring on Intelligent Infrastructure (SHMII-4) 2009

    E-Print Network [OSTI]

    4th International Conference on Structural Health Monitoring on Intelligent Infrastructure (SHMII-4 University, USA Vibration-based health monitoring methods have been utilized to detect structural damages. Corresponding author's email: aamousav@ncsu.edu #12;4th International Conference on Structural Health Monitoring

  6. Building upon ruins : the evolution of an urban artifact from infrastructure to public space

    E-Print Network [OSTI]

    Passavanti, Lenore Antonia

    1994-01-01T23:59:59.000Z

    A thesis is about what architecture can be. In my thesis I propose that urban infrastructure built in the late nineteenth-century, can be the foundation for urban public space in the late twentieth-century. I propose that ...

  7. Building a national technology and innovation infrastructure for an aging society

    E-Print Network [OSTI]

    Lau, Jasmin

    2006-01-01T23:59:59.000Z

    This thesis focuses on the potential of strategic technology innovation and implementation in sustaining an aging society, and examines the need for a comprehensive national technology and innovation infrastructure in the ...

  8. Building a comprehensive, end-to-end virtualization strategy 2007 CORE INFRASTRUCTURE OPTIMIZATION|

    E-Print Network [OSTI]

    Narasayya, Vivek

    resources usage, business linked SLAs; knowledge capture automated and use automated Cost Center Efficient Drive Agility Facilitate dynamic resource allocation and streamline workload provisioning to efficiently Cost Center Business Enabler Strategic Asset The Infrastructure Optimization Model, identifying

  9. NIST Preliminary Reconnaissance, Building

    E-Print Network [OSTI]

    Magee, Joseph W.

    NIST Preliminary Reconnaissance, Building Performance and Emergency Communications, Joplin)): Support R&D to improve building codes and standards and practices for design and construction of buildings of and data collection on the impact of severe wind on buildings, structures, and infrastructure ­ Section 204

  10. Project Final Report: Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|SpeedShop

    SciTech Connect (OSTI)

    Galarowicz, James

    2014-01-06T23:59:59.000Z

    In this project we created a community tool infrastructure for program development tools targeting Petascale class machines and beyond. This includes tools for performance analysis, debugging, and correctness tools, as well as tuning and optimization frameworks. The developed infrastructure provides a comprehensive and extensible set of individual tool building components. We started with the basic elements necessary across all tools in such an infrastructure followed by a set of generic core modules that allow a comprehensive performance analysis at scale. Further, we developed a methodology and workflow that allows others to add or replace modules, to integrate parts into their own tools, or to customize existing solutions. In order to form the core modules, we built on the existing Open|SpeedShop infrastructure and decomposed it into individual modules that match the necessary tool components. At the same time, we addressed the challenges found in performance tools for petascale systems in each module. When assembled, this instantiation of community tool infrastructure provides an enhanced version of Open|SpeedShop, which, while completely different in its architecture, provides scalable performance analysis for petascale applications through a familiar interface. This project also built upon and enhances capabilities and reusability of project partner components as specified in the original project proposal. The overall project team’s work over the project funding cycle was focused on several areas of research, which are described in the following sections. The reminder of this report also highlights related work as well as preliminary work that supported the project. In addition to the project partners funded by the Office of Science under this grant, the project team included several collaborators who contribute to the overall design of the envisioned tool infrastructure. In particular, the project team worked closely with the other two DOE NNSA laboratories Los Alamos and Sandia leveraging co-funding for Krell by ASC’s Common Computing Environment (CCE) program as laid out in the original proposal. The ASC CCE co-funding, coordinated through LLNL, was for 50% of the total project funding, with the ASC CCE portion of the funding going entirely to Krell, while the ASCR funding itself was split between Krell and the funded partners. This report covers the entire project from both funding sources. Additionally, the team leveraged the expertise of software engineering researchers from Carnegie Mellon University, who specialize in software framework design, in order to achieve a broadly acceptable component framework. The Component Based Tool Framework (CBTF) software has been released to the community. Information related to the project and the released software can be found on the CBTF wiki page at: http://sourceforge.net/p/cbtf/wiki/Home

  11. Global Infrastructures Abstract/Summary

    E-Print Network [OSTI]

    Sahay, Sundeep

    facilities, electricity supply, state of the physical building etc. The socioeconomic and geopolitical in large hospitals (and other corporate infrastructures) and infrastructures supporting the governance the practical development of infrastructures supporting the governance of the health care sector in developing

  12. Revised August 2008 The NZ term structure: Going long in infrastructure

    E-Print Network [OSTI]

    Hickman, Mark

    Revised August 2008 The NZ term structure: Going long in infrastructure Roger Bowden1 and Dawn at the Victoria University of Wellington, and Director, Kiwicap Research Ltd. Contact: emails roger Victoria University of Wellington P.O. Box 600 Wellington New Zealand. 2 Director, Victoria International

  13. Debt Capacity and Optimal Capital Structure for Privately-Financed Infrastructure Projects

    E-Print Network [OSTI]

    productivity, profitability, and private sector capital formation. He estimated, for example, that a 1 effective utilization of resources, when compared with the more flexible and cost conscious private sectorDebt Capacity and Optimal Capital Structure for Privately-Financed Infrastructure Projects

  14. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    response, automation, commercial, industrial buildings, peakautomation system design. Auto-DR for commercial and industrialautomation server renamed as the DRAS. This server was operated at a secure industrial

  15. Wireless Sensing for Structural Health Monitoring of Civil Infrastructures

    E-Print Network [OSTI]

    Stanford University

    sensing unit is designed not only for reliable communication of response measurements but also for power unit is intended to 1) collect measurement data from the sensors installed on a structure, 2) store, manage and locally process the measurement data collected, and 3) communicate the data and results

  16. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    SciTech Connect (OSTI)

    Patrick O'Neill

    2009-06-30T23:59:59.000Z

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among

  17. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas (New Mexico State University, Las Cruces, NM); Daumueller, Andrew Nicholas (New Mexico State University, Las Cruces, NM)

    2012-02-01T23:59:59.000Z

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

  18. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Watson, David; Koch, Ed; Hennage, Dan

    2009-05-01T23:59:59.000Z

    This paper describes the concept for and lessons from the development and field-testing of an open, interoperable communications infrastructure to support automated demand response (auto-DR). Automating DR allows greater levels of participation, improved reliability, and repeatability of the DR in participating facilities. This paper also presents the technical and architectural issues associated with auto-DR and description of the demand response automation server (DRAS), the client/server architecture-based middle-ware used to automate the interactions between the utilities or any DR serving entity and their customers for DR programs. Use case diagrams are presented to show the role of the DRAS between utility/ISO and the clients at the facilities.

  19. "Documentation is dead; long live documentation!" Forty years ago, American professionals wanted to highlight their contribution to building the infrastructure of a new

    E-Print Network [OSTI]

    Boyer, Edmond

    to highlight their contribution to building the infrastructure of a new science and a new industry, namely entitled ",,A Necessity of Our Time: Documentation as a ,,Cultural Technique in What Is Documentation sets the scene in his introduction by insisting on what he calls the cultural dimension

  20. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    SciTech Connect (OSTI)

    Mertz, G.

    1999-12-16T23:59:59.000Z

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  1. STEEL STRUCTURES FOR BUILDING IN CHINA PROF. HE MINGXUAN

    E-Print Network [OSTI]

    Cambridge, University of

    STEEL STRUCTURES FOR BUILDING IN CHINA PROF. HE MINGXUAN VICE-PRESIDENT OF CHINA STEEL CONSTRUCTION SOCIETY CHIEF ENGINEER OF BAOSTEEL CONSTRUCTION CO., LTD JULY 6, 2012 LONDON #12;1. STEEL AND STEEL STRUCTURES IN CHINA 2. SOME PROJECTS OF STEEL STRUCTURES FOR HIGH- RISE BUILDINGS IN CHINA #12;STEEL

  2. 4th World Conference on Structural Control and Monitoring 4WCSCM-307 MONITORING INFRASTRUCTURAL HEALTH: IN-SITU DAMAGE DETECTION

    E-Print Network [OSTI]

    Lu, Chenyang

    for structural health monitoring applications. In fact, despite recent advancements in wireless radio4th World Conference on Structural Control and Monitoring 4WCSCM-307 MONITORING INFRASTRUCTURAL struc- tural health monitoring (SHM) applications have been configured to operate in a fashion

  3. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    SciTech Connect (OSTI)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01T23:59:59.000Z

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities.

  4. CRIS, Third International Conference on Critical Infrastructures, Alexandria, VA, September 2006 STRUCTURAL ANALYSIS OF ELECTRICAL NETWORKS

    E-Print Network [OSTI]

    Marathe, Achla

    around those vulnerabilities to make the infrastructure more robust. The robustness of the electrical infrastructure was valued at $358 billion. Geographically, the power grid forms a network of over 1 million the nation is to failures in the electrical infrastructure. The blackouts are usually caused by the failure

  5. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Read, Randy J. [Department of Haematology, University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D., E-mail: terwilliger@lanl.gov [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States)

    2008-01-01T23:59:59.000Z

    The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods. The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Ĺ, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution.

  6. 4.462 / 4.441 Building Technologies II: Building Structural Systems I, Spring 2003

    E-Print Network [OSTI]

    Ochsendorf, John Allen

    This course serves as an introduction to the history, theory, and construction of basic structural systems with an introduction to energy issues in buildings. Emphasis is placed on developing an understanding of basic ...

  7. Structural evaluation of the 2736Z Building for seismic loads

    SciTech Connect (OSTI)

    Giller, R.A.

    1994-09-23T23:59:59.000Z

    The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements.

  8. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    SciTech Connect (OSTI)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2007-04-29T23:59:59.000Z

    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.

  9. Passive electromagnetic damping device for motion control of building structures

    E-Print Network [OSTI]

    Palomera-Arias, Rogelio, 1972-

    2005-01-01T23:59:59.000Z

    The research presented in this thesis develops a new device for the passive control of motion in building structures: an electromagnetic damper. The electromagnetic damper is a self-excited device that provides a reaction ...

  10. Material quantities in building structures and their environmental impact

    E-Print Network [OSTI]

    De Wolf, Catherine (Catherine Elvire Lieve)

    2014-01-01T23:59:59.000Z

    Improved operational energy efficiency has increased the percentage of embodied energy in the total life cycle of building structures. Despite a growing interest in this field, practitioners lack a comprehensive survey of ...

  11. Structural steel framing options for mid- and high rise buildings

    E-Print Network [OSTI]

    Cook, Jason A. (Jason Andrew)

    2006-01-01T23:59:59.000Z

    Selecting a structural system for a building is a complex, multidisciplinary process. No design project is the same; however, there are certain criteria that are commonly true in the initial phase of evaluating different ...

  12. Optimized Pathways for Regional H2 Infrastructure Transitions: The Least-Cost Hydrogen for Southern California

    E-Print Network [OSTI]

    Lin, Zhenhong; Chen, Chien-Wei; Fan, Yueyue; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    P. Rutter, et al. Hydrogen infrastructure strategic planningModelling of Hydrogen infrastructure for vehicle refuellingof building up a hydrogen infrastructure in Southern

  13. Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    for building up hydrogen infrastructure that are guided byModeling Regional Hydrogen Infrastructure Development . inNATURAL GAS BASED HYDROGEN INFRASTRUCTURE – OPTIMIZING

  14. Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California

    E-Print Network [OSTI]

    Lin, Zhenhong; Fan, Yueyue; Ogden, Joan M; Chen, Chien-Wei

    2008-01-01T23:59:59.000Z

    P. Rutter, et al. Hydrogen infrastructure strategic planningModelling of Hydrogen infrastructure for vehicle refuellingof building up a hydrogen infrastructure in Southern

  15. Study Of Structural Control In Coupled Buildings

    E-Print Network [OSTI]

    Spencer Jr., B.F.

    Metropolitana ­ Azcapotzalco, Mexico L.B. Ugarte Proyecto " Torres Tres Carabelas ", Bolivia B.F. Spencer (earthquake and wind). In a conventional structure the energy is absorbed by the inelastic deformation the input from the ground to the structure. Energy dissipation devices are elements that act like fuses

  16. Securing Infrastructure from High Explosive Threats

    SciTech Connect (OSTI)

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  17. Structure finance for hybrid infrastructure models : the application of project finance into public-private partnerships for the construction and operation of infrastructure

    E-Print Network [OSTI]

    Patramanis, Theodoros

    2006-01-01T23:59:59.000Z

    This thesis studies the application of project finance as the most efficient financing method for the construction and operation of infrastructure projects such as motorways, airports, power plants, pipelines, wastewater/sewage ...

  18. Estimating Building Simulation Parameters via Bayesian Structure Learning

    SciTech Connect (OSTI)

    Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

    2013-01-01T23:59:59.000Z

    Many key building design policies are made using sophisticated computer simulations such as EnergyPlus (E+), the DOE flagship whole-building energy simulation engine. E+ and other sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine's capabilities. Currently, these problems are addressed by having an engineer manually calibrate simulation parameters to real world data or using algorithmic optimization methods to adjust the building parameters. However, some simulations engines, like E+, are computationally expensive, which makes repeatedly evaluating the simulation engine costly. This work explores addressing this issue by automatically discovering the simulation's internal input and output dependencies from 20 Gigabytes of E+ simulation data, future extensions will use 200 Terabytes of E+ simulation data. The model is validated by inferring building parameters for E+ simulations with ground truth building parameters. Our results indicate that the model accurately represents parameter means with some deviation from the means, but does not support inferring parameter values that exist on the distribution's tail.

  19. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    SciTech Connect (OSTI)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    2011-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. evegetation work is scheduled to commence during the first quarter of FY 2011 to minimize the amount of time that sites are unvegetated and more susceptible to invasion by non-native weedy annual species.

  20. Sensor technologies for civil infrastructures, Volume 2: Applications in structural health monitoring Edited by Ming Wang, Jerome Lynch and Hoon Sohn

    E-Print Network [OSTI]

    Stanford University

    1 Introduction Structural health monitoring (SHM) systems are being deployed to collect measurements health monitoring, but also for life-cycle assessment and management of the structure and the systemSensor technologies for civil infrastructures, Volume 2: Applications in structural health

  1. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    SciTech Connect (OSTI)

    Robinson, A.L. [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering]|[Lawrence Berkeley Lab., CA (United States)

    1996-05-01T23:59:59.000Z

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  2. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect (OSTI)

    Smith, Randall

    2014-07-03T23:59:59.000Z

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was renovated in 1998, but the existing roof had not been designed to carry a large load. Due to this fact, a complete roofing and structural analysis had to be performed to match the available roof loading to the existing and/or new solar PV technology, and BIPV was considered an excellent solution for this structure with the roof weight limitations. The solar BIPV system on the large roof area was estimated to provide about 25% of the total facility load with an average of 52,560 kWh per month. In order to accomplish the goals of the project, the following steps were performed: 1. SFPUC and consultants evaluated the structural capability of the facility roof, with recommendations for improvements necessary to accommodate the solar PV system and determine the suitable size of the system in kilowatts. The electrical room and switchgear were evaluated for any improvements necessary and to identify any constraints that might impede the installation of necessary inverters, transformers or meters. 2. Development of a design-build Request for Proposal (RFP) to identify the specifications for the solar PV system, and to include SFPUC technical specifications, equipment warranties and performance warranties. Due to potential labor issues in the local solar industry, SFPUC adjusted the terms of the RFP to more clearly define scope of work between electricians, roofers and laborers. 3. Design phase of project included electrical design drawings, calculations and other construction documents to support three submittals: 50% (preliminary design), 90% (detailed design) and 100% (Department of Building Inspection permit approved). 4. Installation of solar photovoltaic panels, completion of conduit and wiring work, connection of inverters, isolation switches, meters and Data Acquisition System by Contractor (Department of Public Works). 5. Commissioning of system, including all necessary tests to make the PV system fully functional and operational at its rated capacity of 100 kW (DC-STC). Following completion of these steps, the solar PV system was installed and fully integrated by la

  3. Computer-Aided Civil and Infrastructure Engineering 21 (2006) 242257 Structural Model Updating and Health Monitoring

    E-Print Network [OSTI]

    Heaton, Thomas H.

    2006-01-01T23:59:59.000Z

    practical for health monitoring of real structures. The approach also inherits the advantages of Bayesian in structural health monitoring (Natke and Yao, 1988; Hjelmstad and Shin, 1997; Lam et al., 1998; Beck et al of structural health monitoring, linear struc- tural models are often used for model updating (Vanik et al

  4. Social infrastructure

    E-Print Network [OSTI]

    Kurlbaum, Ryan E. (Ryan Edward)

    2013-01-01T23:59:59.000Z

    Current urbanization patterns and aging transportation infrastructures have marginalized millions of US citizens. The result is that 4 .5 million US residents live within 100 meters of a four-lane highway' and have become ...

  5. Environmental Risks to Infrastructure 2014 Environmental Risks to Infrastructure Innovation funding call June 2014

    E-Print Network [OSTI]

    Reece, Sarah

    to Infrastructure 2014 NE/M008401/1 Dr Christian Wagner Towards managing risk from climate change throughRUM - Flood risk: Building Infrastructure Resilience through better Understanding and Management choices 8 2 To Infrastructure (CAVERTI) 7 8 NE/M008169/1 Dr Ana Mijic Improved techno-economic evaluation of Blue Green

  6. Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency

    E-Print Network [OSTI]

    Boyer, Edmond

    Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency, intelligent building design, energy efficiency, construction costs, multi-objective optimization. 1 for the optimization of buildings, in terms of sustainable development, is the reduction of energy use (while also

  7. Comparing the Topological and Electrical Structure of the North American Electric Power Infrastructure

    E-Print Network [OSTI]

    Cotilla-Sanchez, Eduardo; Barrows, Clayton; Blumsack, Seth

    2011-01-01T23:59:59.000Z

    The topological (graph) structure of complex networks often provides valuable information about the performance and vulnerability of the network. However, there are multiple ways to represent a given network as a graph. Electric power transmission and distribution networks have a topological structure that is straightforward to represent and analyze as a graph. However, simple graph models neglect the comprehensive connections between components that result from Ohm's and Kirchhoff's laws. This paper describes the structure of the three North American electric power interconnections, from the perspective of both topological and electrical connectivity. We compare the simple topology of these networks with that of random (Erdos, 1959), preferential-attachment (Barabasi,1999) and small-world (Watts, 1998) networks of equivalent sizes and find that power grids differ substantially from these abstract models in degree distribution, clustering, diameter and assortativity, and thus conclude that these topological f...

  8. Energy Infrastructure Events and Expansions Infrastructure Security...

    Office of Environmental Management (EM)

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S....

  9. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  10. Vibration-based monitoring of civil infrastructure: challenges and Structural health monitoring (SHM) is a relatively new paradigm for civil infrastructure stakeholders

    E-Print Network [OSTI]

    need answers to basic and pragmatic questions about in-service performance, maintenance and management conditions or in numerical simulations, while the real test of a reliable and cost effective technology includes assessment of present and future safety and fitness for purpose. Unlike mass-produced structures

  11. Modeling hydrogen fuel distribution infrastructure

    E-Print Network [OSTI]

    Pulido, Jon R. (Jon Ramon), 1974-

    2004-01-01T23:59:59.000Z

    This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after ...

  12. CLOUD COMPUTING INFRASTRUCTURE AND OPERATIONS PROGRAM

    E-Print Network [OSTI]

    Schaefer, Marcus

    theory and best practices, Cloud operations analytics, globally-responsive architecture, functional of Cloud infrastructures Best practices for building Infrastructure as a Service (IaaS), with an emphasis-distributed, responsive web application capable of massive scale with operational performance metrics. DePaul University

  13. Social network support for data delivery infrastructures

    E-Print Network [OSTI]

    Sastry, Nishanth Ramakrishna

    2011-10-11T23:59:59.000Z

    in social networks can be used to tailor content staging decisions to the user base and thereby build better data delivery infrastructures. This claim is supported by two case studies, which apply social information in challenging situations where...

  14. Secure Pesticide Storage: Essential Structural Features of a Storage Building1

    E-Print Network [OSTI]

    Watson, Craig A.

    PI30 Secure Pesticide Storage: Essential Structural Features of a Storage Building1 Thomas W. Dean2 be present in any building constructed for pesticide storage. Introduction The main job of a pesticide storage facility is to suitably house and protect packages of pesticide. To do this in Florida

  15. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Prospects for Building a Hydrogen Energy Infrastructure."A global survey of hydrogen energy research, development andof Engineering (2004). the Hydrogen Economy: Opportunities,

  16. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Prospects for Building a Hydrogen Energy Infrastructure."A global survey of hydrogen energy research, development andof Engineering (2004). the Hydrogen Economy: Opportunities,

  17. Design of a building structural skin using multi-objective optimization techniques

    E-Print Network [OSTI]

    Merello, Riccardo

    2006-01-01T23:59:59.000Z

    Multi-disciplinary System Design Optimization was used to design the geometry and to select the materials for the structural facade of a building. A multi-objective optimization model was developed, capable of optimizing ...

  18. Under the roof : an investigation of the interaction of rational building structure with enclosed space

    E-Print Network [OSTI]

    Freeman, John Ripley

    1980-01-01T23:59:59.000Z

    As an architect works, his or her design grows and shifts, contracts and metamorphoses through many different shapes and configurations. Each shape and length of span imposes an order on the structure of a building; The ...

  19. Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage

    E-Print Network [OSTI]

    Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

    2007-01-01T23:59:59.000Z

    Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

  20. Analysis of thermal fields generated by natural fires on the structural elements of tall buildings 

    E-Print Network [OSTI]

    Capote, Jorge A; Alvear, Daniel; Lazaro, Mariano; Espina, Pablo; Fletcher, Ian A; Welch, Stephen; Torero, Jose L

    The Windsor Tower in Madrid was involved in a major fire, on 12-13 February 2005, which caused extensive structural damage to the upper floors of the building. This fire has provoked intense interest amongst researchers ...

  1. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared MappingInfrastructure

  2. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01T23:59:59.000Z

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  3. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    SciTech Connect (OSTI)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26T23:59:59.000Z

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  4. RESEARCH INFRASTRUCTURES Roadmap 2008

    E-Print Network [OSTI]

    Horn, David

    RESEARCH INFRASTRUCTURES FOR FRANCE Roadmap 2008 #12;INTRODUCTION European research infrastructures and development, benefiting to Europe's economy and competitiveness. This roadmap for the research infrastructures....................................................................................................6 3. The roadmap: existing and already decided RIs and others at the planning stage

  5. INFRASTRUCTURE SECURITY & ENERGY

    E-Print Network [OSTI]

    Schrijver, Karel

    INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY DELIVERY & ENERGY RELIABILITY Delivery and Energy Reliability #12;INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY Federal agencies to support waivers and specific response legal authorities #12;INFRASTRUCTURE SECURITY

  6. Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.

    E-Print Network [OSTI]

    Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

    2012-01-01T23:59:59.000Z

    requirements in building codes, energy efficiency policiesto improve the building’s energy efficiency. Lease contractsimprove the building’s energy efficiency. We focus first on

  7. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01T23:59:59.000Z

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  8. Revised?Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, California

    SciTech Connect (OSTI)

    W. C. Adams

    2007-12-07T23:59:59.000Z

    During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box.

  9. Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, CA

    SciTech Connect (OSTI)

    W. C. Adams

    2007-12-07T23:59:59.000Z

    During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box.

  10. Structural feasibility of a medium-rise timber office building

    E-Print Network [OSTI]

    Nasr, Mohsen, 1981-

    2005-01-01T23:59:59.000Z

    Using timber as a structural material for commercial projects will certainly gain importance and popularity in the coming decades as more focus is placed on reducing environmental effects created by a dependence on steel ...

  11. INL High Performance Building Strategy

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-02-01T23:59:59.000Z

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design (LEED®) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.

  12. Experimental Response of Buildings Designed with Metallic Structural Fuses. II

    E-Print Network [OSTI]

    Bruneau, Michel

    at the University at Buffalo, which consists of a three-story frame designed with buckling-restrained braces BRBs in a net reduction on the response of the structural sys- tem in terms of lateral displacements, compared to response of the system without dampers. Accelerations and lateral forces are ei- ther increased or reduced

  13. INL Green Building Strategy

    SciTech Connect (OSTI)

    Jennifer Dalton

    2005-05-01T23:59:59.000Z

    Green buildings, also known as sustainable buildings, resource efficient buildings, and high performance buildings, are structures that minimize the impact on the environment by using less energy and water, reducing solid waste and pollutants, and limiting the depletion of natural resources. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish the mission. This infrastructure, particularly the buildings, should incorporate green design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. With this in mind, the recommendations described in this strategy are intended to form the INL foundation for green building standards. The recommendations in this strategy are broken down into three levels: Baseline Minimum, Leadership in Energy and Environmental Design (LEED)Certification, and Innovative. Baseline Minimum features should be included in all new occupied buildings no matter what the purpose or size. These features do not require significant research, design, or capital costs and yet they can reduce Operation and Maintenance (O&M) costs and produce more environmentally friendly buildings. LEED Certification features are more aggressive than the Baseline Minimums in that they require documentation, studies, and/or additional funding. Combined with the Baseline Minimums, many of the features in this level will need to be implemented to achieve the goal of LEED certification. LEED Silver certification should be the minimum goal for all new buildings (including office buildings, laboratories, cafeterias, and visitor centers) greater than 25,000 square feet or a total cost of $10 million. Innovative features can also contribute to LEED certification, but are less mainstream than those listed in the previous two levels. These features are identified as areas where INL can demonstrate leadership but they could require significant upfront cost, additional studies, and/or development. Appendix A includes a checklist summary of the INL Green Building Strategy that can be used as a tool during the design process when considering which green building features to include. It provides a quick reference for determining which strategies have lower or no increased capital cost, yield lower O&M costs, increase employee productivity, and contribute to LEED certification.

  14. Strategic plan for infrastructure optimization

    SciTech Connect (OSTI)

    Donley, C.D.

    1998-05-27T23:59:59.000Z

    This document represents Fluor Daniel Hanford`s and DynCorp`s Tri-Cities Strategic Plan for Fiscal Years 1998--2002, the road map that will guide them into the next century and their sixth year of providing safe and cost effective infrastructure services and support to the Department of Energy (DOE) and the Hanford Site. The Plan responds directly to the issues raised in the FDH/DOE Critical Self Assessment specifically: (1) a strategy in place to give DOE the management (systems) and physical infrastructure for the future; (2) dealing with the barriers that exist to making change; and (3) a plan to right-size the infrastructure and services, and reduce the cost of providing services. The Plan incorporates initiatives from several studies conducted in Fiscal Year 1997 to include: the Systems Functional Analysis, 200 Area Water Commercial Practices Plan, $ million Originated Cost Budget Achievement Plan, the 1OO Area Vacate Plan, the Railroad Shutdown Plan, as well as recommendations from the recently completed Review of Hanford Electrical Utility. These and other initiatives identified over the next five years will result in significant improvements in efficiency, allowing a greater portion of the infrastructure budget to be applied to Site cleanup. The Plan outlines a planning and management process that defines infrastructure services and structure by linking site technical base line data and customer requirements to work scope and resources. The Plan also provides a vision of where Site infrastructure is going and specific initiatives to get there.

  15. Linseed Oil-Based Concrete Surface Treatment -for Building and Highway Structures in

    E-Print Network [OSTI]

    , Linseed Oil-Based Concrete Surface Treatment -for Building and Highway Structures in Hong Kong Y using jour Canadian linseed oil- based sealants on concrete specimens madejrom G30120 and G45120 Keywords: Unseed Oil, Concrete Surface Treatment, Salt Spray Resistance, Carbonation, Bond Strength, Ultra

  16. Interdependence of Electricity System Infrastructure and Natural...

    Energy Savers [EERE]

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

  17. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01T23:59:59.000Z

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  18. The New House of the Region of Hannover - Building Energy Efficient in a Public Private Partnership

    E-Print Network [OSTI]

    Schubert, T.; Plesser, S.

    2008-01-01T23:59:59.000Z

    / 3 91 - 35 84 plesser@igs.bau.tu-bs.de The New House of the Region of Hannover - Building energy Efficient in a Public Private Partnership Topic: Examples of advanced/demonstration buildings Key words: Demonstration building, PPP..., public private partnership, commissioning, energy efficiency, user comfort Public Private Partnerships are an increasingly popular approach to carry out public infra-structure projects. PPPs aim at reducing costs and risk and improving service...

  19. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    SciTech Connect (OSTI)

    Sadtler, Bryce F

    2009-05-20T23:59:59.000Z

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or Ag2S lattices were used to calculate interface formation energies. The formation energies indicate the favorability for interface nucleation at different facets of the nanorod and the stability of the interfaces during growth of the secondary material (Cu2S or Ag2S) within the CdS nanocrystal. The physical properties of the CdS-Ag2S and CdS-Cu2S binary nanorods are discussed in terms of the electronic structure of their components and the heterostructure morphology.

  20. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Infrastructure Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and...

  1. Sandia Energy - Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Water Infrastructure Security Water Infrastructure...

  2. Preliminary Dynamic Siol-Structure-Interaction Analysis for the Waste Handling Building

    SciTech Connect (OSTI)

    G. Wagenblast

    2000-05-01T23:59:59.000Z

    The objective of this analysis package is to document a preliminary dynamic seismic evaluation of a simplified design concept of the Wade Handling Building (WHB). Preliminary seismic ground motions and soil data will be used. Loading criteria of the WHB System Design Description will be used. Detail design of structural members will not be performed.. The results of the analysis will be used to determine preliminary sizes of structural concrete and steel members and to determine whether the seismic response of the structure is within an acceptable level for future License Application design of safety related facilities. In order to complete this preliminary dynamic evaluation to meet the Site Recommendation (SR) schedule, the building configuration was ''frozen in time'' as the conceptual design existed in October 1999. Modular design features and dry or wet waste storage features were intentionally excluded from this preliminary dynamic seismic evaluation. The document was prepared in accordance with the Development Plan for the ''Preliminary/Dynamic Soil Structure Interaction Analysis for the Waste Handling Building'' (CRWMS M&O 2000b), which was completed, in accordance with AP-2.13Q, ''Technical Product Development Planning''.

  3. Public Works Transportation Infrastructure Study

    E-Print Network [OSTI]

    Minnesota, University of

    Public Works Transportation Infrastructure Study Minneapolis City of Lakes Minneapolis Public Works Transportation Infrastructure Study #12;Public Works Transportation Infrastructure Study Minneapolis City Works Transportation Infrastructure Study Minneapolis City of Lakes Background: · Currently, funding

  4. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    ;Projects Hydrogen Infrastructure Development · Turnkey Commercial Hydrogen Fueling Station · Autothermal

  5. Modelling Interdependencies between the Electricity and Information Infrastructures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the information infrastructure can be addressed. 1 Introduction In the past decades, the electric power grid of the electric grid infrastructures and their interdependencies. The large geographic extension of power failures: the electric power infra- structure and the information infrastructures supporting management, control and hal

  6. Parallel digital forensics infrastructure.

    SciTech Connect (OSTI)

    Liebrock, Lorie M. (New Mexico Tech, Socorro, NM); Duggan, David Patrick

    2009-10-01T23:59:59.000Z

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  7. A Power Line Communication Network Infrastructure for The Smart Home

    E-Print Network [OSTI]

    Latchman, Haniph A.

    A Power Line Communication Network Infrastructure for The Smart Home Yu-Ju Lin, Haniph A. Latchman's as a basic infrastructure for building integrated "smart homes," wherein infor- mation appliances (IA guarantee QoS for real-time communications, supporting delay sensitive data streams for "Smart Home

  8. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31T23:59:59.000Z

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the College’s yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  9. Rapid Estimation of Damage to Tall Buildings Using Near Real-Time Earthquake and Archived Structural Simulations

    E-Print Network [OSTI]

    Tape, Carl

    Rapid Estimation of Damage to Tall Buildings Using Near Real-Time Earthquake and Archived Structural Simulations by Swaminathan Krishnan, Emanuele Casarotti, Jim Goltz, Chen Ji, Dimitri Komatitsch a new approach to rapidly estimate the damage to tall buildings immediately following a large earthquake

  10. Site Support Program Plan Infrastructure Program

    SciTech Connect (OSTI)

    NONE

    1995-09-26T23:59:59.000Z

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  11. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01T23:59:59.000Z

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  12. Heterogeneous IPv6 Infrastructure for Smart Energy Efficient Leila Ben Saad

    E-Print Network [OSTI]

    Boyer, Edmond

    Heterogeneous IPv6 Infrastructure for Smart Energy Efficient Building Leila Ben Saad CITI INSA infrastructure, PLC is mandatory in several place of the smart-grid metering and command infrastructure. Also PLC constrained networking devices. Moreover, low energy PLC, will be able to provide smart grid monitoring

  13. Assessing Vulnerabilities, Risks, and Consequences of Damage to Critical Infrastructure

    SciTech Connect (OSTI)

    Suski, N; Wuest, C

    2011-02-04T23:59:59.000Z

    Since the publication of 'Critical Foundations: Protecting America's Infrastructure,' there has been a keen understanding of the complexity, interdependencies, and shared responsibility required to protect the nation's most critical assets that are essential to our way of life. The original 5 sectors defined in 1997 have grown to 18 Critical Infrastructures and Key Resources (CIKR), which are discussed in the 2009 National Infrastructure Protection Plan (NIPP) and its supporting sector-specific plans. The NIPP provides the structure for a national program dedicated to enhanced protection and resiliency of the nation's infrastructure. Lawrence Livermore National Laboratory (LLNL) provides in-depth, multi-disciplinary assessments of threat, vulnerability, and consequence across all 18 sectors at scales ranging from specific facilities to infrastructures spanning multi-state regions, such as the Oil and Natural Gas (ONG) sector. Like many of the CIKR sectors, the ONG sector is comprised of production, processing, distribution, and storage of highly valuable and potentially dangerous commodities. Furthermore, there are significant interdependencies with other sectors, including transportation, communication, finance, and government. Understanding the potentially devastating consequences and collateral damage resulting from a terrorist attack or natural event is an important element of LLNL's infrastructure security programs. Our work began in the energy sector in the late 1990s and quickly expanded other critical infrastructure sectors. We have performed over 600 physical assessments with a particular emphasis on those sectors that utilize, store, or ship potentially hazardous materials and for whom cyber security is important. The success of our approach is based on building awareness of vulnerabilities and risks and working directly with industry partners to collectively advance infrastructure protection. This approach consists of three phases: The Pre-Assessment Phase brings together infrastructure owners and operators to identify critical assets and help the team create a structured information request. During this phase, we gain information about the critical assets from those who are most familiar with operations and interdependencies, making the time we spend on the ground conducting the assessment much more productive and enabling the team to make actionable recommendations. The Assessment Phase analyzes 10 areas: Threat environment, cyber architecture, cyber penetration, physical security, physical penetration, operations security, policies and procedures, interdependencies, consequence analysis, and risk characterization. Each of these individual tasks uses direct and indirect data collection, site inspections, and structured and facilitated workshops to gather data. Because of the importance of understanding the cyber threat, LLNL has built both fixed and mobile cyber penetration, wireless penetration and supporting tools that can be tailored to fit customer needs. The Post-Assessment Phase brings vulnerability and risk assessments to the customer in a format that facilitates implementation of mitigation options. Often the assessment findings and recommendations are briefed and discussed with several levels of management and, if appropriate, across jurisdictional boundaries. The end result is enhanced awareness and informed protective measures. Over the last 15 years, we have continued to refine our methodology and capture lessons learned and best practices. The resulting risk and decision framework thus takes into consideration real-world constraints, including regulatory, operational, and economic realities. In addition to 'on the ground' assessments focused on mitigating vulnerabilities, we have integrated our computational and atmospheric dispersion capability with easy-to-use geo-referenced visualization tools to support emergency planning and response operations. LLNL is home to the National Atmospheric Release Advisory Center (NARAC) and the Interagency Modeling and Atmospheric Assessment Center (IMAAC). NA

  14. SEISMIC RESPONSE PREDICTION OF NUPEC'S FIELD MODEL TESTS OF NPP STRUCTURES WITH ADJACENT BUILDING EFFECT.

    SciTech Connect (OSTI)

    XU,J.COSTANTINO,C.HOFMAYER,C.ALI,S.

    2004-03-04T23:59:59.000Z

    As part of a verification test program for seismic analysis computer codes for Nuclear Power Plant (NPP) structures, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model tests to address the dynamic cross interaction (DCI) effect on the seismic response of NPP structures built in close proximity to each other. The program provided field data to study the methodologies commonly associated with seismic analyses considering the DCI effect. As part of a collaborative program between the United States and Japan on seismic issues related to NPP applications, the U.S. Nuclear Regulatory Commission sponsored a program at Brookhaven National Laboratory (BNL) to perform independent seismic analyses which applied common analysis procedures to predict the building response to recorded earthquake events for the test models with DCI effect. In this study, two large-scale DCI test model configurations were analyzed: (1) twin reactor buildings in close proximity and (2) adjacent reactor and turbine buildings. This paper describes the NUPEC DCI test models, the BNL analysis using the SASSI 2000 program, and comparisons between the BNL analysis results and recorded field responses. To account for large variability in the soil properties, the conventional approach of computing seismic responses with the mean, mean plus and minus one-standard deviation soil profiles is adopted in the BNL analysis and the three sets of analysis results were used in the comparisons with the test data. A discussion is also provided in the paper to address (1) the capability of the analysis methods to capture the DCI effect, and (2) the conservatism of the practice for considering soil variability in seismic response analysis for adjacent NPP structures.

  15. Infrastructure Development - Building America Top Innovations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy Information for Departmentof Energy

  16. Hydrogen Production Infrastructure Options Analysis | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Options Analysis Hydrogen Production Infrastructure Options Analysis Presentation on hydrogen production and infrastructure options presented at the DOE Transition...

  17. A sociotechnical framework for understanding infrastructure breakdown and repair

    SciTech Connect (OSTI)

    Sims, Benjamin H [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    This paper looks at how and why infrastructure is repaired. With a new era of infrastructure spending underway, policymakers need to understand and anticipate the particular technical and political challenges posed by infrastructure repair. In particular, as infrastructure problems are increasingly in the public eye with current economic stimulus efforts, the question has increasingly been asked: why has it been so difficult for the United Statesto devote sustained resources to maintaining and upgrading its national infrastructure? This paper provides a sociotechnical framework for understanding the challenges of infrastructure repair, and demonstrates this framework using a case study of seismic retrofit of freeway bridges in California. The design of infrastructure is quite different from other types of design work even when new infrastructure is being designed. Infrastructure projects are almost always situated within, and must work with, existing infrastructure networks. As a result, compared to design of more discrete technological artifacts, the design of infrastructure systems requires a great deal of attention to interfaces as well as adaptation of design to the constraints imposed by existing systems. Also, because of their scale, infrastructural technologies engage with social life at a level where explicit political agendas may playa central role in the design process. The design and building of infrastructure is therefore often an enormously complex feat of sociotechnical engineering, in which technical and political agendas are negotiated together until an outcome is reached that allows the project to move forward. These sociotechnical settlements often result in a complex balancing of powerful interests around infrastructural artifacts; at the same time, less powerful interests have historically often been excluded or marginalized from such settlements.

  18. Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.

    E-Print Network [OSTI]

    Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

    2012-01-01T23:59:59.000Z

    the link between the energy risk exposure of a building andreal estate mortgages. Energy risk pricing technology foroffice buildings and their energy risk characteristics. The

  19. Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.

    E-Print Network [OSTI]

    Jaffee, Dwight M.; Stanton, Richard; Wallace, Nancy E.

    2010-01-01T23:59:59.000Z

    the link between the energy risk exposure of a building andreal estate mortgages. Energy risk pricing technology foro?ce buildings and their energy risk characteristics. The

  20. Glass-mica composite: a new structural thermal-insulating material for building applications

    SciTech Connect (OSTI)

    Low, N.M.P.

    1981-12-01T23:59:59.000Z

    Homogeneous, rigid glass-mica composites have been synthesized from mixtures of Canadian natural mica flakes of the phlogopite type and ground glass powders prepared from recycled soda-lime waste glasses by a simple sintering process. By means of selection of compositions and processing techniques, composites can be fabricated into products that exhibit a celular structure, a highly densified structure, and multilayer and sandwich structures. The cellular structure composite has a thermal conductivity in the range of 0.165 to 0.230 W/m /sup 0/C when measured over the temperature range 25 to 180/sup 0/C, and a compressive strength of about 0.874 MPa; the highly densified composite, on the other hand, has a thermal conductivity in the range of 0.155 to 0.330 W/m /sup 0/C, a compressive strength in excess of 40 MPa, and an instantaneous coefficient of thermal expansion of 5.8 X 10/sup -6///sup 0/C at 100/sup 0/C. These glass-mica composites exhibit qualities such as insulating efficiency, safety, mechanical strength, and durability that are suitable for engineering applications in building structures or other systems.

  1. Load Distribution in Large Scale Network Monitoring Infrastructures

    E-Print Network [OSTI]

    Politčcnica de Catalunya, Universitat

    Load Distribution in Large Scale Network Monitoring Infrastructures Josep Sanju`as-Cuxart, Pere to build a scalable, distributed passive network mon- itoring system that can run several arbitrary the principal research challenges behind building a distributed network monitoring system to support

  2. Sandia Energy - Resilient Electric Infrastructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resilient Electric Infrastructures Home Stationary Power Grid Modernization Resilient Electric Infrastructures Resilient Electric Infrastructuresashoter2015-04-29T22:16:42+00:00...

  3. Hydrogen Delivery Infrastructure Option Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop...

  4. Mechanical and Electrical Systems for the Tallest Building/Man-Made Structure in the World: A Burj Dubai Case Study

    E-Print Network [OSTI]

    Frechette, R.; Leung, L.; Boyer, J.

    2006-01-01T23:59:59.000Z

    as a Faraday Cage by using the building structural rebar as down conductors. Copper Conductor tape locate on parapet and conductor loop in slab at each set back and mechanical floor connected to the rebar. The entire system is connected... to the ground conductor inside the building foundation piles. Copper is initially selected as the ground conductor. Subsequent field study indicated the corrosive nature of the soil will erode copper in the ground. Stainless Steel was instead selected...

  5. Living in the Intelligent Workplace Structuring and Managing Building Operation Information

    E-Print Network [OSTI]

    Lam, K. P.; Srivastava, V.

    2005-01-01T23:59:59.000Z

    to record and evaluate operational performance of building components and user comfort (figure 1). So far the IW has experimented with integration of smart building technologies with advanced design and engineering strategies, enabling.... Technological advances over time also influence the composition and configuration of building systems. Buildings create technical challenges of providing individual comfort, organizational flexibility, technological adaptability, environmental sustainability...

  6. Introduction to Green Building & LEED

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    Introduction to Green Building & LEED Alistair Jackson Principal O'Brien & Company alistair ­ Green Building Standard · MLS Listing Service #12;#12;#12;#12;#12;#12;#12;#12 of existing infrastructure and provides a foundation for high performance green buildings · Integrated

  7. IPHE Infrastructure Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fuelin

  8. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01T23:59:59.000Z

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  9. Undergraduate Civil Engineering Our recent graduates hold jobs in a wide spectrum of areas such as infrastructure engineering consulting

    E-Print Network [OSTI]

    Ottino, Julio M.

    of areas such as infrastructure engineering consulting (buildings, bridges, railroads, power plants, water include Amazon, Boeing, Accenture, ARCADIS, Mass Electric Construction, General Dynamics' Electric Boat

  10. MFC Communications Infrastructure Study

    SciTech Connect (OSTI)

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01T23:59:59.000Z

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  11. Proposal for the award of a contract for the renovation of all exterior wooden and structural elements of the Globe (Building 80)

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Proposal for the award of a contract for the renovation of all exterior wooden and structural elements of the Globe (Building 80)

  12. Development of a geometric database structure and sketching interface for energy simulation software for buildings

    E-Print Network [OSTI]

    Zareen, Hadiba

    1996-01-01T23:59:59.000Z

    and responsive design solutions. Explicit representation of building design parameters are needed if computers are to be used to aid energy conscious design and evaluation. Energy calculation programs require data relating to building materials, occupancy...

  13. Infrastructure systems, such as buildings, schools, roads, bridges, water lines, sewage systems, communication systems, and power plants, are a fundamental part of daily life. Both rapid and gradual climate changes can affect

    E-Print Network [OSTI]

    and gradual climate changes can affect these systems and have significant impacts on society. Extreme weather infrastructure sector make practical decisions in order to adapt to climate changes and variations systems, communication systems, and power plants, are a fundamental part of daily life. Both rapid

  14. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31T23:59:59.000Z

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  15. Final Report on National NGV Infrastructure

    SciTech Connect (OSTI)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07T23:59:59.000Z

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the establishment of an ad hoc NGV Infrastructure Working Group (NGV-I WG) to address the most critical technical barriers to NGV infrastructure development. This recommendation has been considered and approved by both the DOE and GRI and is the basis of continued collaboration in this area.

  16. Identifying Challenges for Sustained Adoption of Alternative Fuel Vehicles and Infrastructure

    E-Print Network [OSTI]

    Struben, Jeroen J.R.,

    2007-04-27T23:59:59.000Z

    This paper develops a dynamic, behavioral model with an explicit spatial structure to explore the co-evolutionary dynamics between infrastructure supply and vehicle demand. Vehicles and fueling infrastructure are ...

  17. Smarter Physical Infrastructure

    E-Print Network [OSTI]

    Bartlett, D.

    2013-01-01T23:59:59.000Z

    of Boston, Boston University, Mass. Real Time Ecosystem Aware Buildings Example Boston Back Bay, Smart Buildings, Environmental Monitoring, Transportation, Renewables, Smart Grid ESL-IC-13-10-57 Proceedings of the 13th International Conference... Building Operations, Montreal, Quebec, October 8-11, 2013 Bending the Spoon ESL-IC-13-10-57 Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013 Data Points ESL-IC-13-10-57 Proceedings...

  18. Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks

    E-Print Network [OSTI]

    Glaser, Steven D.

    Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks Sukun Kim Shamim Pakzad of Society (CITRIS). #12;Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks Sukun Kim1., 4145 N. First Street, San Jose, CA 95134 Abstract. A Wireless Sensor Network (WSN) for Structural

  19. A Virtual Infrastructure for Wireless Sensor Networks

    E-Print Network [OSTI]

    Stojmenovic, Ivan

    &CHAPTER 4 A Virtual Infrastructure for Wireless Sensor Networks STEPHAN OLARIU and QINGWEN XU Old, and wireless communications 107 Handbook of Sensor Networks: Algorithms and Architectures, Edited by I and communication infra- structures, called wireless sensor networks, will have a significant impact on a wide array

  20. Polish grid infrastructure for science and research

    E-Print Network [OSTI]

    Ryszard Gokieli; Krzysztof Nawrocki; Adam Padee; Dorota Stojda; Karol Wawrzyniak; Wojciech Wislicki

    2007-10-07T23:59:59.000Z

    Structure, functionality, parameters and organization of the computing Grid in Poland is described, mainly from the perspective of high-energy particle physics community, currently its largest consumer and developer. It represents distributed Tier-2 in the worldwide Grid infrastructure. It also provides services and resources for data-intensive applications in other sciences.

  1. Sandia National Laboratories: Center for Infrastructure Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Research and Innovation Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure...

  2. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1846P CustomTraining Sandia providesPRAsandhowtheycanbemanaged to increase levels of safety and security. Like othertrainings,Sandiaexpertsdesigncoursesto beasbroadorin

  3. COLLEGE OF ENGINEERING Infrastructure

    E-Print Network [OSTI]

    solar energy (8). ME Ketul Popat and John Williams in the Department of Mechanical EngineeringCOLLEGE OF ENGINEERING Infrastructure #12;2 COLLEGE OF ENGINEERING This publication focuses on just a few of the incredible College of Engineering faculty and students who are conducting research related

  4. area building ltab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to the contrast border between them. Although Roe, Anna Wang 12 Boston Garden and North Station area : building the architectural infrastructure for development MIT -...

  5. 1 September 2012 Siemens Building Technologies Copyright Siemens

    E-Print Network [OSTI]

    Fischlin, Andreas

    ! Mobility and Logistics ! Low and Medium Voltage ! Smart Grid ! Building Technologies ! OSRAM* Industry ! Clinical Products ! Diagnostics ! Customer Solutions Infrastructure & Cities Divisionen ! Rail Systems

  6. In Situ Nuclear Characterization Infrastructure

    SciTech Connect (OSTI)

    James A. Smith; J. Rory Kennedy

    2011-11-01T23:59:59.000Z

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  7. INFRASTRUCTURE Engineering and Physical Sciences

    E-Print Network [OSTI]

    Berzins, M.

    the vital research that underpins this development. The UK Government Strategy for National Infrastructure and resilient infrastructure supplying water, energy, communications, transport systems and waste systems. Infrastructure is a broad topic and is relevant to other sectors including Healthcare, Renewable and Clean Energy

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  9. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Environmental Management (EM)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  10. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Utilization Data Base Evaluate Infrastructure Effectiveness Develop Sustainable Business Models Develop Models For Future Infrastructure Deployments Relevance MILESTONES...

  11. Guide to Critical Infrastructure Protection Cyber Vulnerability...

    Office of Environmental Management (EM)

    Infrastructure Protection Cyber Vulnerability Assessment More Documents & Publications Wireless System Considerations When Implementing NERC Critical Infrastructure Protection...

  12. Hydrogen Infrastructure Market Readiness Workshop: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Preliminary Results Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results Preliminary results from the Hydrogen Infrastructure Market Readiness Workshop...

  13. Upcoming Webinar December 16: International Hydrogen Infrastructure...

    Energy Savers [EERE]

    Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

  14. Endowment and Gift Fee Statement A long-term goal of The Georgia Southern University Foundation 501(c)(3) is to build the institution's

    E-Print Network [OSTI]

    Hutcheon, James M.

    their operations, according to the results of a CASE survey on foundation funding sources and budget restructuring found to be underfunded in terms of operations. A major goal is to build the infrastructure needed structure to cover operations essential to the Foundation's overall operation. These fees were introduced

  15. Assessment of Structural Resistance of building 4862 to Earthquake and Tornado Forces [SEC 1 and 2

    SciTech Connect (OSTI)

    METCALF, I.L.

    1999-12-06T23:59:59.000Z

    This report presents the results of work done for Hanford Engineering Laboratory under contract Y213-544-12662. LATA performed an assessment of building 4862 resistance to earthquake and tornado forces.

  16. Structural performance of early 20th century masonry high rise buildings

    E-Print Network [OSTI]

    Buntrock, Rebecca (Rebecca Miriam)

    2010-01-01T23:59:59.000Z

    Early generation high rise buildings built between 1890 and World War 11 represent a technical transition between traditional load bearing masonry construction and modern curtain wall systems, and are typically referred ...

  17. Speeding Up the Process of Modeling Temporary Structures in a Building Information Model Using Predefined Families

    E-Print Network [OSTI]

    Sabahi, Parsa

    2012-02-14T23:59:59.000Z

    It has been less than a decade that Building Information Modeling (BIM) has been used in construction industries. During this short period of time the application of this new modeling approach has increased significantly, but still the main users...

  18. Exploring an Integrated Data Base Structure for Building Energy Monitoring Data 

    E-Print Network [OSTI]

    Haberl, J.; Jagannathan, V.; Lopez, R.; Sparks, R.; Kissock, K.; Willis, D.; Claridge, D.

    1991-01-01T23:59:59.000Z

    One of the inherent problems with monitoring hourly energy use and environmental conditions in commercial buildings is efficiently processing the "sea" of data that accumulates into an easily understood form. Even when ...

  19. The Living Site and Infrastructure Challenge In pursuit of true sustainability in the built environment

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    The Living Site and Infrastructure Challenge In pursuit of true sustainability in the built environment Draft Version 1.0 November 2007 #12;NOTIFICATION The Living Site and Infrastructure Challenge - copyright 2007 - Cascadia Region Green Building Council, all rights reserved. The Living Site

  20. Living in the Intelligent Workplace Structuring and Managing Building Operation Information 

    E-Print Network [OSTI]

    Lam, K. P.; Srivastava, V.

    2005-01-01T23:59:59.000Z

    for Building Performance and Diagnostics (CBPD), laboratory provides the ideal setting to integrate, test, research and further develop cutting-edge prototypical sensors and sensor networks, creating opportunities to advance the whole field of green...-Electro-Mechanical Systems), and low power wireless communication have revolutionized the ability to collect building data. Stick on sensors discretely attached to walls, or embedded in floors and ceilings, active badges for users, sensors embedded in objects in a...

  1. Air temperature regulation by urban trees and green infrastructure

    E-Print Network [OSTI]

    Air temperature regulation by urban trees and green infrastructure Kieron Doick and Tony Hutchings to a UHI include the thermal properties, height and spacing of buildings, the production of waste heat, air years. An estimated 8­11 extra deaths occur each day for each degree increase in air temperature during

  2. Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and

    E-Print Network [OSTI]

    Li, Mo

    Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and infrastructure. The development of ultra-high performance concrete of buildings or structures to dynamic loading and fire. Overview of research program on UHPC or CEP (concrete

  3. Infrastructure Projects | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared MappingInfrastructure

  4. Methods to assess the seismic collapse capacity of building structures: State of the art

    E-Print Network [OSTI]

    Villaverde, R

    2007-01-01T23:59:59.000Z

    Structural analysis; Structural failures; Earthquakees this failure mechanism using a static limit analysis withthe failure state; and ?5? calibrate simpli?ed analysis

  5. Load test of the 277W Building high bay roof deck and support structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-12-02T23:59:59.000Z

    The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

  6. QUANTITATIVE ASSESSMENT OF THE IMPACT OF 3D MODELLING OF BUILDING STRUCTURES ON

    E-Print Network [OSTI]

    Sacks, Rafael

    to the firm's overall activity, because the greatest increase in productivity is achieved in this area; that construction companies can leverage the benefits in error reduction and logistics improvements that result PRODUCTIVITY Rafael Sacks1 and Ronen Barak2 ABSTRACT Parametric three-dimensional modelling of buildings

  7. Innovative Financing for Green Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    Topic OverviewFinancing green infrastructure is critical to taking projects from planning to implementation and beyond, including sustaining operations and maintenance. This 90-minute webcast will...

  8. Sandia National Laboratories: Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regulation, ... Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port On March 13, 2014, in Center for Infrastructure Research and...

  9. Forecourt and Gas Infrastructure Optimization

    Broader source: Energy.gov (indexed) [DOE]

    Forecourt and Gas Infrastructure Optimization Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland 2 Analysis of Market Demand and Supply...

  10. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12T23:59:59.000Z

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

  11. A Decision-Making Model for the Asian Intelligent Building Index

    E-Print Network [OSTI]

    Hong, J.; Chen, Z.; Li, H.; Xu, Q.

    2006-01-01T23:59:59.000Z

    as well as the eventual deconstruction of buildings and civil infrastructures, environmental consciousness and performances are definitely essential. Progresses have been made to advance environmental-friendly design and construction. For example... Index (SSI) SSIi (i=1~30) )( ASSIi i )(BSSI Construction Process and Structure (CPS) CPSi (i=1~19) )( ACPSi i )(BCPS Cost Effectiveness Index (CEI) CEIi (i=1) )( ACEIi i )(BCEI However, the recommended method of Asian IB Index...

  12. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30T23:59:59.000Z

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.

  13. Effects of Various Blowout Panel Configurations on the Structural Response of LANL Building 16-340 to Internal Explosions

    SciTech Connect (OSTI)

    Jason P. Wilke

    2005-09-30T23:59:59.000Z

    The risk of accidental detonation is present whenever any type of high explosives processing activity is performed. These activities are typically carried out indoors to protect processing equipment from the weather and to hide possibly secret processes from view. Often, highly strengthened reinforced concrete buildings are employed to house these activities. These buildings may incorporate several design features, including the use of lightweight frangible blowout panels, to help mitigate blast effects. These panels are used to construct walls that are durable enough to withstand the weather, but are of minimal weight to provide overpressure relief by quickly moving outwards and creating a vent area during an accidental explosion. In this study the behavior of blowout panels under various blast loading conditions was examined. External loadings from explosions occurring in nearby rooms were of primary interest. Several reinforcement systems were designed to help blowout panels resist failure from external blast loads while still allowing them to function as vents when subjected to internal explosions. The reinforcements were studied using two analytical techniques, yield-line analysis and modal analysis, and the hydrocode AUTODYN. A blowout panel reinforcement design was created that could prevent panels from being blown inward by external explosions. This design was found to increase the internal loading of the building by 20%, as compared with nonreinforced panels. Nonreinforced panels were found to increase the structural loads by 80% when compared to an open wall at the panel location.

  14. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01T23:59:59.000Z

    Natural Gas Based Hydrogen Infrastructure – Optimizingdevelopment of a hydrogen infrastructure has been identifiedrecent studies of hydrogen infrastructure have assessed

  15. Presented by Petascale System Infrastructure

    E-Print Network [OSTI]

    Presented by Petascale System Infrastructure Galen M. Shipman Group Leader, Technology Integration National Center for Computational Sciences #12;2 Managed by UT-Battelle for the U.S. Department of Energy and analysis cluster #12;3 Managed by UT-Battelle for the U.S. Department of Energy Shipman_Infrastructure_SC10

  16. Cyber and physical infrastructure interdependencies.

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01T23:59:59.000Z

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  17. Energy Management Strategies for Existing Buildings 

    E-Print Network [OSTI]

    Gilmer, L.

    2009-01-01T23:59:59.000Z

    Energy Management Strategies for Existing Buildings Energy efficiency in the built environment: in the United States, we have over 5 million existing buildings. These buildings consume a large percentage of our resources, one of which is energy.... In the coming years, as our demands increase, our infrastructure ages, and we set goals to reduce our green house gas emissions, building energy use plays a vital role. Our success in reducing our carbon footprint lies in our ability to determine energy use...

  18. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

    Energy Savers [EERE]

    CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

  19. Hydrogen Infrastructure Transition Analysis: Milestone Report

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2006-01-01T23:59:59.000Z

    This milestone report identifies a minimum infrastructure that could support the introduction of hydrogen vehicles and develops and evaluates transition scenarios supported by this infrastructure.

  20. Sandia Energy - Cyber Security for Electric Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Security for Electric Infrastructure Home Stationary Power Grid Modernization Cyber Security for Electric Infrastructure Cyber Security for Electric Infrastructureashoter2015...

  1. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  2. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  3. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nd International Hydrogen Infrastructure Challenges Webinar Slides 2nd International Hydrogen Infrastructure Challenges Webinar Slides Presentation slides from the Fuel Cell...

  4. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  5. Voluntary Protection Program Onsite Review, Infrastructure Support...

    Office of Environmental Management (EM)

    2013 Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant - May 2013 May 2013 Evaluation to determine whether Infrastructure...

  6. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  7. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

  8. Final Report - Hydrogen Delivery Infrastructure Options Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Hydrogen Delivery Infrastructure Options Analysis Final Report - Hydrogen Delivery Infrastructure Options Analysis This report, by the Nexant team, documents an in-depth analysis...

  9. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  10. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  11. State Experience in Hydrogen Infrastructure in California

    Broader source: Energy.gov (indexed) [DOE]

    Experience in Hydrogen Infrastructure in California Gerhard H Achtelik Jr. February 17, 2011 Hydrogen Infrastructure Market Readiness Workshop California Environmental Protection...

  12. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Environmental Management (EM)

    Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere...

  13. New York Completes Smart Grid Project to Build a More Reliable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts to strengthen critical energy infrastructure and build a stronger, more reliable power grid, the Energy Department today recognized the completion of New York Independent...

  14. Clean Energy Infrastructure Educational Initiative

    SciTech Connect (OSTI)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31T23:59:59.000Z

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Masterâ??s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Masterâ??s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Masterâ??s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents.

  15. SPECIFIC AIMS: The Maxwell M. Wintrobe Research Building has served as a central research building for the University of Utah School of Medicine for nearly 30 years. However, the current facilities no longer meet

    E-Print Network [OSTI]

    Marc, Robert E.

    modern research needs. The labs are outdated and the infrastructure (HVAC, electrical, computer network efficient and ecologically responsible while simultaneously stimulating the local construction job market is to modernize the entire building infrastructure, including HVAC, plumbing, electrical and communications, thus

  16. Strategies for mitigating adverse environmental impacts due to structural building materials

    E-Print Network [OSTI]

    Chaturvedi, Swati, 1976-

    2004-01-01T23:59:59.000Z

    This thesis assesses the problem of adverse environmental impacts due to the use of Portland cement and structural steel in the construction industry. The thesis outlines three technology and policy strategies to mitigate ...

  17. Nonlinear identification and control of building structures equipped with magnetorheological dampers

    E-Print Network [OSTI]

    Kim, Yeesock

    2009-05-15T23:59:59.000Z

    A new system identification algorithm, multiple autoregressive exogenous (ARX) inputs-based Takagi-Sugeno (TS) fuzzy model, is developed to identify nonlinear behavior of structure-magnetorheological (MR) damper systems. It integrates a set of ARX...

  18. Structural systems and tuned mass dampers of super-tall buildings : case study of Taipei 101

    E-Print Network [OSTI]

    Kourakis, Ioannis

    2007-01-01T23:59:59.000Z

    The design of the first generation of skyscrapers was based on strength. Heavy masonry cladding and wall curtains used at that period added a considerable amount of stiffness and damping to the structure. Inter-storey ...

  19. Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.

    E-Print Network [OSTI]

    Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

    2012-01-01T23:59:59.000Z

    package. For a given trading date, a power hub, and a typeabove). For a given trading date, a power hub, and a type ofterm-structure of power prices for a given trading date for

  20. Advanced simulation for analysis of critical infrastructure : abstract cascades, the electric power grid, and Fedwire.

    SciTech Connect (OSTI)

    Glass, Robert John, Jr.; Stamber, Kevin Louis; Beyeler, Walter Eugene

    2004-08-01T23:59:59.000Z

    Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array and a heterogeneous scale-free (fractal) network. For the stylized electric power grid, our initial simulations demonstrate that the addition of geographically unrestricted random transactions can eventually push a grid to cascading failure, thus supporting the hypothesis that actions of unrestrained power markets (without proper security coordination on market actions) can undermine large scale system stability. We also find that network topology greatly influences system robustness. Homogeneous networks that are 'fish-net' like can withstand many more transaction perturbations before cascading than can scale-free networks. Interestingly, when the homogeneous network finally cascades, it tends to fail in its entirety, while the scale-free tends to compartmentalize failure and thus leads to smaller, more restricted outages. In the case of stylized Fedwire, initial simulations show that as banks adaptively set their individual reserves in response to random transactions, the ratio of the total volume of transactions to individual reserves, or 'turnover ratio', increases with increasing volume. The removal of a bank from interaction within the network then creates a cascade, its speed of propagation increasing as the turnover ratio increases. We also find that propagation is accelerated by patterned transactions (as expected to occur within real markets) and in scale-free networks, by the 'attack' of the most highly connected bank. These results suggest that the time scale for intervention by the Federal Reserve to divert a cascade in Fedwire may be quite short. Ongoing work in our cascade analysis effort is building on both these specific stylized applications to enhance their fidelity as well as embracing new applications. We are implementing markets and additional network interactions (e.g., social, telecommunication, information gathering, and control) that can impose structured drives (perturbations) comparable to those seen in real systems. Understanding the interaction of multiple networks, their interdependencies, and in particular, the underlying mechanisms f

  1. Exploring an Integrated Data Base Structure for Building Energy Monitoring Data

    E-Print Network [OSTI]

    Haberl, J.; Jagannathan, V.; Lopez, R.; Sparks, R.; Kissock, K.; Willis, D.; Claridge, D.

    .000 44.000 120.294 53.514 56.878 79.821 21.147 74.088 26.831 496.775 -6.128 0.000 0.000 1.000 0.000 0.000 0.000 4644.000 305.000 Trimmed Traditional RPBMS Rk Structure Trimmed Hybrid RDBMS File Structure 589 TABLE 4: Comparisons of file size and runtime...

  2. Prototyping an Infrastructure for MDA Submitted in partial fulfillment of the requirements for the degree Master of

    E-Print Network [OSTI]

    Moeller, Ralf

    Prototyping an Infrastructure for MDA Kai Yuan Submitted in partial fulfillment of the requirements Systems Institute (STS) #12;1 Abstract Model Driven Architecture (MDA) is getting popular with its be applied as MDA transformation engine to build an Octopus based MDA infrastructure. This thesis explains

  3. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  4. Degree design of coupled infrastructures

    E-Print Network [OSTI]

    Hover, Franz S.

    2011-01-01T23:59:59.000Z

    A recent asymptotic model of cascading failure in two-domain, coupled infrastructures is used to pose and solve a specific degree-distribution design problem. Low-order non-linear analysis exposes the mechanisms by which ...

  5. A Drop in the Bucket: Ten Years of Government Spending on Water and Wastewater Infrastructure in Texas Colonias

    E-Print Network [OSTI]

    Rapier, Richard Edward

    2011-02-22T23:59:59.000Z

    infrastructure improvements than water service in addition to greater allocation to municipal systems that extended service into colonia areas historically operated by water service corporations. Further research may build on this data as well as regional...

  6. National Computational Infrastructure for Lattice Gauge Theory

    SciTech Connect (OSTI)

    Brower, Richard C.

    2014-04-15T23:59:59.000Z

    SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io

  7. Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

    SciTech Connect (OSTI)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    2010-09-15T23:59:59.000Z

    Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

  8. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01T23:59:59.000Z

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  9. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-06-10T23:59:59.000Z

    This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

  10. US Army Corps of Engineers BUILDING STRONG

    E-Print Network [OSTI]

    US Army Corps of Engineers

    in accordance with NRC disposal regulations at the time NRC disposal regulation rescinded in 1981 FUSRAP development. #12;BUILDING STRONG® 2010 Work Plan Gas Pipeline Relocation Site Infrastructure Development Trailers and Parking Area 10 #12;BUILDING STRONG® 11 Water Treatment Plant & Pipeline Work Trailer Site

  11. US Army Corps of Engineers BUILDING STRONG

    E-Print Network [OSTI]

    US Army Corps of Engineers

    resources challenges: · Lack of a national water resources Vision to elevate water infrastructure Securing the Nation's Future Through Water Click link to view video #12;BUILDING STRONG® National Water Demand for Water Flood Risk Water Quality Persistent Conflict Energy Environmental Values 3 #12;BUILDING

  12. New cost structure approach in green buildings : cost-benefit analysis for widespread acceptance and long-term practice

    E-Print Network [OSTI]

    Wang, Zhiyong, S.M. Massachusetts Institute of Technology. Engineering Systems Division

    2013-01-01T23:59:59.000Z

    Although the concepts of sustainable building have been widely accepted in the market, there are unavoidable challenges toward widespread acceptance and long-term practice. Crossing green building development, there is ...

  13. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

  14. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Program Overview

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure.5Hydrogen, Fuel Cells & Infrastructure Technologies Program (EERE) President's Office of Science Berkeley, California #12;President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1

  15. Towards Truly Ubiquitous and Opportunistic Trust Infrastructures: Position for Next Generation Cybersecurity Infrastructure Workshop

    E-Print Network [OSTI]

    Tennessee, University of

    : Position for Next Generation Cybersecurity Infrastructure Workshop Stephen Nightingale Generation Cybersecurity Infrastructure workshop, we note that Federated Identities [1 ubiquitous and opportunistic, single rooted trust infrastructure is emerging. Its

  16. Safety in Buildings 

    E-Print Network [OSTI]

    Hutcheon, N. B.

    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, ...

  17. Building Knowledge about Buildings Matthew T. Young and Eyal Amir

    E-Print Network [OSTI]

    Amir, Eyal

    Building Knowledge about Buildings Matthew T. Young and Eyal Amir University of Illinois, Urbana The ability to encode information about the structure of buildings is essential for the development of applications which are able to reason about buildings and answer queries concerning their design and function

  18. Study on Auto-DR and Pre-Cooling of Commercial Buildings with Thermal Mass in California

    E-Print Network [OSTI]

    Yin, Rongxin

    2010-01-01T23:59:59.000Z

    maximize demand response savings for these buildings, wereDemand Response Infrastructure, in 16th National Conference on Buildingbuilding control strategies and techniques for demand response,

  19. Attack Containment Framework for Large-Scale Critical Infrastructures

    E-Print Network [OSTI]

    Nahrstedt, Klara

    Attack Containment Framework for Large-Scale Critical Infrastructures Hoang Nguyen Department-- We present an attack containment framework against value-changing attacks in large-scale critical structure, called attack container, which captures the trust behavior of a group of nodes and assists

  20. Perhaps federal research grants can include infrastructure costs.

    E-Print Network [OSTI]

    Sur, Mriganka

    Perhaps federal research grants can include infrastructure costs. There are signs to find favour in China, a country beset by similar problems. The particular structure of Indian science and healthystart-uppackages. The government could contribute to these costs. 487 NATURE|Vol 436|28 July 2005

  1. Networks, deregulation, and risk : the politics of critical infrastructure protection

    E-Print Network [OSTI]

    Ellis, Ryan Nelson

    2011-01-01T23:59:59.000Z

    Post, electric power, and rail, like most infrastructures,Post, electric power, and rail, like most infrastructuresElectric Power .. 349 Conclusion: The Politics of Critical Infrastructure

  2. Participatory infrastructure monitoring : design factors and limitations of accountability technologies

    E-Print Network [OSTI]

    Offenhuber, Dietmar

    2014-01-01T23:59:59.000Z

    This dissertation investigates practices of participatory infrastructure monitoring and their implications for the governance of urban infrastructure services. By introducing the concept of infrastructure legibility, the ...

  3. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect (OSTI)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01T23:59:59.000Z

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  4. Environmental and economic tradeoffs in building materials production in India

    E-Print Network [OSTI]

    Schuchman, Nina Shayne

    2014-01-01T23:59:59.000Z

    The current and projected growth of India's economy and population will continue to lead to increased demand for buildings and infrastructure, and there is a real need to consider what this increase means in terms of natural ...

  5. asean usaid buildings energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    years, as our demands increase, our infrastructure ages, and we set goals to reduce our green house gas emissions, building energy use plays a vital role. Our success in reducing...

  6. "Mapping" Nonprofit Infrastructure Organizations in Texas

    E-Print Network [OSTI]

    Aho, Andrea; Harris, Amanda; Kessel, Kendall; Park, Jongsoo; Park, Jong Taek; Rios, Lisa; Swendig, Brett

    2010-01-01T23:59:59.000Z

    The stability of the nonprofit sector and its ability to meet our nation‘s needs in an era of unprecedented challenges requires a solid nonprofit infrastructure (Brown, et al., 2008). These organizations that comprise this infrastructure system work...

  7. National Environmental Information Infrastructure Reference Architecture

    E-Print Network [OSTI]

    Greenslade, Diana

    National Environmental Information Infrastructure Reference Architecture Consultation Draft Environmental Information Infrastructure Reference Architecture: Consultation Draft Environmental Information Architecture: Consultation Draft, Bureau of Meteorology, Canberra, Australia, pp. 52. With the exception

  8. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Zoia (2005). "Hydrogen infrastructure strategic planningITS—RR—06—05 The Hydrogen Infrastructure Transition Model (a 50-year Hydrogen Infrastructure for Urban Beijing Zhenhong

  9. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Zoia (2005). "Hydrogen infrastructure strategic planningITS—RR—06—05 The Hydrogen Infrastructure Transition Model (a 50-year Hydrogen Infrastructure for Urban Beijing Zhenhong

  10. FORESTRY BUILDING: BUILDING EMERGENCY PLAN

    E-Print Network [OSTI]

    FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

  11. Building Energy Supply Infrastructures and Urban Sustained Development of Shenyang 

    E-Print Network [OSTI]

    Feng, G.; Wang, Y.; Gao, Y.

    2006-01-01T23:59:59.000Z

    store 300-thousand-cubemeter gases. The compressor is designed to distribute 63? 000m3/h gas. At present, in Shenyang there are oil gases, coal seam gases, mine gases, coke oven gases, liquefied petroleum gases with air, liquefied petroleum gases... Supply Selling Supply Selling kJ/Nm3 Oil gas 3507 2793 403 21767 Coke oven gas 5267 5323 4989 5039 5582 18487 Produced gas 857 7470 297 5870 3824 3592 4475 4916 Oil field gas 7986 6899 7249 6268 7008 6048 7758 6679 6938...

  12. Microsoft Word - 2014 Infrastructure - Intro.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy - National Energy Technology Laboratory The Infrastructure (Regional Carbon Sequestration Partnerships) Technology Area highlights DOE's awareness of the...

  13. Office of National Infrastructure & Sustainability | National...

    National Nuclear Security Administration (NNSA)

    National Infrastructure & Sustainability | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  14. Sandia National Laboratories: Smart power infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security, Materials Science, Partnership, Research & Capabilities, SMART Grid, Systems Engineering, Transmission Grid Integration Increasing consumer power...

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Refueling Infrastructure for...

  16. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect (OSTI)

    Berscheid, Alan P. [Los Alamos National Laboratory

    2012-07-30T23:59:59.000Z

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  17. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure Mainstreaming Maintenance and Management...

  18. BUILDING NAME HEYDON-LAURENCE BUILDING

    E-Print Network [OSTI]

    Viglas, Anastasios

    BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

  19. Energy Theft in the Advanced Metering Infrastructure

    E-Print Network [OSTI]

    McDaniel, Patrick Drew

    , with this infrastructure comes new risk. In this paper, we consider ad- versary means of defrauding the electrical gridEnergy Theft in the Advanced Metering Infrastructure Stephen McLaughlin, Dmitry Podkuiko, and Patrick McDaniel Systems and Internet Infrastructure Security Laboratory (SIIS) Pennsylvania State

  20. PROTECTING INFRASTRUCTURE ASSETS FROM REAL-TIME

    E-Print Network [OSTI]

    Burmester, Mike

    to critical infrastructure assets. The paper defines a threat model, an- alyzes vulnerabilities, proposes in an electricity grid. Also, it discusses the impact of run-time attacks on TC-compliant critical infrastructure. The crucial nature of the services provided by critical infrastructure systems and the vulnerabilities found

  1. Scanning the Technology Energy Infrastructure Defense Systems

    E-Print Network [OSTI]

    Amin, S. Massoud

    , and algorithmic develop- ments. Keywords--Critical infrastructure protection, electric power grid, emergency, the United Kingdom, and Italy in 2003 underscored electricity infrastructure's vulnerabilities [1 infrastructures and increased demand for high-quality and reliable electricity for our digital economy is becoming

  2. The X.509 Privilege Management Infrastructure

    E-Print Network [OSTI]

    Kent, University of

    Management Infrastructure (PMI) introduced in the 2000 edition of X.509. It describes the entities Management Infrastructure (PMI), and it enables privileges to be allocated, delegated, revoked and withdrawn in an electronic way. A PMI is to authorisation what a Public Key Infrastructure (PKI) is to authentication

  3. hen the legacy power infrastructure is aug-mented by a communication infrastructure, it

    E-Print Network [OSTI]

    Zhang, Yan

    hen the legacy power infrastructure is aug- mented by a communication infrastructure, it becomes information among different components of the power infrastructure. As a result, the power grid can operate into the power infrastructure will introduce many security challenges. For example, it is estimated that the data

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31T23:59:59.000Z

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  5. Building Basics & Beyond As we prepare for our Whole School Unit on BUILDING, how can

    E-Print Network [OSTI]

    Building Basics & Beyond As we prepare for our Whole School Unit on BUILDING, how can we foster structures and the buildings around them? Please join us for an exploration of opportunities for building and exploring buildings at school, at home, and in the community! Family Building Basics CMU Childrens School

  6. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect (OSTI)

    Jeong, Hyunju [Georgia Institute of Technology; Pandit, Arka [Georgia Institute of Technology; Crittenden, John [Georgia Institute of Technology; Xu, Ming [University of Michigan; Perrings, Charles [Arizona State University; Wang, Dali [ORNL; Li, Ke [University of Georgia; French, Steve [Georgia Institute of Technology

    2010-10-01T23:59:59.000Z

    The population growth coupled with increasing urbanization is predicted to exert a huge demand on the growth and retrofit of urban infrastructure, particularly in water and energy systems. The U.S. population is estimated to grow by 23% (UN, 2009) between 2005 and 2030. The corresponding increases in energy and water demand were predicted as 14% (EIA, 2009) and 20% (Elcock, 2008), respectively. The water-energy nexus needs to be better understood to satisfy the increased demand in a sustainable manner without conflicting with environmental and economic constraints. Overall, 4% of U.S. power generation is used for water distribution (80%) and treatment (20%). 3% of U.S. water consumption (100 billion gallons per day, or 100 BGD) and 40% of U.S. water withdrawal (340 BGD) are for thermoelectric power generation (Goldstein and Smith, 2002). The water demand for energy production is predicted to increase most significantly among the water consumption sectors by 2030. On the other hand, due to the dearth of conventional water sources, energy intensive technologies are increasingly in use to treat seawater and brackish groundwater for water supply. Thus comprehending the interrelation and interdependency between water and energy system is imperative to evaluate sustainable water and energy supply alternatives for cities. In addition to the water-energy nexus, decentralized or distributed concept is also beneficial for designing sustainable water and energy infrastructure as these alternatives require lesser distribution lines and space in a compact urban area. Especially, the distributed energy infrastructure is more suited to interconnect various large and small scale renewable energy producers which can be expected to mitigate greenhouse gas (GHG) emissions. In the case of decentralized water infrastructure, on-site wastewater treatment facility can provide multiple benefits. Firstly, it reduces the potable water demand by reusing the treated water for non-potable uses and secondly, it also reduces the wastewater load to central facility. In addition, lesser dependency on the distribution network contributes to increased reliability and resiliency of the infrastructure. The goal of this research is to develop a framework which seeks an optimal combination of decentralized water and energy alternatives and centralized infrastructures based on physical and socio-economic environments of a region. Centralized and decentralized options related to water, wastewater and stormwater and distributed energy alternatives including photovoltaic (PV) generators, fuel cells and microturbines are investigated. In the context of the water-energy nexus, water recovery from energy alternatives and energy recovery from water alternatives are reflected. Alternatives recapturing nutrients from wastewater are also considered to conserve depleting resources. The alternatives are evaluated in terms of their life-cycle environmental impact and economic performance using a hybrid life cycle assessment (LCA) tool and cost benefit analysis, respectively. Meeting the increasing demand of a test bed, an optimal combination of the alternatives is designed to minimize environmental and economic impacts including CO2 emissions, human health risk, natural resource use, and construction and operation cost. The framework determines the optimal combination depending on urban density, transmission or conveyance distance or network, geology, climate, etc. Therefore, it will be also able to evaluate infrastructure resiliency against physical and socio-economic challenges such as population growth, severe weather, energy and water shortage, economic crisis, and so on.

  7. The Walls Come Tumbling Down: Decontamination and Demolition of 29 Manhattan Project and Cold War-Era Buildings and Structures at Los Alamos National Laboratory-12301

    SciTech Connect (OSTI)

    Chaloupka, Allan B.; Finn, Kevin P.; Parsons, Duane A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01T23:59:59.000Z

    When the nation's top scientists and military leaders converged on Los Alamos, New Mexico in the 1943, to work on the Manhattan Project, the facilities they used to conduct their top-secret work were quickly constructed and located in the middle of what eventually became the Los Alamos town site. After one of these early facilities caught on fire, it seemed wise to build labs and production facilities farther away from the homes of the town's residents. They chose to build facilities on what was then known as Delta Prime (DP) Mesa and called it Technical Area 21, or TA-21. With wartime urgency, a number of buildings were built at TA-21, some in as little as a few months. Before long, DP Mesa was populated with several nondescript metal and cinder-block buildings, including what became, immediately following the war, the world's first plutonium production facility. TA-21 also housed labs that used hazardous chemicals and analyzed americium, tritium and plutonium. TA-21 was a bustling center of research and production for the next several decades. Additional buildings were built there in the 1960's, but by the 1990's many of them had reached the end of their service lives. Labs and offices were moved to newer, more modern buildings. When Los Alamos National Laboratory received $212 million in funding from the American Recovery and Reinvestment Act in July 2009 for environmental cleanup projects, about $73 million of the funds were earmarked to decontaminate and demolish 21 of the old buildings at TA-21. Although some D and D of TA-21 buildings was performed in the 1990's, many of the facilities at DP Site remained relatively untouched for nearly three decades following their final operational use. In 2006, there were over three dozen buildings or structures on the mesa to be removed so that soil cleanup could be completed (and the land made available for transfer and reuse). The total footprint of buildings across the mesa was approximately 18,580 m{sup 2} (200,000 ft{sup 2}). The initially approved baseline for the ARRA D and D Project was to remove 22 buildings and structures that included approximately 14,680 m{sup 2} (158,000 ft{sup 2}) of footprint. By employing efficiencies during subcontracting, demolition, and waste segregation, the savings allowed an additional 1,580 m{sup 2} (17,000 ft{sup 2}) of footprint to be removed using ARRA funds. Additionally, the lessons learned from this experience were used to apply NNSA funding to the removal of six additional non-contaminated buildings and structures. In the end, 29 buildings and structures, including stacks, cooling towers and tanks, were removed from the mesa. The entire DP East area was cleared of buildings and sub-grade structures and the soils cleaned to residential standards. The total footprint reduction at TA-21 as a result of this effort was in excess of 17,650 m{sup 2} (190,000 ft{sup 2}). The use of a Laboratory self-performance team to start demolition of non-contaminated structures resulted in steady work performance early in the project while subcontracts were being put in place to perform more complicated abatement and contaminated demolition activities. Most importantly, there were no serious worker injuries and the minor injuries recorded were those common to construction type activities. Extensive monitoring along the site boundary demonstrated that no hazardous chemicals or radioactive contamination were released and radiological dose to the public was negligible. The ARRA demolition activities were completed six months in advance of the deadline for employing ARRA funds. Additionally, over 17,585 m{sup 3} (23,000 yds{sup 3}) of building demolition debris was safely removed from DP Mesa. All of the major buildings have been removed, unencumbered access to the SWMUs that are required to be cleaned up by the Consent Order with the state of New Mexico, has been achieved, and a significant portion of the mesa has been prepared to support a process that will eventually transfer this land from federal government control for further use. (authors)

  8. Climate Change and Infrastructure, Urban Systems, and Vulnerabilities

    SciTech Connect (OSTI)

    Wilbanks, Thomas J [ORNL] [ORNL; Fernandez, Steven J [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    This Technical Report on Climate Change and Infrastructure, Urban Systems, and Vulnerabilities has been prepared for the U.S. Department of Energy by the Oak Ridge National Laboratory in support of the U.S. National Climate Assessment (NCA). It is a summary of the currently existing knowledge base on its topic, nested within a broader framing of issues and questions that need further attention in the longer run. The report arrives at a number of assessment findings, each associated with an evaluation of the level of consensus on that issue within the expert community, the volume of evidence available to support that judgment, and the section of the report that provides an explanation for the finding. Cross-sectoral issues related to infrastructures and urban systems have not received a great deal of attention to date in research literatures in general and climate change assessments in particular. As a result, this technical report is breaking new ground as a component of climate change vulnerability and impact assessments in the U.S., which means that some of its assessment findings are rather speculative, more in the nature of propositions for further study than specific conclusions that are offered with a high level of confidence and research support. But it is a start in addressing questions that are of interest to many policymakers and stakeholders. A central theme of the report is that vulnerabilities and impacts are issues beyond physical infrastructures themselves. The concern is with the value of services provided by infrastructures, where the true consequences of impacts and disruptions involve not only the costs associated with the clean-up, repair, and/or replacement of affected infrastructures but also economic, social, and environmental effects as supply chains are disrupted, economic activities are suspended, and/or social well-being is threatened. Current knowledge indicates that vulnerability concerns tend to be focused on extreme weather events associated with climate change that can disrupt infrastructure services, often cascading across infrastructures because of extensive interdependencies threatening health and local economies, especially in areas where human populations and economic activities are concentrated in urban areas. Vulnerabilities are especially large where infrastructures are subject to multiple stresses, beyond climate change alone; when they are located in areas vulnerable to extreme weather events; and if climate change is severe rather than moderate. But the report also notes that there are promising approaches for risk management, based on emerging lessons from a number of innovative initiatives in U.S. cities and other countries, involving both structural and non-structural (e.g., operational) options.

  9. Around Buildings

    E-Print Network [OSTI]

    Treib, Marc

    1987-01-01T23:59:59.000Z

    Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

  10. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfrared Mapping

  11. infrastructure

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 |0/%2A0/%2Agtri

  12. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared Mapping HelpsMicro-grid

  13. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared Mapping

  14. Building Energy Efficient Schools

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.

    1985-01-01T23:59:59.000Z

    Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

  15. Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities

    SciTech Connect (OSTI)

    Wolsink, Maarten, E-mail: M.P.Wolsink@uva.n [Department of Geography, Planning and International Development Studies, University of Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam (Netherlands)

    2010-09-15T23:59:59.000Z

    The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to environmental policy and claimed to serve sustainability goals. They are considered to serve (proclaimed) public interests, while the adverse impact or risk that mainly concerns environmental values as well is concentrated at a smaller scale, for example in local communities. The social acceptance of environmental policy infrastructure is institutionally determined. The institutional capacity for learning in infrastructure decision-making processes in the following three domains is compared: 1.The implementation of wind power as a renewable energy innovation; 2.The policy on space-water adaptation, with its claim to implement a new style of management replacing the current practice of focusing on control and 'hard' infrastructure; 3.Waste policy with a focus on sound waste management and disposal, claiming a preference for waste minimization (the 'waste management hierarchy'). All three cases show a large variety of social acceptance issues, where the appraisal of the impact of siting the facilities is confronted with the desirability of the policies. In dealing with environmental conflict, the environmental capacity of the Netherlands appears to be low. The policies are frequently hotly contested within the process of infrastructure decision-making. Decision-making on infrastructure is often framed as if consensus about the objectives of environmental policies exists. These claims are not justified, and therefore stimulating the emergence of environmental conflicts that discourage social acceptance of the policies. Authorities are frequently involved in planning infrastructure that conflicts with their officially proclaimed policy objectives. In these circumstances, they are often confronted with local actors who support alternatives that are in fact better in tune with the new policy paradigm.

  16. Sandia Energy - Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home StationaryUpperWakeInfrastructure

  17. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01T23:59:59.000Z

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  18. Building Data Integration Systems for the Web

    E-Print Network [OSTI]

    Halevy, Alon

    organizations Requires infrastructure, concerns about losing control Hard to find structured data via search: ­"cities such as Paris and London" ­"chemical elements including hydrogen and oxygen" #12;Step 1: Find

  19. Cyber Threats to Nuclear Infrastructures

    SciTech Connect (OSTI)

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01T23:59:59.000Z

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  20. Web Portal for Photonic Technologies Using Grid Infrastructures

    E-Print Network [OSTI]

    H. V. Astsatryan; T. V. Gevorgyan; A. R. Shahinyan

    2013-01-09T23:59:59.000Z

    The modeling of physical processes is an integral part of scientific and technical research. In this area, the Extendible C++ Application in Quantum Technologies (ECAQT) package provides the numerical simulations and modeling of complex quantum systems in the presence of decoherence with wide applications in photonics. It allows creating models of interacting complex systems and simulates their time evolution with a number of available time-evolution drivers. Physical simulations involving massive amounts of calculations are often executed on distributed computing infrastructures. It is often difficult for non expert users to use such computational infrastructures or even to use advanced libraries over the infrastructures, because they often require being familiar with middleware and tools, parallel programming techniques and packages. The P-RADE Grid Portal is a Grid portal solution that allows users to manage the whole life-cycle for executing a parallel application on the computing Grid infrastructures. The article describes the functionality and the structure of the web portal based on ECAQT package.

  1. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "2nd International Hydrogen Infrastructure Challenges Webinar," originally presented on March 10, 2015.

  2. Hydrogen Delivery Infrastructure Analysis, Options and Trade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis, Options and Trade-offs, Transition and Long-term Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term Presentation on Hydrogen...

  3. Africa Infrastructure Country Diagnostic Documents: Interactive...

    Open Energy Info (EERE)

    Interactive MAP in PDF, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country Diagnostic Documents: Interactive MAP in PDF, all...

  4. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

  5. Sandia National Laboratories: Hydrogen Fueling Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Station Technology Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research and Innovation (CIRI), Energy,...

  6. Department of Energy Cites Parsons Infrastructure & Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Parsons Infrastructure & Technology Group, Inc. for violations of DOE's worker safety and health regulations with a proposed civil penalty of 70,000. The violations are associated...

  7. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    * Convene industry and other stakeholders to share current statusstate-of-the art for natural gas and hydrogen infrastructure. * Identify key challenges (both technical and...

  8. Alternative Ways of Financing Infrastructure Investment: Potential...

    Open Energy Info (EERE)

    'Novel' Financing Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Ways of Financing Infrastructure Investment: Potential for 'Novel' Financing Models...

  9. Sandia National Laboratories: "smart water" infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "smart water" infrastructure Sandians Published in American Chemical Society's Environmental Science & Technology On December 11, 2014, in Analysis, Climate, Energy, Global Climate...

  10. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  11. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  12. Sandia National Laboratories: accelerate hydrogen infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accelerate hydrogen infrastructure technologies Energy Department Awards 7M to Advance Hydrogen Storage Systems On June 12, 2014, in CRF, Energy, Energy Storage, Energy Storage...

  13. Electric Vehicle Charging Infrastructure Deployment Guidelines...

    Open Energy Info (EERE)

    to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia AgencyCompany Organization: Natural...

  14. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California fry.pdf More Documents &...

  15. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  16. IPHE Infrastructure Workshop - Workshop Proceedings, February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles and Hydrogen Fuel Stations Moving toward a commercial market for hydrogen fuel cell vehicles Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues...

  17. Sandia National Laboratories: fueling infrastructure development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fueling infrastructure development New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets On March 6, 2015, in Capabilities, Center for...

  18. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Broader source: Energy.gov (indexed) [DOE]

    methane reformer SOTA State-of-the-Art v Executive Summary Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a...

  19. Voluntary Protection Program Onsite Review, Infrastructure Support...

    Office of Environmental Management (EM)

    2012 Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant - March 2012 March 2012 Evaluation to determine whether the...

  20. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Presentation by Matt Most, Encana Natural Gas,...

  1. Geographically-Based Infrastructure Analysis | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Analysis given by Keith Parks of the National Renewable Energy Laboratory during the DOE Hydrogen Transition Analysis Workshop on January 26,...

  2. International Hydrogen Infrastructure Challenges Workshop Summary...

    Broader source: Energy.gov (indexed) [DOE]

    presentation slides from the DOE Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE" held on December 16,...

  3. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.

    2007-05-17T23:59:59.000Z

    This presentation by Keith Wipke at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

  4. SelfSelf--healing Powerhealing Power Delivery InfrastructureDelivery Infrastructure

    E-Print Network [OSTI]

    Amin, S. Massoud

    Network/Systems Initiative Complex interactive networks: · Energy infrastructure: Electric power gridsSelfSelf--healing Powerhealing Power Delivery InfrastructureDelivery Infrastructure Massoud Amin, D developed while the author was at the Electric Power Research Institute (EPRI) in Palo Alto, CA. EPRI

  5. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    analysis of hydrogen infrastructure development strategiesalso presented. Keywords: Hydrogen Infrastructure, Renewableof a Tasmanian hydrogen infrastructure is performed

  6. Effects of Various Blowout Panel Configurations on the Structural Response of Los Alamos National Laboratory Building 16-340 to Internal Explosions

    SciTech Connect (OSTI)

    Jason P. Wilke

    2005-09-30T23:59:59.000Z

    The risk of accidental detonation is present whenever any type of high explosives processing activity is performed. These activities are typically carried out indoors to protect processing equipment from the weather and to hide possibly secret processes from view. Often, highly strengthened reinforced concrete buildings are employed to house these activities. These buildings may incorporate several design features, including the use of lightweight frangible blowout panels, to help mitigate blast effects. These panels are used to construct walls that are durable enough to withstand the weather, but are of minimal weight to provide overpressure relief by quickly moving outwards and creating a vent area during an accidental explosion. In this study the behavior of blowout panels under various blast loading conditions was examined. External loadings from explosions occurring in nearby rooms were of primary interest. Several reinforcement systems were designed to help blowout panels resist failure from external blast loads while still allowing them to function as vents when subjected to internal explosions. The reinforcements were studied using two analytical techniques, yield-line analysis and modal analysis, and the hydrocode AUTODYN. A blowout panel reinforcement design was created that could prevent panels from being blown inward by external explosions. This design was found to increase the internal loading of the building by 20%, as compared with nonreinforced panels. Nonreinforced panels were found to increase the structural loads by 80% when compared to an open wall at the panel location.

  7. PEV Infrastructure Needs UC Davis Policy Institute

    E-Print Network [OSTI]

    California at Davis, University of

    ,000 sales in 2012, ramp up to 20,000/yr in 2013 2012 Honda Fit EV 2012 Tesla Model S Infrastructure needs1 PEV Infrastructure Needs UC Davis Policy Institute Policy Forum Series: ZEVs June 13, 2012 www into an increasingly clean, efficient, reliable, and safe electricity grid · PEVs advance energy security, air quality

  8. A Product Software Knowledge Infrastructure for

    E-Print Network [OSTI]

    Utrecht, Universiteit

    1 A Product Software Knowledge Infrastructure for Situational Capability Maturation: Vision and Case Studies in Product Management Inge van de Weerd, Johan Versendaal and Sjaak Brinkkemper Department-3275 #12;2 A Product Software Knowledge Infrastructure for Situational Capability Maturation: Vision

  9. Department of Environmental Conservation, University of Massachusetts-Amherst Concentration in Building Systems 1

    E-Print Network [OSTI]

    Schweik, Charles M.

    systems but encompasses specialized training in fields such as green building, structural timber design sensitive building materials & systems (green building); wood-concrete composite systems; innovative in Building Systems 1 Environmental Conservation Graduate Program Building Systems Concentration A

  10. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31T23:59:59.000Z

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  11. Building technologies

    SciTech Connect (OSTI)

    Jackson, Roderick

    2014-07-14T23:59:59.000Z

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  12. Building technologies

    ScienceCinema (OSTI)

    Jackson, Roderick

    2014-07-15T23:59:59.000Z

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  13. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  14. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION platform for distributed hybrid testing #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN? Celestina Overview Implementation Validation Next steps #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  15. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental and

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental-TA Project #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Partners (Users) · METU Ragueneau · SCHOECK (Germany): Steffen Scheer, Seref Diler #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  16. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION Database: Architecture and implementation #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN Conclusions #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES 3 SERIES Concluding

  17. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  18. Jointly organised by Centre for Asian Tall Buildings and Urban Habitat

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    for Infrastructure and Construction Industry Development THE UNIVERSITY OF HONG KONG Sustainable Building Design on climate change, the depletion of the earth's resources, widespread pollution, the concept of sustainable a building in operation down to the kinds of building materials used in its construction with emphasis

  19. FY 2013 EL Program Description EL Program: Embedded Intelligence in Buildings

    E-Print Network [OSTI]

    Perkins, Richard A.

    be significantly reduced. Congress has established a national goal of achieving net-zero energy buildings by 2030, Materials, and Infrastructure Summary: Congress has established a national goal of achieving net-zero energy buildings by 2030.1 Approximately 84% of the life cycle energy use of a building is associated

  20. 42 UNIVERSITY OF CALIFORNIA -CAPITAL FINANCIAL PLAN 2012-22 Coastal Biology Building

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    42 UNIVERSITY OF CALIFORNIA - CAPITAL FINANCIAL PLAN 2012-22 Coastal Biology Building University&Figures SANTA CRUZ Coastal Biology Building Site #12;43UNIVERSITY OF CALIFORNIA - CAPITAL FINANCIAL PLAN 2012 C ­ multiple locations Coastal Biology Building - (Marine Science Campus) Infrastructure

  1. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect (OSTI)

    Bos, Randall J. [Los Alamos National Laboratory; Dey, Thomas N. [Los Alamos National Laboratory; Runnels, Scott R. [Los Alamos National Laboratory

    2012-07-03T23:59:59.000Z

    Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

  2. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at...

  3. April 7 Webinar on OE's Resilient Electricity Delivery Infrastructure...

    Energy Savers [EERE]

    April 7 Webinar on OE's Resilient Electricity Delivery Infrastructure Initiative FOA April 7 Webinar on OE's Resilient Electricity Delivery Infrastructure Initiative FOA March 23,...

  4. H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional...

    Energy Savers [EERE]

    H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report H2A Hydrogen Delivery Infrastructure Analysis Models and...

  5. Challenge # 2 Logistics and Compatibility with Existing Infrastructure...

    Office of Environmental Management (EM)

    2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain Challenge 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain...

  6. Publication of "Year in Review 2010: Energy Infrastructure Events...

    Energy Savers [EERE]

    Publication of "Year in Review 2010: Energy Infrastructure Events and Expansions" Publication of "Year in Review 2010: Energy Infrastructure Events and Expansions" August 31, 2011...

  7. Energy Infrastructure Events and Expansions Year-in-Review 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Events and Expansions Year-in-Review 2011 Available (April 2012) Energy Infrastructure Events and Expansions Year-in-Review 2011 Available (April 2012) May 1, 2012 -...

  8. Year-in-Review: 2014 Energy Infrastructure Events and Expansions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Year-in-Review: 2014 Energy Infrastructure Events and Expansions Report Now Available (May 2015) Year-in-Review: 2014 Energy Infrastructure Events and Expansions Report Now...

  9. Year-in-Review: 2013 Energy Infrastructure Events and Expansions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Infrastructure Events and Expansions Now Available (May 2014) Year-in-Review: 2013 Energy Infrastructure Events and Expansions Now Available (May 2014) May 12, 2014 -...

  10. Year-in-Review: 2012 Energy Infrastructure Events and Expansions...

    Energy Savers [EERE]

    2 Energy Infrastructure Events and Expansions Now Available (July 2013) Year-in-Review: 2012 Energy Infrastructure Events and Expansions Now Available (July 2013) July 26, 2013 -...

  11. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, Joan M; Yang, Christopher

    2005-01-01T23:59:59.000Z

    to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

  12. Green Infrastructure and Flood Resiliency-Land Use Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure and Flood Resiliency-Land Use Management as an Adaptation Strategy in the Built Environment Green Infrastructure and Flood Resiliency-Land Use Management as an...

  13. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01T23:59:59.000Z

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  14. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure...

  15. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  16. Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern...

  17. Short Paper: PEPSI: Privacy-Enhanced Participatory Sensing Infrastructure

    E-Print Network [OSTI]

    Politécnica de Madrid, Universidad

    Short Paper: PEPSI: Privacy-Enhanced Participatory Sensing Infrastructure Emiliano De Cristofaro-secure guarantees. In this paper, we introduce PEPSI: Privacy- Enhanced Participatory Sensing Infrastructure. We

  18. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by...

  19. EPA Webcast - Creating a Green Infrastructure Plan to Transform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA Webcast - Creating a Green Infrastructure Plan to Transform Your Community EPA Webcast - Creating a Green Infrastructure Plan to Transform Your Community November 18, 2014...

  20. Webinar: Creating a Green Infrastructure Plan to Transform Your...

    Broader source: Energy.gov (indexed) [DOE]

    Webinar: Creating a Green Infrastructure Plan to Transform Your Community Webinar: Creating a Green Infrastructure Plan to Transform Your Community November 18, 2014 3:00PM to...

  1. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

  2. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  3. Midstream Infrastructure Improvements Key to Realizing Full Potential...

    Office of Environmental Management (EM)

    Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic...

  4. DOE Announces Webinars on Compressed Natural Gas Infrastructure...

    Energy Savers [EERE]

    Compressed Natural Gas Infrastructure, an Advanced Rooftop Unit Campaign, and More DOE Announces Webinars on Compressed Natural Gas Infrastructure, an Advanced Rooftop Unit...

  5. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's...

  6. Hydrogen Vehicle and Infrastructure Codes and Standards Citations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Codes and Standards Citations Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used...

  7. Improving Risk Assessment to Support State Energy Infrastructure...

    Energy Savers [EERE]

    Improving Risk Assessment to Support State Energy Infrastructure Decision Making Improving Risk Assessment to Support State Energy Infrastructure Decision Making May 22, 2015 -...

  8. Effect of build geometry on the ?-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting

    SciTech Connect (OSTI)

    Antonysamy, A.A., E-mail: alphons.antonysamy@GKNAerospace.com [Additive Manufacturing Centre, GKN Aerospace, P.O. Box 500, Golf Course Lane, Filton, BS34 9 AU (United Kingdom); Meyer, J., E-mail: jonathan.meyer@eads.com [EADS Innovation Works, 20A1 Building, Golf Course Lane, Filton, Bristol, BS997AR (United Kingdom); Prangnell, P.B., E-mail: philip.prangnell@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-10-15T23:59:59.000Z

    With titanium alloys, the solidification conditions in Additive Manufacturing (AM) frequently lead to coarse columnar ?-grain structures. The effect of geometry on the variability in the grain structure and texture, seen in Ti-6Al-4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated. Reconstruction of the primary ?-phase, from ?-phase EBSD data, has confirmed that in bulk sections where in-fill “hatching” is employed growth selection favours columnar grains aligned with an <001> {sub ?} direction normal to the deposited powder layers; this results in a coarse ?-grain structure with a strong < 001 > {sub ?} fibre texture (up 8 x random) that can oscillate between a near random distribution around the fibre axis and cube reinforcement with build height. It is proposed that this behaviour is related to the highly elongated melt pool and the raster directions alternating between two orthogonal directions every layer, which on average favours grains with cube alignment. In contrast, the outline, or “contour”, pass produces a distinctly different grain structure and texture resulting in a skin layer on wall surfaces, where nucleation occurs off the surrounding powder and growth follows the curved surface of the melt pool. This structure becomes increasingly important in thin sections. Local heterogeneities have also been found within different section transitions, resulting from the growth of skin grain structures into thicker sections. Texture simulations have shown that the far weaker ?-texture (? 3 x random), seen in the final product, arises from transformation on cooling occurring with a near random distribution of ?-plates across the 12 variants possible from the Burgers relationship. - Highlights: • Distinctly different skin and bulk structures are produced by the contour and hatching passes. • Bulk sections contain coarse ?-grains with a < 001 > fibre texture in the build direction. • This oscillates between a random distribution around the axis and cube reinforcement. • In the skin layer nucleation occurs off the surrounding powder bed and growth occurs inwards. • Simulations show that a weak ?-texture results from a random distribution across habit variants.

  9. Transforming the U.S. Energy Infrastructure

    SciTech Connect (OSTI)

    Larry Demick

    2010-07-01T23:59:59.000Z

    The U.S. energy infrastructure is among the most reliable, accessible and economic in the world. On the other hand, the U.S. energy infrastructure is excessively reliant on foreign sources of energy, experiences high volatility in energy prices, does not practice good stewardship of finite indigenous energy resources and emits significant quantities of greenhouse gases (GHG). This report presents a Technology Based Strategy to achieve a full transformation of the U.S. energy infrastructure that corrects these negative factors while retaining the positives.

  10. Infrastructure for distributed enterprise simulation

    SciTech Connect (OSTI)

    Johnson, M.M.; Yoshimura, A.S.; Goldsby, M.E. [and others

    1998-01-01T23:59:59.000Z

    Traditional discrete-event simulations employ an inherently sequential algorithm and are run on a single computer. However, the demands of many real-world problems exceed the capabilities of sequential simulation systems. Often the capacity of a computer`s primary memory limits the size of the models that can be handled, and in some cases parallel execution on multiple processors could significantly reduce the simulation time. This paper describes the development of an Infrastructure for Distributed Enterprise Simulation (IDES) - a large-scale portable parallel simulation framework developed to support Sandia National Laboratories` mission in stockpile stewardship. IDES is based on the Breathing-Time-Buckets synchronization protocol, and maps a message-based model of distributed computing onto an object-oriented programming model. IDES is portable across heterogeneous computing architectures, including single-processor systems, networks of workstations and multi-processor computers with shared or distributed memory. The system provides a simple and sufficient application programming interface that can be used by scientists to quickly model large-scale, complex enterprise systems. In the background and without involving the user, IDES is capable of making dynamic use of idle processing power available throughout the enterprise network. 16 refs., 14 figs.

  11. Underground infrastructure damage for a Chicago scenario

    SciTech Connect (OSTI)

    Dey, Thomas N [Los Alamos National Laboratory; Bos, Rabdall J [Los Alamos National Laboratory

    2011-01-25T23:59:59.000Z

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  12. Designing buildings for disassembly : stimulating a change in the designer's role

    E-Print Network [OSTI]

    Gaďsset, Ines (Ines Sophie Maya)

    2011-01-01T23:59:59.000Z

    Today's industrial infrastructure in the building field results in specific types of problems with current design strategies. Here, the potential of Design for Disassembly (DfD) is explored as a solution for a new type of ...

  13. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect (OSTI)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21T23:59:59.000Z

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  14. CHP Enabling Resilient Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA SitesCHICAGO HOUSE PARTIES SHOW WAYS

  15. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issues facing hydrogen infrastructure fuel cell electric vehicles in the U.S. Europe, Germany, Scandinavia, and Japan. o H2 Fueling o H2 Quality o H2 metering o H2 Station...

  16. Public private partnership in infrastructure financing

    E-Print Network [OSTI]

    Ahmed, Anas

    2014-01-01T23:59:59.000Z

    The global financial crisis, which was unique in its magnitude and after effects, has generated significant interest in Public Private Partnership (PPP). Lack of investments and deteriorated infrastructure challenges ...

  17. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Broader source: Energy.gov (indexed) [DOE]

    h presentation slides: Natural Gas and hydrogen Infrastructure opportunities: markets and Barriers to Growth Matt Most, Encana Natural Gas 1 OctOber 2011 | ArgOnne nAtiOnAl...

  18. Modeling Risks in Infrastructure Asset Management

    E-Print Network [OSTI]

    Seyedolshohadaie, Seyed Reza

    2012-10-19T23:59:59.000Z

    in privatizing and operational risks in maintenance and rehabilitation of infrastructure facilities. To this end, a valuation procedure for valuing large-scale risky projects is proposed. This valuation approach is based on mean-risk portfolio optimization...

  19. Wireless Sensor Network Infrastructure : Construction and Evaluation

    E-Print Network [OSTI]

    Boyer, Edmond

    Wireless Sensor Network Infrastructure : Construction and Evaluation Kamal Beydoun, Violeta Felea main features for efficient energy management in wireless sensor networks. This paper aims to present a distributed and low-cost topology construction algorithm for wireless sensor networks, addressing

  20. Delaware Transportation Infrastructure Forum Problem Identification Statements

    E-Print Network [OSTI]

    Firestone, Jeremy

    2013 Delaware Transportation Infrastructure Forum Problem Identification Statements Sponsored by The Delaware Center for Transportation and the Delaware Department of Transportation Delaware Center for Transportation Your main resource for transportation education and research Identifying Important Issues Related

  1. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01T23:59:59.000Z

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  2. Obtaining Disaster Assistance for Public Infrastructure

    E-Print Network [OSTI]

    Taylor, Greg

    2005-10-10T23:59:59.000Z

    County and municipal governments, as well as certain private non-profit organizations, may qualify for assistance in rebuilding public infrastructure after a natural disaster. This leaflet details the assistance programs available from the Federal...

  3. Strategic Plan for the Computational Infrastructure

    E-Print Network [OSTI]

    Sugar, Robert

    Strategic Plan for the Computational Infrastructure for Lattice Gauge Theory Lattice QCD Executive is a defining problem for hadron physics just as the hydrogen atom is for atomic physics. Indeed, the DOE

  4. Dispersion of agglomeration through transport infrastructure

    E-Print Network [OSTI]

    Fang, Wanli, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    My dissertation aims to assess transport infrastructure's influence on the productivity, scale and distribution of urban economic activities through changing intercity accessibility. Standard project-level cost-benefit ...

  5. Hydrogen Infrastructure Market Readiness Workshop Agenda

    Broader source: Energy.gov (indexed) [DOE]

    NRELDOE Hydrogen Infrastructure Market Readiness Workshop Agenda Page 1 of 2 NRELDOE Workshop at the Gaylord National, Washington D.C., February 16-17, 2011 Transitioning to an...

  6. Hydrogen Fueling Infrastructure Research and Station Technology

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  7. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

  8. An Extensible Open-Source Compiler Infrastructure for Testing

    SciTech Connect (OSTI)

    Quinlan, D; Ur, S; Vuduc, R

    2005-12-09T23:59:59.000Z

    Testing forms a critical part of the development process for large-scale software, and there is growing need for automated tools that can read, represent, analyze, and transform the application's source code to help carry out testing tasks. However, the support required to compile applications written in common general purpose languages is generally inaccessible to the testing research community. In this paper, we report on an extensible, open-source compiler infrastructure called ROSE, which is currently in development at Lawrence Livermore National Laboratory. ROSE specifically targets developers who wish to build source-based tools that implement customized analyses and optimizations for large-scale C, C++, and Fortran90 scientific computing applications (on the order of a million lines of code or more). However, much of this infrastructure can also be used to address problems in testing, and ROSE is by design broadly accessible to those without a formal compiler background. This paper details the interactions between testing of applications and the ways in which compiler technology can aid in the understanding of those applications. We emphasize the particular aspects of ROSE, such as support for the general analysis of whole programs, that are particularly well-suited to the testing research community and the scale of the problems that community solves.

  9. Proceedings Second Annual Cyber Security and Information Infrastructure Research Workshop

    SciTech Connect (OSTI)

    Sheldon, Frederick T [ORNL; Krings, Axel [ORNL; Yoo, Seong-Moo [ORNL; Mili, Ali [ORNL; Trien, Joseph P [ORNL

    2006-01-01T23:59:59.000Z

    The workshop theme is Cyber Security: Beyond the Maginot Line Recently the FBI reported that computer crime has skyrocketed costing over $67 billion in 2005 alone and affecting 2.8M+ businesses and organizations. Attack sophistication is unprecedented along with availability of open source concomitant tools. Private, academic, and public sectors invest significant resources in cyber security. Industry primarily performs cyber security research as an investment in future products and services. While the public sector also funds cyber security R&D, the majority of this activity focuses on the specific mission(s) of the funding agency. Thus, broad areas of cyber security remain neglected or underdeveloped. Consequently, this workshop endeavors to explore issues involving cyber security and related technologies toward strengthening such areas and enabling the development of new tools and methods for securing our information infrastructure critical assets. We aim to assemble new ideas and proposals about robust models on which we can build the architecture of a secure cyberspace including but not limited to: * Knowledge discovery and management * Critical infrastructure protection * De-obfuscating tools for the validation and verification of tamper-proofed software * Computer network defense technologies * Scalable information assurance strategies * Assessment-driven design for trust * Security metrics and testing methodologies * Validation of security and survivability properties * Threat assessment and risk analysis * Early accurate detection of the insider threat * Security hardened sensor networks and ubiquitous computing environments * Mobile software authentication protocols * A new "model" of the threat to replace the "Maginot Line" model and more . . .

  10. SPAPI: A Security and Protection Architecture for Physical Infrastructures and Its Deployment Strategy Using Wireless Sensor Networks

    E-Print Network [OSTI]

    infrastructures such as important government and corporate buildings and manufacturing facilities; water supply facility. 1. Introduction People's lives in a modern state depend on the smooth functioning of critical, electricity, telecommunication, gas and petroleum distribution networks; interstate roads, etc. Until recently

  11. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    SciTech Connect (OSTI)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01T23:59:59.000Z

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

  12. The scientific case for eInfrastructure in Norway

    E-Print Network [OSTI]

    Helgaker, Trygve

    The scientific case for eInfrastructure in Norway The eInfrastructure Scientific Opportunities Panel #12;2 3 The scientific case for eInfrastructure in Norway The eInfrastructure Scientific Opportunities Panel Appointed by the Research Council of Norway Galen Gisler (chair) Physics of Geological

  13. INNOVATIONS IN NUCLEAR INFRASTRUCTURE AND EDUCATION (INIE) CONSORTIA - CURRENT STATUS

    SciTech Connect (OSTI)

    Fjeld, R.A.; Gutteridge, J.; Williamson, C.

    2004-10-06T23:59:59.000Z

    This presentation discusses the current status of innovations in the Nuclear Infrastructure and Education (INIE) Consortia.

  14. SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabi

    E-Print Network [OSTI]

    SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitation Istanbul, 8Istanbul, 8--9 February 20129

  15. Better Buildings

    E-Print Network [OSTI]

    Neukomm, M.

    2012-01-01T23:59:59.000Z

    efficiency as top priority energy resource Revolutionary change in market Robust energy efficiency industry Prime the market for new technology Better Buildings Challenge Goals Make commercial & industrial buildings 20% more efficient by 2020... opportunities for energy efficiency 2 Great opportunities in the residential, commercial and industrial sectors 20% + savings is average Other benefits: Jobs, Environment, Competitiveness But persistent barriers exist?? ?Energy efficiency...

  16. Solar Decathlon Technology Spotlight: Structural Insulated Panels

    Broader source: Energy.gov [DOE]

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs.

  17. Spatial Data Infrastructure of the Plurinational State of Bolivia Spatial Data Infrastructure of the

    E-Print Network [OSTI]

    Köbben, Barend

    Spatial Data Infrastructure of the Plurinational State of Bolivia Spatial Data Infrastructure of the Plurinational State of Bolivia A free and democratic SDI by Raul Fernando Molina Rodriguez and Sylvain Lesage GeoBolivia (Bolivia). rmolina@geo.gob.bo Abstract The Vice Presidency of the State, with the help

  18. Wave Impact Study on a Residential Building Wave Impact Study on a Residential Building

    E-Print Network [OSTI]

    Cox, Dan

    Wave Impact Study on a Residential Building Paper: Wave Impact Study on a Residential Building John residential light- frame wood buildings and wave and surge loading be- cause often little is left residential structures and wave loading. To do this, one-sixth scale residen- tial building models typical

  19. Building America Webinar: Ventilation in Multifamily Buildings...

    Energy Savers [EERE]

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential...

  20. Building America Expert Meeting: Transforming Existing Buildings...

    Energy Savers [EERE]

    Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

  1. Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities

    Broader source: Energy.gov [DOE]

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session. The meeting will be livestreamed at energy.gov/live

  2. Building Science

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question ŤHow do we first do no harm with high-r enclosures??

  3. Building debris

    E-Print Network [OSTI]

    Dahmen, Joseph (Joseph F. D.)

    2006-01-01T23:59:59.000Z

    This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

  4. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    1992 Are the pyramids of Egypt built of poured concreteel-Anba’ut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

  5. Healthy buildings

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

  6. Healthy buildings

    SciTech Connect (OSTI)

    Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

    1991-01-01T23:59:59.000Z

    This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

  7. Archive Reference Buildings by Building Type: Supermarket

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  8. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  9. FY 1999 annual work plan for infrastructure program WBS 6

    SciTech Connect (OSTI)

    Donley, C.D.

    1998-08-27T23:59:59.000Z

    The Fiscal Year (FY) 1999 DynCorp Annual Work Plan (AWP) relates DOE-RL work breakdown structure (WBS) to Cost Accounts and to Organizational Structure. Each Cost Account includes a workscope narrative and justification performance and service standards, goals, and deliverables. Basis of estimates are included within each Cost Account to demonstrate the relationship of budget to defined workscope. The FY 1999 AWP reflects the planning assumptions and initiatives that are included in the PHMC Strategic Plan for Infrastructure Optimization which was established in FY 1998. Development of the FY 1999 AWP was in accordance with a sequential series of events and efforts described in the Infrastructure Annual Work Planning and Budget Cycle which was developed and established in conjunction with the Strategic Plan. The Strategic Plan covers a rolling five year span of time and is updated at the start of each fiscal year as the beginning of the annual work planning and budget cycle for the following fiscal year. Accordingly the planning for the FY 1999 AWP began in January 1998. Also included in the annual work planning and budget cycle, and the basis for the budget in this AWP, is the development of a requirements-based budget.

  10. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report II.D Electrolytic Processes

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 125 II.D Electrolytic Processes II.D.1 Photoelectrochemical Systems for Hydrogen Production Ken Varner, Scott Warren, J.A. Turner of the identified semiconductor materials as required. · Determine if existing photovoltaic (PV) device structures

  11. Dynamics in Behavioral Response to Fuel-Cell Vehicle Fleet and Hydrogen Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2008-01-01T23:59:59.000Z

    response to FCV and hydrogen infrastructure questions amongits supporting hydrogen infrastructure. In 2006, UC Berke-standing of hydrogen FCVs and infrastructure, researchers at

  12. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  13. Information Systems as Infrastructure for University Research

    E-Print Network [OSTI]

    Information Systems as Infrastructure for University Research Now and in the Future Merrill Series.......................................................................................................1 Senior Fellow, Association of Public and Land Grant Universities Information Systems Research Stakeholders Soft Power to Connect the Dots in Information Haystacks #12;iv David Swanson

  14. AIFdb: Infrastructure for the Argument Web

    E-Print Network [OSTI]

    Reed, Chris

    AIFdb: Infrastructure for the Argument Web John LAWRENCE, Floris BEX, Chris REED and Mark SNAITH, a database solution for the Ar- gument Web. AIFdb offers an array of web service interfaces allowing a wide Interchange Format, argument web 1. Introduction The Argument Web [3] is a vision for a large-scale Web

  15. Office of Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    . Hydrogen Storage 2. Hydrogen Production 3. Fuel Cell Cost Reduction #12;Major Fuel Cell Decisions FuelOffice of Hydrogen, Fuel Cells & Infrastructure Technologies (proposed) Steve Chalk May 6, 2002 #12 DAS Associate DASIndustrial Technologies Implementation A Director Solar Energy Technologies Director

  16. Intrusion-Tolerant Protection for Critical Infrastructures

    E-Print Network [OSTI]

    Neves, Nuno

    of an organization in the face of accidents and attacks. How- ever, they are not simple firewalls but distributed]. In recent years these systems evolved in several aspects that greatly increased their exposure to cyber-attacks, a critical information infrastructure is formed by facilities, like power transformation substations or cor

  17. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01T23:59:59.000Z

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  18. Adaptive Infrastructures Toward a Secure and

    E-Print Network [OSTI]

    Amin, S. Massoud

    concept important to the Electric Power Grid and Energy Infrastructure? ­ A secure "architected" sensing of computer, communication, sensing and control technology which operates in parallel with an electric power grid for the purpose of enhancing the reliability of electric power delivery, minimizing the cost

  19. London 2012 Infrastructure Design, Sustainability and Innovation,

    E-Print Network [OSTI]

    Painter, Kevin

    February 2013 #12;#12;London 2012 Aspiration of a Sustainable Games #12;#12;Project Management , for both soil and groundwater treatment. As part of this work, we have managed the excavation and reuseLondon 2012 Infrastructure Design, Sustainability and Innovation, Inspiring an Industry

  20. An Infrastructure for Adaptive Dynamic Optimization

    E-Print Network [OSTI]

    Amarasinghe, Saman

    An Infrastructure for Adaptive Dynamic Optimization Derek Bruening, Timothy Garnett, and Saman,timothyg,saman}@lcs.mit.edu Abstract Dynamic optimization is emerging as a promising ap- proach to overcome many of the obstacles static optimizations, there are very few for developing dynamic optimizations. We present a framework

  1. Towards a Ubiquitous Cloud Computing Infrastructure

    E-Print Network [OSTI]

    van der Merwe, Kobus

    Towards a Ubiquitous Cloud Computing Infrastructure Jacobus Van der Merwe, K.K. Ramakrishnan of a number of cloud computing use cases. We specifically consider cloudbursting and follow-the-sun and focus that are also network service providers. I. INTRODUCTION Cloud computing is rapidly gaining acceptance

  2. Hierarchical Infrastructure for Internet Mapping Services

    E-Print Network [OSTI]

    Samet, Hanan

    locally. We investigate this opportunity for further improvement in providing the client with map data access to remote spatial databases adopted by numerous web-based mapping service vendors (e.g., MapChapter 1 Hierarchical Infrastructure for Internet Mapping Services Frantisek Brabec and Hanan

  3. Rod-like plasmonic nanoparticles as optical building blocks: how differences in particle shape and structural geometry influence optical signal

    SciTech Connect (OSTI)

    Stender, Anthony [Ames Laboratory

    2013-05-15T23:59:59.000Z

    Gold nanoparticles, particularly those with an anisotropic shape, have become a popular optical probe for experiments involving work on the nanoscale. However, to carry out such delicate and intricate experiments, it is first necessary to understand the detailed behavior of individual nanoparticles. In this series of experiments, optical and electron microscopy were utilized for the characterization of individual nanoparticles and small assemblies of nanoparticles. In the first experiment, gold nanorods were investigated. Single, isolated nanorods exhibit two maxima of localized surface plasmon resonance (LSPR), which are associated with the two nanorod axes. Upon the physical rotation of a nanorod at one of its LSPR wavelengths under polarized illumination, the optical behavior varies in a sinusoidal fashion. A dimer of nanorods exhibits optical behavior quite similar to a nanorod, except the LSPR maxima are shifted and broader. Under differential interference contrast (DIC) microscopy, a pair of nanorods separated by a distance below the diffraction limit can be distinguished from a single nanorod due to its optical behavior upon rotation. Dark field microscopy is unable to distinguish the two geometries. For the second set of experiments, the optical behavior of single gold nanorods at non-plasmonic wavelengths was investigated. The same nanorod was rotated with respect to a polarized light source under DIC, dark field, and polarized light microscopy. DIC microscopy was found to produce diffraction pattern peaks at non-plasmonic wavelengths, which could be altered by adjusting the setting of the polarizer. In the third set of experiments, the optical behavior of a single gold dumbbell and several simple dumbbell geometries were investigated with microscopy and simulations. The single dumbbell displayed behavior quite similar to that of a nanorod, but dumbbells exhibit a shift in both LSPR wavebands. Moreover, the shape of dumbbell particles allows them to interlock with one another quite easily. The dimers that form as a result display optical behavior that differs from what has been previously reported about nanorod dimers. Simulated surface charge density patterns reveal that hybridization of LSPR modes occurs readily along the lobes of individual dumbbells in some situations. A pentamer of dumbbells also displays hybridization of modes, and “hot spots” are observed at junctions between pairings of dumbbells. In the final set of experiments, the assembly behavior of nanoparticles in solution was observed in real time. In general, large assemblies of nanoparticles display backbone-like rigidity, but an interesting variety of movements is permitted within the larger structures.

  4. Europe's liquid commons : towards a public territorial infrastructure

    E-Print Network [OSTI]

    De Vries, Christoper (Christoper Hendrick John)

    2011-01-01T23:59:59.000Z

    'his thesis examines the possibility of using intermodal logistics infrastructure on the Rhine-Danube waterway, as part of the Trans European Infrastructure Network, as a means to create a symbolic and operative commons ...

  5. Status Report on Protected Domains for Cyber Infrastructure Management

    E-Print Network [OSTI]

    Irvine, Cynthia E.

    through the use of distributed, highly secure, protected domains. Instead of creating a costly physically, Network Security, Information Assurance 1 Introduction Currently, our national cyber infrastructure to the President for Cyber Space Security and Chairman, President's Critical Infrastructure Protection Board

  6. Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage #12;2StorSimple White Pages: Shoring Up Infrastructure Weaknesses with Hybrid Cloud Storage Table of Contents The Hybrid Cloud Context for IT Managers ............................................................. 3 The Bottleneck of Managing Storage

  7. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Broader source: Energy.gov (indexed) [DOE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

  8. Year-in-Review: 2011 Energy Infrastructure Events and Expansions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Energy Infrastructure Events and Expansions (April 2012) Year-in-Review: 2011 Energy Infrastructure Events and Expansions (April 2012) The 2011 Year-in-Review (YIR) provides a...

  9. Infrastructure for large-scale tests in marine autonomy

    E-Print Network [OSTI]

    Hummel, Robert A. (Robert Andrew)

    2012-01-01T23:59:59.000Z

    This thesis focuses on the development of infrastructure for research with large-scale autonomous marine vehicle fleets and the design of sampling trajectories for compressive sensing (CS). The newly developed infrastructure ...

  10. Built Systems and Other Infrastructure Webinar | Department of...

    Energy Savers [EERE]

    Built Systems and Other Infrastructure Webinar Built Systems and Other Infrastructure Webinar April 10, 2014 5:00PM to 6:30PM EDT The federal government, state governments, and...

  11. 16.Feb.2005 MC meeting, LBNL 1 CERN infrastructureCERN infrastructure

    E-Print Network [OSTI]

    McDonald, Kirk

    16.Feb.2005 MC meeting, LBNL 1 CERN infrastructureCERN infrastructure A.FabichA.Fabich, CERN AB://cern.ch/projhttp://cern.ch/proj--hiptargethiptarget #12;16.Feb.2005 MC meeting, LBNL 2 Experimental requirementsExperimental requirements What CERN couldSupport on installationinstallation CryogenicsCryogenics solenoid powersolenoid power SafetySafety #12;16.Feb.2005 MC meeting, LBNL 3

  12. Building Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-EfficientBuilding

  13. Building Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-EfficientBuilding

  14. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

  15. Information Security Management System for Microsoft's Cloud Infrastructure

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Information Security Management System for Microsoft's Cloud Infrastructure Online Services ......................................................................................................................................................................................1 Information Security Management System.......................................................................................................................7 Information Security Management Forum

  16. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

  17. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  18. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects.

  19. Fuel Cell Vehicle Infrastructure Learning Demonstration: Status and Results; Preprint

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-09-01T23:59:59.000Z

    Article prepared for ECS Transactions that describes the results of DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project.

  20. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  1. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  2. Scanning the Issue Special Issue on Energy Infrastructure Defense Systems

    E-Print Network [OSTI]

    Amin, S. Massoud

    Outage Task Force 2003 places the focus directly on the infrastructure of electric power. This blackout of infrastructure in the United States. Electricity, water, telephone, the Internet, and other physical and logistic American electrical grid. Both the importance and difficulty of protecting energy infrastructure against

  3. FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE

    E-Print Network [OSTI]

    DRAFT FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE DEMONSTRATION that complements FreedomCAR to develop both a low-cost hydrogen infrastructure and advanced hydrogen fuel cell a strategy to develop a hydrogen economy that emphasizes co-developing hydrogen infrastructure in parallel

  4. Impact of Natural Gas Infrastructure on Electric Power Systems

    E-Print Network [OSTI]

    Fu, Yong

    Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

  5. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect (OSTI)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01T23:59:59.000Z

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  6. & Education Structure 2 Parking

    E-Print Network [OSTI]

    Caughman, John

    Cinema East Hall University Technology Services Honors Stratford Building Parkway Science Building 1N Kononia House Fourth Ave Building Art Building Science & Education Center Parking Structure 2 Helen Gordon Child Center Science Research & Teaching Center Parking Structure 3 Ho man Hall West

  7. Call title: Call 6: FP7-INFRASTRUCTURES-2010-1 Call identifier: FP7-INFRASTRUCTURES-2010-1

    E-Print Network [OSTI]

    Milano-Bicocca, Universitŕ

    research infrastructures 1.1.1 Integrating Activities 162.00 1.2 Support to new research infrastructures 1 scheme(s) 1.1 Support to existing research infrastructures 1.1.1 Integrating Activities Social Sciences;1.1.1 Integrating Activities Europe and globalization. Life Sciences ° INFRA-2010-1.1.7: Plant genetic Resources

  8. PROCEDURES FOR RESEARCH UNITS AND INFRASTRUCTURE PLATFORMS As per Policy on Research Units and Infrastructure Platforms (VPRGS-8)

    E-Print Network [OSTI]

    Doedel, Eusebius

    PROCEDURES FOR RESEARCH UNITS AND INFRASTRUCTURE PLATFORMS As per Policy on Research Units and Infrastructure Platforms (VPRGS-8) Last Updated ­ January 31 2014 These Procedures are related to the Policy on Research Units and Infrastructure Platforms (VPRGS- 8) and reflect current practices concerning

  9. Near-Site Transportation Infrastructure Project

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N. (Nuclear Assurance Corp., Norcross, GA (United States)) [Nuclear Assurance Corp., Norcross, GA (United States)

    1992-02-01T23:59:59.000Z

    There are 122 commercial nuclear facilities from which spent nuclear fuel will be accepted by the Federal Waste Management System (FWMS). Since some facilities share common sites and some facilities are on adjacent sites, 76 sites were identified for the Near-Site Transportation Infrastructure (NSTI) project. The objective of the NSTI project was to identify the options available for transportation of spent-fuel casks from each of these commercial nuclear facility sites to the main transportation routes -- interstate highways, commercial rail lines and navigable waterways available for commercial use. The near-site transportation infrastructure from each site was assessed, based on observation of technical features identified during a survey of the routes and facilities plus data collected from referenced information sources. The potential for refurbishment of transportation facilities which are not currently operational was also assessed, as was the potential for establishing new transportation facilities.

  10. Design and Optimization of Photovoltaics Recycling Infrastructure

    SciTech Connect (OSTI)

    Choi, J.K.; Fthenakis, V.

    2010-10-01T23:59:59.000Z

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  11. Home | Better Buildings Workforce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Connect with Us LinkedIn Twitter Better Buildings...

  12. CU-ICAR Hydrogen Infrastructure Final Report

    SciTech Connect (OSTI)

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28T23:59:59.000Z

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  13. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    SciTech Connect (OSTI)

    Farmer, J C

    2007-12-04T23:59:59.000Z

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.

  14. NGNP Infrastructure Readiness Assessment: Consolidation Report

    SciTech Connect (OSTI)

    Brian K Castle

    2011-02-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  15. Seismic design, testing and analysis of reinforced concrete wall buildings

    E-Print Network [OSTI]

    Panagiotou, Marios

    2008-01-01T23:59:59.000Z

    of Slender Reinforced Concrete Walls”. Structural Journal,T. (1975). “Reinforced Concrete Structures”. John Wiley &Design of Reinforced Concrete and Masonry Buildings”. John

  16. US Army Corps of Engineers BUILDING STRONG

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;BUILDING STRONG® Mission and functions Office Structure IG Issue Sources Assistance & Investigations and Inquiries Conduct Compliance/Systemic Inspections Teach and Train 3 #12;BUILDING STRONG® Office Structure Par 005 / Office of Engineer Inspector General 01 *Supv Engineer Inspector General GS-15 02 Engineer

  17. Building sustainable ecosystem-oriented architectures

    E-Print Network [OSTI]

    Bassil, Youssef

    2012-01-01T23:59:59.000Z

    Currently, organizations are transforming their business processes into e-services and service-oriented architectures to improve coordination across sales, marketing, and partner channels, to build flexible and scalable systems, and to reduce integration-related maintenance and development costs. However, this new paradigm is still fragile and lacks many features crucial for building sustainable and progressive computing infrastructures able to rapidly respond and adapt to the always-changing market and environmental business. This paper proposes a novel framework for building sustainable Ecosystem- Oriented Architectures (EOA) using e-service models. The backbone of this framework is an ecosystem layer comprising several computing units whose aim is to deliver universal interoperability, transparent communication, automated management, self-integration, self-adaptation, and security to all the interconnected services, components, and devices in the ecosystem. Overall, the proposed model seeks to deliver a co...

  18. Building Energy Optimization Analysis Method (BEopt) - Building...

    Energy Savers [EERE]

    about BEopt. See an example of a Building America project that used BEopt. Find more case studies of Building America projects across the country that incorporate BEopt when...

  19. A secure communications infrastructure for high-performance distributed computing

    SciTech Connect (OSTI)

    Foster, I.; Koenig, G.; Tuecke, S. [and others

    1997-08-01T23:59:59.000Z

    Applications that use high-speed networks to connect geographically distributed supercomputers, databases, and scientific instruments may operate over open networks and access valuable resources. Hence, they can require mechanisms for ensuring integrity and confidentially of communications and for authenticating both users and resources. Security solutions developed for traditional client-server applications do not provide direct support for the program structures, programming tools, and performance requirements encountered in these applications. The authors address these requirements via a security-enhanced version of the Nexus communication library; which they use to provide secure versions of parallel libraries and languages, including the Message Passing Interface. These tools permit a fine degree of control over what, where, and when security mechanisms are applied. In particular, a single application can mix secure and nonsecure communication, allowing the programmer to make fine-grained security/performance tradeoffs. The authors present performance results that quantify the performance of their infrastructure.

  20. Hanford Small Building Demolition Program

    SciTech Connect (OSTI)

    Diebel, J.A.; Douglas, L.M.; Shuck, R.G.

    1993-09-01T23:59:59.000Z

    Over 1,100 buildings currently exist on the Hanford Site. Many of these structures are outdated and no longer needed to support the environmental restoration mission. The Hanford Small Building Demolition Program is part of a combined effort of an Accelerated Decontamination and Decommissioning (D and D) Program and Landlord Site Preparation and Stabilization Program aimed at reducing the inventory of noncontaminated surplus facilities onsite. The reduction of surplus facilities results in reduced surveillance and maintenance (S and M) costs and eliminates the safety and environmental hazards associated with aging buildings. The project involves decommissioning up to 80 surplus facilities over the next five years.

  1. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  2. Infrastructure: A technology battlefield in the 21st century

    SciTech Connect (OSTI)

    Drucker, H.

    1997-12-31T23:59:59.000Z

    A major part of technological advancement has involved the development of complex infrastructure systems, including electric power generation, transmission, and distribution networks; oil and gas pipeline systems; highway and rail networks; and telecommunication networks. Dependence on these infrastructure systems renders them attractive targets for conflict in the twenty-first century. Hostile governments, domestic and international terrorists, criminals, and mentally distressed individuals will inevitably find some part of the infrastructure an easy target for theft, for making political statements, for disruption of strategic activities, or for making a nuisance. The current situation regarding the vulnerability of the infrastructure can be summarized in three major points: (1) our dependence on technology has made our infrastructure more important and vital to our everyday lives, this in turn, makes us much more vulnerable to disruption in any infrastructure system; (2) technologies available for attacking infrastructure systems have changed substantially and have become much easier to obtain and use, easy accessibility to information on how to disrupt or destroy various infrastructure components means that almost anyone can be involved in this destructive process; (3) technologies for defending infrastructure systems and preventing damage have not kept pace with the capability for destroying such systems. A brief review of these points will illustrate the significance of infrastructure and the growing dangers to its various elements.

  3. Industrial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0 0.0Decade4Year114,937

  4. Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international cooperation, research and development, environment and hea

    E-Print Network [OSTI]

    Zürich, Universität

    Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international Infrastructure, human resources, international cooperation, research and development, environment and health

  5. A component-based collaboration infrastructure 

    E-Print Network [OSTI]

    Yang, Yi

    2006-04-12T23:59:59.000Z

    Groupware applications allow geographically distributed users to collaborate on shared tasks. However, it is widely recognized that groupware applications are expensive to build due to coordination services and group ...

  6. 3Building a Business Building a Business

    E-Print Network [OSTI]

    Arnold, Jonathan

    15 3Building a Business Building a Business This section provides direction on the kinds. If you contemplate building a "garage- based" company to sell a product into a niche market, you should-ups conjure up images of future wealth, of building the next Amgen or Microsoft, of launching what will become

  7. Vulnerability of critical infrastructures : identifying critical nodes.

    SciTech Connect (OSTI)

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01T23:59:59.000Z

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  8. Public key infrastructure for DOE security research

    SciTech Connect (OSTI)

    Aiken, R.; Foster, I.; Johnston, W.E. [and others

    1997-06-01T23:59:59.000Z

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-key infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.

  9. Development of structural health monitoring techniques using dynamics testing

    SciTech Connect (OSTI)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01T23:59:59.000Z

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  10. NREL: Energy Systems Integration Facility - Research Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure The foundation of the Energy

  11. Offshore Infrastructure Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource HistoryFracturesOceano,Infrastructure Associates

  12. The DOE infrastructure support program at the University of Texas at El Paso. Final report

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The University of Texas at El Paso (UTEP) is located on 300 acres, only a few hundred years from the US/Mexico border. The DOE Infrastructure Support Program was initiated at UTEP in 1987. The purpose of the program was to assist the University in building the infrastructure required for its emerging role as a regional center for energy-related research. Equally important was the need to strength the University`s ability to complete for sponsored energy-related programs at the state and national levels and to provide opportunities for faculty, staff and students to participate in energy-related research and outreach activities. The program had four major objectives, as follows: (1) implement energy research, outreach and demonstration projects already funded, and prepare new proposals to fund university research interests; (2) establish an Energy Center as a separate operational entity to provide continuing infrastructure support for energy-related programs; (3) strengthen university/private sector energy research linkages; and (4) involve minority graduate and undergraduate students in energy research and outreach activities. Each of the above objectives has been exceeded substantially, and, as a consequence, the University has become a regional leader in energy and environmental research and outreach efforts.

  13. Acoustical and Noise Control Criteria and Guidelines for Building Design and Operations

    E-Print Network [OSTI]

    Evans, J. B.; Himmel, C. N.

    Noise, vibration and acoustical design, construction, commissioning and operation practices influence building cost, efficiency, performance and effectiveness. Parameters for structural vibration, building systems noise, acoustics and environmental...

  14. Economics in Criticality and Restoration of Energy Infrastructures.

    SciTech Connect (OSTI)

    Boyd, Gale A.; Flaim, Silvio J.; Folga, Stephen M.; Gotham, Douglas J.; McLamore, Michael R.; Novak, Mary H.; Roop, Joe M.; Rossmann, Charles G.; Shamsuddin, Shabbir A.; Zeichner, Lee M.; Stamber, Kevin L.

    2005-03-01T23:59:59.000Z

    Economists, systems analysts, engineers, regulatory specialists, and other experts were assembled from academia, the national laboratories, and the energy industry to discuss present restoration practices (many have already been defined to the level of operational protocols) in the sectors of the energy infrastructure as well as other infrastructures, to identify whether economics, a discipline concerned with the allocation of scarce resources, is explicitly or implicitly a part of restoration strategies, and if there are novel economic techniques and solution methods that could be used help encourage the restoration of energy services more quickly than present practices or to restore service more efficiently from an economic perspective. AcknowledgementsDevelopment of this work into a coherent product with a useful message has occurred thanks to the thoughtful support of several individuals:Kenneth Friedman, Department of Energy, Office of Energy Assurance, provided the impetus for the work, as well as several suggestions and reminders of direction along the way. Funding from DOE/OEA was critical to the completion of this effort.Arnold Baker, Chief Economist, Sandia National Laboratories, and James Peerenboom, Director, Infrastructure Assurance Center, Argonne National Laboratory, provided valuable contacts that helped to populate the authoring team with the proper mix of economists, engineers, and systems and regulatory specialists to meet the objectives of the work.Several individuals provided valuable review of the document at various stages of completion, and provided suggestions that were valuable to the editing process. This list of reviewers includes Jeffrey Roark, Economist, Tennessee Valley Authority; James R. Dalrymple, Manager of Transmission System Services and Transmission/Power Supply, Tennessee Valley Authority; William Mampre, Vice President, EN Engineering; Kevin Degenstein, EN Engineering; and Patrick Wilgang, Department of Energy, Office of Energy Assurance.With many authors, creating a document with a single voice is a difficult task. Louise Maffitt, Senior Research Associate, Institute for Engineering Research and Applications at New Mexico Institute of Mining & Technology (on contract to Sandia National Laboratories) served a vital role in the development of this document by taking the unedited material (in structured format) and refining the basic language so as to make the flow of the document as close to a single voice as one could hope for. Louise's work made the job of reducing the content to a readable length an easier process. Additional editorial suggestions from the authors themselves, particularly from Sam Flaim, Steve Folga, and Doug Gotham, expedited this process.

  15. The US nuclear weapon infrastructure and a stable global nuclear weapon regime

    SciTech Connect (OSTI)

    Immele, John D [Los Alamos National Laboratory; Wagner, Richard L [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.

  16. National Computational Infrastructure for Lattice Gauge Theory

    SciTech Connect (OSTI)

    Reed, Daniel, A

    2008-05-30T23:59:59.000Z

    In this document we describe work done under the SciDAC-1 Project National Computerational Infrastructure for Lattice Gauge Theory. The objective of this project was to construct the computational infrastructure needed to study quantim chromodynamics (QCD). Nearly all high energy and nuclear physicists in the United States working on the numerical study of QCD are involved in the project, as are Brookhaven National Laboratory (BNL), Fermi National Accelerator Laboratory (FNAL), and Thomas Jefferson National Accelerator Facility (JLab). A list of the serior participants is given in Appendix A.2. The project includes the development of community software for the effective use of the terascale computers, and the research and development of commodity clusters optimized for the study of QCD. The software developed as part of this effort is pubicly available, and is being widely used by physicists in the United States and abroad. The prototype clusters built with SciDAC-1 fund have been used to test the software, and are available to lattice guage theorists in the United States on a peer reviewed basis.

  17. ELECTRIC INFRASTRUCTURE TECHNOLOGY, TRAINING, AND ASSESSMENT PROGRAM

    SciTech Connect (OSTI)

    TREMEL, CHARLES L

    2007-06-28T23:59:59.000Z

    The objective of this Electric Infrastructure Technology, Training and Assessment Program was to enhance the reliability of electricity delivery through engineering integration of real-time technologies for wide-area applications enabling timely monitoring and management of grid operations. The technologies developed, integrated, tested and demonstrated will be incorporated into grid operations to assist in the implementation of performance-based protection/preventive measures into the existing electric utility infrastructure. This proactive approach will provide benefits of reduced cost and improved reliability over the typical schedule-based and as needed maintenance programs currently performed by utilities. Historically, utilities have relied on maintenance and inspection programs to diagnose equipment failures and have used the limited circuit isolation devices, such as distribution main circuit breakers to identify abnormal system performance. With respect to reliable problem identification, customer calls to utility service centers are often the sole means for utilities to identify problem occurrences and determine restoration methodologies. Furthermore, monitoring and control functions of equipment and circuits are lacking; thus preventing timely detection and response to customer outages. Finally, the two-way flow of real-time system information is deficient, depriving decision makers of key information required to effectively manage and control current electric grid demands to provide reliable customer service in abnormal situations. This Program focused on advancing technologies and the engineering integration required to incorporate them into the electric grid operations to enhance electrical system reliability and reduce utility operating costs.

  18. Seismic assessment of unreinforced masonry structures : an investigation of the Longfellow Bridge masonry piers

    E-Print Network [OSTI]

    Boutin, Nathan D. (Nathan Daniel)

    2009-01-01T23:59:59.000Z

    Infrastructure in the United States is comprised of numerous structures that are decades old. The Longfellow Bridge is one of the oldest pieces of this infrastructure that is still in use and has become one of the most ...

  19. International Conference on Structural Health Monitoring of Intelligent Infrastructure

    E-Print Network [OSTI]

    Entekhabi, Dara

    of installing new pipelines to serve the growing population as well as maintaining and replacing the aging. They comprise a complex network of pipelines buried underground that are relatively inaccessible. Maintaining for identification of longer-term trends. This paper describes the WaterWiSe@SG project in Singapore, focusing

  20. International Conference on Structural Health Monitoring of Intelligent Infrastructure

    E-Print Network [OSTI]

    Stanford University

    layout of wind turbines in a wind farm to minimize the wake interference under certain wind conditions FOR WIND FARM MONITORING AND POWER MAXIMIZATION J. Park 1 and K. H. Law 1 1 Department of Civil) in a cooperative game theoretic framework. In the game theoretic framework, wind turbines in a wind farm

  1. Managing Critical Infrastructures C.I.M. Suite

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    protect infrastructure during natural disasters, terrorist attacks and electrical outages. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  2. Geographically-Based Hydrogen Demand & Infrastructure Rollout Scenario Analysis (Presentation)

    SciTech Connect (OSTI)

    Melendez, M.

    2007-05-17T23:59:59.000Z

    This presentation by Margo Melendez at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Hydrogen Demand & Infrastructure Rollout Scenario Analysis.

  3. analysis facility infrastructure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: : Infrastructures to provide access to custom integrated hardware manufacturing facilities are important because Companies to access small volume production,...

  4. FY 2014 Scientific Infrastructure Support for Consolidated Innovative...

    Energy Savers [EERE]

    FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support...

  5. agent-based infrastructure interdependency: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Layered Network (ILN) mathematical model was developed Mitchell, John E. 47 GUIDELINES FOR M.S.E. DEGREE IN CIVIL ENGINEERING: CONCENTRATION IN INFRASTRUCTURE SYSTEMS...

  6. Safety Hazard and Risk Identification and Management In Infrastructure Management 

    E-Print Network [OSTI]

    Campbell, Jennifer Mary

    2008-01-01T23:59:59.000Z

    Infrastructure such as transportation networks improves the condition of everyday lives by facilitating public services and systems necessary for economic activity and growth. However, constructing and maintaining ...

  7. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01T23:59:59.000Z

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  8. Approved Members of the Indian Country Energy And Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    INDIAN COUNTRY ENERGY AND INFRASTRUCTURE WORKING GROUP ICEIWG APPROVED MEMBERS Blue Lake Rancheria Jana Ganion, BLR Energy Director Confederated Tribes of the Warm Springs...

  9. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect (OSTI)

    Melaina, M.; Penev, M.

    2012-09-01T23:59:59.000Z

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  10. QER Public Meeting in Washington, DC: Enhancing Energy Infrastructure...

    Energy Savers [EERE]

    the U.S. Department of Energy. Documents Available for Download Briefing Memo - Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities Meeting Summary -...

  11. Interoperable simulation gaming for strategic infrastructure systems design

    E-Print Network [OSTI]

    Grogan, Paul Thomas, 1985-

    2014-01-01T23:59:59.000Z

    Infrastructure systems are large physical networks of interrelated components which produce and distribute resources to meet societal needs. Meeting future sustainability objectives may require more complex systems with ...

  12. DOE/AMO NG Infrastructure R & D & Methane emissions Mitigation...

    Broader source: Energy.gov (indexed) [DOE]

    and Confidential to NYSEARCHNGA DOEAMO NG INFRASTRUCTURE R & D & METHANE EMISSIONS MITIGATION WORKSHOP November 2014 David Merte & Daphne D'Zurko, NYSEARCHNGA...

  13. Year-in-Review: 2012 Energy Infrastructure Events and Expansions...

    Broader source: Energy.gov (indexed) [DOE]

    in the face of both manmade and natural disasters, visit the Energy Assurance page. Year-in-Review: 2012 Energy Infrastructure Events and Expansions More Documents &...

  14. area existing infrastructure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 112 Middleware for the next generation Grid infrastructure...

  15. Controlled Hydrogen Fleet and Infrastructure Analysis (2008 Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.

    2008-06-10T23:59:59.000Z

    This presentation by Keith Wipke at the 2008 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

  16. "Insurance as a Risk Management Instrument for Energy Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Resilience in Energy Infrastructure and Addressing Vulnerabilities Large Power Transformers and the U.S. Electric Grid Report Update (April 2014) "Large Power Transformers and...

  17. Webinar: Creating a Green Infrastructure Plan to Transform Your Community

    Broader source: Energy.gov [DOE]

    Green infrastructure approaches, such as incorporating trees and rain gardens into street designs, can help communities better manage stormwater while achieving other environmental, public health,...

  18. Natural Gas Infrastructure Implications of Increased Demand from...

    Broader source: Energy.gov (indexed) [DOE]

    the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased...

  19. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Energy Savers [EERE]

    data below is from an electric vehicle charging infrastructure project run by the New York State Energy Research and Development Authority (NYSERDA). The reports describe...

  20. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    infrastructure includes the state’s natural gas-fired power generation facilities, electricinfrastructure includes the state’s natural gas-fired power generation facilities, electric

  1. Managing Critical Infrastructures C.I.M. Suite

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    protect infrastructure during natural disasters, terrorist attacks and electrical outages. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  2. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California lessonsmelainafinal.pdf More...

  3. Deadline Extended for RFI Regarding Hydrogen Infrastructure and...

    Energy Savers [EERE]

    for a robust market introduction of hydrogen supply, infrastructure, and fuel cell electric vehicles (FCEVs). This input will augment financing strategies that DOE...

  4. FROM: KYLE E. MCSLARROW SUBJEcr A Single Integrated IT Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    KYLE E. MCSLARROW SUBJEcr A Single Integrated IT Infrastructure for the Department The Department has made great progress in achieving efficiencies and economies of scale in...

  5. Quadrennial Energy Review Public Meeting #13: Energy Infrastructure...

    Energy Savers [EERE]

    Carnavos Director of Gas Supply Consolidated Edison Opportunities and Challenges for Natural Gas and Liquid Fuels Transmission, Storage and Distribution Infrastructure Good...

  6. DOE Launches Natural Gas Infrastructure R&D Program Enhancing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas...

  7. Microsoft Word - 20140415 Infrastructure Constraints in New England...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as well as decarbonizing New England's energy supply? * To what extent can electric demand-side management (DSM) reduce the need for additional infrastructure? * What are the...

  8. Potential Role of Exergy in Analysis of Hydrogen Infrastructure

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2008-01-01T23:59:59.000Z

    The objective of this paper is to demonstrate the potential role of exergy (second-law) analysis, as a complementary tool for economic assessments of hydrogen infrastructures.

  9. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.

  10. The dynamics of 'systems building' : An analysis of process mutations

    E-Print Network [OSTI]

    Paul, Rathindra Jurg

    1984-01-01T23:59:59.000Z

    This thesis investigates systems building in architecture. As the systems approach is an organized process for problem solving, the understanding of structural and functional relationships is essential. As systems building ...

  11. Building America Webinar: Saving Energy in Multifamily Buildings...

    Energy Savers [EERE]

    More Documents & Publications Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar Energy Saver Guide Building America...

  12. Optimal building-integrated photovoltaic applications

    SciTech Connect (OSTI)

    Kiss, G.; Kinkead, J. [Kiss and Co. Architects, New York, NY (United States)

    1995-11-01T23:59:59.000Z

    Photovoltaic (solar electric) modules are clean, safe and efficient devices that have long been considered a logical material for use in buildings. Recent technological advances have made PVs suitable for direct integration into building construction. PV module size, cost, appearance and reliability have advanced to the point where they can function within the architectural parameters of conventional building materials. A building essentially provides free land and structural support for a PV module, and the module in turn displaces standard building components. This report identifies the highest-value applications for PVs in buildings. These systems should be the first markets for BIPV products in the commercial buildings, and should remain an important high-end market for the foreseeable future.

  13. and Pollutant Safeguarding Buildings

    E-Print Network [OSTI]

    commercial buildings, these flows are driven primarily by the building's ventilation system, but natural2004 Airflow and Pollutant Transport Group Safeguarding Buildings Against Chemical and Biological research since 1998 to protect buildings and building occupants from threats posed by airborne chemical

  14. Building America Webinar: Building America Research Tools | Department...

    Energy Savers [EERE]

    Building America Research Tools Building America Webinar: Building America Research Tools This webinar was held on March 18, 2015, and reviewed Building America research tools,...

  15. Building America Top Innovations Hall of Fame Profile - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) Building America Top Innovations Hall of Fame Profile - Building Energy...

  16. Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings

    E-Print Network [OSTI]

    Tuna, Zeynep

    2012-01-01T23:59:59.000Z

    Post- Tensioned Concrete Buildings,” PEER Report 2011/104,RC shear walls in high-rise buildings,” The Young ResearcherExtended 3D Analysis of Building Structures, Computers and

  17. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01T23:59:59.000Z

    Ideally a robust hydrogen infrastructure would rapidlya serviceable hydrogen infrastructure that is extensiveadding hydrogen dispensing infrastructure to a gasoline

  18. Innovations in Nuclear Infrastructure and Education

    SciTech Connect (OSTI)

    John Bernard

    2010-12-13T23:59:59.000Z

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  19. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31T23:59:59.000Z

    Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

  20. Sandia National Laboratories: structural material at high pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structural material at high pressure ECIS-I2CNER: Hydrogen Infrastructure Research Aids Energy Independence Goal On February 14, 2013, in CRF, Energy, Livermore Valley Open Campus...

  1. Utility and infrastructure needs for private tank waste processing

    SciTech Connect (OSTI)

    Reynolds, B.A.

    1996-05-01T23:59:59.000Z

    This document supports the development of the Draft TWRS Privatization RFP. The document provides summaries of a wide variety of utility infrastructure and support services that are available at the Hanford Site. The needs of the privatization contractors are estimated and compared to the existing infrastructure. Recommendations are presented on the preferred and alternate routes of supplying the identifies requirements.

  2. Sustainability of Concrete forSustainability of Concrete for Infrastructure

    E-Print Network [OSTI]

    Bertini, Robert L.

    Sustainability of Concrete forSustainability of Concrete for Infrastructure Dr. Jason H. Ideker limits sustainability in concrete materials? ­ Degradation: Alkali-silica reaction ­ Environmental for infrastructure rehabilitation and rapid repair ­ Instrumentation and monitoring to track performance · Testing

  3. India Infrastructure Report 2010 Call-for-Papers

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    India Infrastructure Report 2010 Call-for-Papers We would like to invite you to contribute unpublished papers for consideration and publication in the forthcoming India Infrastructure Report (IIR) 2010, considered extremely useful by policy makers, receives wide publicity and provides an excellent forum

  4. I. INTRODUCTION Civil and critical infrastructure systems such as

    E-Print Network [OSTI]

    Oren, Shmuel S.

    infrastructure system and 1 The work reported in this paper was supported by NSF Grant ECS011930, The Power and most recently, electric power. The deregulation of these industries in the US, and around the world1 I. INTRODUCTION Civil and critical infrastructure systems such as transportation, communication

  5. Risk Assessment in Complex Interacting Infrastructure Systems D. E. Newman

    E-Print Network [OSTI]

    Dobson, Ian

    . These systems range from electric power transmission and distribution systems, through communication networks infrastructure systems to which this would be relevant include power- communication systems, power-market systemsRisk Assessment in Complex Interacting Infrastructure Systems D. E. Newman Physics Department

  6. ELECTRICITY CASE: RISK ANALYSIS OF INFRASTRUCTURE SYSTEMS-DIFFERENT

    E-Print Network [OSTI]

    Wang, Hai

    of infrastructure systems. The discussion is applied to electric power delivery systems, i.e. transmissionELECTRICITY CASE: RISK ANALYSIS OF INFRASTRUCTURE SYSTEMS-DIFFERENT APPROACHES FOR RISK ANALYSIS OF ELECTRIC POWER SYSTEMS Holmgren, A. CREATE REPORT Under FEMA Grant EMW-2004-GR-0112 May 31, 2005 Center

  7. Critical Infrastructure Integration Modeling and William J. Tolone1

    E-Print Network [OSTI]

    Raja, Anita

    of critical infrastructures, such as electrical power grids, has become a primary concern of many nation infrastructures, such as electrical power grids, has become a primary concern of many nation states in recent to a loss of power for millions of #12;businesses and homes. Moreover, failure in the electrical power

  8. 1 INTRODUCTION Critical infrastructures (CIs) like the electricity,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 INTRODUCTION Critical infrastructures (CIs) like the electricity, oil & gas supply, rail, road when electric power disruptions at various times curtailed natural gas production (first order ef and An All-Hazard Approach for the Vulnerability Analysis of Critical Infrastructures E.Zio Ecole Centrale

  9. (UR-16) Integrated Framework for Lifecycle Infrastructure Management Systems

    E-Print Network [OSTI]

    Hammad, Amin

    1 (UR-16) Integrated Framework for Lifecycle Infrastructure Management Systems Cheng Zhang1 Elaheh throughout the lifecycle of an infrastructure system, such as a bridge, including construction, inspection only limited support for representing and visualizing this information. Using a 4D product model

  10. Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel

    E-Print Network [OSTI]

    Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

  11. Seismic Engineering Research Infrastructures for European Synergies (SERIES)

    E-Print Network [OSTI]

    Seismic Engineering Research Infrastructures for European Synergies (SERIES) M.N. Fardis University of Patras, Greece SUMMARY: Through the 4-year project SERIES (Seismic Engineering Research Infrastructures of their research. It also helps them to enhance their potential, by jointly developing novel seismic testing

  12. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION, In memory of Prof. Roy Severn #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES · Project Framework · Experimental Campaign · Outcome Outline #12;SEISMIC ENGINEERING RESEARCH

  13. APS Building Monitors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Monitors For non-401 Building Monitors, select: LOMs Other APS Buildings 401 West WCtr Lab Wing ECtr East 5th Floor Yiying Ge na na na na 4th Floor Rick Fenner Karen...

  14. Building Performance Simulation

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    a future with  very low energy buildings resulting in very consumption  of  low  energy  buildings,  with  site  EUI design and operation of low energy buildings through better 

  15. Thick Buildings [Standards

    E-Print Network [OSTI]

    Coffin, Christie Johnson

    1995-01-01T23:59:59.000Z

    on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

  16. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    United States and China, Energy and Buildings, 2013. Underin Singapore. Energy and Buildings, 37, 167-174. Eom, J. ,building operations. Energy and Buildings, 33, 783–791.

  17. BUILDING PROCTOR rev. April 2014

    E-Print Network [OSTI]

    BUILDING PROCTOR MANUAL rev. April 2014 #12;Building Proctor Manual rev. April 2014 2 TABLE.........................................................................................................................................5 Role of a Building Proctor ..............................................................................................................5 Authority of Building Proctor

  18. Middleware Support for Disaster Response Infrastructure

    E-Print Network [OSTI]

    Suzuki, Jun

    local interaction of individuals with simple behaviors. · Lifecycle ­ energy gain/consumption and/or wear devises. ­ Emergency vehicles (e.g. fire truck, ambulance) carry devices. ­ Sensors sensing, providing information such as building's floor plan). ­ autonomous with simple behaviors

  19. Optimal Design of a Fossil Fuel-Based Hydrogen Infrastructure with Carbon Capture and Sequestration: Case Study in Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ni, Jason; Johnson, Joshua; Lin, Zhenhong; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    M.W. , Initiating hydrogen infrastructures: preliminaryNatural Gas Based Hydrogen Infrastructure – Optimizingof a Fossil Fuel-Based Hydrogen Infrastructure with Carbon

  20. Conceptual Design of a Fossil Hydrogen Infrastructure with Capture and Sequestration of Carbon Dioxide: Case Study in Ohio

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Natural Gas Based Hydrogen Infrastructure – OptimizingM.W. , Initiating hydrogen infrastructures: preliminaryDesign of a Fossil Hydrogen Infrastructure with Capture and