Powered by Deep Web Technologies
Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Buildings Sector Updated Buildings Sector Appliance and Equipment Costs and Efficiency August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Buildings Appliance and Equipment Costs and Efficiency i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies. June 2013 U.S. Energy Information Administration | Buildings Appliance and Equipment Costs and Efficiency 1

2

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Full report (4.1 mb) Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.3 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.1 mb) Appendix D - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.1 mb) Updated Buildings Sector Appliance and Equipment Costs and Efficiency Release date: August 7, 2013 Energy used in the residential and commercial sectors provides a wide range

3

Building Technologies Office: Appliances Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances Research to Appliances Research to someone by E-mail Share Building Technologies Office: Appliances Research on Facebook Tweet about Building Technologies Office: Appliances Research on Twitter Bookmark Building Technologies Office: Appliances Research on Google Bookmark Building Technologies Office: Appliances Research on Delicious Rank Building Technologies Office: Appliances Research on Digg Find More places to share Building Technologies Office: Appliances Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub Building Energy Modeling

4

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

5

Appliance Standards and Building Codes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Manager Presentation Program Manager Presentation Appliance Standards and Building Codes John Cymbalsky U.S Department of Energy - Building Technologies Office john.cymbalsky@ee.doe.gov 202.287.1692 2 | Building Technologies Office eere.energy.gov Appliance Standards and Building Codes Program Goals Appliance Standards Program Goals Provide cost-effective energy savings through national appliance and equipment standards: Issue 23 final rules by end of FY2015 Deliver at least 1 qBtu of savings annually by

6

Appliance Standards and Building Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Manager Presentation Appliance Standards and Building Codes John Cymbalsky U.S Department of Energy - Building Technologies Office john.cymbalsky@ee.doe.gov 202.287.1692 2...

7

Building Technologies Office: Appliance and Equipment Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Standards Result in Large Energy, Economic, and Environmental Benefits to someone by E-mail Share Building Technologies Office: Appliance and Equipment Standards Result...

8

Building Technologies Office: Appliances Research  

NLE Websites -- All DOE Office Websites (Extended Search)

team conducts research into residential and commercial appliances. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst...

9

Building Technologies Office: About the Appliance and Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Appliance and About the Appliance and Equipment Standards Program to someone by E-mail Share Building Technologies Office: About the Appliance and Equipment Standards Program on Facebook Tweet about Building Technologies Office: About the Appliance and Equipment Standards Program on Twitter Bookmark Building Technologies Office: About the Appliance and Equipment Standards Program on Google Bookmark Building Technologies Office: About the Appliance and Equipment Standards Program on Delicious Rank Building Technologies Office: About the Appliance and Equipment Standards Program on Digg Find More places to share Building Technologies Office: About the Appliance and Equipment Standards Program on AddThis.com... About History & Impacts Statutory Authorities & Rules Regulatory Processes

10

Building Technologies Program: History of Federal Appliance Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Federal History of Federal Appliance Standards to someone by E-mail Share Building Technologies Program: History of Federal Appliance Standards on Facebook Tweet about Building Technologies Program: History of Federal Appliance Standards on Twitter Bookmark Building Technologies Program: History of Federal Appliance Standards on Google Bookmark Building Technologies Program: History of Federal Appliance Standards on Delicious Rank Building Technologies Program: History of Federal Appliance Standards on Digg Find More places to share Building Technologies Program: History of Federal Appliance Standards on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links

11

Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector  

E-Print Network (OSTI)

AC03-76SF00098. REFERENCES Appliance Manufacturer Magazine.1995. "Shipments". In Appliance Manufacturer Magazine.Efficiency Standards for Appliances". Energy in Buildings,

Koomey, J.G.

2010-01-01T23:59:59.000Z

12

Buildings Sector Analysis  

SciTech Connect

A joint NREL, ORNL, and PNNL team conducted market analysis to help inform DOE/EERE's Weatherization and Intergovernmental Program planning and management decisions. This chapter presents the results of the market analysis for the Buildings sector.

Hostick, Donna J.; Nicholls, Andrew K.; McDonald, Sean C.; Hollomon, Jonathan B.

2005-08-01T23:59:59.000Z

13

Buildings Sector Analysis  

DOE Green Energy (OSTI)

A joint NREL, ORNL, and PNNL team conducted market analysis to help inform DOE/EERE's Weatherization and Intergovernmental Program planning and management decisions. This chapter presents the results of the market analysis for the Buildings sector.

Hostick, Donna J.; Nicholls, Andrew K.; McDonald, Sean C.; Hollomon, Jonathan B.

2005-08-01T23:59:59.000Z

14

Modeling diffusion of electrical appliances in the residential sector  

SciTech Connect

This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

McNeil, Michael A.; Letschert, Virginie E.

2009-11-22T23:59:59.000Z

15

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network (OSTI)

Regression Results for Appliances Refrigerator Coefficientdiffusion of electrical appliances in the residential sectorfor modeling residential appliance uptake as a function of

McNeil, Michael A.

2010-01-01T23:59:59.000Z

16

Building Technologies Office: About the Appliance and Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

the Appliance and Equipment Standards Program the Appliance and Equipment Standards Program The Department of Energy (DOE) and the Buildings Technologies Office sets minimum energy efficiency standards for approximately 50 categories of appliances and equipment used in homes, businesses, and other applications, as required by existing law. The appliances and equipment covered provide services that are used by consumers and businesses each day, such as space heating and cooling, refrigeration, cooking, clothes washing and drying, and lighting. DOE's minimum efficiency standards significantly reduce U.S. energy demand, lower emissions of greenhouse gases and other pollutants, and save consumers billions of dollars every year, without lessening the vital services provided by these products. In addition, DOE implements laws designed to limit the water consumption of several plumbing products.

17

Characterization of commercial building appliances. Final report  

SciTech Connect

This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

1993-08-01T23:59:59.000Z

18

Leveraging Standard Core Technologies to Programmatically Build Linux Cluster Appliances  

E-Print Network (OSTI)

Clusters have made the jump from lab prototypes to fullfledged production computing platforms. The number, variety, and specialized configurations of these machines are increasing dramatically with 32 – 128 node clusters being commonplace in science labs. The evolving nature of the platform is to target generic PC hardware to specialized functions such as login, compute, web server, file server, and a visualization engine. This is the logical extension to the standard login/compute dichotomy of traditional Beowulf clusters. Clearly, these specialized nodes (henceforth “cluster appliances”) share an immense amount of common configuration and software. What is lacking in many clustering toolkits is the ability to share configuration across appliances and specific hardware (where it should be shared) and differentiate only where needed. In the NPACI Rocks cluster distribution, we have developed a configuration infrastructure with well-defined inheritance properties that leverages and builds on de facto standards including: XML (with standard parsers), RedHat Kickstart, HTTP transport, CGI, SQL databases, and graph constructs to easily define cluster appliances. Our approach neither resorts to replication of configuration files nor does it require building a “golden ” image reference. By relying on this descriptive and programmatic infrastructure and carefully demarking configuration information from the software packages (which is a bit delivery mechanism), we can easily handle the heterogeneity of appliances, easily deal with small hardware differences among particular instances of appliances (such as IDE vs. SCSI), and support large hardware differences (like x86 vs. IA64) with the same infrastructure. Our mechanism is easily extended to other descriptive infrastructures (such as Solaris Jumpstart as a backend target) and has been proven on over a 100 clusters (with significant hardware and configuration differences among

Mason J. Katz; Philip M. Papadopoulos; Greg Bruno

2002-01-01T23:59:59.000Z

19

Building Energy Retrofit Research: Multifamily Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Retrofit Research: Multifamily Sector Title Building Energy Retrofit Research: Multifamily Sector Publication Type Report Year of Publication 1985 Authors Diamond,...

20

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

is no longer reported in Appliance Magazine. Appliance Magazine, A Portrait of the U.S. Appliance Industry, Sept. 2008, p. 41. Total Ink Jet Units Shipped: 6,392,177 Total...

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

Total Units Shipped: 9,310,000 1) Included in Whirpool shipments Appliance Magazine, U.S. Appliance Industry: Market Share, Life Expectancy & Replacement Market, and Saturation...

22

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network (OSTI)

Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

McNeil, Michael A.

2010-01-01T23:59:59.000Z

23

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

2% Others 4% Total 100% Source(s): Total Units Shipped: 9,085,500 Appliance Magazine, U.S. Appliance Industry: Market Share, Life Expectancy & Replacement Market, and Saturation...

24

Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector  

E-Print Network (OSTI)

to Energy Efficiency Standards for Appliances". Energy inAppliance Efficiency Standards: Cost-Effective FederalAppliance Efficiency Standards. American Council for an

Koomey, J.G.

2010-01-01T23:59:59.000Z

25

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

6 6 Other Major Appliance Efficiencies 2010 Efficiency 2005 Stock 2010 U.S. Average Best Available Residential Appliance Type Parameter (1) Efficiency New Efficiency New Efficiency Dishwashers EF 0.30 0.61 1.13 Clothes Washers (2) MEF 2.00 2.00 3.88 Clothes Dryers (electric) EF 3.01 3.10 3.16 Clothes Dryers (gas) EF 2.67 2.75 3.02 Cooktop (Gas) Cooking Efficiency 0.38 0.40 0.42 2010 1992 Efficiency Stock U.S. Average Best Available Commercial Appliance Type Parameter (1) Efficiency New Efficiency New Efficiency Cooking Equipment: Electric Appliances EF 0.74 N.A. N.A. Gas Appliances EF 0.53 N.A. N.A. Laundry Equipment: Electric Drying EF/COP N.A. N.A. 0.98 Gas Drying EF N.A. N.A. 0.36 Motors EF N.A. N.A. 0.65 Office Equipment: Linear Power Supplies EF N.A. N.A. Switching Power Supplies EF N.A. N.A. Motors EF N.A. N.A. Note(s): Source(s):

26

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

3 3 Major Appliance Ownership (Millions of Households and Percent of U.S. Households) Appliance Type Room Air Conditioners 30.2 32% 30.4 31% 26.9 26% 27.4 25% 32.7 29% Refrigerators 91.2 98% 96.8 98% 100.0 96% 104.7 96% 111.6 99% Freezers 42.4 45% 41.9 42% 42.8 41% 36.1 33% 48.5 43% Electric Ranges/Cooktops 58.4 63% 65.3 66% 69.2 66% 71.0 65% 68.8 61% Gas Ranges/Cooktops 36.1 39% 38.3 39% 39.4 38% 42.2 39% 45.1 40% Microwave Ovens 77.2 83% 89.5 91% 94.6 91% 97.2 89% 102.6 91% Clothes Washers 86.4 93% 94.3 95% 96.9 93% 90.1 83% 107.1 95% Electric Clothes Dryers 56.1 60% 60.4 61% 61.8 59% 67.6 62% 69.9 62% Gas Clothes Dryers 19.1 21% 21.1 21% 19.8 19% 20.7 19% 22.6 20% Personal Computers N.A. N.A. 43.5 44% N.A. N.A. N.A. N.A. N.A. N.A. Number of U.S. Households 94.0 98.9 107.0 108.8 112.8 Source(s): Appliance Magazine, U.S. Appliance Industry: Market Share, Life Expectancy & Replacement Market, and Saturation Levels, January 2010, p. 11; AHAM,

27

DSM Electricity Savings Potential in the Buildings Sector in...  

NLE Websites -- All DOE Office Websites (Extended Search)

DSM Electricity Savings Potential in the Buildings Sector in APP Countries Title DSM Electricity Savings Potential in the Buildings Sector in APP Countries Publication Type Report...

28

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

5 5 Major Residential and Small Commercial Appliance Lifetimes, Ages, and Replacement Picture Typical Service Average 2005 Average Lifetime Range Lifetime Stock Age Units to be Replaced Appliance Type (years) (years) (years) During 2011 (thousands) Refrigerators (1) 10 - 16 12 7.8 9,217 Freezers 8 - 16 11 11.3 2,215 Microwave Ovens 7 - 10 9 N.A. Ranges (2) Electric 12 - 19 16 N.A. 4,281 Gas 14 - 22 17 N.A. 2,854 Clothes Washers 7 - 14 11 N.A. 7,362 Clothes Dryers Electric 8 - 15 12 N.A. 5,095 Gas 8 - 15 12 N.A. 1,480 Water Heaters Electric 4 - 20 13 8.1 4,281 Gas 7 - 15 11 8.1 4,931 Room Air Conditioners 7 - 13 9 6.5 8,216 Facsimile Machines (3) 3 - 5 4 N.A. 3,133 Portable Computers (3) 2 - 4 3 N.A. Note(s): Source(s): 14,625 31,600 Lifetimes based on use by the first owner of the product, and do not necessarily indicate that the product stops working after this period. A

29

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

Gasoline and Diesel Fuel Update (EIA)

and Representation of and Representation of Miscellaneous Electric Loads in NEMS December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Analysis and Representation of Miscellaneous Electric Loads in NEMS i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies. December 2013

30

Modeling distributed generation in the buildings sectors  

Gasoline and Diesel Fuel Update (EIA)

Modeling distributed generation Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. July 2013 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors 1

31

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

Other Major Appliance Shipments, by Type (Including Exports) 1990 2000 2009 2009 Value of Shipments (4) Appliance Type (thousands) (thousands) (thousands) ($million) Room Air Conditioners 3,799 6,496 6,418 129 Ranges (total) 5,873 8,202 5,941 3,158 Electric Ranges 3,350 5,026 3,509 2,041 Gas Ranges 2,354 3,176 2,433 1,117 Microwave Ovens/Ranges 7,693 9,333 N.A. Clothes Washers 5,591 7,495 7,999 4,820 Clothes Dryers (total) 4,160 6,575 6,547 N.A. (5) Electric Dryers 3,190 5,095 5,261 N.A. Gas Dryers 970 1,480 1,286 N.A. Water Heaters (total) 7,252 9,329 9,120 2,321 Electric (1) 3,246 4,299 4,017 869 Gas and Oil (1) 4,005 5,006 5,104 1,452 Solar (2) N.A. 24 N.A. N.A. Office Equipment Personal Computers (3) N.A. Copiers N.A. 1,989 N.A. N.A. Printers N.A. 3,109 Scanners N.A. 9,400 N.A. N.A. Note(s): Source(s): 1) Includes residential and small commercial units. 2) Shipments and value of shipments of entire systems. 3) Includes workstations, laptops,

32

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

Refrigeration System Shipments, by Type (Including Exports) 1990 2000 2005 2010 Appliance Type (thousands) (thousands) (thousands) ($million) Refrigerator-Freezers (1) 7,317 9,462 9,369 (2) 5,466 Freezers (chest and upright) 1,328 2,007 2,274 1,958 N/A Refrigerated Display Cases 359 347 177 N/A N/A Unit Coolers (3) 178 207 209 N/A 205 Ice-Making Machines (4) 171 385 373 246 636 Water Cooler 253 348 N/A N/A N/A Beverage Vending Machine 229 353 N/A N/A N/A Note(s): Source(s): 2010 Value of Shipments (thousands) 10,665 1) Does not include commercial products value. 2) Standard sized refrigerator-freezers 6.5 cubic feet and over. 3) Includes heat transfer coolers (refrigeration), ceiling, wall-mounted, and floor-mounted unit coolers. 4) Includes self-contained and not self-contained ice-making machines and combination ice/drink dispensers.

33

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

7 7 Room Air Conditioner Capacities and Energy Efficiencies (Shipment-Weighted Averages) EER 1972 5.98 N.A. 1980 7.02 N.A. 1985 7.70 N.A. 1990 8.73 N.A. 1995 9.03 12.0 2000 9.30 11.7 2001 9.63 11.7 2002 9.75 11.7 2003 9.75 11.7 2004 9.71 11.7 2005 9.95 12.0 2006 10.02 12.0 2007 9.81 12.0 2008 9.93 12.0 2009 10.05 12.0 2010 10.18 12.0 Source(s): AHAM, Energy Efficiency and Consumption Trends 2010; AHAM, Efficiency and Consumption Trends 2009; AHAM, 1997 Major Appliance Industry Fact Book, Oct. 1997, Table 27, p. 32 for 1972; AHAM, AHAM 2003 Fact Book, 2003, Table 25, p. 45 for 1980-1985 average capacity and EER; AHAM, AHAM 2005 Fact Book, 2006, Table 19, p. 42 for 1990-2004 average capacity and EER; AHAM, 1994-1999 Directory of Certified Room Air Conditioners, Mar. 2000 for 1994-2000 best available; and ENERGY STAR certified products lists for 2001-2010 best available,

34

Sustainable Energy Future in China's Building Sector  

E-Print Network (OSTI)

This article investigates the potentials of energy-saving and mitigation of green-house gas (GHG) emission offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy demand and CO2 emission forecast scenarios is presented, it is found that the building sector will account for about one third of energy demand in China by 2020 and would have significant environmental implications in terms of GHG and other pollutant gases emission. Energy consumption in buildings could be reduced by 100-300 million tons of oil equivalent (mtoe) in 2030 compared to the business-as-usual (BAU) scenario, which means that 600-700 million metric tons of carbon dioxide (CO2) emissions could be saved by implementing appropriate energy policies within an adapted institutional framework. The main energy saving potentials in buildings can be achieved by improving building's thermal performance and district heating system.

Li, J.

2007-01-01T23:59:59.000Z

35

Commercial Buildings Sector Agent-Based Model | Open Energy Information  

Open Energy Info (EERE)

Commercial Buildings Sector Agent-Based Model Commercial Buildings Sector Agent-Based Model Jump to: navigation, search Tool Summary Name: Commercial Buildings Sector Agent-Based Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Buildings - Commercial Phase: Evaluate Options Topics: Implementation Resource Type: Technical report User Interface: Website Website: web.anl.gov/renewables/research/building_agent_based_model.html OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US Commercial Buildings Sector[1] Model the market-participants, dynamics, and constraints-help decide whether to adopt energy-efficient technologies to meet commercial building

36

Appliances and Commercial Equipment Standards: Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Office HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies...

37

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

38

Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technologies, State andand Renewable Energy, Office of Building Technologies, State and

Koomey, J.G.

2010-01-01T23:59:59.000Z

39

Methodology for Modeling Building Energy Performance across the Commercial Sector  

Science Conference Proceedings (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

40

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities,  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial Buildings Energy Consumption Survey (CBECS). They also provide estimates of energy consumption and intensities adjusted for the effect of weather on heating, cooling, and ventilation energy use. Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF bullet By Principal Building Activity (Table 1a) html Table 1a excel table 1a. pdf table 1a. Weather-Adjusted by Principal Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b.

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA, Consumers' Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, Apr. 2002, for water heater capacity; and American Gas Association, Gas Facts 1998, December 1999, www.aga.org for range and clothes dryer consumption. Operating Characteristics of Natural Gas Appliances in the Residential Sector

42

Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector  

E-Print Network (OSTI)

Price. 1994. Baseline Data for the Residential Sector andDevelopment of a Residential Forecasting Database. LawrenceG . Koomey. 1994. Residential HVAC Data, Assumptions and

Koomey, J.G.

2010-01-01T23:59:59.000Z

43

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network (OSTI)

http://www.eere.energy.gov/buildings/appliance_standards/buildings/ appliance_standards/commercial/distributio n_Standards for Residential Appliances: 2004 Update, LBNL-

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

44

Teaching students about two-dimensional heat transfer effects in buildings, building components, equipment, and appliances using Therm 2.0.  

E-Print Network (OSTI)

Components, Equipment, and Appliances Using THERM 2.0as products such as appliances. Although there are other

Huizenga, Charlie; Arasteh, Dariush; Finalyson, Elizabeth; Mitchell, Robin; Griffith, Brent; Curcija, Dragan

1999-01-01T23:59:59.000Z

45

Energy-Efficient Appliances: Selection and maintenance guidelines for major home appliances (Office of Building Technology, State and Community Programs (BTS) Technology Fact Sheet)  

SciTech Connect

Fact sheet for homeowners and contractors that explains the energy savings potential of efficient appliances, how to purchase them, and how to maintain them.

Southface Energy Institute; U.S. Department of Energy' s Oak Ridge National Laboratory

2001-08-15T23:59:59.000Z

46

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Characteristics of a Typical Single-Family Home (1) Year Built | Building Equipment Fuel Age (5) Occupants 3 | Space Heating Natural Gas 12 Floorspace | Water Heating Natural Gas 8 Heated Floorspace (SF) 1,934 | Space Cooling 8 Cooled Floorspace (SF) 1,495 | Garage 2-Car | Stories 1 | Appliances Size Age (5) Foundation Concrete Slab | Refrigerator 19 Cubic Feet 8 Total Rooms (2) 6 | Clothes Dryer Bedrooms 3 | Clothes Washer Other Rooms 3 | Range/Oven Full Bathroom 2 | Microwave Oven Half Bathroom 0 | Dishwasher Windows | Color Televisions 3 Area (3) 222 | Ceiling Fans 3 Number (4) 15 | Computer 2 Type Double-Pane | Printer Insulation: Well or Adequate | Note(s): Source(s): 2-Door Top and Bottom Electric Top-Loading Electric 1) This is a weighted-average house that has combined characteristics of the Nation's stock homes. Although the population of homes with

47

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and expenditures, and Table A-9, p. 97 for total energy expenditures; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. 24.30 318.35 17.06 43.87 16.19 36.64 9.37 1138.21 15.25 419.30 3.62 62.87 Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) 23.68

48

sector Renewable Energy Non renewable Energy Biomass Buildings Commercial  

Open Energy Info (EERE)

user interface valueType text user interface valueType text sector valueType text abstract valueType text website valueType text openei tool keyword valueType text openei tool uri valueType text items label Calculator user interface Spreadsheet Website sector Renewable Energy Non renewable Energy Biomass Buildings Commercial Buildings Residential Economic Development Gateway Geothermal Greenhouse Gas Multi model Integration Multi sector Impact Evaluation Gateway Solar Wind energy website https www gov uk pathways analysis openei tool keyword calculator greenhouse gas emissions GHG low carbon energy planning energy data emissions data openei tool uri http calculator tool decc gov uk pathways primary energy chart uri http en openei org w index php title Calculator type Tools label AGI

49

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 Building Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Residential Buildings Commercial Buildings Building Electricity Natural Gas Petroleum (1) Avg. Electricity Natural Gas Petroleum (2) Avg. Avg. (3) 1980 36.40 8.35 16.77 17.64 37.22 7.70 13.06 18.52 17.99 1981 38.50 8.88 18.35 19.09 39.06 8.29 14.78 20.56 19.68 1982 40.15 10.08 17.28 19.98 40.15 9.40 13.28 21.21 20.48 1983 40.43 11.30 16.08 21.00 39.51 10.43 12.53 21.55 21.23 1984 38.80 11.02 15.61 20.20 38.68 10.00 12.04 21.14 20.58 1985 38.92 10.68 14.61 20.10 38.29 9.60 11.68 21.41 20.63 1986 38.24 9.98 11.88 19.38 37.09 8.69 7.85 20.17 19.70 1987 37.29 9.22 11.23 18.73 34.93 7.93 8.16 19.14 18.90 1988 36.22 8.80 10.83 18.02 33.60 7.45 7.47 18.24 18.11 1989 35.67 8.71 11.96 17.93 33.06 7.34 8.13 18.29 18.07 1990 35.19 8.63 13.27 18.64 32.49 7.20 9.31 18.62 18.63 1991 34.88 8.38 12.49 18.31

50

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Residential Buildings Commercial Buildings Total Building Electricity Natural Gas Petroleum (2) Total Electricity Natural Gas Petroleum (3) Total Expenditures 1980 89.1 40.5 28.9 158.5 70.9 20.5 17.2 108.6 267.2 1981 94.9 41.3 27.8 164.0 79.4 21.4 16.5 117.3 281.3 1982 99.9 47.9 24.5 172.3 83.4 25.1 13.7 122.2 294.5 1983 103.6 51.0 21.4 176.1 83.6 26.1 14.6 124.3 300.4 1984 103.3 51.6 23.6 178.5 87.6 25.9 14.7 128.2 306.7 1985 105.4 48.8 22.6 176.8 90.0 24.0 12.6 126.6 303.4 1986 106.9 44.2 18.1 169.2 90.5 20.7 9.1 120.2 289.4 1987 108.2 40.9 18.0 167.1 88.7 19.8 9.2 117.7 284.7 1988 110.3 41.8 18.0 170.1 89.9 20.4 8.2 118.5 288.7 1989 110.2 42.9 19.7 172.8 91.5 20.5 8.4 120.4 293.2 1990 110.9 39.0 18.2 168.2 92.9 19.4 9.2 121.5 289.7 1991 113.7 39.2 17.0 169.9 93.9 19.5 7.7 121.1 291.0

51

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example, a third of the large office buildings constructed today will survive 92 years later. EIA, Assumptions for the Annual Energy Outlook 2011, July 2011, Table 5.2, p. 40; EIA, Model Documentation Report: Commercial Sector 'Demand Module of the National Energy Modeling System, May 2010, p. 30-35; and PNNL, Memorandum: New Construction in the Annual Energy Outlook 2003, Apr. 24,

52

U.S. Building-Sector Energy Efficiency Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Sector Energy Efficiency Potential Building-Sector Energy Efficiency Potential Title U.S. Building-Sector Energy Efficiency Potential Publication Type Journal Article LBNL Report Number LBNL-1096E Year of Publication 2008 Authors Brown, Richard E., Sam Borgeson, Jonathan G. Koomey, and Peter J. Biermayer Date Published 09/2008 Publisher Lawrence Berkeley National Laboratory ISBN Number LBNL-1096E Abstract This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 ¢/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu (2.4 to 6.6 $/GJ). This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

53

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 63.4 13.0 1.6 7.7 0.8 23.1 0.2 20.6 107.2 20.9% Water Heating 23.8 2.2 1.2 3.4 35.8 63.0 12.3% Space Cooling 0.4 55.7 56.1 10.9% Lighting 47.8 47.8 9.3% Electronics (4) 27.2 27.2 5.3% Refrigeration (5) 27.0 27.0 5.3% Computers 14.8 14.8 2.9% Cooking 5.8 0.8 0.8 5.4 12.1 2.3% Wet Clean (6) 0.9 10.4 11.3 2.2% Ventilation (7) 2.4 2.4 0.5% Other (8) 9.3 0.4 12.6 2.0 15.0 88.8 113.2 22.0% Adjust to SEDS (9) 4.6 5.3 5.3 21.7 31.6 6.2% Total 108.2 21.0 1.6 22.3 2.8 47.6 0.2 357.8 513.8 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.8 billion) and motor gasoline other uses ($2.0 billion). 3) Includes furnace fans ($4.8 billion). 4) Includes color televisions ($14.2 billion). 5) Includes refrigerators ($24.1 billion) and freezers ($3.0

54

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 53.7 14.2 0.9 8.0 0.6 23.7 0.1 23.2 100.8 23.4% Space Cooling 0.4 61.3 61.7 14.3% Lighting 59.3 59.3 13.8% Water Heating 18.3 2.6 2.0 4.6 17.8 40.7 9.4% Refrigeration (4) 26.9 26.9 6.2% Electronics (5) 26.1 26.1 6.1% Ventilation (6) 15.9 15.9 3.7% Cooking 4.0 0.8 0.8 8.8 13.6 3.2% Computers 12.1 12.1 2.8% Wet Cleaning (7) 0.6 11.0 11.6 2.7% Other (8) 2.7 0.3 7.7 1.2 9.2 27.3 39.2 9.1% Adjust to SEDS (9) 6.2 5.2 5.2 11.9 23.4 5.4% Total 86.0 22.3 0.9 18.5 1.8 43.5 0.1 301.6 431.2 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.6 billion) and motor gasoline other uses ($1.2 billion). 3) Includes furnace fans ($4.5 billion). 4) Includes refrigerators ($24.1 billion) and freezers ($2.8 billion). 5) Includes color televisions ($11.0

55

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (3) 49.5 15.9 1.3 8.1 0.7 25.9 0.2 18.7 94.3 22.7% Space Cooling 0.3 48.0 48.3 11.6% Lighting 45.9 45.9 11.0% Water Heating 17.6 2.6 1.5 4.1 18.3 40.0 9.6% Refrigeration (4) 24.9 24.9 6.0% Electronics (5) 19.8 19.8 4.7% Ventilation (6) 15.1 15.1 3.6% Computers 11.6 11.6 2.8% Wet Cleaning (7) 0.6 10.8 11.4 2.7% Cooking 3.9 0.9 0.9 4.4 9.1 2.2% Other (8) 2.9 0.3 8.9 1.4 10.6 54.1 67.6 16.3% Adjust to SEDS (9) 5.8 4.5 4.5 17.7 28.1 6.7% Total 80.6 23.3 1.3 19.4 2.1 46.1 0.2 289.3 416.2 100% Note(s): Source(s): Petroleum Electricity 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.4 billion). 3) Includes furnace fans ($4.6 billion). 4) Includes refrigerators ($22.6 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9

56

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 56.7 14.3 1.5 7.8 0.7 24.3 0.2 19.5 100.7 22.0% Space Cooling 0.3 50.5 50.9 11.1% Lighting 45.2 45.2 9.9% Water Heating 21.3 2.3 1.3 3.6 19.6 44.4 9.7% Refrigeration (4) 24.9 24.9 5.4% Electronics (5) 23.2 23.2 5.1% Computers 13.2 13.2 2.9% Wet Clean (6) 0.8 9.8 10.5 2.3% Cooking 4.8 0.8 0.8 4.9 10.5 2.3% Ventilation (7) 16.6 16.6 3.6% Other (8) 4.8 0.4 10.6 1.7 12.7 69.8 87.4 19.1% Adjust to SEDS (9) 5.9 4.9 4.9 19.2 30.0 6.6% Total 94.6 21.9 1.5 20.6 2.5 46.4 0.2 316.3 457.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.7 billion). 3) Includes furnace fans ($4.7 billion). 4) Includes refrigerators ($22.3 billion) and freezers ($2.6 billion). 5) Includes color televisions ($12.0

57

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

58

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Building Energy Prices, by Year and Fuel Type ($2010) (cents/therm) (cents/gal) ($/gal) 1980 12.42 83.51 1.53 2.24 12.70 77.01 1.43 2.05 1981 13.14 88.83 1.47 2.51 13.33 82.90 1.63 2.32 1982 13.70 100.83 1.54 2.30 13.70 93.95 1.40 2.11 1983 13.79 113.04 1.51 2.14 13.48 104.33 1.30 1.75 1984 13.24 110.16 1.46 2.10 13.20 100.01 1.37 1.68 1985 13.28 106.80 1.37 1.96 13.06 95.96 1.21 1.56 1986 13.05 99.76 1.25 1.54 12.66 86.86 0.71 1.01 1987 12.72 92.16 1.22 1.42 11.92 79.32 0.79 1.05 1988 12.36 87.96 1.15 1.39 11.46 74.52 0.62 0.95 1989 12.17 87.08 1.39 1.48 11.28 73.39 0.70 1.07 1990 12.01 86.28 1.40 1.69 11.08 72.04 0.78 1.26 1991 11.90 83.77 1.34 1.56 10.97 69.49 0.58 1.11 1992 11.87 82.80 1.24 1.40 10.93 68.64 0.58 1.01 1993 11.78 84.73 1.19 1.33 10.81 71.91 0.58 0.96 1994 11.62 86.30 1.25 1.27 10.57 74.09 0.60 0.90 1995 11.41 79.96 1.22 1.22 10.32 66.99 0.64 0.88 1996 11.13 82.07 1.36 1.37

59

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

60

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network (OSTI)

test procedures for appliances. ” Energy and BuildingsEnergy Efficiency In Domestic Appliances And Lighting 4thLBNL # How to Make Appliance Standards Work: Improving

Lutz, Jim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards  

E-Print Network (OSTI)

buildings/ appliance_standards/pdfs/fy05_priority_setting_standards for residential appliances. Energy 28: 2003, pp.Department of Energy, Appliances and Commercial Equipment

Garbesi, Karina

2011-01-01T23:59:59.000Z

62

Solid-State Lighting: LED Site Lighting in the Commercial Building Sector:  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Lighting in the Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification to someone by E-mail Share Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Facebook Tweet about Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Twitter Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Google Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Delicious

63

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

West National Space Heating 1,050 721 371 352 575 Air-Conditioning 199 175 456 262 311 Water Heating 373 294 313 318 320 Refrigerators 194 145 146 154 157 Other Appliances and...

64

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 Cost of a Generic Quad Used in the Residential Sector ($2010 Billion) (1) Residential 1980 10.45 1981 11.20 1982 11.58 1983 11.85 1984 11.65 1985 11.43 1986 10.90 1987 10.55 1988 10.18 1989 9.98 1990 10.12 1991 9.94 1992 9.78 1993 9.77 1994 9.78 1995 9.44 1996 9.44 1997 9.59 1998 9.23 1999 8.97 2000 9.57 2001 10.24 2002 9.33 2003 10.00 2004 10.32 2005 11.10 2006 11.60 2007 11.61 2008 12.29 2009 11.65 2010 9.98 2011 9.99 2012 9.87 2013 9.77 2014 9.76 2015 9.88 2016 9.85 2017 9.83 2018 9.86 2019 9.88 2020 9.91 2021 10.00 2022 10.09 2023 10.11 2024 10.12 2025 10.09 2026 10.10 2027 10.13 2028 10.11 2029 10.06 2030 10.06 2031 10.13 2032 10.23 2033 10.34 2034 10.45 2035 10.57 Note(s): 1) See Table 1.5.1 for generic quad definition. This table provides the consumer cost of a generic quad in the buildings sector. Use this table to estimate the average consumer cost savings resulting from the savings of a generic (primary) quad in the buildings sector. 2) Price of

65

Introduction to the Buildings Sector Module of SEDS  

SciTech Connect

SEDS is a stochastic engineering-economics model that forecasts economy-wide energy consumption in the U.S. to 2050. It is the product of multi-laboratory collaboration among the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), Lawrence Berkeley National Laboratory (LBNL), and Lumina Decision Systems. Among national energy models, SEDS is unique, as it is the only model written to explicitly incorporate uncertainty in its inputs and outputs. The primary purpose of SEDS is to estimate the impact of various US Department of Energy (DOE)R&D and policy programs on the performance and subsequent adoption rates of technologies relating to every energy consuming sector of the economy (shown below). It has previously been used to assist DOE in complying with the Government Performance and Results Act of 1993 (GPRA). The focus of LBNL research has been exclusively on develop the buildings model (SBEAM), which is capable of running as a stand-alone forecasting model, or as a part of SEDS as a whole. The full version of SEDS, containing all sectors and interaction is also called the 'integrated' version and is managed by NREL. Forecasts from SEDS are often compared to those coming from National Energy Modeling System (NEMS). The intention of this document is to present new users and developers with a general description of the purpose, functionality and structure of the buildings module within the Stochastic Energy Deployment System (SEDS). The Buildings module, which is capable of running as a standalone model, is also called the Stochastic Buildings Energy and Adoption Model (SBEAM). This document will focus exclusively on SBEAM and its interaction with other major sector modules present within SEDS. The methodologies and major assumptions employed in SBEAM will also be discussed. The organization of this report will parallel the organization of the model itself, being divided into major submodules. As the description progresses, the nature of modules will change from broad, easily understood concepts to lower-level data manipulation. Because SBEAM contains dozens of submodules and hundreds of variables, it would not be relevant or useful to describe each and every one. Rather, the investigation will focus more generally on the operations performed throughout the model. This manual is by no means a complete description of SBEAM; however it should provide the foundation for an introductory understanding of the model. The manual assumes a basic level of understating of Analytica{reg_sign}, the platform on which SEDS and SBEAM have been developed.

DeForest, Nicholas; Bonnet, Florence; Stadler, Michael; Marnay, Chris

2010-12-31T23:59:59.000Z

66

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

67

Introduction to the Buildings Sector Module of SEDS  

E-Print Network (OSTI)

Ma. CBECS, Commercial Building Energy Consumption Survey,R. , and Lai, J. – A Buildings Module for the Stochasticon Energy Efficiency in Buildings, August 17 – 22, 2008,

DeForest, Nicholas

2011-01-01T23:59:59.000Z

68

Commercial Buildings Communications protocols  

Science Conference Proceedings (OSTI)

There are many automation and control protocols in use in commercial building and residential sectors today. For both commercial building and residential sectors there are several thousand manufacturers throughout the world that supply end-use electrical appliances and other building fixtures that communicate using these automation and control protocols. Some of these protocols are based on open standards (for example, BACnet, DALI) while others are semi-proprietary (for example, Zigbee, LonWorks, Modbus...

2008-05-15T23:59:59.000Z

69

City of San Jose - Private Sector Green Building Policy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jose - Private Sector Green Building Policy Jose - Private Sector Green Building Policy City of San Jose - Private Sector Green Building Policy < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Building Energy Code Provider City of San Jose In October 2008, the City of San Jose enacted the Private Sector Green Building Policy (Policy No. 6-32). The policy was adopted in Ordinance No. 28622 in June, 2009. All new buildings must meet certain green building requirements in order to receive a building permit. Requirements are dependent on the size and type of the project. * Tier 1 Commercial Projects include commercial industrial projects

70

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

3.3 Commercial Sector Expenditures 3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2 16.7 198.9 147.5 36.8 16.9 201.2 143.8 35.1 16.4 195.2 145.0 35.5 16.6 197.0 141.1 34.0 16.0 191.1 142.5 34.6 16.2 193.3 136.9 32.1 15.7 184.8 139.1 33.0 15.9 188.0 133.5 31.0 15.4 179.9 135.0 31.6 15.6 182.2 131.0 29.7 15.1 175.8 131.9 30.3 15.3 177.5 128.1 28.7 14.5 171.3 130.0 29.3 15.0 174.4 129.4 29.7 15.4 174.5 127.7 29.2 13.8 170.7 134.8 29.9 14.5 179.2 134.5 28.5 16.9 180.0 141.1

71

U.S. Building-Sector Energy Efficiency Potential  

Science Conference Proceedings (OSTI)

This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

2008-09-30T23:59:59.000Z

72

What`s new in codes and standards - Office of Building Technologies (OBT): Appliance and lighting standards  

SciTech Connect

US homeowners spend $110 billion each year to power such home appliances as refrigerators, freezers, water heaters, furnaces, air conditioners, and lights. These uses account for about 70% of all the primary energy consumed in homes. During its typical 10-15-year lifetime, the appliance`s operating costs may exceed its initial purchase price several times over. Nevertheless, many consumers do not consider energy efficiency when making purchases. And manufacturers are reluctant to invest in more efficient technology that may not be accepted in the highly competitive marketplace. Recognizing the great potential for energy savings, many states began prescribing minimum energy efficiencies for appliances. Anticipating the burden of complying with differing state standards, manufacturers supported developing federal standards that would preempt state standards.

1995-09-01T23:59:59.000Z

73

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book (EERE)

1 Buildings Sector Water Consumption 1 Buildings Sector Water Consumption March 2012 8.1.2 Average Energy Intensity of Public Water Supplies by Location (kWh per Million Gallons) Location United States (2) 627 437 1,363 United States (3) 65 (6) 1,649 Northern California Indoor 111 1,272 1,911 Northern California Outdoor 111 1,272 0 Southern California Indoor (5) 111 1,272 1,911 Southern California Outdoor 111 1,272 0 Iowa (6) 380 1,570 Massachusetts (6) (6) 1,750 Wisconsin Class AB (4) - - Wisconsin Class C (4) - - Wisconsin Class D (4) - - Wisconsin Total (4) - - Note(s): Source(s): 836 3,263 Sourcing Treatment (1) Distribution Wastewater Total 2,230 2,295 2,117 5,411 2,117 3,500 - not included 1,850 9,727 13,021 9,727 11,110 2390 4,340 1,500 3,250 - not included 1,510 1) Treatment before delivery to customer. 2) Source: Electric Policy Research Institute (EPRI) 2009. Wastewater estimated based on EPRI

74

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book (EERE)

1 1 Total Use of Water by Buildings (Million Gallons per Day) (1) Year 1985 1990 1995 2000 (2) 2005 (3) Note(s): Source(s): 1) Includes water from the public supply and self-supplied sources (e.g., wells) for residential and commercial sectors. 2) USGS did not estimate water use in the commercial and residential sectors for 2000. Estimates are based on available data and 1995 splits between domestic and commercial use. 3) USGS did not estimate commercial sector use for 2005. Estimated based on available data and commercial percentage in 1995. U.S. Geological Survey, Estimated Use of Water in the U.S. in 1985, U.S. Geological Survey Circular 1004, 1988; U.S. Geological Survey, Estimated Use of Water in the U.S. in 1990, U.S. Geological Survey Circular 1081, 1993; U.S. Geological Survey, Estimated Use of Water in the U.S. in 1995, U.S. Geological

75

EIA Energy Efficiency-Commercial Buildings Sector Energy ...  

U.S. Energy Information Administration (EIA)

These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial ...

76

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

6% 25% South 5% 18% 14% 37% West 3% 9% 5% 18% 100% Source(s): EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A2, p. 3-4...

77

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

that are larger than 100,000 square feet. EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A1, p. 1-2. 2,586 948 810...

78

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

to 2003 9% Total 100% Source(s): Percent of Total Floorspace EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A1, p. 1-...

79

Energy Efficiency Report-Chapter 4: Commercial Buildings Sector  

U.S. Energy Information Administration (EIA)

Commercial Buildings Energy Consumption Survey (CBECS) The CBECS ... water heating, refrigeration, powering office equipment, and other uses.

80

DSM Electricity Savings Potential in the Buildings Sector in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Simulation Tools Sustainable Federal Operations Windows and Daylighting Electricity Grid Demand Response Distributed Energy Electricity Reliability Energy Analysis...

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES  

E-Print Network (OSTI)

: Small Commercial, Residential Author: Haider Taha VII. Solar Domestic Water Heaters........................................................................... 59 End-Use: Water Heating Sector: Residential Author: Jim Lutz VIII. Heat Pump Water Heaters ................................................................................. 63 End-Use: Water Heating Sector: Residential Author: Jim Lutz IX. Energy-Efficient Motors

82

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Table C4; and EIA, Annual Energy Review 2010, Aug. 2011, Appendix D, p. 353 for price deflators...

83

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

2 2 Principal Commercial Building Types, as of 2003 (Percent of Total Floorspace) (1) Office 17% 17% 19% Mercantile 16% 14% 18% Retail 6% 9% 5% Enclosed & Strip Malls 10% 4% 13% Education 14% 8% 11% Warehouse and Storage 14% 12% 7% Lodging 7% 3% 7% Service 6% 13% 4% Public Assembly 5% 6% 5% Religious Worship 5% 8% 2% Health Care 4% 3% 8% Inpatient 3% 0% 6% Outpatient 2% 2% 2% Food Sales 2% 5% 5% Food Service 2% 6% 6% Public Order and Safety 2% 1% 2% Other 2% 2% 4% Vacant 4% 4% 1% Total 100% 100% 100% Note(s): Source(s): Total Floorspace Total Buildings Primary Energy Consumption 1) For primary energy intensities by building type, see Table 3.1.13. Total CBECS 2003 commercial building floorspace is 71.7 billion SF. EIA, 2003 Commercial Buildings Energy Consumption Survey: Consumption and Expenditures Tables, Oct. 2006, Table C1A

84

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Commercial Floorspace and Number of Buildings, by Year 1980 50.9 (1) N.A. 3.1 (3) 1990 64.3 N.A. 4.5 (3) 2000 (4) 68.5 N.A. 4.7 (5) 2008 78.8 15% N.A. 2010 81.1 26% N.A. 2015 84.1 34% N.A. 2020 89.2 43% N.A. 2025 93.9 52% N.A. 2030 98.2 60% N.A. 2035 103.0 68% N.A. Note(s): Source(s): EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127-128 for 2000 floorspace; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A5, p. 11-12 for 2008-2035 floorspace; EIA Commercial Building Characteristics 1989, June 1991, Table A4, p. 17 for 1990 number of buildings; EIA, Commercial Building Characteristics 1999, Aug. 2002, Table 3 for 1999 number of buildings and floorspace; and EIA, Buildings and Energy in the 1980s, June 1995, Table 2.1, p. 23 for number of buildings in 1980.

85

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

to Nine 16% Unoccupied 3% Ten or More 8% Government Owned 24% Total 100% Federal 3% State 5% Local 15% Total 100% Source(s): EIA, Commercial Building Characteristics 2003, June...

86

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

4 2003 U.S. Private Investment into Construction R&D Sector Average Construction R&D (1) 1.2 Building Technology Heavy Construction 2.0 Appliances 2.0 Special Trade Construction...

87

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table 4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. Per Square Foot Per Building

88

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

8 8 2003 Average Commercial Building Floorspace, by Principal Building Type and Vintage Building Type 1959 or Prior 1960 to 1989 1990 to 2003 All Education 27.5 26.9 21.7 25.6 Food Sales N.A. N.A. N.A. 5.6 Food Service 6.4 4.4 5.0 5.6 Health Care 18.5 37.1 N.A. 24.5 Inpatient N.A. 243.6 N.A. 238.1 Outpatient N.A. 11.3 11.6 10.4 Lodging 9.9 36.1 36.0 35.9 Retail (Other Than Mall) 6.2 9.3 17.5 9.7 Office 12.4 16.4 14.2 14.8 Public Assembly 13.0 13.8 17.3 14.2 Public Order and Safety N.A. N.A. N.A. 15.4 Religious Worship 8.7 9.6 15.6 10.1 Service 6.1 6.5 6.8 6.5 Warehouse and Storage 19.7 17.2 15.4 16.9 Other N.A. N.A. N.A. 22.0 Vacant N.A. N.A. N.A. 14.1 Source(s): Average Floorspace/Building (thousand SF) EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, June 2006, Table B8, p. 63-69, and Table B9, p. 70-76

89

Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector  

SciTech Connect

This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2007-12-01T23:59:59.000Z

90

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network (OSTI)

G. Koomey. 1994. Residential Appliance Data, Assumptions andunits) Table A 3 : Number of Appliances in Existing Homes (sector, including appliances and heating, ventilation, and

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

91

Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector October 19, 2011 - 1:10pm Addthis An insulation worker installs argon-filled panels behind the radiators in the LEED Gold-rated New York Power Authority building in White Plains. The unique construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. | Photo courtesy of FiFoil, Inc. An insulation worker installs argon-filled panels behind the radiators in the LEED Gold-rated New York Power Authority building in White Plains. The unique construction of the gas-filled panels developed at the Lawrence

92

Appliances and Commercial Equipment Standards: Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Office HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Office » Appliances & Equipment Standards About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Guidance and Frequently Asked Questions This webpage is designed to provide guidance and answer Frequently Asked Questions (FAQs) on the U.S. Department of Energy's appliance standards program. Guidance types span all covered products and covered equipment and cover such topics as: definitions, scope of coverage, conservation standards, test procedures, certification, Compliance and Certification Management System (CCMS), and enforcement. This website offers users an

93

Electricity-use Feedback in the Commercial Sector: Examining the Potential for Building Occupant Behavior Change  

Science Conference Proceedings (OSTI)

Feedback technologies to encourage behavior change have been explored in the residential sector for the past three decades, but the savings potential of using feedback strategies in the commercial sector, which represents over one quarter of US electricity sales, has yet to be adequately explored. Although a number of building load control technologies that include some form of feedback provision have existed for some years, they generally target technical staff. The focus of this report is to understand...

2010-12-13T23:59:59.000Z

94

Energy Data Sourcebook for the U.S. Residential Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Sourcebook for the U.S. Residential Sector Data Sourcebook for the U.S. Residential Sector Title Energy Data Sourcebook for the U.S. Residential Sector Publication Type Report LBNL Report Number LBNL-40297 Year of Publication 1997 Authors Wenzel, Thomas P., Jonathan G. Koomey, Gregory J. Rosenquist, Marla C. Sanchez, and James W. Hanford Date Published 09/1997 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA ISBN Number LBNL-40297, UC-1600 Keywords Enduse, Energy End-Use Forecasting, EUF Abstract Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment; historical and current appliance and equipment market shares; appliance and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl.gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

95

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Number of Households and Buildings, Floorspace, and Household Size, by Year 1980 80 N.A. 227 2.9 1981 83 N.A. 229 2.8 1982 84 N.A. 232 2.8 1983 85 N.A. 234 2.8 1984 86 N.A. 236 2.7 1985 88 N.A. 238 2.7 1986 89 N.A. 240 2.7 1987 91 N.A. 242 2.7 1988 92 N.A. 244 2.7 1989 93 N.A. 247 2.6 1990 94 N.A. 250 2.6 1991 95 N.A. 253 2.7 1992 96 N.A. 257 2.7 1993 98 N.A. 260 2.7 1994 99 N.A. 263 2.7 1995 100 N.A. 266 2.7 1996 101 N.A. 269 2.7 1997 102 N.A. 273 2.7 1998 104 N.A. 276 2.7 1999 105 N.A. 279 2.7 2000 106 N.A. 282 2.7 2001 107 2% 285 2.7 2002 105 3% 288 2.7 2003 106 5% 290 2.8 2004 107 7% 293 2.7 2005 109 9% 296 2.7 2006 110 11% 299 2.7 2007 110 12% 302 2.7 2008 111 13% 304 2.8 2009 111 13% 307 2.8 2010 114 14% 310 2.7 2011 115 14% 313 2.7 2012 116 15% 316 2.7 2013 117 16% 319 2.7 2014 118 17% 322 2.7 2015 119 18% 326 2.7 2016 120 19% 329 2.7 2017 122 21% 332 2.7 2018 123 22% 335 2.7 2019 125 23% 338 2.7 2020 126 25% 341 2.7 2021 127 26% 345

96

Appliance/Equipment Efficiency Standards | Open Energy Information  

Open Energy Info (EERE)

Appliance/Equipment Efficiency Standards Appliance/Equipment Efficiency Standards Jump to: navigation, search Many states have established minimum efficiency standards for certain appliances and equipment. In these states, the retail sale of appliances and equipment that do not meet the established standards is prohibited. The federal government has also established efficiency standards for certain appliances and equipment. When both the federal government and a state have adopted efficiency standards for the same type of appliance or equipment, the federal standard overrides the state standard even if the state standard is stricter. [1] Appliance/Equipment Efficiency Standards Incentives CSV (rows 1 - 14) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Appliance Efficiency Regulations (California) Appliance/Equipment Efficiency Standards California Yes

97

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network (OSTI)

appliance_standards/residential/heating_p roducts_fr_appliance_standards/residential/cac_heatp umps_new_buildings/appliance_standards/residential/fb_tsd_09 07.html

Letschert, Virginie

2010-01-01T23:59:59.000Z

98

Generating Remote Control Interfaces for Complex Appliances  

E-Print Network (OSTI)

The personal universal controller (PUC) is an approach for improving the interfaces to complex appliances by introducing an intermediary graphical or speech interface. A PUC engages in two-way communication with everyday appliances, first downloading a specification of the appliance's functions, and then automatically creating an interface for controlling that appliance. The specification of each appliance includes a high-level description of every function, a hierarchical grouping of those functions, and dependency information, which relates the availability of each function to the appliance's state. Dependency information makes it easier for designers to create specifications and helps the automatic interface generators produce a higher quality result. We describe the architecture that supports the PUC, and the interface generators that use our specification language to build high-quality graphical and speech interfaces.

Jeffrey Nichols; Brad A. Myers; Michael Higgins; Joseph Hughes; Thomas K. Harris; Roni Rosenfeld; Mathilde Pignol

2002-01-01T23:59:59.000Z

99

Entrepreneurial Strategies and New Forms of Rationalisation of Production in the Building Construction Sector of Brazil and France  

E-Print Network (OSTI)

Construction Sector of Brazil and France Proceedings IGLC-7 369 ENTREPRENEURIAL STRATEGIES AND NEW FORMS OF RATIONALISATION OF PRODUCTION IN THE BUILDING CONSTRUCTION SECTOR OF BRAZIL AND FRANCE Francisco F. Cardoso1 in France and Brazil, in the light of strategies of the building construction firms. The above mentioned

Tommelein, Iris D.

100

Simplified Building Energy Model (SBEM): A Tool to Analyse Building...  

Open Energy Info (EERE)

list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes,...

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Controller Design of Power Quality-Improving Appliances  

SciTech Connect

This paper presents an innovative solution to power quality problems -- using power quality improving (PQI) appliances to reduce harmonic currents and improve the power factor in buildings.

Hammerstrom, Donald J.; Zhou, Ning; Lu, Ning

2007-01-01T23:59:59.000Z

102

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

government agency directed to implement energy efficiency policy,government to develop national standards for 13 residential household appliances in 1978 under the National Energy Policy

McNeil, MIchael

2011-01-01T23:59:59.000Z

103

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

0 0 Buildings Share of U.S. Natural Gas Consumption (Percent) Total Buildings Industry Electric Gen. Transportation Buildings Industry Transportation 1980 37% 41% 19% 3% | 48% 49% 3% 20.22 1981 36% 42% 19% 3% | 48% 49% 3% 19.74 1982 40% 39% 18% 3% | 51% 45% 3% 18.36 1983 40% 39% 17% 3% | 51% 46% 3% 17.20 1984 39% 40% 17% 3% | 50% 47% 3% 18.38 1985 39% 40% 18% 3% | 51% 46% 3% 17.70 1986 41% 40% 16% 3% | 51% 46% 3% 16.59 1987 39% 41% 17% 3% | 50% 47% 3% 17.63 1988 40% 42% 15% 3% | 50% 47% 3% 18.44 1989 39% 41% 16% 3% | 50% 47% 3% 19.56 1990 36% 43% 17% 3% | 47% 49% 4% 19.57 1991 37% 43% 17% 3% | 48% 49% 3% 20.03 1992 37% 43% 17% 3% | 48% 49% 3% 20.71 1993 38% 43% 17% 3% | 48% 48% 3% 21.24 1994 36% 42% 18% 3% | 48% 48% 3% 21.75 1995 35% 42% 19% 3% | 48% 49% 3% 22.71 1996 37% 43% 17% 3% | 48% 49% 3% 23.14 1997 36% 43% 18% 3% | 48% 49% 3% 23.34 1998 34% 43% 20% 3% | 47% 50% 3% 22.86 1999 35% 41% 21% 3% | 49% 48% 3% 22.88 2000 35% 40% 22% 3% | 50% 47% 3% 23.66 2001

104

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

1 1 Buildings Share of U.S. Petroleum Consumption (Percent) U.S. Petroleum Site Consumption Primary Consumption Total Buildings Industry Electric Gen. Transportation Buildings Industry Transportation (quads) 1980 9% 28% 8% 56% | 14% 31% 56% 34.2 1981 8% 26% 7% 59% | 12% 29% 59% 31.9 1982 8% 26% 5% 61% | 11% 28% 61% 30.2 1983 8% 25% 5% 62% | 12% 27% 62% 30.1 1984 9% 26% 4% 61% | 11% 27% 61% 31.1 1985 8% 25% 4% 63% | 11% 26% 63% 30.9 1986 8% 24% 5% 63% | 11% 26% 63% 32.2 1987 8% 25% 4% 63% | 11% 26% 63% 32.9 1988 8% 24% 5% 63% | 11% 26% 63% 34.2 1989 8% 24% 5% 63% | 11% 25% 63% 34.2 1990 7% 25% 4% 64% | 10% 26% 64% 33.6 1991 7% 24% 4% 65% | 9% 26% 65% 32.8 1992 7% 26% 3% 65% | 9% 27% 65% 33.5 1993 7% 25% 3% 65% | 9% 26% 65% 33.8 1994 6% 25% 3% 65% | 8% 26% 65% 34.7 1995 6% 25% 2% 67% | 8% 26% 67% 34.6 1996 6% 25% 2% 66% | 8% 26% 66% 35.8 1997 6% 26% 3% 66% | 8% 26% 66% 36.3 1998 5% 25% 4% 66% | 8% 26% 66% 36.9 1999 6% 25% 3% 66% | 8% 26% 66% 38.0 2000 6% 24%

105

The composition of a quad of buildings sector energy: Physical, economic, and environmental quantities  

SciTech Connect

In an analysis conducted for the US Department of Energy Office of Building Technologies (OBT), the Pacific Northwest Laboratory examined the fuel type composition of energy consumed in the US buildings sector. Numerical estimates were developed for the physical quantities of fuel consumed, as well as of the fossil fuel emissions (carbon dioxide, sulfur dioxide, nitrogen oxides) and nuclear spent fuel byproducts associated with that consumption. Electric generating requirements and the economic values associated with energy consumption also were quantified. These variables were quantified for a generic quad (1 quadrillion Btu) of primary energy for the years 1987 and 2010, to illustrate the impacts of a fuel-neutral reduction in buildings sector energy use, and for specific fuel types, to enable meaningful comparisons of benefits achievable through various OBT research projects or technology developments. Two examples are provided to illustrate how these conversion factors may be used to quantify the impacts of energy savings potentially achievable through OBT building energy conservation efforts. 18 refs., 6 figs., 16 tabs.

Secrest, T.J.; Nicholls, A.K.

1990-07-01T23:59:59.000Z

106

Analysis of energy use in building services of the industrial sector in California: Two case studies  

SciTech Connect

Energy-use patterns in many of California's fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

Akbari, H.; Sezgen, O.

1991-09-01T23:59:59.000Z

107

Energy efficiency and appliance replacement  

E-Print Network (OSTI)

1004 ENERGY EFFICIENCY AND APPLIANCE REPLACEMENT Jeffrey T.adopt energy efficient appliances, even though the financialmix of energy–using appliances predicts that under plausible

LaFrance, Jeffrey T.

2005-01-01T23:59:59.000Z

108

The Open Source Stochastic Building Simulation Tool SLBM and Its Capabilities to Capture Uncertainty of Policymaking in the U.S. Building Sector  

E-Print Network (OSTI)

CA, USA applied and change the service demand. An example ofUSA Figure 9. Total US Commercial Building Sector Electricity Demand (USA For the frequently discussed carbon cap approach, the carbon emissions as well as energy demand

Stadler, Michael

2009-01-01T23:59:59.000Z

109

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

Science Conference Proceedings (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

110

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 Buildings Share of U.S. Petroleum Consumption (Million Barrels per Day) Buildings Residential Commercial Total Industry Transportation Total 1980 2.62 2.01 l 4.63 10.55 19.01 34.19 1981 2.26 1.73 l 3.98 9.13 18.81 31.93 1982 1.96 1.49 l 3.45 8.35 18.42 30.23 1983 1.87 1.61 l 3.48 7.97 18.60 30.05 1984 1.95 1.60 l 3.55 8.48 19.02 31.05 1985 1.92 1.40 l 3.32 8.13 19.47 30.92 1986 2.03 1.60 l 3.62 8.39 20.18 32.20 1987 2.04 1.51 l 3.54 8.50 20.82 32.86 1988 2.20 1.57 l 3.77 8.88 21.57 34.22 1989 2.23 1.56 l 3.79 8.71 21.71 34.21 1990 1.81 1.38 l 3.20 8.73 21.63 33.55 1991 1.77 1.30 l 3.07 8.40 21.38 32.85 1992 1.73 1.19 l 2.92 8.93 21.68 33.52 1993 1.81 1.16 l 2.97 8.80 22.07 33.84 1994 1.75 1.15 l 2.90 9.16 22.61 34.67 1995 1.61 1.00 l 2.62 8.87 23.07 34.56 1996 1.74 1.04 l 2.78 9.33 23.65 35.76 1997 1.71 1.04 l 2.75 9.60 23.92 36.27 1998 1.73 1.13 l 2.86 9.54 24.54 36.93 1999 1.85 1.10 l 2.96 9.78 25.22 37.96

111

Personal Fuel Appliance  

DOE Green Energy (OSTI)

This report summarizes the progress made in Phase I of Stuart's Personal Fueling Appliance Program. Phase I concluded in March 2002 with the demonstration and deployment of several working models. As proposed in the original project plan, working models of the PFA were built to prove feasibility and technically market the concept. Future follow up phases of the project, Phase II and III, will take the concept through prototyping development to pre-production of commercially viable product. The Phase I program successfully demonstrate a home fueling system capable of running on a household circuit, 220V/40 Amp/single phase or equivalent. Connected to a source of ''drinking water'' the system has all the functions necessary to convert water and electricity to high-pressure hydrogen fuel. Pressures of up to 3600 psig were achieved on demonstration systems and higher pressures up to 5000 psig were achieved in the lab. The development program spanned building 3 series of prototypes: White Box (1 unit built 1998), PFA Series 100 (4 units built 1999-2000), and Series 200 (6 units built 2000-02). Advanced in controls and process learned in the PFA program have been embodied in Stuart's larger fuel appliances.

Stuart Energy

2003-12-30T23:59:59.000Z

112

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

9 9 Buildings Share of U.S. Electricity Consumption (Percent) Total Industry Transportation Total | (quads) 1980 34% 27% | 61% 39% 0% 100% | 7.15 1981 34% 28% | 61% 38% 0% 100% | 7.33 1982 35% 29% | 64% 36% 0% 100% | 7.12 1983 35% 29% | 64% 36% 0% 100% | 7.34 1984 34% 29% | 63% 37% 0% 100% | 7.80 1985 34% 30% | 64% 36% 0% 100% | 7.93 1986 35% 30% | 65% 35% 0% 100% | 8.08 1987 35% 30% | 65% 35% 0% 100% | 8.38 1988 35% 30% | 65% 35% 0% 100% | 8.80 1989 34% 31% | 65% 35% 0% 100% | 9.03 1990 34% 31% | 65% 35% 0% 100% | 9.26 1991 35% 31% | 66% 34% 0% 100% | 9.42 1992 34% 31% | 65% 35% 0% 100% | 9.43 1993 35% 31% | 66% 34% 0% 100% | 9.76 1994 34% 31% | 65% 34% 0% 100% | 10.01 1995 35% 32% | 66% 34% 0% 100% | 10.28 1996 35% 32% | 67% 33% 0% 100% | 10.58 1997 34% 33% | 67% 33% 0% 100% | 10.73 1998 35% 33% | 68% 32% 0% 100% | 11.14 1999 35% 33% | 68% 32% 0% 100% | 11.30 2000 35% 34% | 69% 31% 0% 100% | 11.67 2001 35% 35% | 70% 29% 0% 100% | 11.58 2002 37% 35% | 71% 29% 0% 100% | 11.82

113

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

8 8 Shares of U.S. Buildings Generic Quad (Percent) (1) Renewables (2) Natural Gas Petroleum Coal Hydroelectric Other Total Nuclear Total 1980 37% 18% 29% 7% 3% 10% 6% 100% 1981 37% 15% 31% 6% 4% 10% 7% 100% 1982 36% 13% 31% 8% 4% 12% 8% 100% 1983 34% 13% 33% 8% 4% 12% 8% 100% 1984 34% 13% 33% 8% 4% 12% 8% 100% 1985 33% 12% 35% 7% 4% 11% 10% 100% 1986 31% 13% 35% 7% 4% 11% 10% 100% 1987 31% 13% 36% 6% 3% 9% 11% 100% 1988 31% 13% 35% 5% 3% 9% 12% 100% 1989 31% 12% 34% 6% 4% 10% 12% 100% 1990 31% 11% 36% 6% 4% 10% 13% 100% 1991 31% 10% 35% 6% 4% 10% 14% 100% 1992 32% 10% 35% 5% 4% 9% 14% 100% 1993 32% 9% 36% 6% 4% 9% 13% 100% 1994 33% 9% 36% 5% 3% 9% 14% 100% 1995 33% 8% 35% 6% 3% 10% 14% 100% 1996 32% 8% 36% 7% 3% 10% 14% 100% 1997 32% 8% 37% 7% 3% 10% 13% 100% 1998 31% 8% 38% 6% 3% 9% 14% 100% 1999 31% 8% 37% 6% 3% 9% 14% 100% 2000 32% 8% 37% 5% 3% 8% 14% 100% 2001 32% 9% 38% 4% 2% 7% 15% 100% 2002 32% 7% 37% 5% 3% 8% 15% 100% 2003 32% 8% 38% 5% 3% 8% 15% 100% 2004 31%

114

About the Appliance and Equipment Standards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About the Appliance and About the Appliance and Equipment Standards Program About the Appliance and Equipment Standards Program The Department of Energy (DOE) and the Buildings Technologies Office sets minimum energy efficiency standards for approximately 50 categories of appliances and equipment used in homes, businesses, and other applications, as required by existing law. The appliances and equipment covered provide services that are used by consumers and businesses each day, such as space heating and cooling, refrigeration, cooking, clothes washing and drying, and lighting. DOE's minimum efficiency standards significantly reduce U.S. energy demand, lower emissions of greenhouse gases and other pollutants, and save consumers billions of dollars every year, without lessening the

115

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... insulation technologies are being developed in order to meet increasing stringent minimum efficiency standards for appliances and building ...

116

Appliance Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliance Efficiency Standards and Price Discrimination C. Anna Spurlock Energy Analysis & Environmental Impact Department Environmental Energy Technologies Division Lawrence...

117

Cixi Renhe Photovoltaic Electrical Appliance Co Ltd | Open Energy  

Open Energy Info (EERE)

Cixi Renhe Photovoltaic Electrical Appliance Co Ltd Cixi Renhe Photovoltaic Electrical Appliance Co Ltd Jump to: navigation, search Name Cixi Renhe Photovoltaic Electrical Appliance Co Ltd Place Cixi, Zhejiang Province, China Zip 315322 Sector Solar Product Zhejiang-based product manufacturer for solar modules. References Cixi Renhe Photovoltaic Electrical Appliance Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cixi Renhe Photovoltaic Electrical Appliance Co Ltd is a company located in Cixi, Zhejiang Province, China . References ↑ "Cixi Renhe Photovoltaic Electrical Appliance Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Cixi_Renhe_Photovoltaic_Electrical_Appliance_Co_Ltd&oldid=343628

118

Solergie Qingdao Electrical Appliance Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Solergie Qingdao Electrical Appliance Co Ltd Solergie Qingdao Electrical Appliance Co Ltd Jump to: navigation, search Name Solergie (Qingdao)Electrical Appliance Co Ltd Place Qingdao, Shandong Province, China Zip 266701 Sector Solar Product A wholly foreign-owned enterprise. which is specialized in developing and manufacturing solar lighting and other energy solar products. References Solergie (Qingdao)Electrical Appliance Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solergie (Qingdao)Electrical Appliance Co Ltd is a company located in Qingdao, Shandong Province, China . References ↑ "Solergie (Qingdao)Electrical Appliance Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Solergie_Qingdao_Electrical_Appliance_Co_Ltd&oldid=351468

119

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 Buildings Share of U.S. Primary Energy Consumption (Percent) Total Consumption Total Industry Transportation Total (quads) 1980(1) 20.1% 13.5% | 33.7% 41.1% 25.2% 100% | 78.1 1981 20.0% 13.9% | 33.9% 40.4% 25.6% 100% | 76.1 1982 21.2% 14.8% | 36.0% 37.9% 26.1% 100% | 73.1 1983 21.1% 15.0% | 36.1% 37.7% 26.3% 100% | 72.9 1984 20.8% 14.9% | 35.7% 38.7% 25.7% 100% | 76.6 1985 21.0% 15.0% | 35.9% 37.8% 26.3% 100% | 76.5 1986 20.8% 15.1% | 35.9% 37.0% 27.1% 100% | 76.6 1987 20.5% 15.1% | 35.6% 37.2% 27.2% 100% | 79.0 1988 20.7% 15.2% | 35.9% 37.2% 27.0% 100% | 82.8 1989 20.9% 15.5% | 36.5% 37.0% 26.5% 100% | 84.8 1990 20.0% 15.7% | 35.8% 37.7% 26.5% 100% | 84.5 1991 20.6% 16.0% | 36.5% 37.3% 26.2% 100% | 84.4 1992 20.2% 15.6% | 35.8% 38.0% 26.1% 100% | 85.8 1993 20.8% 15.8% | 36.6% 37.4% 26.0% 100% | 87.5 1994 20.3% 15.8% | 36.1% 37.7% 26.2% 100% | 89.1 1995 20.3% 16.1% | 36.4% 37.4% 26.2% 100% | 91.1 1996 20.7%

120

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

5 5 2015 U.S. Buildings Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Space Heating (5) 5.10 0.68 0.26 0.09 0.55 0.59 7.27 35.9% | 1.77 8.45 21.5% Lighting 1.52 1.52 7.5% | 4.65 4.65 11.8% Space Cooling 0.04 0.54 0.57 2.8% | 4.60 4.63 11.8% Water Heating 1.79 0.10 0.05 0.05 0.57 2.55 12.6% | 1.71 3.70 9.4% Refrigeration (6) 0.81 0.81 4.0% | 2.43 2.43 6.2% Electronics (7) 1.54 1.54 7.6% | 1.94 1.94 4.9% Ventilation (8) 0.14 0.14 0.7% | 1.62 1.62 4.1% Computers 0.38 0.38 1.9% | 1.14 1.14 2.9% Wet Cleaning (9) 0.06 0.64 0.70 3.5% | 0.98 1.04 2.7% Cooking 0.41 0.03 0.33 0.76 3.8% | 0.41 0.85 2.2% Other (10) 0.33 0.01 0.31 0.05 0.06 1.76 2.52 12.4% | 5.30 6.06 15.4% Adjust to SEDS (11) 0.68 0.19 0.63 1.50 7.4% | 1.90 2.77 7.1% Total 8.40 0.98 0.65 0.14

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

6 6 2025 U.S. Buildings Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Space Heating (5) 4.96 0.57 0.24 0.09 0.57 0.63 7.05 33.2% | 1.89 8.31 19.6% Space Cooling 0.03 1.64 1.67 7.9% | 4.94 4.97 11.7% Lighting 1.55 1.55 7.3% | 4.68 4.68 11.0% Water Heating 1.84 0.08 0.04 0.05 0.62 2.63 12.4% | 1.86 3.88 9.1% Refrigeration (6) 0.82 0.82 3.9% | 2.47 2.47 5.8% Electronics (7) 0.78 0.78 3.7% | 2.34 2.34 5.5% Ventilation (8) 0.60 0.60 2.8% | 1.80 1.80 4.2% Computers 0.44 0.44 2.0% | 1.31 1.31 3.1% Wet Cleaning (9) 0.06 0.30 0.37 1.7% | 0.91 0.98 2.3% Cooking 0.43 0.03 0.15 0.61 2.9% | 0.46 0.92 2.2% Other (10) 0.48 0.01 0.34 0.05 0.08 2.32 3.28 15.5% | 7.00 7.96 18.7% Adjust to SEDS (11) 0.58 0.18 0.69 1.46 6.9% | 2.09 2.85 6.7% Total 8.39 0.84 0.65 0.15

122

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

U.S. Residential and Commercial Buildings Total Primary Energy Consumption (Quadrillion Btu and Percent of Total) Electricity Growth Rate Natural Gas Petroleum (1) Coal Renewable(2) Sales Losses Total TOTAL (2) 2010-Year 1980 7.42 28.2% 3.04 11.5% 0.15 0.6% 0.87 3.3% 4.35 10.47 14.82 56.4% 26.29 100% - 1981 7.11 27.5% 2.63 10.2% 0.17 0.6% 0.89 3.5% 4.50 10.54 15.03 58.2% 25.84 100% - 1982 7.32 27.8% 2.45 9.3% 0.19 0.7% 0.99 3.8% 4.57 10.80 15.37 58.4% 26.31 100% - 1983 6.93 26.4% 2.50 9.5% 0.19 0.7% 0.99 3.8% 4.68 11.01 15.68 59.6% 26.30 100% - 1984 7.20 26.4% 2.74 10.0% 0.21 0.8% 1.00 3.7% 4.93 11.24 16.17 59.2% 27.31 100% - 1985 6.98 25.4% 2.62 9.5% 0.18 0.6% 1.03 3.8% 5.06 11.59 16.65 60.6% 27.47 100% - 1986 6.74 24.5% 2.68 9.7% 0.18 0.6% 0.95 3.4% 5.23 11.75 16.98 61.7% 27.52 100% - 1987 6.87 24.4% 2.73 9.7% 0.17 0.6% 0.88 3.1% 5.44 12.04 17.48 62.2% 28.13 100% - 1988 7.44 25.0%

123

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 2010 U.S. Buildings Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Fuel Other Renw. Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Space Heating (5) 5.14 0.76 0.30 0.10 0.54 0.72 7.56 37.0% | 2.24 9.07 22.5% Space Cooling 0.04 1.92 1.96 9.6% | 5.94 5.98 14.8% Lighting 1.88 1.88 9.2% | 5.82 5.82 14.4% Water Heating 1.73 0.13 0.07 0.04 0.54 2.51 12.3% | 1.67 3.63 9.0% Refrigeration (6) 0.84 0.84 4.1% | 2.62 2.62 6.5% Electronics (7) 0.81 0.81 3.9% | 2.49 2.49 6.2% Ventilation (8) 0.54 0.54 2.6% | 1.66 1.66 4.1% Computers 0.38 0.38 1.9% | 1.19 1.19 2.9% Cooking 0.39 0.03 0.21 0.63 3.1% | 0.64 1.06 2.6% Wet Cleaning (9) 0.06 0.33 0.38 1.9% | 1.01 1.06 2.6% Other (10) 0.30 0.01 0.30 0.05 0.02 0.89 1.58 7.7% | 2.76 3.45 8.6% Adjust to SEDS (11) 0.68 0.25 0.44 1.37 6.7% | 1.35 2.28 5.7% Total 8.35 1.14 0.70 0.15 0.59 9.49 20.43

124

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 2035 U.S. Buildings Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Space Heating (5) 4.84 0.49 0.22 0.09 0.57 0.66 6.87 30.5% | 1.93 8.15 17.9% Space Cooling 0.03 1.79 1.82 8.1% | 5.27 5.30 11.7% Lighting 1.63 1.63 7.3% | 4.81 4.81 10.6% Water Heating 1.81 0.07 0.03 0.06 0.63 2.60 11.6% | 1.86 3.83 8.4% Electronics (6) 0.90 0.90 4.0% | 2.66 2.66 5.8% Refrigeration (7) 0.88 0.88 3.9% | 2.60 2.60 5.7% Ventilation (8) 0.65 0.65 2.9% | 1.91 1.91 4.2% Computers 0.49 0.49 2.2% | 1.43 1.43 3.1% Wet Cleaning (9) 0.07 0.32 0.39 1.7% | 0.95 1.01 2.2% Cooking 0.45 0.02 0.17 0.65 2.9% | 0.50 0.98 2.2% Other (10) 0.81 0.01 0.38 0.06 0.08 2.94 4.28 19.0% | 8.65 9.99 21.9% Adjust to SEDS (11) 0.40 0.18 0.77 1.36 6.0% | 2.28 2.86 6.3% Total 8.41 0.75 0.66 0.15

125

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 U.S. Buildings Site Renewable Energy Consumption (Quadrillion Btu) (1) Growth Rate Wood (2) Solar Thermal (3) Solar PV (3) GSHP (4) Total 2010-Year 1980 0.867 0.000 N.A. 0.000 0.867 - 1981 0.894 0.000 N.A. 0.000 0.894 - 1982 0.993 0.000 N.A. 0.000 0.993 - 1983 0.992 0.000 N.A. 0.000 0.992 - 1984 1.002 0.000 N.A. 0.000 1.002 - 1985 1.034 0.000 N.A. 0.000 1.034 - 1986 0.947 0.000 N.A. 0.000 0.947 - 1987 0.882 0.000 N.A. 0.000 0.882 - 1988 0.942 0.000 N.A. 0.000 0.942 - 1989 1.018 0.052 N.A. 0.008 1.078 - 1990 0.675 0.056 N.A. 0.008 0.739 - 1991 0.705 0.057 N.A. 0.009 0.771 - 1992 0.744 0.059 N.A. 0.010 0.813 - 1993 0.657 0.061 N.A. 0.010 0.728 - 1994 0.626 0.063 N.A. 0.010 0.700 - 1995 0.633 0.064 N.A. 0.011 0.708 - 1996 0.669 0.065 N.A. 0.012 0.746 - 1997 0.559 0.064 N.A. 0.013 0.636 - 1998 0.498 0.064 N.A. 0.015 0.577 - 1999 0.521 0.063 N.A. 0.016 0.599 - 2000 0.549 0.060 N.A. 0.016 0.625 - 2001

126

CONSULTANTREPORT APPLIANCE STANDARDS  

E-Print Network (OSTI)

in a format that can be readily imported into the Energy Commission's appliance database. Due to the large Commission appliance database. The market for residential exhaust fans are established and mature enough appliance database. Under-Cabinet Luminaires Due to the large amount of data gathered, the compiled

127

EPRI Appliance Measurement Study  

Science Conference Proceedings (OSTI)

This report describes a measurement survey that characterizes magnetic fields from common electronic appliances, with an emphasis on appliances that have become available since 1985. The purpose of this study was to supplement a survey of appliance magnetic fields by J. R. Gauger, which was published by IEEE in 1985.

2010-03-25T23:59:59.000Z

128

Solar heating and cooling of buildings: activities of the private sector of the building community and its perceived needs relative to increased activity  

SciTech Connect

A description of the state of affairs existing in the private sector of the building community between mid-1974 and mid-1975 with regard to solar heating and cooling of buildings is presentd. Also, information on the needs perceived by the private sector with regard to governmental actions (besides research) required to induce widespread application of solar energy for the heating and cooling of buildings is given. The information is based on surveys, data obtained at workshops, sales literature of manufacturers, symposia, and miscellaneous correspondence. Selected interests and projects of individuals and organizations are described. (WHK)

1976-01-01T23:59:59.000Z

129

IP-Addressable Smart Appliances for Demand Response Applications  

Science Conference Proceedings (OSTI)

This technology brief provides a utility-centric assessment of networked appliances that use the internet protocol (IP). The impetus for this assessment is utility interest in demand-side management, and how residential appliances might participate in the associated utility programs. The residential sector has seen a steady expansion of IP-based connectivity to homes, with 55 of residences in the U.S. currently subscribing to broadband services. Networking appliances in the home using IP-based networks o...

2009-02-26T23:59:59.000Z

130

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

E-Print Network (OSTI)

buildings/appliance_standards/residential/cac_heatp umps_buildings/appliance_standards/residential/fb_tsd_09 07.htmlof Energy Efficiency Standards and Labeling Programs, LBNL

Letschert, Virginie

2010-01-01T23:59:59.000Z

131

CDM as a Solution for the Present World Energy Problems (An Overview with Respect to the Building and Construction Sector)  

E-Print Network (OSTI)

One of the important responses of Kyoto Protocol towards mitigation of global warming is the Clean Development Mechanism (CDM), which has garnered large emphasis amidst the global carbon market in terms of Certified Emission Reductions (CERs). While CDM aims to achieve sustainable development in the energy production and its consumption in developing countries, the results achieved through its implementation are still uncertain. Presently, the domestic and commercial buildings are responsible for more than one third of the total conventional energy use and associated greenhouse gas emissions. The Inter-governmental Panel on Climate Change (IPCC) stated that, the building sector has the largest potential for significantly reducing greenhouse gas emissions. This paper envisages the important aspects such as, the non-inclusion of construction sector projects in CDM and its reasons, the role of energy efficiency buildings in the energy conservation arena and the new challenges being faced, while implementing the CDM portfolio in building energy sector.

Sudarsan, N.; Jayaraj, S.; Sreekanth, K. J.

2010-01-01T23:59:59.000Z

132

Simulation of the GHG Abatement Potentials in the U.S. Building Sector by 2050  

SciTech Connect

Given the substantial contribution of the U.S. building sector to national carbon emissions, it is clear that to address properly the issue of climate change, one must first consider innovative approaches to understanding and encouraging the introduction of new, low-carbon technologies to both the commercial and residential building markets. This is the motivation behind the development of the Stochastic Lite Building Module (SLBM), a long range, open source model to forecast the impact of policy decisions and consumer behavior on the market penetration of both existing and emerging building technologies and the resulting carbon savings. The SLBM, developed at Lawrence Berkeley National Laboratory (LBNL), is part of the Stochastic Energy Deployment System (SEDS) project, a multi-laboratory effort undertaken in conjunction with the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL) and private companies. The primary purpose of SEDS is to track the performance of different U.S. Department of Energy (USDOE) Research and Development (R&D) activities on technology adoption, overall energy efficiency, and CO{sub 2} reductions throughout the whole of the U.S. economy. The tool is fundamentally an engineering-economic model with a number of characteristics to distinguish it from existing energy forecasting models. SEDS has been written explicitly to incorporate uncertainty in its inputs leading to uncertainty bounds on the subsequent forecasts. It considers also passive building systems and their interactions with other building service enduses, including the cost savings for heating, cooling, and lighting due to different building shell/window options. Such savings can be compared with investments costs in order to model real-world consumer behavior and forecast adoption rates. The core objective of this paper is to report on the new window and shell features of SLBM and to show the implications of various USDOE research funding scenarios on the adoption of these and other building energy technologies. The results demonstrate that passive technologies contain significant potential for carbon reductions - exceeding 1165 Mt cumulative savings between 2005 and 2050 (with 50% likelihood) and outperforming similar R&D funding programs for distributed photovoltaics and high efficiency solid-state lighting.

Stadler, Michael; DeForest, Nicholas; Marnay, Chris; Bonnet, Florence; Lai, Judy; Phan, Trucy

2010-10-01T23:59:59.000Z

133

The energy-savings potential of electrochromic windows in the UScommercial buildings sector  

SciTech Connect

Switchable electrochromic (EC) windows have been projected to significantly reduce the energy use of buildings nationwide. This study quantifies the potential impact of electrochromic windows on US primary energy use in the commercial building sector and also provides a broader database of energy use and peak demand savings for perimeter zones than that given in previous LBNL simulation studies. The DOE-2.1E building simulation program was used to predict the annual energy use of a three-story prototypical commercial office building located in five US climates and 16 California climate zones. The energy performance of an electrochromic window controlled to maintain daylight illuminance at a prescribed setpoint level is compared to conventional and the best available commercial windows as well as windows defined by the ASHRAE 90.1-1999 and California Title 24-2005 Prescriptive Standards. Perimeter zone energy use and peak demand savings data by orientation, window size, and climate are given for windows with interior shading, attached shading, and horizon obstructions (to simulate an urban environment). Perimeter zone primary energy use is reduced by 10-20% in east, south, and west zones in most climates if the commercial building has a large window-to-wall area ratio of 0.60 compared to a spectrally selective low-e window with daylighting controls and no interior or exterior shading. Peak demand for the same condition is reduced by 20-30%. The emerging electrochromic window with daylighting controls is projected to save approximately 91.5-97.3 10{sup 12} Btu in the year 2030 compared to a spectrally selective low-E window with manually-controlled interior shades and no daylighting controls if it reaches a 40% market penetration level in that year.

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-04-30T23:59:59.000Z

134

Energy data sourcebook for the US residential sector  

Science Conference Proceedings (OSTI)

Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

1997-09-01T23:59:59.000Z

135

Microsoft Word - Building_sector_supply_curve_writeup final.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Environmental Protection Agency, Climate Protection Partnerships Division, U.S. Environmental Protection Agency, Climate Protection Partnerships Division, Office of Air and Radiation, under U.S. Department of Energy Contract No. DE-AC02-05CH11231. LBNL-1096E U.S. Building-Sector Energy Efficiency Potential Rich Brown, Sam Borgeson, Jon Koomey, Peter Biermayer ENVIRONMENTAL ENERGY TECHNOLOGIES DIVISION Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California 94720 September 2008 This work was supported by the U.S. Environmental Protection Agency, Climate Protection Partnerships Division, Office of Air and Radiation, under U.S. Department of Energy Contract No. DE-AC02-05CH11231. DISCLAIMER This document was prepared as an account of work sponsored by the United States Government.

136

Appliance Energy Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Stove, washer, dryer, refrigerator, Energy Star Label Appliance Energy Standards Energy Efficiency Standard The Energy Efficiency Standards Group analyzes technical, economic, and...

137

Appliance Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliance Efficiency Standards Part 1 of 2 In the National Energy Policy Conservation Act (1978), Congress required DOE to set energy-efficiency standards for 13 residential...

138

Section B: KITCHEN APPLIANCES  

U.S. Energy Information Administration (EIA)

Which of these cooking appliances do you have in your kitchen? (Mark all ... Natural gas from underground pipes . 01 Bottled gas (LPG or Propane) ...

139

Section B: KITCHEN APPLIANCES  

U.S. Energy Information Administration (EIA)

Natural gas from underground pipes..... 01 Propane (bottled gas ... APPLIANCES IN THIS HOUSING UNIT THAT MIGHT PROVIDE CLARIFICATION TO THE RESPONDENTS

140

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

Science Conference Proceedings (OSTI)

The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side management or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1.7 thousand TWh or 21percent of the 2030 projected base case electricity demand. Electricity savings potential ranges from a high of 38percent in India to a low of 9percent in Korea for the two sectors. Lighting, fans, and TV sets and lighting and refrigeration are the largest contributors to residential and commercial electricity savings respectively. This work presents a first estimates of the savings potential of DSM programs in APP countries. While the resulting estimates are based on detailed end-use data, it is worth keeping in mind that more work is needed to overcome limitation in data at this time of the project.

McNeil, MIchael; Letschert, Virginie; Shen, Bo; Sathaye, Jayant; de la Ru du Can, Stephane

2011-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transferring building energy technologies by linking government and private-sector programs  

SciTech Connect

The US Department of Energy's Office of Building Technologies (OBT) may wish to use existing networks and infrastructures wherever possible to transfer energy-efficiency technologies for buildings. The advantages of relying on already existing networks are numerous. These networks have in place mechanisms for reaching audiences interested in energy-efficiency technologies in buildings. Because staffs in trade and professional organizations and in state and local programs have responsibilities for brokering information for their members or client organizations, they are open to opportunities to improve their performance in information transfer. OBT, as an entity with primarily R D functions, is, by cooperating with other programs, spared the necessity of developing an extensive technology transfer program of its own, thus reinventing the wheel.'' Instead, OBT can minimize its investment in technology transfer by relying extensively on programs and networks already in place. OBT can work carefully with staff in other organizations to support and facilitate their efforts at information transfer and getting energy-efficiency tools and technologies into actual use. Consequently, representatives of some 22 programs and organizations were contacted, and face-to-face conversations held, to explore what the potential might be for transferring technology by linking with OBT. The briefs included in this document were derived from the discussions, the newly published Directory of Energy Efficiency Information Services for the Residential and Commercial Sectors, and other sources provided by respondents. Each brief has been sent to persons contacted for their review and comment one or more times, and each has been revised to reflect the review comments.

Farhar, B.C.

1990-07-01T23:59:59.000Z

142

Roaring Fork Valley - Energy Efficient Appliance Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Appliance Program Efficient Appliance Program Roaring Fork Valley - Energy Efficient Appliance Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Maximum Rebate Smart Strip: $30 Programmable Thermostats: $50 Program Info State Colorado Program Type Local Rebate Program Rebate Amount Furnaces (AFUE 92% or higher): $300 Boilers (AFUE 92% or higher): $500 Dishwashers: $100 Clothes Washers: $75 Refrigerators: $100 Smart Strip: $15 Programmable thermostats: $15 Provider Community Office for Resource Efficiency (CORE) The Aspen Community Office for Resource Efficiency (CORE) promotes renewable energy, energy efficiency and green building techniques in western Colorado's Roaring Fork Valley. For customers who install energy

143

Global residential appliance standards  

SciTech Connect

In most countries, residential electricity consumption typically ranges from 20% to 40% of total electricity consumption. This energy is used for heating, cooling, refrigeration and other end-uses. Significant energy savings are possible if new appliance purchases are for models with higher efficiency than that of existing models. There are several ways to ensure or encourage such an outcome, for example, appliance rebates, innovative procurement, and minimum efficiency standards. This paper focuses on the latter approach. At the present time, the US is the only country with comprehensive appliance energy efficiency standards. However, many other countries, such as Australia, Canada, the European Community (EC), Japan and Korea, are considering enacting standards. The greatest potential impact of minimum efficiency standards for appliances is in the developing countries (e.g., China and India), where saturations of household appliances are relatively low but growing rapidly. This paper discusses the potential savings that could be achieved from global appliance efficiency standards for refrigerators and freezers. It also could be achieved from global appliance efficiency standards for refrigerators and freezers. It also discusses the impediments to establishing common standards for certain appliance types, such as differing test procedures, characteristics, and fuel prices. A methodology for establishing global efficiency standards for refrigerators and freezers is described.

Turiel, I.; McMahon, J.E. [Lawrence Berkeley Lab., CA (US); Lebot, B. [Agence Francaise pour la Maitrise de l`Energie, Valbonne (FR)

1993-03-01T23:59:59.000Z

144

Appliance Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Appliance Efficiency Standards Part 2 of 2: Policy process and consumer gains Part 1 of this article (CBS News, Spring 1995) discussed LBNL's role in setting federal appliance efficiency standards and presented an overview of the net national benefits of standards. Here, we examine the broader policy context for appliance standards and consumer benefits. Policy Context Appliance efficiency standards provide a minimum requirement for energy efficiency at the point of manufacture (or import). These standards seek to overcome market failures-including price distortions and transaction costs-that have historically given rise to a gap between observed and attainable product efficiencies. In this way, appliance standards complement information programs, utility DSM and other incentive programs,

145

Streamlining ENERGY STAR Appliance Testing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Streamlining ENERGY STAR Appliance Testing Streamlining ENERGY STAR Appliance Testing Streamlining ENERGY STAR Appliance Testing September 26, 2013 - 11:46am Addthis To save taxpayer dollars and help lower the costs of innovative energy-efficient technologies, the Energy Department is streamlining ENERGY STAR testing for appliances such as clothes washers. | Photo courtesy of Bethany Sparn, National Renewable Energy Laboratory. To save taxpayer dollars and help lower the costs of innovative energy-efficient technologies, the Energy Department is streamlining ENERGY STAR testing for appliances such as clothes washers. | Photo courtesy of Bethany Sparn, National Renewable Energy Laboratory. John Cymbalsky Program Manager, Appliance and Equipment Standards & Building Codes What does this mean for me?

146

Streamlining ENERGY STAR Appliance Testing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Streamlining ENERGY STAR Appliance Testing Streamlining ENERGY STAR Appliance Testing Streamlining ENERGY STAR Appliance Testing September 26, 2013 - 11:46am Addthis To save taxpayer dollars and help lower the costs of innovative energy-efficient technologies, the Energy Department is streamlining ENERGY STAR testing for appliances such as clothes washers. | Photo courtesy of Bethany Sparn, National Renewable Energy Laboratory. To save taxpayer dollars and help lower the costs of innovative energy-efficient technologies, the Energy Department is streamlining ENERGY STAR testing for appliances such as clothes washers. | Photo courtesy of Bethany Sparn, National Renewable Energy Laboratory. John Cymbalsky Program Manager, Appliance and Equipment Standards & Building Codes What does this mean for me?

147

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

West National Space Heating 70.3 56.6 20.4 23.8 38.7 Space Cooling 3.6 5.6 13.9 4.0 7.9 Water Heating 21.1 20.4 15.8 21.2 19.0 Refrigerator 5.4 7.0 6.6 5.7 6.3 Other Appliances &...

148

Investigation of air supply conditions in the room of a B11type gas appliance  

Science Conference Proceedings (OSTI)

In Hungary, the prevalently used "B11" type gas appliances equipped with atmospheric burner and they have a draught hood beyond the outlet of the appliance. For the appropriate adjustment of the gas boiler to the conditions of the building, ... Keywords: CFD method, air supply, chimney, design requirements, gas appliances, numerical modelling

Lajos Barna; Róbert Goda

2007-05-01T23:59:59.000Z

149

Low-cost Appliance State Sensing for Energy Disaggregation  

E-Print Network (OSTI)

Appliance state trackingindividual appliances . . . . . . . . . . . . . . . .iv 6Appliance state reported vs. truth (#1,2,3,5) Appliance

Wu, Tianji

2012-01-01T23:59:59.000Z

150

Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings  

SciTech Connect

It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the major professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.

Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica; Haves, Philip; Mathew, Paul; Harris, Jeff

2008-06-16T23:59:59.000Z

151

Best Practices: Policies for Building Efficiency and Emerging...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency and Emerging Technologies Information about appliance standards, building energy codes, ENERGY STAR program and tax incentives for building efficiency....

152

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Residential Building Component Loads as of 1998 (1) 1) "Load" represents the thermal energy lossesgains that when combined will be offset by a building's heatingcooling system...

153

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

0 2003 Commercial Primary Energy Consumption Intensities, by Principal Building Type Consumption Percent of Total | Consumption Percent of Total Building Type (thousand BtuSF)...

154

Table HC2.9 Home Appliances Characteristics by Type of Housing ...  

U.S. Energy Information Administration (EIA)

Natural Gas ... Home Appliances Characteristics Detached Attached 2 to 4 Units Mobile Homes Housing Units (millions) Single-Family Units Apartments in Buildings

155

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Role of Building Energy Efficiency in Managing AtmosphericConference on Energy Efficiency in Domestic Appliances andAnalysis of National Energy-Efficiency Standards for

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

156

The Open Source Stochastic Building Simulation Tool SLBM and Its Capabilities to Capture Uncertainty of Policymaking in the U.S. Building Sector  

SciTech Connect

The increasing concern about climate change as well as the expected direct environmental economic impacts of global warming will put considerable constraints on the US building sector, which consumes roughly 48percent of the total primary energy, making it the biggest single source of CO2 emissions. It is obvious that the battle against climate change can only be won by considering innovative building approaches and consumer behaviors and bringing new, effective low carbon technologies to the building / consumer market. However, the limited time given to mitigate climate change is unforgiving to misled research and / or policy. This is the reason why Lawrence Berkeley National Lab is working on an open source long range Stochastic Lite Building Module (SLBM) to estimate the impact of different policies and consumer behavior on the market penetration of low carbon building technologies. SLBM is designed to be a fast running, user-friendly model that analysts can readily run and modify in its entirety through a visual interface. The tool is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies. It also incorporates consumer preferences and passive building systems as well as interactions between technologies (such as internal heat gains). Furthermore, everything is based on service demand, e.g. a certain temperature or luminous intensity, instead of energy intensities. The core objectives of this paper are to demonstrate the practical approach used, to start a discussion process between relevant stakeholders and to build collaborations.

Stadler, Michael; Marnay, Chris; Azevedo, Ines Lima; Komiyama, Ryoichi; Lai, Judy

2009-05-14T23:59:59.000Z

157

Presented at the 2008 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Appliance Energy Use in America's Second Home The Automobile  

E-Print Network (OSTI)

of Energy. [DOE] Department of Energy. 2006. 2006 Buildings Energy Data Book. Washington, D.C.: Building in Vehicles? The car has a building envelope, with walls, windows--lots of them-- doors, and air infiltration will incur an additional loss from the conversion of DC to AC at an efficiency of 75 to 90% (All

California at Davis, University of

158

Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)  

Reports and Publications (EIA)

Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use

Information Center

2007-03-11T23:59:59.000Z

159

Energy audits reveal significant energy savings potential in India`s commercial air-conditioned building sector  

SciTech Connect

The United States Agency for International Development (USAID) began its Energy Management Consultation and Training (EMCAT) project in India. The EMCAT project began in 1991 as a six-year (1991--1997) project to improve India`s technological and management capabilities for both the supply of energy and its efficient end use. The end-use component of EMCAT aims for efficient energy utilization by industries and other sectors such as the commercial sector. A specific task under the end-use component was to conduct energy surveys/audits in high energy-use sectors, such as air-conditioned (AC) buildings in the commercial sector, and to identify investment opportunities that could improve energy utilization. This article presents results of pre-investment surveys that were conducted at four commercial air-conditioned facilities in 1995. The four facilities included two luxury hotels in New Delhi, and one luxury hotel and a private hospital in Bombay. Energy conservation opportunities (ECOs) were explored in three major energy-using systems in these buildings: air-conditioning, lighting, and steam and domestic hot water systems.

Singh, G.; Presny, D.; Fafard, C. [Resource Management Associates of Madison, Inc., WI (United States)

1997-12-31T23:59:59.000Z

160

Appliance and Equipment Energy Efficiency Standards | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Program Information Oregon Program Type ApplianceEquipment Efficiency...

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Appliance Energy Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Energy Efficiency Standards Appliance Energy Efficiency Standards Program Information Maryland Program Type ApplianceEquipment Efficiency Standards '' Note: The federal...

162

Catalog of DC Appliances and Power Systems  

E-Print Network (OSTI)

California Energy Commission Appliances Database. [citedwww.energy.ca.gov/appliances/database. RV-Coach Online. [Commission Appliance Efficiency Database for AC products [

Garbesi, Karina

2012-01-01T23:59:59.000Z

163

Catalog of DC Appliances and Power Systems  

E-Print Network (OSTI)

by end use and appliance type. 217. Functions embodied in appliances and DC technologies thatthat both the standard appliance and the DC-internal

Garbesi, Karina

2012-01-01T23:59:59.000Z

164

Retrospective Evaluation of Appliance Price Trends  

E-Print Network (OSTI)

and more efficient the appliance, the higher the productfor technological change and appliance price Room airAssociation of Home Appliance Manufacturers (AHAM), 1978–

Dale, Larry

2010-01-01T23:59:59.000Z

165

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

adding thermal insulation to buildings and i m p r o v i n grespect to insulation for residential buildings, the reportbuildings; these calculations include fluorocarbon emissions from thermal insulation

2006-01-01T23:59:59.000Z

166

The energy-savings potential of electrochromic windows in the US commercial buildings sector  

E-Print Network (OSTI)

and Renewable Energy's (EERE) Building Technologies Program.and Renewable Energy (EERE). For the fiscal year 2004 (FY04)

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-01-01T23:59:59.000Z

167

Making America's Buildings Better (Fact Sheet)  

SciTech Connect

This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

Not Available

2012-03-01T23:59:59.000Z

168

Assessment of Literature Related to Combustion Appliance Venting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Literature Related to Combustion Appliance Venting Systems Assessment of Literature Related to Combustion Appliance Venting Systems Title Assessment of Literature Related to Combustion Appliance Venting Systems Publication Type Report LBNL Report Number LBNL-5798E Year of Publication 2012 Authors Rapp, Vi H., Brett C. Singer, J. Chris Stratton, and Craig P. Wray Date Published 06/2012 Abstract In many residential building retrofit programs, air tightening to increase energy efficiency is constrained by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing units more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spillage. Several test methods purportedly assess the potential for depressurization-induced backdrafting and spillage, but these tests are not robustly reliable and repeatable

169

Appliances Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Appliances Research Emerging Technologies » Appliances Research Appliances Research The Emerging Technology team conducts research into residential and commercial appliances. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst in driving research in energy efficient technologies, with the goal of realizing 20% energy savings relative to a 2010 baseline. Appliance research focuses on refrigerators, washers, and dryers. Refrigerators Photo of a stainless steel refrigerator. Refrigerators have become substantially more energy efficient over the years, using less energy while also providing more space. While appliance standards for refrigerators have helped, continued research into new ways of improving refrigerators in the

170

Analysis of energy use in building services of the industrial sector in California: Two case studies. Final report  

SciTech Connect

Energy-use patterns in many of California`s fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

Akbari, H.; Sezgen, O.

1991-09-01T23:59:59.000Z

171

Second International Green Building Conference and ...  

Science Conference Proceedings (OSTI)

... on the building materials and ventilation system. ... light bulbs, and energy efficient appliances will ... embrace similar energy efficiency measures for ...

1997-09-03T23:59:59.000Z

172

Appliance Commitment for Household Load Scheduling  

Science Conference Proceedings (OSTI)

This paper presents a novel appliance commitment algorithm that schedules thermostatically-controlled household loads based on price and consumption forecasts considering users comfort settings to meet an optimization objective such as minimum payment or maximum comfort. The formulation of an appliance commitment problem was described in the paper using an electrical water heater load as an example. The thermal dynamics of heating and coasting of the water heater load was modeled by physical models; random hot water consumption was modeled with statistical methods. The models were used to predict the appliance operation over the scheduling time horizon. User comfort was transformed to a set of linear constraints. Then, a novel linear, sequential, optimization process was used to solve the appliance commitment problem. The simulation results demonstrate that the algorithm is fast, robust, and flexible. The algorithm can be used in home/building energy-management systems to help household owners or building managers to automatically create optimal load operation schedules based on different cost and comfort settings and compare cost/benefits among schedules.

Du, Pengwei; Lu, Ning

2011-06-30T23:59:59.000Z

173

Climate Change and the Long-Term Evolution of the U.S. Buildings Sector  

SciTech Connect

This paper discusses a new U.S. building module in the MiniCAM integrated assessment model, and it presents a scenario based on that module.

Rong, Fang; Clarke, Leon E.; Smith, Steven J.

2007-04-01T23:59:59.000Z

174

Barron Electric Cooperative - Energy Star Appliance & Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barron Electric Cooperative - Energy Star Appliance & Energy Efficient Lighting Rebate Program Barron Electric Cooperative - Energy Star Appliance & Energy Efficient Lighting...

175

Electrical appliance energy consumption control methods and ...  

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy ...

176

Catalog of DC Appliances and Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalog of DC Appliances and Power Systems Catalog of DC Appliances and Power Systems Title Catalog of DC Appliances and Power Systems Publication Type Report LBNL Report Number LBNL-5364E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, and Hongxia Shen Document Number LBNL-5364E Date Published October Publisher Lawrence Berkeley National Laboratory Abstract This document catalogs the characteristics of current and potential future direct current (DC) products and power systems. It is part of a larger U.S. Department of Energy-funded project, "Direct-DC Power Systems for Energy Efficiency and Renewable Energy Integration with a Residential and Small Commercial Focus". That project is investigating the energy-savings potential, benefits, and barriers of using DC generated by on-site renewable energy systems directly in its DC form, rather than converting it first to alternating current (AC) for distribution to loads. Two related reports resulted from this work: this Catalog and a companion report that addresses direct-DC energy savings in U.S. residential buildings.Interest in 'direct-DC' is motivated by a combination of factors: the very rapid increase in residential and commercial photovoltaic (PV) power systems in the United States; the rapid expansion in the current and expected future use of energy efficient products that utilize DC power internally; the demonstrated energy savings of direct-DC in commercial data centers; and the current emergence of direct-DC power standards and products designed for grid-connected residential and commercial products. Based on an in-depth study of DC appliances and power systems, we assessed off-grid markets for DC appliances, the DC compatibility of mainstream electricity end-uses, and the emerging mainstream market for direct-DC appliances and power systems.

177

Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices  

DOE Green Energy (OSTI)

For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

2011-11-01T23:59:59.000Z

178

Survey on Information Appliances  

Science Conference Proceedings (OSTI)

Information appliances are the devices that permit us to take computing off the desktop and into our everyday world. They simplify the process of information access and are usually dedicated to a small number of tasks that they perform very well. Compare ...

Roy Want; Gaetano Borriello

2000-05-01T23:59:59.000Z

179

Charting a Path to Net Zero Energy: Public-Private Sector Perspectives of the Commercial Buildings Consortium  

E-Print Network (OSTI)

Transforming the commercial buildings market to become "net-zero-energy-capable" will require dramatically lower levels of energy use sector wide. A comprehensive and concerted industry effort, partnering with utilities and government, must be sufficient in scale to influence the more than 600 billion dollar per year spent on commercial new construction, renovation, and energy bills by fundamentally reinventing today's standard "design- build-operate" building delivery process as an integrated system throughout a building's life cycle. In response to this need, in 2007 Congress called for creation of a Commercial Buildings Consortium (CBC) as a joint effort by the US Department of Energy (DOE), building owners and developers, states, utilities, and other stakeholders to develop and implement a multi-year agenda to transform the market through coordinated technology development, demonstration, and deployment. Since 2009, the CBC has attracted over 500 members, many of whom contributed actively, through 12 working groups, in developing two major reports released in early 2011. Next Generation Technologies Barriers and Industry Recommendations and an Analysis of Cost and Non-cost Barriers and Policy Solutions. This paper reviews the concept of net-zero energy (NZE) buildings and where we stand today. We discuss some of the near-term actions and longer- term strategies needed to accelerate technology innovation; make today's best practices tomorrow's business-as-usual; and deliver dramatically lower levels of energy use along with high-quality, healthy, and pleasant indoor environments that are resilient, adaptable, durable, and grid-responsive - while achieving market-accepted economics.

Harris, J.

2011-01-01T23:59:59.000Z

180

Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Residential Sector Energy Consumption March 2012 1.2.9 Implicit Price Deflators (2005 1.00) Year Year Year 1980 0.48 1990 0.72 2000 0.89 1981 0.52 1991 0.75 2001 0.91 1982 0.55...

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

4 4 Normalized Annual End Uses of Water in Select Supermarkets in Western United States (1) Fixture/End Use Toilets/Urinals Other/Misc. Indoor (2) Cooling Total Building Size (SF) Benchmarking Values for Supermarkets (3) N Indoor Use with Cooling, gal./SF/year 38 Indoor Use with Cooling, gal./SF/daily transaction 38 Note(s): Source(s): 25th Percentile of Users 52 - 64 9 - 16 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and interviews with building managers. 2) Includes water for sinks, spraying vegetables, cleaning, etc. 3) The study derived efficiency benchmarks by analyzing measured data and audit data. The benchmark was set at the lower 25th percentile of

182

Lighting retrofit monitoring for the Federal sector-strategies and results at the DOE Forrestal Building  

SciTech Connect

Pacific Northwest Laboratory (PNL), the US Department of Energy (DOE) Federal Energy Management Program (FEMP), and Potomac Electric Power Company (PEPCO) have been conducting short-term monitoring studies at the Forrestal Building, headquarters of the DOE, since 1990. These studies were an integral part of the Shared Energy Savings (SES) lighting retrofit project completed in 1993. The overall goal of the project was to reduce electricity consumption at the Forrestal Building. One objective of the project was to use the building as a model for other federal SES lighting retrofit efforts. A complete short-term monitoring strategy in support of the SES project was developed. The strategy included baseline measurements of electrical consumption, performance measurements of proposed retrofits, and post-retrofit measurements of electricity consumption. Measurements included power consumption, power harmonics, and lighting levels. The results show a 56% reduction in electrical power consumed for lighting, as well as improved power quality and increased lighting levels.

Halverson, M.A.; Schmelzer, J.R.; Keller, J.M.; Stoops, J.L.; Chvala, W.D.

1994-08-01T23:59:59.000Z

183

BetterBuildings Financing Energy Efficiency Retrofits in the Commercial Sector - Part 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Commercial Energy Efficiency Finance Programs Small Commercial Energy Efficiency Finance Programs Sponsored by State Governments SURVEY OF SURVEY OF SMALL COMMERCIAL ENERGY EFFICIENCY FINANCE PROGRAMS SPONSORED BY PROGRAMS SPONSORED BY STATE GOVERNMENTS May 3, 2011 Background of Small Commercial Finance Program Survey  Includes 20 States ( (mostly y identified from database of state incentives for renewable energy, DSIRE)  Sponsoring programs for:  small commercial (generally defined as 30,000 square feet or less and/or 150 kW or less) or   both small and large commercial sectors both small and large commercial sectors  Discussions with program managers   Creation of a table of program elements Creation of a table of program elements

184

Methodology for Analyzing the Technical Potential for Energy Performance in the U.S. Commercial Buildings Sector with Detailed Energy Modeling: Preprint  

SciTech Connect

This paper summarizes a methodology for developing quantitative answers to the question, ''How low can energy use go within the commercial buildings sector''? The basic process is to take each building in the 1999 CBECS public use data files and create a baseline building energy model for it as if it were being built new in 2005 with code-minimum energy performance.

Griffith, B.; Crawley, D.

2006-11-01T23:59:59.000Z

185

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

build an open appliance power signature database, which willdevice in a database, such as its type of appliance, wherebased on appliance type and stores the results in a database

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

186

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's...

187

Student-Built Appliances Made to Do More with Less | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Student-Built Appliances Made to Do More with Less Student-Built Appliances Made to Do More with Less Student-Built Appliances Made to Do More with Less August 30, 2012 - 1:40pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Although today's home appliances are designed to be far more energy efficient than those made in the decades past, there's always room for improvement. Industry leaders are building energy-saving appliances because consumers demand high-performance products that do more with less energy. Fostering this trend toward innovation in energy efficiency, the Department of Energy (DOE) recently recognized the winners of a university-based student design competition to build more efficient appliances -- products that can be manufactured at a lower cost and outperform comparable

188

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Buildings, by Fuel and Region (Thousand BtuSF) Region Electricity Natural Gas Fuel Oil Total Northeast 27.7 45.9 39.9 71.5 Midwest 22.5 49.9 N.A. 70.3 South 53.5 27.9 N.A....

189

Major models and data sources for residential and commercial sector energy conservation analysis. Final report  

SciTech Connect

Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

Not Available

1980-09-01T23:59:59.000Z

190

Appliance and Equipment Standards Result in Large Energy, Economic, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Standards Result in Large Energy, Economic, Appliance and Equipment Standards Result in Large Energy, Economic, and Environmental Benefits Appliance and Equipment Standards Result in Large Energy, Economic, and Environmental Benefits Saving Consumers and Businesses Energy and Money by Setting Efficiency Standards Saving Consumers and Businesses Energy and Money by Setting Efficiency Standards The Building Technologies Office (BTO) implements minimum energy conservation standards for more than 50 categories of appliances and equipment. As a result of these standards, energy users saved about $40 billion on their utility bills in 2010. Since 2009, 18 new or updated standards have been issued, which will help increase annual savings by more than 50 percent over the next decade. By 2030, cumulative operating cost

191

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

3 3 Normalized Annual End Uses of Water in Select Restaurants in Western United States (1) Fixture/End Use (2) Faucets Dishwashing Toilets/Urinals Ice Making Total Indoor Use (3) (4) (4) Building Size (SF) Seats: Meals: Benchmarking Values for Restaurants (6) N Gal./SF/year 90 Gal./meal 90 Gal./seat/day 90 Gal./employee/day 90 Note(s): Source(s): American Water Works Association Research Foundation, Commercial and Institutional End Uses of Water, 2000. 25th Percentile of Users 130 - 331 6 - 9 20 - 31 86 - 122 Familiy-style dine-in establishments. Four restaurants in southern California, one in Phoenix, AZ. 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and

192

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

6 6 Normalized Annual End Uses of Water in Two California High Schools Fixture/End Use Toilet Urinal Faucet Shower Kitchen Misc. uses (2) Cooling Leaks Swimming Pool Total Use Benchmarking Values for Schools (3) N Indoor Use, Gal./sq. ft./year 142 Indoor Use, Gal./school day/student 141 Cooling Use, Gal./sq. ft./year 35 Note(s): Source(s): 8 - 20 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and interviews with building managers. 2) One high school. 3) The study derived efficiency benchmarks by analyzing measured data and audit data. The benchmark was set at the lower 25th percentile of users. American Water Works Association Research Foundation, Commercial and Institutional End Uses of Water, 2000.

193

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 2003 Commercial Buildings Delivered Energy End-Use Intensities, by Building Activity (Thousand Btu per SF) (1) Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Note(s): Source(s): 43.5 45.2 164.4 20.9 1) Due to rounding, end-uses do not sum to total. EIA, 2003 Commercial Building Energy Consumption Survey, Energy End-Uses, Oct. 2008, Table E.2A. 0.3 0.6 3.0 N.A. 4.9 4.8 18.9 3.1 1.7 3.5 6.0 N.A. 0.1 0.2 N.A. N.A. 4.4 13.1 34.1 1.7 0.8 N.A. N.A. N.A. 1.4 2.0 6.1 0.4 0.8 0.6 2.1 0.1 26.2 19.3 79.4 14.4 2.9 1.3 10.5 0.6 Religious

194

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

9 9 2003 Commercial Delivered Energy Consumption Intensities, by Principal Building Type and Vintage (1) | Building Type Pre-1959 1960-1989 1990-2003 | Building Type Pre-1959 1960-1989 1990-2003 Health Care 178.1 216.0 135.7 | Education 77.7 88.3 80.6 Inpatient 230.3 255.3 253.8 | Service 62.4 86.0 74.8 Outpatient 91.6 110.4 84.4 | Food Service 145.2 290.1 361.2 Food Sales 205.8 197.6 198.3 | Religious Worship 46.6 39.9 43.3 Lodging 88.2 111.5 88.1 | Public Order & Safety N.A. 101.3 110.6 Office 93.6 94.4 88.0 | Warehouse & Storage N.A. 38.9 33.3 Mercantile 80.4 91.8 94.4 | Public Assembly 61.9 107.6 119.7 Retail (Non-Malls) 74.1 63.7 86.4 | Vacant 21.4 23.1 N.A. Retail (Malls) N.A. 103.9 99.5 | Other 161.3 204.9 125.3 Note(s): Source(s): Consumption (kBtu/SF) Consumption (kBtu/SF) 1) See Table 3.1.3 for primary versus delivered energy consumption.

195

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 Aggregate Commercial Building Component Loads as of 1998 (1) Load (quads) and Percent of Total Load Component Heating Cooling Roof -0.103 12% 0.014 1% Walls (2) -0.174 21% -0.008 - Foundation -0.093 11% -0.058 - Infiltration -0.152 18% -0.041 - Ventilation -0.129 15% -0.045 - Windows (conduction) -0.188 22% -0.085 - Windows (solar gain) 0.114 - 0.386 32% Internal Gains Lights 0.196 - 0.505 42% Equipment (electrical) 0.048 - 0.207 17% Equip. (non-electrical) 0.001 - 0.006 1% People 0.038 - 0.082 7% NET Load -0.442 100% 0.963 100% Note(s): Source(s): 1) Loads represent the thermal energy losses/gains that, when combined, will be offset by a building's heating/cooling system to maintain a set interior temperature (which equals site energy). 2) Includes common interior walls between buildings. LBNL, Commercial Heating and Cooling Loads Component Analysis, June 1998, Table 24, p. 45 and Figure 3, p. 61

196

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

197

Appliance and Equipment Efficiency Standards  

Energy.gov (U.S. Department of Energy (DOE))

'' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

198

Tips: Appliances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for about 13% of your household's energy costs, with refrigeration, cooking, and laundry at the top of the list. Learn about: Shopping for Appliances Purchase the most...

199

Energy efficiency and appliance replacement  

E-Print Network (OSTI)

energy use and energy cost savings over time generally haveenergy costs, and incomes, as well as multiple varieties of appliances, changing technologies over time,

LaFrance, Jeffrey T.

2005-01-01T23:59:59.000Z

200

California Appliance Efficiency Regulation Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Julie Osborn As part of the response to last summer's electricity crisis, the California Energy Commission (CEC) is updating the state's appliance efficiency regulations. On...

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per Square Foot (thousand Btu) (1) Per Household (million Btu) Per Household Member (million Btu) 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average

202

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

5 5 Normalized Annual End Uses of Water in Select Hotels in Western United States (Gallons per Room per Year) (1) Fixture/End Use Bathtub (2) Faucets Showers Toilets Leaks Laundry Ice making (3) Other/misc. indoor Total Indoor Use Number of Rooms Logged average daily use, kgal: Peak instantaneous demand, gpm: Benchmarking Values for Hotels N Indoor Use, gal./day/occupied room 98 Cooling Use, gal./year/occupied room 97 Note(s): Source(s): 25th Percentile of Users 60 - 115 7,400 - 41,600 Based on four budget hotels and one luxury hotel. Three budget hotels in Southern California, one in Phoenix, AZ. Luxury hotel in Los Angeles, CA. 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other variables, billing data, and interviews with building managers. 2) Based on one hotel. 3) Based on three hotels. 5) The

203

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

E-Print Network (OSTI)

for Achieving Net Zero-Energy Buildings in the Commercialand Renewable Energy, Building Technologies Program, of theconvert these very low energy buildings to a net zero energy

Coffey, Brian

2010-01-01T23:59:59.000Z

204

Remote repair appliance  

DOE Patents (OSTI)

A remote appliance for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.

Heumann, Frederick K. (Ballston Spa, NY); Wilkinson, Jay C. (Ballston Spa, NY); Wooding, David R. (Saratoga Springs, NY)

1997-01-01T23:59:59.000Z

205

Remote repair appliance  

DOE Patents (OSTI)

A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.

Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.

1997-12-16T23:59:59.000Z

206

Remote repair appliance  

DOE Patents (OSTI)

A remote appliance is described for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.

Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.

1996-12-31T23:59:59.000Z

207

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings  

E-Print Network (OSTI)

for this activity. Zero energy buildings have captured the “and Renewable Energy, Building Technologies Program, of theand operated, zero energy buildings will remain a niche

Selkowitz, Stephen

2008-01-01T23:59:59.000Z

208

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings  

E-Print Network (OSTI)

available from authors. DOE EERE. High Performance BuildingsProgram: Building Database. DOE EERE; August Available from:buildings/database/. DOE EERE. State Energy Alternatives:

Selkowitz, Stephen

2008-01-01T23:59:59.000Z

209

Appliances & Electronics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliances & Electronics Appliances & Electronics Appliances & Electronics Looking for ways to save energy? Check out these tips -- which include using a power strip and switching to ENERGY STAR appliances -- that every homeowner should try. Looking for ways to save energy? Check out these tips -- which include using a power strip and switching to ENERGY STAR appliances -- that every homeowner should try. Over the past couple of decades, advances in appliances and electronics -- from microwaves and dishwashers to smartphones and computers -- have changed the way we use energy in our homes. Through the Energy Department's appliance standards, manufacturers are making great strides in developing new, more efficient appliances that are

210

Appliance and Equipment Energy Efficiency Standards | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Program Information New York Program Type ApplianceEquipment Efficiency Standards ''...

211

EERE Roofus' Solar and Efficient Home: Appliances  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances Front-Loading Washing Machine Electric Meter Lights Solar Car Solar Hot Water Solar Panels Walls Windows Activities Printable Version Appliances Illustration of Roofus,...

212

Appliance Efficiency Labeling - National Institute of Standards ...  

Science Conference Proceedings (OSTI)

... The Act required the DOE to develop procedures to test the energy efficiency of certain appliances, set energy efficiency targets for appliances, and ...

2013-11-25T23:59:59.000Z

213

Appliances, Lighting, Electronics, and Miscellaneous Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes Title Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in...

214

Grid Friendly Appliance™ Controller - Energy Innovation Portal  

Vehicles and Fuels; Wind Energy; Partners (27) Visual ... PNNL is currently working with appliance manufacturers and utilities to use Grid Friendly Appliances in a ...

215

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

5 5 Commercial Buildings Share of U.S. Petroleum Consumption (Percent) Site Consumption Primary Consumption Total Commercial Industry Electric Gen. Transportation Commercial Industry Transportation (quads) 1980 4% 28% 8% 56% | 6% 31% 56% 34.2 1981 4% 26% 7% 59% | 5% 29% 59% 31.9 1982 3% 26% 5% 61% | 5% 28% 61% 30.2 1983 4% 25% 5% 62% | 5% 27% 62% 30.1 1984 4% 26% 4% 61% | 5% 27% 61% 31.1 1985 3% 25% 4% 63% | 5% 26% 63% 30.9 1986 4% 24% 5% 63% | 5% 26% 63% 32.2 1987 3% 25% 4% 63% | 5% 26% 63% 32.9 1988 3% 24% 5% 63% | 5% 26% 63% 34.2 1989 3% 24% 5% 63% | 5% 25% 63% 34.2 1990 3% 25% 4% 64% | 4% 26% 64% 33.6 1991 3% 24% 4% 65% | 4% 26% 65% 32.8 1992 3% 26% 3% 65% | 4% 27% 65% 33.5 1993 2% 25% 3% 65% | 3% 26% 65% 33.8 1994 2% 25% 3% 65% | 3% 26% 65% 34.7 1995 2% 25% 2% 67% | 3% 26% 67% 34.6 1996 2% 25% 2% 66% | 3% 26% 66% 35.8 1997 2% 26% 3% 66% | 3% 26% 66% 36.3 1998 2% 25% 4% 66% | 3% 26% 66% 36.9 1999 2% 25% 3% 66% | 3% 26% 66% 38.0 2000 2% 24% 3% 67% | 3% 25%

216

Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption  

Buildings Energy Data Book (EERE)

2 2 Average Water Use of Commercial and Institutional Establishments (Gallons per Establishment per Day) Average Variation % Total % of CI % Seasonal Daily Use In Use (1) CI Use Customers Use (2) Hotels and Motels 7,113 5.41 5.8% 1.9% 23.1% Laundries/Laundromats 3,290 8.85 4.0% 1.4% 13.4% Car Washes 3,031 3.12 0.8% 0.4% 14.2% Urban Irrigation 2,596 8.73 28.5% 30.2% 86.9% Schools and Colleges 2,117 12.13 8.8% 4.8% 58.0% Hospitals/Medical Offices 1,236 78.5 3.9% 4.2% 23.2% Office Buildings 1,204 6.29 10.2% 11.7% 29.0% Restaurants 906 7.69 8.8% 11.2% 16.1% Food Stores 729 16.29 2.9% 5.2% 19.4% Auto Shops (3) 687 7.96 2.0% 6.7% 27.2% Membership Organizations (4) 629 6.42 2.0% 5.6% 46.2% Total 77.6% 83.3% Note(s): Source(s): 23,538 Estimated from 24 months of water utility billing data in five Western locations: four locations in Southern California and one in Arizona. 1)

217

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 Commercial Buildings Share of U.S. Natural Gas Consumption (Percent) Site Consumption Primary Consumption Total Commercial Industry Electric Gen. Transportation Commercial Industry Transportation (quads) 1980 13% 41% 19% 3% | 18% 49% 3% 20.22 1981 13% 42% 19% 3% | 18% 49% 3% 19.74 1982 14% 39% 18% 3% | 20% 45% 3% 18.36 1983 14% 39% 17% 3% | 19% 46% 3% 17.20 1984 14% 40% 17% 3% | 19% 47% 3% 18.38 1985 14% 40% 18% 3% | 19% 46% 3% 17.70 1986 14% 40% 16% 3% | 19% 46% 3% 16.59 1987 14% 41% 17% 3% | 19% 47% 3% 17.63 1988 15% 42% 15% 3% | 19% 47% 3% 18.44 1989 14% 41% 16% 3% | 19% 47% 3% 19.56 1990 14% 43% 17% 3% | 19% 49% 4% 19.57 1991 14% 43% 17% 3% | 19% 49% 3% 20.03 1992 14% 43% 17% 3% | 19% 49% 3% 20.71 1993 14% 43% 17% 3% | 19% 48% 3% 21.24 1994 14% 42% 18% 3% | 19% 48% 3% 21.75 1995 14% 42% 19% 3% | 20% 49% 3% 22.71 1996 14% 43% 17% 3% | 19% 49% 3% 23.14 1997 14% 43% 18% 3% | 20% 49% 3% 23.34 1998 13% 43% 20% 3% | 20% 50% 3% 22.86 1999 14%

218

Energy conservation opportunities in commercial appliances. Final report  

SciTech Connect

This study establishes a data base of energy-consuming appliances in the commercial sector, and identifies and rates the most-promising development opportunities that would save significant amounts of energy on a national level. A detailed national inventory of 45 major appliances and their energy consumption was established for the year 1975. Thirty-four potential appliance improvements were identified, evaluated, and ranked. The opportunities are identified by means of a literature search and contact with industry representatives. The commercial sector is defined in terms of the divisions prescribed in the S.I.C. Manual (1972) of the OMB. These groups are recombined into the commercial subsectors of communications; utilities; wholesale; retail; finance, insurance, real estate, and services; hospital; schools; and public administration. The major energy-consuming appliances in the following six functional-use categories were identified: space heating and cooling; water heating; refrigeration; cooking; and lighting. The equipment in these categories was estimated to consume 87% of the total energy used in the commercial sector, with the remaining 13% consumed by equipment such as computers, business machines, laundry equipment, dishwashing, and other food-service equipment. (MCW)

Hurley, J.R.; Searight, E.F.; Wong, A.

1978-12-01T23:59:59.000Z

219

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China  

E-Print Network (OSTI)

cumulative consumption of building electricity to that year.cumulative consumption of building electricity to that year.year. For each scenario, the total energy consumption of each appliance (measured in terms of electricity)

Zhou, Nan

2010-01-01T23:59:59.000Z

220

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China  

E-Print Network (OSTI)

cumulative consumption of building electricity to that year.cumulative consumption of building electricity to that year.year. For each scenario, the total energy consumption of each appliance (measured in terms of electricity)

Zhou, Nan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network (OSTI)

62440 Appliances, Lighting, Electronics, and Miscellaneousof California. Appliances, Lighting, Electronics, anduses (appliances, lighting, electronics, and miscellaneous

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

222

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

223

Building Technologies Office: Appliance Standards and Rulemaking...  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Groups Commercial Heating, Ventilation, and Air-Conditioning, Water Heating, and Refrigeration Certification Working Group All notices, public comments, public meeting...

224

Energy Star Appliances 1 Texas A&M AgriLife Extension Service ENERGY STAR Appliances  

E-Print Network (OSTI)

Energy Star® Appliances 1 Texas A&M AgriLife Extension Service ENERGY STAR® Appliances ENERGY STAR®-labeled appliances save you money by using less electricity and water than other appliances. Better appliance energy efficiency comes from quality materials and technologically advanced materials. Although energy efficient

225

Federal Appliance Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Appliance Standards Federal Appliance Standards Federal Appliance Standards < Back Eligibility Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Program Info Program Type Appliance/Equipment Efficiency Standards Provider U.S. Department of Energy '''''Note: HR 6582 of 2012 made some modifications to the efficiency standards previously adopted for some appliance types. The bill did not adopt new standards for previously unregulated appliances, but made some minor changes to the requirements for walk-in coolers, walk-in freezers, water heaters, self-contained medium temperature commercial refrigerators, central air conditioners, and heat pumps. The bill also included some

226

Tips: Shopping for Appliances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Shopping for Appliances Tips: Shopping for Appliances Tips: Shopping for Appliances April 24, 2012 - 7:33pm Addthis What's the Real Cost? Every appliance has two price tags -- the purchase price and the operating cost. Consider both when buying a new appliance. What's the Real Cost? Every appliance has two price tags -- the purchase price and the operating cost. Consider both when buying a new appliance. When you're shopping for appliances, think of two price tags. The first one covers the purchase price -- think of it as a down payment. The second price tag is the cost of operating the appliance during its lifetime. You'll be paying on that second price tag every month with your utility bill for the next 10 to 20 years, depending on the appliance. Refrigerators last an average of 12 years; clothes washers about 11 years; dishwashers

227

Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design  

Science Conference Proceedings (OSTI)

It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standards program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market components and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary analyses presented in this report are: Nevertheless, it is important to analyze best-on-market products, since data on truly max tech technologies are limited. (1) an analysis of the cross-cutting strategies most promising for reducing appliance and equipment energy use in the U.S.; (2) a macro-analysis of the U.S. energy-saving potential inherent in promising ultra-efficient appliance technologies; and (3) a product-level analysis of the energy-saving potential.

Desroches, Louis-Benoit; Garbesi, Karina

2011-07-20T23:59:59.000Z

228

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

achievable energy savings from building systems integrationnon-process energy consumption. System integration,

Akbari, H.

2008-01-01T23:59:59.000Z

229

Local Enforcement of Appliance Efficiency Standards and Labeling Program in  

NLE Websites -- All DOE Office Websites (Extended Search)

Local Enforcement of Appliance Efficiency Standards and Labeling Program in Local Enforcement of Appliance Efficiency Standards and Labeling Program in China: Progress and Challenges Title Local Enforcement of Appliance Efficiency Standards and Labeling Program in China: Progress and Challenges Publication Type Conference Proceedings Year of Publication 2012 Authors Zheng, Nina, Nan Zhou, Cecilia Fino-Chen, and David Fridley Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings Date Published 06/2012 Conference Location Pacific Grove, California, U.S.A. Keywords appliance energy efficiency, china, labeling, local enforcement, standards Abstract As part of its commitment to promoting and improving the local enforcement of appliance energyefficiency standards and labeling, the China National Institute of Standardization launched the Nationaland Local Enforcement of Energy Efficiency Standards and Labeling program on August 14, 2009. For thisprogram, Jiangsu, Shandong, Sichuan and Shanghai were selected as pilot locations. This paper providesinformation on the local enforcement program's recent background, activities and results as well ascomparison to previous rounds of check-testing in 2006 and 2007. In addition, the paper also offersevaluation on the achievement and weaknesses in the local enforcement scheme and recommendationsbased on international experience.

230

A Reliable Natural Language Interface to Household Appliances  

E-Print Network (OSTI)

“I have always wished that my computer would be as easy to use as my telephone. My wish has come true. I no longer know how to use my telephone.” – Bjarne Stroustrop (originator of C++) As household appliances grow in complexity and sophistication, they become harder and harder to use, particularly because of their tiny display screens and limited keyboards. This paper describes a strategy for building natural language interfaces to appliances that circumvents these problems. Our approach leverages decades of research on planning and natural language interfaces to databases by reducing the appliance problem to the database problem; the reduction provably maintains desirable properties of the database interface. The paper goes on to describe the implementation and evaluation of the EXACT interface to appliances, which is based on this reduction. EXACT maps each English user request to an SQL query, which is transformed to create a PDDL goal, and uses the Blackbox planner [13] to map the planning problem to a sequence of appliance commands that satisfy the original request. Both theoretical arguments and experimental evaluation show that EXACT is highly reliable.

Alexander Yates

2003-01-01T23:59:59.000Z

231

Equator Appliance: ENERGY STAR Referral (EZ 3720) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Equator Appliance: ENERGY STAR Referral (EZ 3720) Equator Appliance: ENERGY STAR Referral (EZ 3720) October 5, 2010 DOE referred Equator Appliance clothes washer EZ 3720 to EPA,...

232

Using National Survey Data to Estimate Lifetimes of Residential Appliances  

E-Print Network (OSTI)

Life of Residential Appliances,” in ACEEE Summer Study onWhen do energy-efficient appliances generate energy savings?points. Assuming unchanging appliance lifetimes expands and

Lutz, James D.

2013-01-01T23:59:59.000Z

233

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

Science Conference Proceedings (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

234

Electric Commercial Cooking Appliance Development Needs: Preparation and Characterization of Chromium- Coated Residual Heat Removal System Piping  

Science Conference Proceedings (OSTI)

Foodservice establishments are the most energy-intensive customers in the commercial sector. This report addresses the need to improve the energy efficiency of electric cooking appliances by identifying current market opportunities and technologies for further development.

1993-08-01T23:59:59.000Z

235

Training the Next Generation of Commercial Building ...  

Science Conference Proceedings (OSTI)

... tools, building energy codes and appliance standards. ... automation system (BAS) and small-to-medium ... intended to apply to smaller commercial and ...

2012-09-20T23:59:59.000Z

236

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

in that sector went for space conditioning and lighting. Ourmay dramatically affect space conditioning requirements. BAHpurchased energy use for space conditioning and lighting in

Akbari, H.

2008-01-01T23:59:59.000Z

237

Tips: Smart Appliances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Smart Appliances Tips: Smart Appliances Tips: Smart Appliances April 24, 2012 - 7:56pm Addthis Some manufacturers are now offering "smart" appliances -- appliances that can be connected to smart electric meters or home energy management systems to help you shift your electricity use to off-peak hours. Air conditioners, refrigerators, dishwashers, and other appliances may be available as smart appliances. Smart appliances don't just turn off during times of peak electricity demand -- instead, they use subtle ways to shift energy use. You might not even be aware of it. For example, your air conditioner may run slightly less often. Or your refrigerator might delay it's defrost cycle until the middle of the night. If your utility charges lower rates for electricity at

238

Demand Response Enabled Appliance Development at GE  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Enabled Appliance Development at GE Speaker(s): David Najewicz Date: June 12, 2009 - 12:00pm Location: 90-3122 Dave Najewicz of GE Consumer and Appliances will...

239

Midea Washing Appliance: Order (2011-CE-1903)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Midea Washing Appliance Mfg. Co., Ltd. to pay a $6,000 civil penalty after finding Midea Washing Appliance had failed to certify that certain models of dishwashers comply with the applicable energy conservation standards.

240

Tips: Shopping for Appliances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

you which appliance is the most efficient on the market, they will show you the annual energy consumption and operating cost for each appliance so you can compare them yourself....

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

International Comparison of Energy Efficiency Awards for Appliance...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Comparison of Energy Efficiency Awards for Appliance Manufacturers and Retailers Title International Comparison of Energy Efficiency Awards for Appliance...

242

Available Technologies Grid Friendly Appliance™ Controller  

The Grid Friendly Appliance controller developed at PNNL senses grid conditions ... » Smart Grid Devices potential industry Applications » Computers ...

243

Orange and Rockland Utilities (Electric) - Residential Appliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Program < Back Eligibility Residential Commercial Savings Category Appliances & Electronics Construction Commercial Heating & Cooling Program Info Funding Source...

244

Saving energy and money with home appliances  

Science Conference Proceedings (OSTI)

This is an educational guide that shows consumers and energy educators how to: identify energy guzzling appliances in their homes; use existing appliances more efficiently; select energy-saving new appliances; and read energy guide labels easily. Packed with money-saving tips, this booklet provides information on ten appliances: refrigerators, heat pumps, air conditioners, portable space heaters, lights, water heaters, clothes washers and dryers, freezers, dishwashers, and ranges.

Not Available

1985-01-01T23:59:59.000Z

245

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

246

Buildings Energy Data Book: 5.1 Building Materials/Insulation  

Buildings Energy Data Book (EERE)

2 Industry Use Shares of Mineral Fiber (GlassWool) Insulation (1) 1997 1999 2001 2003 2004 2005 Insulating Buildings (2) Industrial, Equipment, and Appliance Insulation Unknown...

247

Modeling of GE Appliances: Final Presentation  

SciTech Connect

This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances’ through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances’ DR-enabled appliances to provide benefits to the utility grid.

Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

2013-01-31T23:59:59.000Z

248

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

SciTech Connect

This paper describes the origin, structure and continuing development of a model of time varying energy consumption in the US commercial building stock. The model is based on a flexible structure that disaggregates the stock into various categories (e.g. by building type, climate, vintage and life-cycle stage) and assigns attributes to each of these (e.g. floor area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock dynamics, the model has been used to study the likely outcomes of specific policy and innovation scenarios targeting very low future energy consumption in the building stock. Model use has highlighted the scale of the challenge of meeting targets stated by various government and professional bodies, and the importance of considering both new construction and existing buildings.

Coffey, Brian; Borgeson, Sam; Selkowitz, Stephen; Apte, Josh; Mathew, Paul; Haves, Philip

2009-07-01T23:59:59.000Z

249

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings  

E-Print Network (OSTI)

2007 with Projections to 2030. Washington, DC: US Departmentcarbon-neutral buildings by 2030. While this vision isin GHG emissions by 2030. Energy Use in Commercial

Selkowitz, Stephen

2008-01-01T23:59:59.000Z

250

Residential and commercial buildings data book. Second edition  

SciTech Connect

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

251

Setting Whole-Building Absolute Energy Use Targets for the K-12 School, Retail, and Healthcare Sectors: Preprint  

SciTech Connect

This paper helps owners' efficiency representatives to inform executive management, contract development, and project management staff as to how specifying and applying whole-building absolute energy use targets for new construction or renovation projects can improve the operational energy performance of commercial buildings.

Leach, M.; Bonnema, E.; Pless, S.; Torcellini, P.

2012-08-01T23:59:59.000Z

252

Setting Whole-Building Absolute Energy Use Targets for the K-12 School, Retail, and Healthcare Sectors: Preprint  

SciTech Connect

This paper helps owners' efficiency representatives to inform executive management, contract development, and project management staff as to how specifying and applying whole-building absolute energy use targets for new construction or renovation projects can improve the operational energy performance of commercial buildings.

Leach, M.; Bonnema, E.; Pless, S.; Torcellini, P.

2012-08-01T23:59:59.000Z

253

Personal Universal Controllers: Controlling Complex Appliances with . . .  

E-Print Network (OSTI)

We envision a future where each person will carry with them a personal universal controller (PUC), a portable computerized device that allows the user to control any appliance within their environment. The PUC has a two-way communication channel with each appliance. It downloads a specification of the appliance's features and then automatically generates an interface for controlling that appliance (graphical, speech, or both). In this demonstration we present a working PUC system that automatically generates graphical and speech interfaces, and controls real appliances, including a shelf stereo and a Sony camcorder.

Jeffrey Nichols; Brad A. Myers; Michael Higgins; Joseph Hughes; Thomas K. Harris; Roni Rosenfeld; Kevin Litwack

2003-01-01T23:59:59.000Z

254

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

E-Print Network (OSTI)

of implementation. References Architecture 2030 (2007)6.7 GtCO 2 eq/yr globally by 2030 (IPCC 2007). As advocates,commercial buildings by 2030 in the stated goals of the

Coffey, Brian

2010-01-01T23:59:59.000Z

255

LBL-34046 UC-350 Residential Appliance Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network (OSTI)

This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the U.S. residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute (McMenamin et al. 1992). In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70 % of electricity consumption and 30 % of natural gas consumption in the U.S. residential sector (EIA 1993). Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific

J. Hwang; Francis X. Johnson; Richard E. Brown; James W. Hanford; Jonathan G. Koomey

1994-01-01T23:59:59.000Z

256

Virtual Appliances for Deploying and Maintaining Software  

E-Print Network (OSTI)

This paper attempts to address the complexity of system administration by making the labor of applying software updates independent of the number of computers on which the software is run. Complete networks of machines are packaged up as data; we refer to them as virtual appliances. The publisher of an appliance controls the software installed on the appliance, from the operating system to the applications, and is responsible for keeping the appliance up to date. These appliances can be configured by users to fit their needs; the configuration is captured such that it can be reapplied automatically when the appliance's software is updated. We have developed a compute utility, called the Collective, which assigns virtual appliances to hardware dynamically and automatically. By keeping software up to date, our approach prevents security break-ins due to fixed vulnerabilities.

Constantine Sapuntzakis David; David Brumley; Ramesh Chandra; Nickolai Zeldovich; Jim Chow; Monica S. Lam; Mendel Rosenblum

2003-01-01T23:59:59.000Z

257

Definition: Smart Appliance | Open Energy Information  

Open Energy Info (EERE)

Appliance Appliance Jump to: navigation, search Dictionary.png Smart Appliance An appliance that includes the intelligence and communications to enable automatic or remote control based on user preferences or external signals from a utility or third party energy service provider. A smart appliance may utilize a Home Area Network to communicate with other devices in the customer's premise, or other channels to communicate with utility systems.[1] Related Terms home area network References ↑ https://www.smartgrid.gov/category/technology/smart_appliance [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Smart_Appliance&oldid=502612

258

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

industrial facilities use boilers and/or furnaces that burnare: 1) space heat, 2) hot water, 3) boiler for building-heat, 4) boiler for process 5) direct process heat, 6)

Akbari, H.

2008-01-01T23:59:59.000Z

259

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

use for building energy services. Another way of statingHtg. L3 L3 % Total Service Energy '-J m I % of Non-Process7 shows the percent of service energy which is electricity

Akbari, H.

2008-01-01T23:59:59.000Z

260

Evaluation of advanced technologies for residential appliances and residential and commercial lighting  

SciTech Connect

Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

262

Realized and projected impacts of U.S. federal efficiency standards for residential appliances  

E-Print Network (OSTI)

11 Appliance Prices and Incremental Costs ofDue to Appliance Standards . . . . . . . . . . . . .Standards for Residential Appliances Stephen Meyers, James

Meyers, Stephen; McMahon, James; McNeil, Michael; Liu, Xiaomin

2002-01-01T23:59:59.000Z

263

COOKING APPLIANCE USE IN CALIFORNIA HOMES DATA COLLECTED FROM A WEB-BASED SURVEY  

E-Print Network (OSTI)

28 List of Figures Figure 1. Appliance fueltype by applianceStatewide Residential Appliance Saturation Study. Final

Klug, Victoria

2012-01-01T23:59:59.000Z

264

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network (OSTI)

Efficiency of Household Appliances in China Jiang Lin8 Appliance Market inEfficiency of Household Appliances in China Executive

Lin, Jiang

2006-01-01T23:59:59.000Z

265

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

E-Print Network (OSTI)

Comparisons of Using Appliances: Electricity vs. Naturalwww.okaloosagas.com/appliances/appliancecomparison.cfm> 2.Whirlpool Corporation. 3. Appliance Recycling Information

Lekov, Alex

2010-01-01T23:59:59.000Z

266

Status of European appliance standards  

SciTech Connect

The European Community (EC) recently commissioned a study of the impact of potential appliance standards on electricity consumption in the twelve EC nations. This study looks at refrigerators, freezers, dishwashers, clothes washers, and clothes dryers. The impact of minimum efficiency standards on electricity use over the time period from 1995--2010 is estimated. The results of this study were presented to the EC in September of 1991. Revisions were made to the draft report and final copies sent to all interested parties. The member nations of the EC will soon consider whether they wish to implement uniform energy efficiency standards that would take effect in 1995. The results of the study described above will be presented and the political considerations will be discussed. In addition, data describing the appliance market in Europe will be presented.

Turiel, I. (Lawrence Berkeley Lab., CA (United States)); Lebot, B. (Agence de L'Environnement et de la Maitrise de L'Energie, Valbonne (France))

1992-05-01T23:59:59.000Z

267

Leaking electricity in domestic appliances  

Science Conference Proceedings (OSTI)

Many types of home electronic equipment draw electric power when switched off or not performing their principal functions. Standby power use (or ''leaking electricity'') for most appliances ranges from 1 - 20 watts. Even though standby use of each device is small, the combined standby power use of all appliances in a home can easily exceed 50 watts. Leaking electricity is already responsible for 5 to 10 percent of residential electricity use in the United States and over 10 percent in Japan. An increasing number of white goods also have standby power requirements. There is a growing international effort to limit standby power to around one watt per device. New and existing technologies are available to meet this target at little or no extra cost.

Meier, Alan; Rosen, Karen

1999-05-01T23:59:59.000Z

268

Sensor-Based Information Appliances  

E-Print Network (OSTI)

Pervasive Computing is the main characteristic of the emerging fourth era of computer evolution. The paper discusses features of a new generation of intelligent sensor-based information appliances for distributed heterogeneous real-time applications. These appliances will be found in the intelligent homes, offices, automobiles and cities of the future. They will also offer higher mobility and convenience to professionals and open new avenues to many industrial and health applications. 1. Introduction Since its emergence, some forty years go, computing industry has passed through a rapid sequence of technological phases: central computing/mainframe (1950s-1980s), personal computer/PC (1980s-...), computer networks (1990s -...). A fourth era is emerging now, when computers become pervasive, i.e. a technology more noticeable by its absence than its presence [1], [6], [11], [14], [17], [22], [25]. The first mass-produced pervasive computing devices are starting to appear. The Clarion Au...

Emil M. Petriu; Nicolas D. Georganas; Dorina C. Petriu; Dimitrios Makrakis; Voicu Z. Groza

2000-01-01T23:59:59.000Z

269

Service Portability of Networked Appliances  

E-Print Network (OSTI)

This document outlines an approach for delivering services to Networked Appliances using techniques that allow mobility of these services both in a conventional location independent sense and between physical devices. Key requirements to address this market are identified and the document then goes on to present a technical solution to meet these requirements together with worked examples. It concludes with suggestions for further work. 1

Stan Moyer; Dave Marples; Simon Tsang; Abhrajit Ghosh

2000-01-01T23:59:59.000Z

270

Batch-oriented software appliances  

E-Print Network (OSTI)

This paper presents AppPot, a system for creating Linux software appliances. AppPot can be run as a regular batch or grid job and executed in user space, and requires no special virtualization support in the infrastructure. The main design goal of AppPot is to bring the benefits of a virtualization-based IaaS cloud to existing batch-oriented computing infrastructures. In particular, AppPot addresses the application deployment and configuration on large heterogeneous computing infrastructures: users are enabled to prepare their own customized virtual appliance for providing a safe execution environment for their applications. These appliances can then be executed on virtually any computing infrastructure being in a private or public cloud as well as any batch-controlled computing clusters the user may have access to. We give an overview of AppPot and its features, the technology that makes it possible, and report on experiences running it in production use within the Swiss National Grid infrastructure SMSCG.

Murri, Riccardo

2012-01-01T23:59:59.000Z

271

Laboratory Testing of Demand-Response Enabled Household Appliances  

SciTech Connect

With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

Sparn, B.; Jin, X.; Earle, L.

2013-10-01T23:59:59.000Z

272

GE Appliances and Lighting Home Energy Solutions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GE Appliances and Lighting GE Appliances and Lighting Home Energy Solutions Introduction to Devices with Brillion(tm) Technology Portfolio of Products 3 GE Appliances and Lighting All Rights Reserved Brillion(tm) Suite of Home Energy Solutions Nucleus(tm) Smart Meter Other Devices Internet IHD Other Devices PCT Non-Meter Solution GE DRMS GEA Server 4 GE Appliances and Lighting All Rights Reserved Nucleus(tm) energy manager with Brillion(tm) technology Consumers can reduce electric usage by an average of 5% per year. 5 GE Appliances and Lighting All Rights Reserved GE Profile Appliances enabled with Brillion(tm) technology Delayed defrost during peak Delayed starts and temperature adjustments during peak Delayed start until off- peak Reduced energy usage 60%, DR- enabled Reduced wattage during peak When coupled with the Nucleus and a TOU

273

Analysis of institutional mechanisms affecting residential and commercial buildings retrofit  

SciTech Connect

Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

1980-09-01T23:59:59.000Z

274

Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Partnerships Are Yielding Reliable, Cost-Saving Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances November 9, 2011 - 12:01pm Addthis Oak Ridge National Laboratory's facility tests several water heaters at one time. Because of ORNL's accelerated durability testing, they estimate that 10 months of constant operation in its testing facility is comparable to 10 years of service life in a typical residential setting. | Photo courtesy of the Building Technologies Research and Integration Center, ORNL Oak Ridge National Laboratory's facility tests several water heaters at one time. Because of ORNL's accelerated durability testing, they estimate that 10 months of constant operation in its testing facility is comparable to 10

275

Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships Are Yielding Reliable, Cost-Saving Partnerships Are Yielding Reliable, Cost-Saving Appliances Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances November 9, 2011 - 12:01pm Addthis Oak Ridge National Laboratory's facility tests several water heaters at one time. Because of ORNL's accelerated durability testing, they estimate that 10 months of constant operation in its testing facility is comparable to 10 years of service life in a typical residential setting. | Photo courtesy of the Building Technologies Research and Integration Center, ORNL Oak Ridge National Laboratory's facility tests several water heaters at one time. Because of ORNL's accelerated durability testing, they estimate that 10 months of constant operation in its testing facility is comparable to 10 years of service life in a typical residential setting. | Photo courtesy of

276

Energy Star Building Upgrade Manual Introduction Chapter 1  

NLE Websites -- All DOE Office Websites (Extended Search)

offer- ings. The label now covers new homes, commercial and institutional buildings, residential heating and cooling equipment, major appliances, office equipment, lighting,...

277

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network (OSTI)

and usage patterns, and because data sources covering these parameters are more scarce, modeling of household lighting

McNeil, Michael A.

2010-01-01T23:59:59.000Z

278

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network (OSTI)

Henderson (2005). Home air conditioning in Europe – how muchA. Pavlova (2003). "Air conditioning market saturation andevidence suggests that air conditioning could be quite an

McNeil, Michael A.

2010-01-01T23:59:59.000Z

279

Earthjustice, Appliance Standards Awareness Project, Natural...  

NLE Websites -- All DOE Office Websites (Extended Search)

Earthjustice, Appliance Standards Awareness Project, Natural Resources Defense Council - Comments in response to DOE solicitation of views on the implementation of test procedure...

280

Incorporating Experience Curves in Appliance Standards Analysis  

E-Print Network (OSTI)

2006. Energy ef- ?ciency standards for equipment: Additionale?ectiveness of the EU minimum standard on cold appliances:Document: Energy E?ciency Standards for Consumer Products:

Desroches, Louis-Benoit

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Retrospective Evaluation of Appliance Price Trends  

E-Print Network (OSTI)

analyses to generate price trends more accurately. 8.Evaluation of Appliance Price Trends Larry Dale, Camillewith regard to overall price trends and relative price of

Dale, Larry

2010-01-01T23:59:59.000Z

282

Grid Friendly Appliance™ Controller - Energy Innovation Portal  

The Grid Friendly Appliance controller developed at PNNL senses grid conditions by monitoring the frequency of the system and provides automatic deman ...

283

Smart Domestic Appliances Provide Flexibility for Sustainable...  

Open Energy Info (EERE)

benefits and difficulties associated with smart grid appliances. The presenter discusses demand response and load management and how users of smart grid can benefit renewable...

284

Retrospective Evaluation of Appliance Price Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency standards, appliance energy efficiency, cost-benefit analysis, price forecasts, Techno-Economic Analysis URL https:isswprod.lbl.govlibraryview-docspublic...

285

Energy use of appliance - A trend analysis.  

E-Print Network (OSTI)

??To provide insights and reach for energy efficiency improvements, the development of energy use of appliances on disaggreate level has been studied in three case… (more)

Kwok, W.F.

2011-01-01T23:59:59.000Z

286

Orthodontic Appliance Preferences of Children and Adolescents.  

E-Print Network (OSTI)

??Although attractiveness and acceptability of orthodontic appliances have been rated by adults for themselves and adolescents, children and adolescents have not provided any substantial data.… (more)

Walton, Daniel K.

2010-01-01T23:59:59.000Z

287

Section B: KITCHEN APPLIANCES - Energy Information Administration  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey Form EIA-457A (2001)--Household Questionnaire OMB No.: 1905-0092, Expiring February 29, 2004 6 Section B: KITCHEN APPLIANCES

288

Performance evaluation and characterization of virtual appliances.  

E-Print Network (OSTI)

??System virtualization technology continues to increase in popularity across the datacenter. Independent Software Vendors (ISVs) are now using virtual machines to deliver software appliances to… (more)

Chen, Zhaoqian

2008-01-01T23:59:59.000Z

289

Retrospective Evaluation of Appliance Price Trends  

E-Print Network (OSTI)

the higher the product cost and retail price. Table 3.change and appliance price Room air conditioners Small (price data to clarify price

Dale, Larry

2010-01-01T23:59:59.000Z

290

Best Practices: Policies for Building Efficiency and Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices: Policies for Building Best Practices: Policies for Building Efficiency and Emerging Technologies Richard H. Karney, P.E. Senior Technical Advisor Emerging Technologies Team Office of Building Technologies Topics * U.S. policies on building energy efficiency: Appliance standards, building energy codes, ENERGY STAR program, and tax incentives * Development of improved technologies * The influence of new technologies on energy efficiency policy Appliance Standards Over 50 products are covered by DOE's appliance standards program. These are known as "covered products." * Covered products are responsible for 82% of residential building energy consumption, 67% of commercial building energy consumption, and

291

Retrospective Evaluation of Appliance Price Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Appliance Price Trends Evaluation of Appliance Price Trends Title Retrospective Evaluation of Appliance Price Trends Publication Type Journal Article Year of Publication 2009 Authors Dale, Larry L., Camille Antinori, Michael A. McNeil, James E. McMahon, and Sydny K. Fujita Journal Energy Policy Volume 37 Issue 2 Pagination 597-605 Date Published November 20 Keywords appliance efficiency standards, price forecasts, EES-EG Abstract Real prices of major appliances (refrigerators, dishwashers, heating and cooling equipment) have been falling since the late 1970s despite increases in appliance efficiency and other quality variables. This paper demonstrates that historic increases in efficiency over time, including those resulting from minimum efficiency standards, incur smaller price increases than were expected by the Department of Energy (DOE) forecasts made in conjunction with standards. This effect can be explained by technological innovation, which lowers the cost of efficiency, and by market changes contributing to lower markups and economies of scale in production of higher efficiency units. We reach four principal conclusions about appliance trends and retail price setting:1. For the past several decades, the retail price of appliances has been steadily falling while efficiency has been increasing.2. Past retail price predictions made by the DOE analyses of efficiency standards, assuming constant prices over time, have tended to overestimate retail prices.3. The average incremental price to increase appliance efficiency has declined over time. DOE technical support documents have typically overestimated this incremental price and retail prices.4. Changes in retail markups and economies of scale in production of more efficient appliances may have contributed to declines in prices of efficient appliances.

292

Appliance remanufacturing and life cycle energy and economic savings  

E-Print Network (OSTI)

In this paper we evaluate the energy and economic consequences of appliance remanufacturing relative to purchasing new. The appliances presented in this report constitute major residential appliances: refrigerator, dishwasher, ...

Boustani, Avid

293

Toward a National Plan for the Accelerated Commercialization of Solar Energy: residential/commercial buildings market sector workbook  

Science Conference Proceedings (OSTI)

This workbook contains preliminary data and assumptions used during the preparation of inputs to a National Plan for the Accelerated Commercialization of Solar Energy (NPAC). The workbook indicates the market potential, competitive position, market penetration, and technological characteristics of solar technologies for this market sector over the next twenty years. The workbook also presents projections of the mix of solar technologies by US Census Regions. In some cases, data have been aggregated to the national level. Emphasis of the workbook is on a mid-price fuel scenario, Option II, that meets about a 20% solar goal by the year 2000. The energy demand for the mid-price scenario is projected at 115 quads in the year 2000. The workbook, prepared in April 1979, represents government policies and programs anticipated at that time.

Taul, Jr., J. W.; de Jong, D. L.

1980-01-01T23:59:59.000Z

294

Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)  

Science Conference Proceedings (OSTI)

Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Piette, Mary Ann (Director, Demand Response Research Center)

2010-02-02T23:59:59.000Z

295

Energy Efficiency and Green Building Standards for State Buildings...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

296

High-Performance Building Requirements for State Buildings (South...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

297

California Appliance Efficiency Regulations for Manufacturers  

E-Print Network (OSTI)

California Appliance Efficiency Regulations for Manufacturers CEC-400-2012-FS-004-En Updated 3 electricity or water, California law requires that such products comply with the Appliance Efficiency Regulations* in order to be sold or offered for sale in California. Designed to help California reduce energy

298

MC Appliance: Order (2012-CE-1508)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered CNA International Inc. d/b/a MC Appliance Corporation to pay a $8,000 civil penalty after finding MC Appliance had failed to certify that certain models of room air conditioners comply with the applicable energy conservation standards.

299

A Universal Speech Interface for Appliances  

E-Print Network (OSTI)

Can a single, universal speech interface look-and-feel be used to effectively control a wide variety of appliances? Can such an interface be automatically derived from a functional appliance specification? We built the Speech Graffiti Personal Universal Controller (SG-PUC), a universal interface and framework for human-appliance speech interaction, as a proof-of-concept. Its specification language and communications protocol effectively separate the SG-PUC from the appliances that it controls, enabling mobile and universal speech-based appliance control. To realize such an automatically derived dialog system, the controller employs a universal control language. The development of interfaces to numerous appliances and the results of user studies demonstrate the usefulness of the SG-PUC, indicating that high quality and low cost human-appliance speech interface can be largely appliance agnostic. This investigation also helps to validate the principles of Speech Graffiti as a speech interface paradigm, and provides a baseline for future studies in this area.

Thomas Kevin Harris

2004-01-01T23:59:59.000Z

300

Sales Tax Holiday for Energy-Efficient Appliances  

Energy.gov (U.S. Department of Energy (DOE))

In November 2007, Maryland enacted legislation creating a sales and use tax "holiday" for certain energy-efficient appliances, beginning in 2011. Under the law, qualifying appliances purchased...

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Data Availability in Appliance Standards and Labeling Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Availability in Appliance Standards and Labeling Program Development and Evaluation Title Data Availability in Appliance Standards and Labeling Program Development and Evaluation...

302

An Exploration of Innovation and Energy Efficiency in an Appliance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration of Innovation and Energy Efficiency in an Appliance Industry Title An Exploration of Innovation and Energy Efficiency in an Appliance Industry Publication Type...

303

Energy Department Announces January 2006 Deadline for Appliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2006 Deadline for Appliance Standards Rulemaking Schedules Energy Department Announces January 2006 Deadline for Appliance Standards Rulemaking Schedules November 15, 2005...

304

Taunton Municipal Lighting Plant - Residential Energy Star Appliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Taunton Municipal Lighting Plant - Residential Energy Star Appliance Rebate Program Taunton Municipal Lighting Plant - Residential Energy Star Appliance Rebate Program Eligibility...

305

Equator Appliance: ENERGY STAR Referral (EZ 3720 CEE) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Equator Appliance: ENERGY STAR Referral (EZ 3720 CEE) Equator Appliance: ENERGY STAR Referral (EZ 3720 CEE) October 5, 2010 DOE referred the matter of Equator clothes washer model...

306

State Energy Efficient Appliance Rebate Program (SEEARP) American...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery and Reinvestment Act (ARRA) Funding Opportunity Number: DE-FOA-0000119 State Energy Efficient Appliance...

307

PSNC Energy (Gas) - Energy-Efficient Appliance Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Appliance Rebate Program PSNC Energy (Gas) - Energy-Efficient Appliance Rebate Program Eligibility Commercial Residential Savings For Heating & Cooling Commercial...

308

Association of Home Appliance Manufacturers Comments on Smart...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Association of Home Appliance Manufacturers Comments on Smart Grid RFI Association of Home Appliance Manufacturers Comments on Smart Grid RFI Comments made on behalf of the...

309

ASKO Appliances: Proposed Penalty (2010-CE-04/0614) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2010-CE-040614) ASKO Appliances: Proposed Penalty (2010-CE-040614) September 8, 2010 DOE alleged in a Notice of Proposed Civil Penalty that ASKO Appliances,...

310

GE Appliances: Order (2010-CE-2113) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order (2010-CE-2113) GE Appliances: Order (2010-CE-2113) September 27, 2010 DOE issued an Order after entering into a Compromise Agreement with General Electric Appliances after...

311

Evaluation of virtual routing appliances as routers virtual environment.  

E-Print Network (OSTI)

??A virtual routing appliance is a system for the rapid, automated management and employment of virtual networks. Virtual routing appliances utilize virtual machines to enable… (more)

Al-Amoudi, Ahmed

2008-01-01T23:59:59.000Z

312

Web-based Analysis Tools for Appliance Efficiency Policies in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliance Standards Project (CLASP) is to transfer appliance efficient policy analysis technologies and benefits to developing countries. In this talk we describe the...

313

International Comparative Analysis of Appliance Efficiency Standards &  

NLE Websites -- All DOE Office Websites (Extended Search)

International Comparative Analysis of Appliance Efficiency Standards & International Comparative Analysis of Appliance Efficiency Standards & Labeling Programs: Implications for China Title International Comparative Analysis of Appliance Efficiency Standards & Labeling Programs: Implications for China Publication Type Conference Proceedings Year of Publication 2012 Authors Zhou, Nan, Nina Zheng, David Fridley, and John Romankiewicz Conference Name ACEEE Summer Study on Energy Efficiency in Buildings Date Published 06/2012 Publisher American Council for an Energy-Efficient Economy Keywords appliance, china, china energy, china energy group, energy analysis and environmental impacts department, energy efficiency, policy studies, standards and labeling program Abstract As a growing consumer of household appliances, lighting and electronic products, China has seen a steady rise in residential electricity use with 13% average annual growth since the 1980s. Over the last twenty years, China has implemented a series of new minimum energy performance standards (MEPS) and mandatory and voluntary energy labels to improve appliance energy efficiency. As China begins planning for the next phase of standards and labeling (S&L) program development under the 12th Five Year Plan, an evaluation of recent program developments and future directions is undertaken by drawing upon the experiences and lessons learned of key international S&L program development. Specifically, this study provides in-depth review and comparative analysis of the development and recent advancements in the U.S. MEPS and Energy Star, Australia MEPS and Energy Label, European Union MEPS and Eco-Design Label and Japanese Top Runner programs with China's S&L program. The international comparative analysis focuses on key elements of S&L development including stakeholder participation, program resources, data collection and availability, analytical methods, as well as program implementation and enforcement mechanisms. This study finds that adequate program resources from national and local levels, wide-ranging stakeholder participation, incorporation of various technical and economic analyses in standards development, and program impact evaluations are key features of successful S&L programs and have room for improvement in China. At the same time, however, China has become more proactive than some international programs in areas such as launching check-testing, laboratory round-robin testing and compliance verification for S&L programs.

314

New York City - Green Building Requirements for Municipal Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

315

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Refrigerators and Freezers Residential Refrigerators and Freezers Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for residential refrigerators and freezers since 1990. Residential refrigerators and freezers include refrigerators, refrigerator-freezers, and freezers, such as standard-size residential units as well as compact units used in offices and dormitory rooms. Known collectively as "refrigeration products," these appliances chill and preserve food and beverages, provide ice and chilled water, and freeze food. The standard implemented in 1990 will save approximately 5.6 quads of energy and result in approximately $61.7 billion in energy bill savings for products shipped from 1990-2019. The standard will avoid about 312.4 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 61.3 million automobiles.

316

Contactless sensing of appliance state transitions through variations in electromagnetic fields  

Science Conference Proceedings (OSTI)

Non-Intrusive Load Monitoring (NILM) is a promising technique for disaggregating per-appliance energy consumption in buildings from aggregate voltage/current measurements. One major limitation of the approach is that it typically requires a training ... Keywords: load tree analysis, non-intrusive load monitoring

Anthony Rowe; Mario Berges; Raj Rajkumar

2010-11-01T23:59:59.000Z

317

Perpetual and low-cost power meter for monitoring residential and industrial appliances  

Science Conference Proceedings (OSTI)

The recent research efforts in smart grids and residential power management are oriented to monitor pervasively the power consumption of appliances in domestic and non-domestic buildings. Knowing the status of a residential grid is fundamental to keep ... Keywords: active ORing, energy harvesting, energy measuring, smart metering, wireless sensor networks

Danilo Porcarelli, Domenico Balsamo, Davide Brunelli, Giacomo Paci

2013-03-01T23:59:59.000Z

318

Retrospective Evaluation of Appliance Price Trends  

SciTech Connect

Real prices of major appliances (refrigerators, dishwashers, heating and cooling equipment) have been falling since the late 1970s despite increases in appliance efficiency and other quality variables. This paper demonstrates that historic increases in efficiency over time, including those resulting from minimum efficiency standards, incur smaller price increases than were expected by Department of Energy (DOE) forecasts made in conjunction with standards. This effect can be explained by technological innovation, which lowers the cost of efficiency, and by market changes contributing to lower markups and economies of scale in production of higher efficiency units. We reach four principal conclusions about appliance trends and retail price setting: 1. For the past several decades, the retail price of appliances has been steadily falling while efficiency has been increasing. 2. Past retail price predictions made by DOE analyses of efficiency standards, assuming constant prices over time, have tended to overestimate retail prices. 3. The average incremental price to increase appliance efficiency has declined over time. DOE technical support documents have typically overestimated this incremental price and retail prices. 4. Changes in retail markups and economies of scale in production of more efficient appliances may have contributed to declines in prices of efficient appliances.

Dale, Larry; Antinori, Camille; McNeil, Michael; McMahon, James E.; Fujita, K. Sydny

2008-07-20T23:59:59.000Z

319

Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Regulatory Program Buildings Regulatory Program Buildings Regulatory Program Appliance Standards Update and Review of Certification, Compliance and Enforcement John Cymbalsky, Ashley Armstrong, and Laura Barhydt US Department of Energy January 31, 2011 Presentation Outline Presentation Outline * Upcoming Relevant Rulemakings * Changes to Rulemaking Process * Executive Order 13563 * Overview of Compliance, Certification, and Enforcement * Detailed Questions and Answers 2 | U.S. Department of Energy energy.gov Long Term Schedules for Certain HVAC Rulemakings Long Term Schedules for Certain HVAC Rulemakings Appliance Standards Product Categories Driver Approx. Rule Initiation Date Final Action Date Heating Products Rulemakings Residential Water Heaters, Direct Heating Equipment, and Pool

320

Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Regulatory Program Buildings Regulatory Program Buildings Regulatory Program Appliance Standards Update and Review of Certification, Compliance and Enforcement John Cymbalsky, Ashley Armstrong, and Laura Barhydt US Department of Energy January 31, 2011 Presentation Outline Presentation Outline * Upcoming Relevant Rulemakings * Changes to Rulemaking Process * Executive Order 13563 * Overview of Compliance, Certification, and Enforcement * Detailed Questions and Answers 2 | U.S. Department of Energy energy.gov Long Term Schedules for Certain HVAC Rulemakings Long Term Schedules for Certain HVAC Rulemakings Appliance Standards Product Categories Driver Approx. Rule Initiation Date Final Action Date Heating Products Rulemakings Residential Water Heaters, Direct Heating Equipment, and Pool

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Construction and Building  

Science Conference Proceedings (OSTI)

... in building sector energy consumption by improving ... housing construction: improving energy efficiency and ... Reinforced Soil Bridge Pier Load Test ...

2000-03-07T23:59:59.000Z

322

Compatibility issues between services supporting networked appliances  

E-Print Network (OSTI)

In the near future general household appliances such as televisions, refrigerators, alarm clocks, stoves, and even lights, will be supplemented with a network interface connecting the appliance to the Internet. Homes are being equipped with such networked appliances to allow a more convenient way of living. Such extensive automatic control of appliances leads to the concept of the smart home. Behind such automation, there is a lot of software controlling the appliances. This software, which is often referred to as services, applications, or bundles is supplied by a range of service provider businesses. Hence in a single home, appliances may be controlled by a multitude of services, which are offered by a wide variety of different providers. Moreover, some services may require the use of other services. Importantly, these businesses are completely independent and may not even be aware of one another or their products. Hence appliances may be controlled by more than one service, and indeed these controlling services are often trying to achieve different goals. This causes compatibility issues, which need to be resolved for networked appliances to be successful in the mass market. This problem is well known in telephony and historically is referred to as the feature interaction problem. This paper discusses the issue of compatibility between services in a home environment. Reasons why and how services interact are discussed, and a taxonomy of interactions is presented. Finally, an approach is presented which prevents interactions. The approach presented uses accepted and known device and protocol interworking techniques. Throughout the paper, a number of example scenarios are used to illustrate the issues. However, the emphasis of the paper is not only to present sample services for controlling home appliances or identifying specific interactions between such services, but on finding a general solution to the feature interaction problem that can automatically detect interactions between services in the home.

Mario Kolberg; Evan H. Magill; Michael Wilson

2003-01-01T23:59:59.000Z

323

Appliance Standards and Rulemaking Federal Advisory Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APPLIANCE STANDARDS AND RULEMAKING APPLIANCE STANDARDS AND RULEMAKING FEDERAL ADVISORY COMMITTEE (ASRAC) U.S. DEPARTMENT OF ENERGY Federal Advisory Committee Charter 1. Committee's Official Designation: Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) 2. Authority: This charter establishes the Appliance Standards and Rulemaking Federal Advisory Committee under the authority of the Department of Energy (DOE). The Committee is being amended

324

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

that are used for space conditioning of commercial and industrial buildings. The standards implemented in 2010 for small and large, air-cooled commercial package air...

325

Making America's Buildings Better (Fact Sheet)  

SciTech Connect

This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

2012-03-01T23:59:59.000Z

326

Appliance Energy Consumption in Australia | Open Energy Information  

Open Energy Info (EERE)

Appliance Energy Consumption in Australia Appliance Energy Consumption in Australia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Energy Consumption in Australia Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.energyrating.gov.au/resources/program-publications/?viewPublicatio Equivalent URI: cleanenergysolutions.org/content/appliance-energy-consumption-australi DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling The document sets out the equations necessary to calculate the star rating index for appliances that carry an energy label in Australia. Equations for new air conditioner and refrigerator algorithms from April 2010 are included. Televisions, which have carried a mandatory energy label from

327

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

SciTech Connect

Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

Letschert, Virginie; McNeil, Michael A.

2009-03-23T23:59:59.000Z

328

Public Sector Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Capitol dome Capitol dome Public Sector Energy Efficiency Research on sustainable federal operations supports the implementation of sustainable policies and practices in the public sector. This work serves as a bridge between the technology development of Department of Energy's National Laboratories and the operational needs of public sector. Research activities involve many aspects of integrating sustainability into buildings and government practices, including technical assistance for sustainable building design, operations, and maintenance; project financing for sustainable facilities; institutional change in support of sustainability policy goals; and procurement of sustainable products. All of those activities are supported by our work on program and project evaluation, which analyzes overall program effectiveness while ensuring

329

Appliance Energy Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Standards Energy Efficiency Standards Appliance Energy Efficiency Standards < Back Program Info State Maryland Program Type Appliance/Equipment Efficiency Standards Provider Maryland Energy Administration '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for

330

DOE Solar Decathlon: News Blog » Appliances  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances Appliances Below you will find Solar Decathlon news from the Appliances archive, sorted by date. New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example,

331

Tips: Kitchen Appliances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Kitchen Appliances Tips: Kitchen Appliances Tips: Kitchen Appliances April 24, 2012 - 8:34pm Addthis ENERGY STAR® Refrigerators Are Cool! ENERGY STAR-qualified refrigerators are 20% more energy efficient than non-qualified models. Models with top-mounted freezers use 10-25% less energy than side-by-side or bottom-mount units. ENERGY STAR® Refrigerators Are Cool! ENERGY STAR-qualified refrigerators are 20% more energy efficient than non-qualified models. Models with top-mounted freezers use 10-25% less energy than side-by-side or bottom-mount units. You can save energy in your kitchen through more efficient use of your dishwasher, refrigerator and freezer, and other common appliances. Dishwashers Most of the energy used by a dishwasher is for water heating.

332

DOE Solar Decathlon: News Blog » Appliances  

NLE Websites -- All DOE Office Websites (Extended Search)

'Appliances' 'Appliances' New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example, in the Appliances Contest graphic, the scores for running the refrigerator,

333

Appliance Efficiency Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Regulations Efficiency Regulations Appliance Efficiency Regulations < Back Program Info State California Program Type Appliance/Equipment Efficiency Standards Provider California Energy Commission '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for which the federal government is not currently developing an efficiency

334

Appliance Analysis : Residential Construction Demonstration Project Cycle 2.  

SciTech Connect

The appliance use of RCDP-2 homes was analyzed to determine whether significant differences existed in houses that had efficient appliances (domestic hot water (DHW) and refrigerators) compared to those with appliances not considered efficient. Specific analyses addressed: (1) DHW and refrigerator appliance end uses; (2) whole house and space heat energy use; and, (3) interaction effects between appliance use and space heating energy use.

Quaid, Maureen; Kunkle, Rick; Lagerberg, Brian

1991-08-01T23:59:59.000Z

335

Non-intrusive appliance monitor apparatus  

DOE Patents (OSTI)

A non-intrusive monitor of energy consumption of residential appliances is described in which sensors, coupled to the power circuits entering a residence, supply analog voltage and current signals which are converted to digital format and processed to detect changes in certain residential load parameters, i.e., admittance. Cluster analysis techniques are employed to group change measurements into certain categories, and logic is applied to identify individual appliances and the energy consumed by each.

Hart, George W. (Natick, MA); Kern, Jr., Edward C. (Lincoln, MA); Schweppe, Fred C. (Carlisle, MA)

1989-08-15T23:59:59.000Z

336

State Appliance Standards (released in AEO2009)  

Reports and Publications (EIA)

State appliance standards have existed for decades, starting with Californias enforcement of minimum efficiency requirements for refrigerators and several other products in 1979. In 1987, recognizing that different efficiency standards for the same products in different States could create problems for manufacturers, Congress enacted the National Appliance Energy Conservation Act (NAECA), which initially covered 12 products. The Energy Policy Act of 1992 (EPACT92), EPACT2005, and EISA2007 added additional residential and commercial products to the 12 products originally specified under NAECA.

Information Center

2009-03-31T23:59:59.000Z

337

Non-intrusive appliance monitor apparatus  

DOE Patents (OSTI)

A non-intrusive monitor of energy consumption of residential appliances is described in which sensors, coupled to the power circuits entering a residence, supply analog voltage and current signals which are converted to digital format and processed to detect changes in certain residential load parameters, i.e., admittance. Cluster analysis techniques are employed to group change measurements into certain categories, and logic is applied to identify individual appliances and the energy consumed by each. 9 figs.

Hart, G.W.; Kern, E.C. Jr.; Schweppe, F.C.

1989-08-15T23:59:59.000Z

338

Residential Appliances: Energy Efficiency and Technology Trends  

Science Conference Proceedings (OSTI)

Although residential appliance efficiency has improved significantly over the past three decades, greater efficiency is feasible. A number of design options are in fact available to improve the efficiency of residential appliances, varying by equipment, but including power electronics and digital controls, advanced motors, improved materials and insulation, changes in refrigerants, and enhanced configuration and design integration. This technical update focuses on energy efficiency and electricity use of...

2009-12-31T23:59:59.000Z

339

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... kitchens; cooking appliances; cooking tops; energy consumption; energy efficiency; kitchen appliances; microwave ovens; ovens; ranges; test ...

340

"Table HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005" HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,33,8,3.4,5.9,14.4,1.2 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,32.3,7.9,3.3,5.9,14.1,1.1 "1.",103.3,31.4,7.6,3.3,5.7,13.7,1.1 "2 or More",6.2,0.9,0.3,"Q","Q",0.4,"Q"

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

"Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" 0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,3.4,1,0.4,0.6,1.2,"Q" "2 Times A Day",24.6,8.6,2.3,1,1.6,3.5,0.2

342

"Table HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,77.3,63.4,4.1,1.8,2.3,5.6 "1.",103.3,71.9,58.6,3.9,1.6,2.2,5.5 "2 or More",6.2,5.4,4.8,"Q","Q","Q","Q"

343

Building Technologies Office: Commercial Building Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development Photo of NREL researcher Jeff Tomberlin working on a data acquisition panel at the Building Efficiency Data Acquisition and Control Laboratory at NREL's Thermal Test Facility. The Building Technology Program funds research that can dramatically improve energy efficiency in commercial buildings. Credit: Dennis Schroeder, NREL PIX 20181 The Building Technologies Office (BTO) invests in technology research and development activities that can dramatically reduce energy consumption and energy waste in buildings. Buildings in the United States use nearly 40 quadrillion British thermal units (Btu) of energy for space heating and cooling, lighting, and appliances, an amount equivalent to the annual amount of electricity delivered by more than 3,800 500-megawatt coal-fired power plants. The BTO technology portfolio aims to help reduce building energy requirements by 50% through the use of improved appliances; windows, walls, and roofs; space heating and cooling; lighting; and whole building design strategies.

344

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Domestic Appliances and Lighting (EEDAL '03). Turin, Italy.Devoted to Appliance and Lighting Standards. ” Energy andAppliances, Equipment, and Lighting Murakoshi, C. 1999. “

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

345

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Establish a national appliance database, and develop aestablishing a national appliance database. This databasePan-European database for energy-efficient appliances for

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

346

Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards  

E-Print Network (OSTI)

of energy efficient appliance databases on the CEC [5] andAppliance Efficiency http://www.appliances.energy.ca.gov/QuickSearch.aspx Database.

Garbesi, Karina

2011-01-01T23:59:59.000Z

347

Refrigerator Efficiency in Ghana: Tailoring an appliance market transformation program design for Africa  

E-Print Network (OSTI)

A Guidebood for Appliances, Equipment, and Lighting, 2ndCollaborative Labeling and Appliance Standards Program (the Potential Impact of Appliance Performance Standards in

Ben Hagan, Essel; Van Buskirk, Robert; Ofosu-Ahenkorah, Alfred; McNeil, Michael A.

2006-01-01T23:59:59.000Z

348

Impacts of China's Current Appliance Standards and Labeling Program to 2020  

E-Print Network (OSTI)

Impacts of China’s Current Appliance Standards and Labelingranging from large consumer appliances such as refrigeratorssavings generated by appliances that had already achieved

Fridley, David; Aden, Nathaniel; Zhou, Nan; Lin, Jiang

2007-01-01T23:59:59.000Z

349

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network (OSTI)

LBNL-62440 Appliances, Lighting, Electronics, andUniversity of California. Appliances, Lighting, Electronics,The “Other” end-uses (appliances, lighting, electronics, and

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

350

Realized and prospective impacts of U.S. energy efficiency standards for residential appliances: 2004 update  

E-Print Network (OSTI)

Due to Appliance Standards . . . . . . . . . . . . . . . 30McMahon (1997). "Effects of Appliance Standards on ProductS. (2004). Efficiency of Appliance Models on the Market

Meyers, Stephen; McMahon, James; McNeil, Michael

2005-01-01T23:59:59.000Z

351

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

of Household Income and Appliance Ownership. ECEEE Summerof decreasing prices of appliances, if price data becomesForecasting Household Appliance Ownership in a Growing

Letschert, Virginie

2010-01-01T23:59:59.000Z

352

EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances  

E-Print Network (OSTI)

Home Electronics and Small Appliances Marla Sanchez, Richardhome electronics and other small appliances emerged onto theother small household appliances as well as EPA’s projected

Sanchez, Marla Christine

2008-01-01T23:59:59.000Z

353

Status of China's Energy Efficiency Standards and Labels for Appliances and International Collaboration  

E-Print Network (OSTI)

Standards and Labels for Appliances and Internationalenergy consumption of appliances in China. Indeed, China hasthe Collaborative Labeling and Appliance Standards Program (

Zhou, Nan

2010-01-01T23:59:59.000Z

354

Trends in the cost of efficiency for appliances and consumer electronics  

E-Print Network (OSTI)

2013. Modeling the Dynamics of Appliance Price-Efficiencyof using efficient appliances. Furthermore, the projectedexperience curves in appliance standards analysis. Energy

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

355

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

E-Print Network (OSTI)

D.C. Ginthum, M. 1995. Appliance. September. Greening, L. ,Projected Regional Impacts of Appliance Efficiency StandardsSpecial Issue Devoted to Appliance and Lighting Standards. ”

McMahon, James E.; Wiel, Stephen

2001-01-01T23:59:59.000Z

356

Efficiency of appliance models on the market before and after DOE standards  

E-Print Network (OSTI)

LBNL-55509 Efficiency of Appliance Models on the MarketEnergy efficiency standards for appliances mandatethat appliance manufacturers not manufacture or import

Meyers, Stephen

2004-01-01T23:59:59.000Z

357

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network (OSTI)

from residential natural gas appliances. CH 4 Furnace (2)ng/J) distribution from residential natural gas appliances.rates from unvented gas appliances," Environ. Intern. 12:

Traynor, G.W.

2011-01-01T23:59:59.000Z

358

An Exploration of Innovation and Energy Efficiency in an Appliance Industry  

E-Print Network (OSTI)

Innovation Process at Appliance Manufacturer, seen throughinnovation in the residential appliance industries. Ecology.Offer (1994). "Household Appliances and the Use of Time: The

Taylor, Margaret

2013-01-01T23:59:59.000Z

359

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Air-Conditioners. ” Appliance Efficiency 3(3). Bertoldi, P.Laboratory. Ginthum, M. 1995. Appliance. September. GfK.of sales of domestic appliances in Western Europe,”

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

360

Accelerating the Adoption of Second-Tier Reach Standards for Applicable Appliance Products in China  

E-Print Network (OSTI)

Reach Standards for Applicable Appliance Products in Chinaprogram for household appliances in China was initiated inpremium of more efficient appliances. The China Energy Label

Lin, Jiang; Fridley, David

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network (OSTI)

distributions from residential natural gas appliances. CH 4ng/J) distribution from residential natural gas appliances.from Residential Natural Gas Appliances: A Literature Review

Traynor, G.W.

2011-01-01T23:59:59.000Z

362

Energy-economy interactions revisited within a comprehensive sectoral model  

Science Conference Proceedings (OSTI)

This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

Hanson, D. A.; Laitner, J. A.

2000-07-24T23:59:59.000Z

363

Residential and Commercial Buildings Sector  

U.S. Energy Information Administration (EIA)

Also assume that the fan, both before and after project implementa-tion, was rated at 3 thousand cubic feet per minute (MCFM). The estimation was completed as follows:

364

Residential sector: the demand for energy services  

Science Conference Proceedings (OSTI)

The purpose of this report is to project the demand for residential services, and, thereby, the demand for energy into the future. The service demands which best represent a complete breakdown of residential energy consumption is identified and estimates of the amount of energy, by fuel type, used to satisfy each service demand for an initial base year (1978) are detailed. These estimates are reported for both gross (or input) energy use and net or useful energy use, in the residential sector. The various factors which affect the consumption level for each type of energy and each identified service demand are discussed. These factors include number of households, appliance penetration, choice of fuel type, technical conversion efficiency of energy using devices, and relative energy efficiency of the building shell (extent of insulation, resistance to air infiltration, etc.). These factors are discussed relative to both the present and expected future values, for the purpose of projections. The importance of the housing stock to service demand estimation and projection and trends in housing in Illinois are discussed. How the housing stock is projected based on population and household projections is explained. The housing projections to the year 2000 are detailed. The projections of energy consumption by service demand and fuel type are contrasted with the various energy demand projections in Illinois Energy Consumption Trends: 1960 to 2000 and explains how and why the two approaches differ. (MCW)

Not Available

1981-01-01T23:59:59.000Z

365

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Sectoral Trends in Global Energy Use a n d Greenhouse Gas1998. “The Role of Building Energy Efficiency in ManagingDirectorate General for Energy. Danish Energy Management.

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

366

Digital buildings - Challenges and opportunities  

Science Conference Proceedings (OSTI)

This paper considers the wider implications of digital buildings (as currently exemplified by building information models) becoming the norm within the building construction sector. Current deployment is reviewed and the growing opportunity to better ... Keywords: BIM, Building, Digital, Futures, Sustainability

Alastair Watson

2011-10-01T23:59:59.000Z

367

Non-Intrusive Appliance Load Monitoring: Promise and Practice  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fraunhofer USA Fraunhofer USA Non-intrusive Appliance Load Monitoring (NIALM): Promise and Practice Michael Zeifman, Ph.D. and Kurt Roth, Ph.D. March 1 st , 2012 Building America Stakeholder Meeting © Fraunhofer USA What Is NIALM?  Non-Intrusive Appliance Load Monitoring  A.k.a. Non-Intrusive Load Monitoring  Main breaker/circuit level  Data acquisition (hardware) and disaggregation algorithms (software) 2 07:00 07:30 08:00 08:30 09:00 09:30 0 200 400 600 800 1000 1200 1400 Time Power, W 07:00 07:30 08:00 08:30 09:00 09:30 0 200 400 Power, W Coffee Maker 07:00 07:30 08:00 08:30 09:00 09:30 0 500 1000 Power, W Refrigerator 07:00 07:30 08:00 08:30 09:00 09:30 0 200 400 Time Power, W TV © Fraunhofer USA NIALM: Interest  Significant growth in U.S. granted patents

368

Beräkning av koldioxidutsläppet från bostadssektorn i Stockholms län; Estimation of Carbon Dioxide Emissions from the Residential Building Sector in the county of Stockholm.  

E-Print Network (OSTI)

?? During the last decades the housing sector has increased continuously, and housings and services accounted for 40 % of the energy usage in Sweden… (more)

Chen, Guojing

2013-01-01T23:59:59.000Z

369

New Appliance Tax Credits, Rebates, and Incentives for Consumers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Tax Credits, Rebates, and Incentives for Consumers Appliance Tax Credits, Rebates, and Incentives for Consumers New Appliance Tax Credits, Rebates, and Incentives for Consumers September 8, 2009 - 11:16am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory Note: As of February 2012, the appliance rebate programs are closed. A couple of weeks ago, the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy announced a new appliance rebate program. Starting later this year and in early 2010, consumers will be able to receive rebates to purchase new ENERGY STAR-qualified appliances when they replace their used appliances. More than 70% of the energy used in our homes is for appliances, refrigeration, space heating, cooling, and water heating. Replacing old

370

Four-County EMC - Residential Energy Efficiency Appliance Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Four-County EMC - Residential Energy Efficiency Appliance Rebate Four-County EMC - Residential Energy Efficiency Appliance Rebate Program Four-County EMC - Residential Energy Efficiency Appliance Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Dishwasher: $50 Refrigerator: $50 Freezer: $50 Refrigerator/Freezer Recycling: $50 Provider Four County EMC Four-County EMC offers its customers $50 rebates for purchasing certain Energy Star appliances. Eligible appliances include refrigerators, dishwashers, clothes washers and freezers. The rebates are available to residential customers who are replacing older appliances or buying new appliances for the first time. In order to qualify for the rebate, Energy

371

Buying an Appliance this Holiday Season? ENERGY STAR Products...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an Appliance this Holiday Season? ENERGY STAR Products will Save You Money and Energy All Year Buying an Appliance this Holiday Season? ENERGY STAR Products will Save You Money...

372

Comparing Appliance and Lighting Energy Costs Online Just Got...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Appliance and Lighting Energy Costs Online Just Got Easier Comparing Appliance and Lighting Energy Costs Online Just Got Easier January 11, 2013 - 10:12am Addthis The...

373

TEE-0077 - In the Matter of GE Appliances & Lighting | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - In the Matter of GE Appliances & Lighting TEE-0077 - In the Matter of GE Appliances & Lighting The Decision and Order considers and Application for Exception filed by GE...

374

Appliance classification and energy management using multi-modal sensing  

Science Conference Proceedings (OSTI)

In this demonstration, we introduce a low-cost energy management system that tracks appliance energy usage and identifies particular sources of waste that can be optimized. In order to better understand appliance usage patterns, we correlate electrical ...

Mario Berg'es; Anthony Rowe

2011-11-01T23:59:59.000Z

375

Promoting of Appliance Energy Efficiency and Transformation of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Promoting of Appliance Energy Efficiency and Transformation of the Refrigerating Appliances Market in Ghana Speaker(s): Essel Ben Hagan Date: October 13, 2009 - 12:00pm Location:...

376

Energy-Efficient Home Appliances Can Save You Money | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Home Appliances Can Save You Money Energy-Efficient Home Appliances Can Save You Money August 15, 2013 - 9:46am Addthis Simply changing settings on your washer and...

377

AcuTemp Expands as Appliances Become More Energy Efficient |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AcuTemp Expands as Appliances Become More Energy Efficient AcuTemp Expands as Appliances Become More Energy Efficient August 9, 2010 - 11:50am Addthis AcuTemp received a 900,000...

378

New Appliance Tax Credits, Rebates, and Incentives for Consumers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

consumers will be able to receive rebates to purchase new ENERGY STAR-qualified appliances when they replace their used appliances. More than 70% of the energy used in our...

379

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Illuminated Exit Signs Illuminated Exit Signs Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of illuminated exit signs since 2005. Illuminated exit signs are used to indicate exit doors in schools, hospitals, libraries, government buildings, and commercial buildings of all kinds, including offices, restaurants, stores, auditoriums, stadiums, and movie theatres. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates There are no recent updates for this equipment. Standards for Illuminated Exit Signs The following content summarizes the energy conservation standards for illuminated exit signs. The text is not an official reproduction of the Code of Federal Regulations and should not be used for legal research or citation.

380

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Single Package Vertical Air Conditioners and Heat Pumps Single Package Vertical Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's energy conservation standards for single package vertical air conditioners and heat pumps as a separate equipment class since 2008. Before 2010, this equipment was regulated under the broader scope of commercial air conditioning and heating equipment. Single package vertical air conditioners and heat pumps are commercial air conditioning and heating equipment with its main components arranged in a vertical fashion. They are mainly used in modular classrooms, modular office buildings, telecom shelters, and hotels, and are typically installed on the outside of an exterior wall or in a closet against an exterior wall but inside the building.

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Noninstrusive Appliance Load Monitoring System (NIALMS): Beta-Test Results  

Science Conference Proceedings (OSTI)

Traditional methods for gathering appliance-specific load data require installation of individual recording meters on each appliance or multi-channel recording meters with remote sensors on individual appliances. This is a highly intrusive approach that is expensive and cumbersome in terms of capital, labor, and customer goodwill. A newly developed non-intrusive appliance load monitoring system (NIALMS) promises to minimize many of the costs of traditional end-use metering approaches.

1997-11-04T23:59:59.000Z

382

Elaboration of global quality standards for natural and low energy cooling in French tropical island buildings  

E-Print Network (OSTI)

Electric load profiles of tropical islands in developed countries are characterised by morning, midday and evening peaks arising from all year round high power demand in the commercial and residential sectors, due mostly to air conditioning appliances and bad thermal conception of the building. The work presented in this paper has led to the conception of a global quality standards obtained through optimized bioclimatic urban planning and architectural design, the use of passive cooling architectural components, natural ventilation and energy efficient systems such as solar water heaters. We evaluated, with the aid of an airflow and thermal building simulation software (CODYRUN), the impact of each technical solution on thermal comfort within the building. These technical solutions have been implemented in 280 new pilot dwelling projects through the year 1996.

Garde, F; Gatina, J C

2012-01-01T23:59:59.000Z

383

Building Technologies Office: DOE Challenge Home Partner Locator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Search Building Technologies Office Search Search Help Building Technologies Office HOME ABOUT EMERGING TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Office » Residential Buildings Share this resource Send a link to Building Technologies Office: DOE Challenge Home Partner Locator to someone by E-mail Share Building Technologies Office: DOE Challenge Home Partner Locator on Facebook Tweet about Building Technologies Office: DOE Challenge Home Partner Locator on Twitter Bookmark Building Technologies Office: DOE Challenge Home Partner Locator on Google Bookmark Building Technologies Office: DOE Challenge Home Partner Locator on Delicious Rank Building Technologies Office: DOE Challenge Home Partner

384

GE Appliances: Order (2012-SE-1403)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered GE Appliances, a Division of General Electric Company to pay a $63,000 civil penalty after finding GE had privately labeled and distributed in commerce in the U.S. the 4-cubic-foot capacity refrigerator basic model SMR04GAZCS, which includes models SMR04GAZACS and SMR04GAZBCS.

385

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

386

EIA - Distributed Generation in Buildings  

U.S. Energy Information Administration (EIA)

Modeling Distributed Generation in the Buildings Sectors . Supplement to the Annual Energy Outlook 2013 — Release date: August 29, 2013

387

Smart Domestic Appliances Provide Flexibility for Sustainable Energy  

Open Energy Info (EERE)

Smart Domestic Appliances Provide Flexibility for Sustainable Energy Smart Domestic Appliances Provide Flexibility for Sustainable Energy Systems (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Smart Domestic Appliances Provide Flexibility for Sustainable Energy Systems (Webinar) Focus Area: Crosscutting Topics: Training Material Website: www.leonardo-energy.org/webinar-smart-domestic-appliances-provide-flex Equivalent URI: cleanenergysolutions.org/content/smart-domestic-appliances-provide-fle Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Net Metering & Interconnection In this video, the viewer learns about the benefits and difficulties

388

Huddle: automatically generating interfaces for systems of multiple connected appliances  

E-Print Network (OSTI)

Systems of connected appliances, such as home theaters and presentation rooms, are becoming commonplace in our homes and workplaces. These systems are often difficult to use, in part because users must determine how to split the tasks they wish to perform into sub-tasks for each appliance and then find the particular functions of each appliance to complete their sub-tasks. This paper describes Huddle, a new system that automatically generates taskbased interfaces for a system of multiple appliances based on models of the content flow within the multi-appliance system. ACM Classification: H5.2 [Information interfaces and

Jeffrey Nichols; On Rothrock; Duen Horng Chau; Brad A. Myers

2006-01-01T23:59:59.000Z

389

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

8.1 Buildings Sector Water Consumption 8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy needed to supply that water. The main points from this chapter are summarized below: In 2005, water use in the buildings sector was estimated at 39.6 billion gallons per day, which is nearly 10% of total water use in the United States. From 1985 to 2005, water use in the residential sector closely tracked population growth, while water use in the commercial sector grew almost twice as fast.

390

Baseline data for the residential sector and development of a residential forecasting database  

SciTech Connect

This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

1994-05-01T23:59:59.000Z

391

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Distribution Transformers Distribution Transformers Sign up for e-mail updates on regulations for this and other products A distribution transformer provides the final voltage transformation in the electric power distribution system by reducing the high voltage of electric current from a power line to a lower voltage for use in a building. The Department of Energy (DOE) has regulated the energy efficiency level of low-voltage dry-type distribution transformers since 2007, and liquid-immersed and medium-voltage dry-type distribution transformers since 2010. A distribution transformer designed and constructed to be mounted on a utility pole is referred to as a pole-mount transformer. A distribution transformer designed and constructed to be located at ground level or underground, mounted on a concrete pad, and locked in a steel case is referred to as a pad-mount transformer.

392

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial and Industrial Pumps Energy Conservation Standards Commercial and Industrial Pumps Energy Conservation Standards Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is considering developing test procedures, labels, and energy conservation standards for commercial and industrial pumps. Pumps exist in numerous applications, including agriculture, oil and gas production, water and wastewater, manufacturing, mining, and commercial building systems. There are currently no federal standards or test procedures for commercial and industrial pumps. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document regarding commercial and industrial pumps. 78 FR 7304 (February 1, 2013).

393

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Intensity Discharge Lamps High-Intensity Discharge Lamps Sign up for e-mail updates on regulations for this and other products There are currently no energy conservation standards for high-intensity discharge (HID) lamps. HID lamps are electric discharge lamps and include high-pressure sodium, mercury vapor, and metal halide lamps. HID lamps require an HID ballast to start and regulate electric current flow through the lamp. HID lamps are used in street and roadway lighting, area lighting such as for parking lots and plazas, industrial and commercial building interior lighting, security lighting for commercial, industrial, and residential spaces, and landscape lighting. The Standards and Test Procedures for this product are related to Rulemaking for High Intensity Discharge Lamps Energy Conservation Standard and Rulemaking for High Intensity Discharge Lamps Test Procedures.

394

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial and Industrial Pumps Commercial and Industrial Pumps Sign up for e-mail updates on regulations for this and other products Pumps are used in agriculture, oil and gas production, water and wastewater, manufacturing, mining, and commercial building systems. Currently there are no energy conservation standards for pumps. The Department of Energy (DOE) will conduct an analysis of the energy use, emissions, costs, and benefits associated with this equipment during the commercial and industrial pumps energy conservation standards rulemaking. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document. 78 FR 7304 (Feb. 1, 2013). For more information, please see the rulemaking page.

395

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

5 5 Refrigerator-Freezer Sizes and Energy Factors (Shipment-Weighted Averages) Average Volume (cu. ft.) (1) Consumption/Unit (kWh/yr) Best-Available (kWh/yr) 1972 18.2 1726 N.A. 1980 19.6 1278 N.A. 1985 19.5 1058 N.A. 1990 20.5 916 N.A. 1995 20.0 649 555 2000 21.9 704 523 2001 21.9 565 438 2002 22.2 520 428 2003 22.3 514 428 2004 21.5 500 402 2005 20.7 490 417 2006 22.3 506 464 2007 21.9 498 459 2008 21.4 483 N.A. 2009 (2) 21.0 460 334 2010 22.5 462 311 Note(s): Source(s): The average stock energy uses for refrigerator-freezers was 1,220 kWh/yr in 1990, 1,319 kWh/yr in 1997, and 1,462 kWh/yr in 2001. 1) Represents the average adjusted volume, which is defined as the fresh volume plus 1.63 times the freezer volume. 2) Based on refrigerator- freezer units with adjusted volumes approximately equal to the average adjusted volume.

396

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

9 9 Commercial Refrigeration - Unit Inventory and Energy Consumption Unit Energy Estimated Inventory Consumption Application (thousand) (kWh/yr) Walk-In Coolers and Freezers Non-Supermarket, Cooler 468 7.6 78.9 Non-Supermarket, Freezer 234 5.0 52.1 Non-Supermarket, Combination 53 1.6 16.6 Supermarket 245 4.9 51.0 Beverage Merchandisers (1) One-Door 460 3,076 1.4 14.7 Two-Door 414 6,080 2.5 26.2 Three-Door 46 8,960 0.4 4.3 Reach-In Refrigerators and Freezers (2) Freezers 1,156 4,158 4.8 56.0 Refrigerators 1,556 3,455 5.4 50.0 Ice Machine 1,491 5,429 8.1 84.2 Beverage Vending Machine (3) Fully-cooled 496 2,743 1.4 14.2 Zone-cooled 3,320 2,483 8.2 85.8 Note(s): Source(s): 16,200 21,400 30,200 varies 1) Beverage merchandisers are self-contained, upright, refrigerated cabinets that are designed to hold and/or display refrigerated beverage

397

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

8 8 Commercial Refrigeration - Installed Base and Total Energy Consumption by Type Equipment Supermarket Refrigeration Systems Display Cases 2,100 214 Compressor Racks 140 373 Condensers 140 50 Walk-Ins 245 51 Walk-In Coolers and Freezers (Non-Supermarket) 755 148 Food Preperation and Service Equipment 1,516 55 Reach-In Refrigerators and Freezers 2,712 106 Beverage Merchandisers 920 45 Ice Machines 1,491 84 Refrigerated Vending Machines 3,816 100 Total 1225 Note(s): Source(s): Installed Total Energy Base (thousand) Consumption (TWh/yr) Energy consumption values have been rounded to the nearest whole number, and therefore the total does not exactly equal the sum of the energy consumption values for each equipment type. DOE/EERE/Navigant Consulting, Energy Savings Potential and R&D Opportunities for Commercial Refrigeration, Sept. 2009, Table 3-1, p. 26

398

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

0% NA Toshiba NA 12% Levono (IBM) NA 6% Sony NA 5% Fujitsu Siemens NA 1% Others 30% 13% Total 100% 100% Note(s): Source(s): Total Desktop Computer Units Shipped:...

399

Building Technologies Office: About the Appliance and Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

that are used by consumers and businesses each day, such as space heating and cooling, refrigeration, cooking, clothes washing and drying, and lighting. DOE's minimum efficiency...

400

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

9 2008 Clothes Dryer Manufacturer Market Shares (Percent of Products Produced) Electric Gas Company Market Share (%) Market Share (%) Whirlpool 70% 74% Maytag (1) (1) GE 16% 10%...

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

0 2008 Range Manufacturer Market Shares (Percent of Products Produced) Electric Gas Company Market Share (%) Market Share (%) GE 47% 37% Whirlpool 29% 25% Electrolux (Frigidaire)...

402

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

1 2008 Microwave Oven Manufacturer Market Shares (Percent of Products Produced) Company Market Share (%) LG Electronics (Goldstar) 33% Sharp 15% Samsung 15% Daewoo 7% Matsushita...

403

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

2 2007 Copier Machine Manufacturer Market Shares (Percent of Products Produced) Copier Market Share (%) Canon 31% Konica Minolta 21% Ricoh 16% Xerox 10% Sharp 4% Kyocera Mita 4%...

404

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

8 2008 Clothes Washer Manufacturer Market Shares (Percent of Products Produced) Company Market Share (%) Whirlpool 64% Maytag (1) GE 16% Electrolux (Frigidaire) 6% LG Electronics...

405

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

175,500 181,000 185,000 DOEEERENavigant Consulting, Energy Savings Potential and R&D Opportunities for Commercial Refrigeration, Sept. 2009, Table 3-3, p. 28. 340,453...

406

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

Equipment 4% Total Source(s): 1.23 Quad DOEEERENavigant Consulting, Energy Savings Potential and R&D Opportunities for Commercial Refrigeration, Sept. 2009, Figure 1-2, p. 17...

407

U-197: Cisco Adaptive Security Appliances Denial of Service Vulnerability |  

NLE Websites -- All DOE Office Websites (Extended Search)

97: Cisco Adaptive Security Appliances Denial of Service 97: Cisco Adaptive Security Appliances Denial of Service Vulnerability U-197: Cisco Adaptive Security Appliances Denial of Service Vulnerability June 22, 2012 - 7:00am Addthis PROBLEM: A vulnerability has been reported in Cisco Adaptive Security Appliances (ASA), which can be exploited by malicious people to cause a DoS (Denial of Service). PLATFORM: Cisco Adaptive Security Appliance (ASA) 8.x Cisco ASA 5500 Series Adaptive Security Appliances ABSTRACT: The vulnerability is caused due to an unspecified error when handling IPv6 transit traffic and can be exploited to cause a reload of the affected device. reference LINKS: Vendor Advisory Secunia ID 49647 CVE-2012-3058 IMPACT ASSESSMENT: High Discussion: Cisco ASA 5500 Series Adaptive Security Appliances (Cisco ASA) and Cisco

408

Appliance Rebates: Frequently Asked Questions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Rebates: Frequently Asked Questions Appliance Rebates: Frequently Asked Questions Appliance Rebates: Frequently Asked Questions April 26, 2010 - 4:55pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory The appliance rebate program has been wildly successful in many states. So successful, in fact, that people have plenty of questions and aren't always finding the answers they need. Whether you're just learning about the appliance rebate program or have some nagging questions, I hope this information is helpful to you. For the most up-to-date information on rebates in your state, click on your state on Approved Energy Efficient Appliance Rebate Programs. Below is a list of the most common questions, taken from the Energy Savers Appliance Rebates page. (Note: The FAQs below are current as of this

409

Estimating Appliance and Home Electronic Energy Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Appliance and Home Electronic Energy Use Estimating Appliance and Home Electronic Energy Use Estimating Appliance and Home Electronic Energy Use November 11, 2013 - 4:23pm Addthis Estimate the energy consumption and cost to operate an appliance when making a purchase. Investing in an energy-efficient product may save you money in the long run. | Photo courtesy of iStockphoto.com/wh1600. Estimate the energy consumption and cost to operate an appliance when making a purchase. Investing in an energy-efficient product may save you money in the long run. | Photo courtesy of iStockphoto.com/wh1600. If you're trying to decide whether to invest in a more energy-efficient appliance or you'd like to determine your electricity loads, you may want to estimate appliance energy consumption. Formula for Estimating Energy Consumption

410

Appliance Rebates: Frequently Asked Questions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Rebates: Frequently Asked Questions Appliance Rebates: Frequently Asked Questions Appliance Rebates: Frequently Asked Questions April 26, 2010 - 4:55pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory The appliance rebate program has been wildly successful in many states. So successful, in fact, that people have plenty of questions and aren't always finding the answers they need. Whether you're just learning about the appliance rebate program or have some nagging questions, I hope this information is helpful to you. For the most up-to-date information on rebates in your state, click on your state on Approved Energy Efficient Appliance Rebate Programs. Below is a list of the most common questions, taken from the Energy Savers Appliance Rebates page. (Note: The FAQs below are current as of this

411

Appliance and Equipment Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Efficiency Standards Appliance and Equipment Efficiency Standards Appliance and Equipment Efficiency Standards < Back Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Rhode Island Program Type Appliance/Equipment Efficiency Standards Provider Rhode Island Office of Energy Resources '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will

412

Estimating Appliance and Home Electronic Energy Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Appliance and Home Electronic Energy Use Estimating Appliance and Home Electronic Energy Use Estimating Appliance and Home Electronic Energy Use November 11, 2013 - 4:23pm Addthis Estimate the energy consumption and cost to operate an appliance when making a purchase. Investing in an energy-efficient product may save you money in the long run. | Photo courtesy of iStockphoto.com/wh1600. Estimate the energy consumption and cost to operate an appliance when making a purchase. Investing in an energy-efficient product may save you money in the long run. | Photo courtesy of iStockphoto.com/wh1600. If you're trying to decide whether to invest in a more energy-efficient appliance or you'd like to determine your electricity loads, you may want to estimate appliance energy consumption. Formula for Estimating Energy Consumption

413

Energy Efficient Appliance Sales Soar in North Carolina | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Appliance Sales Soar in North Carolina Energy Efficient Appliance Sales Soar in North Carolina Energy Efficient Appliance Sales Soar in North Carolina July 23, 2010 - 11:00am Addthis Joshua DeLung What does this mean for me? The program discounted 62,970 appliances. $8.8 million in Recovery Act funding spurred $64 million in retail sales. A total of $300 million in Recovery Act funding was allotted nationwide for appliance rebates. It took just eight days total for North Carolina retailers to rack up $64 million in sales of appliances under the $8.9 million American Recovery and Reinvestment Act investment through the state's Appliance Rebate Program. "In very real ways, this has stimulated our economy and moved money in North Carolina," said Seth Effron, communications director for the North

414

Wyoming's Appliance Rebate Program Surges Ahead | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead October 19, 2010 - 12:43pm Addthis Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Lindsay Gsell What does this mean for me? Wyoming received $511,000 in Recovery Act funding for its appliance rebate program. The program has already distributed 60% of rebate funding. Wyoming's appliance rebate program, which opened in April, continues through this fall. Residents of the Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from $50 to $250.

415

Wyoming's Appliance Rebate Program Surges Ahead | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead October 19, 2010 - 12:43pm Addthis Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Lindsay Gsell What does this mean for me? Wyoming received $511,000 in Recovery Act funding for its appliance rebate program. The program has already distributed 60% of rebate funding. Wyoming's appliance rebate program, which opened in April, continues through this fall. Residents of the Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from $50 to $250.

416

Estimating Appliance and Home Electronic Energy Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Home Electronic Energy Use Appliance and Home Electronic Energy Use Estimating Appliance and Home Electronic Energy Use November 11, 2013 - 4:23pm Addthis Estimate the energy consumption and cost to operate an appliance when making a purchase. Investing in an energy-efficient product may save you money in the long run. | Photo courtesy of iStockphoto.com/wh1600. Estimate the energy consumption and cost to operate an appliance when making a purchase. Investing in an energy-efficient product may save you money in the long run. | Photo courtesy of iStockphoto.com/wh1600. If you're trying to decide whether to invest in a more energy-efficient appliance or you'd like to determine your electricity loads, you may want to estimate appliance energy consumption. Formula for Estimating Energy Consumption

417

Appliance Standards and Rulemaking Federal Advisory Committee | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance & Equipment Standards » Rulemakings & Notices » Appliance & Equipment Standards » Rulemakings & Notices » Appliance Standards and Rulemaking Federal Advisory Committee Appliance Standards and Rulemaking Federal Advisory Committee The Appliance and Equipment Standards Program established the Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) in an effort to further improve the Department of Energy's (DOE) process of establishing energy efficiency standards for certain appliances and commercial equipment. ASRAC will allow DOE to use negotiated rulemaking as a means to engage all interested parties, gather data, and attempt to reach consensus on establishing energy efficiency standards. Rules drafted by negotiation may be more pragmatic and implemented at earlier dates than under a more

418

Building Technologies Office | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Building Technologies Office Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. About the Building Technologies Office The Energy Department's Building Technologies Office leads a network of research and industry partners to continually develop innovative, cost-effective energy-saving solutions for homes and buildings. Learn more about the Building Technologies Office. How We Help Homes & Buildings Save Energy Value-Driven Applications Advanced energy efficiency technologies like lighting, HVAC, windows, appliances, and commercial equipment. Practical Standards

419

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications A Reminder for Sector 7 PIs and Users: Please report your new publications to the Sector Manager and the CAT Director. The APS requires PIs to submit new publications to its Publication Database, a link which can be found on the Publication section of the APS web site. Publication information for work done at 7ID Proper acknowledgement sentences to include in papers. Sector 7 Call for APS User Activity Reports. APS User Activity Reports by MHATT-CATers. Recent articles Recent theses Sector 7 Reports Sector 7 Recent research highlights (New) Design documents in ICMS on Sector 7 construction and operation Sector 7 related ICMS documents Library Resources available on the WWW The ANL Library system ANL electronic journal list AIM Find it! Citation Ranking by ISI (see Journal citation report)

420

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Small, Large, and Very Large Commercial Package Air Conditioners and Heat Pumps Small, Large, and Very Large Commercial Package Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) regulates the energy efficiency of small, large, and very large commercial package air conditioners and heat pumps. Commercial air conditioners and heat pumps are air-cooled, water-cooled, evaporatively-cooled, or water source unitary air conditioners or heat pumps that are used for space conditioning of commercial and industrial buildings. The standards implemented in 2010 for small and large, air-cooled commercial package air conditioners and heat pumps, and SPVUs, will save approximately 1.7 quads of energy and result in approximately $28.9 billion in energy bill savings for products shipped from 2010-2034. These standards will avoid about 90.3 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 31.1 million automobiles. The standard implemented in 2010 for very large, air-cooled commercial package air conditioners and heat pumps will save approximately 0.43 quads of energy and result in approximately $4.3 billion in energy bill savings for products shipped from 2010-2034. The standard will avoid about 22.6 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 4.4 million automobiles.

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially...

422

Building condition monitoring  

E-Print Network (OSTI)

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

423

Appliance Efficiency Standards and Price Discrimination  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliance Efficiency Standards and Price Discrimination Appliance Efficiency Standards and Price Discrimination Title Appliance Efficiency Standards and Price Discrimination Publication Type Report LBNL Report Number LBNL-6283E Year of Publication 2013 Authors Spurlock, Anna C. Date Published 05/2013 Keywords EES-EG Abstract I explore the effects of two simultaneous changes in minimum energy efficiency and ENERGY STAR standards for clothes washers. Adapting the Mussa and Rosen (1978) and Ronnen (1991) second-degree price discrimination model, I demonstrate that clothes washer prices and menus adjusted to the new standards in patterns consistent with a market in which firms had been price discriminating. In particular, I show evidence of discontinuous price drops at the time the standards were imposed, driven largely by mid-low efficiency segments of the market. The price discrimination model predicts this result. On the other hand, in a perfectly competition market, prices should increase for these market segments. Additionally, new models proliferated in the highest efficiency market segment following the standard changes. Finally, I show that firms appeared to use different adaptation strategies at the two instances of the standards

424

Energy Conservation in State Buildings (Maryland) | Open Energy...  

Open Energy Info (EERE)

Type Energy Standards for Public Buildings Applicable Sector Construction, Schools, State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

425

Energy Reduction Plan for State Buildings (Massachusetts) | Open...  

Open Energy Info (EERE)

for Public Buildings Applicable Sector Institutional, Local Government, Schools, State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

426

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

427

Comment submitted by the Association of Home Appliance Manufacturers (AHAM) regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2011 9, 2011 Via E-Mail Ashley Armstrong U.S. Department of Energy Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 ESTARVerificationTesting@ee.doe.gov Re: DOE ENERGY STAR Verification Testing Program Dear Ms. Armstrong: On behalf of the Association of Home Appliance Manufacturers (AHAM), I would like to provide our comments on the DOE Verification Testing Program, as outlined in the document dated April 22, 2011 (DOE Testing Document). AHAM represents manufacturers of major, portable and floor care home appliances, and suppliers to the industry. AHAM's membership includes over 150 companies throughout the world. In the U.S., AHAM members employ tens of thousands of people and produce more than 95% of the household appliances shipped for sale. The factory shipment value of these products

428

BUILDING SUSTAINABLY CHALLENGES IN THE HOME RENOVATION INDUSTRY  

E-Print Network (OSTI)

.......................................................................................26 Kitchen and Bath Designer/Appliance and Material Selection ................28 NJ Clean Energy .......................................................................................12 Incentives in the Residential Building Market.............................................13 ..................................................................................................14 International Energy Conservation Code Committee ................15 International Green

Rainforth, Emma C.

429

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

430

Building Technologies Office: Water Heating Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heating Research Water Heating Research to someone by E-mail Share Building Technologies Office: Water Heating Research on Facebook Tweet about Building Technologies Office: Water Heating Research on Twitter Bookmark Building Technologies Office: Water Heating Research on Google Bookmark Building Technologies Office: Water Heating Research on Delicious Rank Building Technologies Office: Water Heating Research on Digg Find More places to share Building Technologies Office: Water Heating Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub

431

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

Building Technologies Program Website Building Technologies Program Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Technologies Program Website Focus Area: Energy Efficiency Topics: Best Practices Website: www1.eere.energy.gov/buildings/index.html Equivalent URI: cleanenergysolutions.org/content/building-technologies-program-website Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Building Codes,Appliance & Equipment Standards and Required Labeling" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

432

Appliance and Equipment Energy Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards < Back Program Info State Oregon Program Type Appliance/Equipment Efficiency Standards Provider Oregon Department of Energy '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for

433

Presenting a New (and Cool) Appliance Efficiency Standard | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presenting a New (and Cool) Appliance Efficiency Standard Presenting a New (and Cool) Appliance Efficiency Standard Presenting a New (and Cool) Appliance Efficiency Standard September 29, 2010 - 5:24pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this mean for me? The proposed appliance standard could save consumers as much as $18.6 billion over thirty years Proposed standards could save nearly 4.5 quadrillion BTUs over 30 years Secretary Chu recently announced a proposed new energy efficiency standard that could help save energy, money and your food - a proposed appliance standard for residential refrigerators, refrigerator-freezers and freezers that could save consumers as much as $18.6 billion over thirty years. Along with appliance efficiency standards, refrigerators have advanced a

434

Fort Collins Utilities - Residential and Small Commercial Appliance Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Small Commercial Appliance and Small Commercial Appliance Rebate Program Fort Collins Utilities - Residential and Small Commercial Appliance Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Program Info Funding Source Fort Collins Utilities and the Governor's Energy Office State Colorado Program Type Utility Rebate Program Rebate Amount Clothes washer: $50 Dishwasher: $25 Refrigerator/Freezer Recycling: $35, plus free pick-up Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers. The appliance rebate program offers a $50 rebate for Energy Star rated clothes washers and $25 for Energy Star dishwashers. Applications for equipment rebates are available on the Fort Collins web site as well as at select local manufacturers and

435

Energy Efficiency Standards for Appliances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Standards for Appliances Efficiency Standards for Appliances Energy Efficiency Standards for Appliances < Back Program Info State Connecticut Program Type Appliance/Equipment Efficiency Standards Provider Department of Energy and Environmental Protection '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for

436

Rebates for ENERGY STAR Appliances: State Stories | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebates for ENERGY STAR Appliances: State Stories Rebates for ENERGY STAR Appliances: State Stories Rebates for ENERGY STAR Appliances: State Stories July 19, 2010 - 7:30am Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory As you're probably aware by now, every state and U.S. territory has been given funds from the American Recovery and Reinvestment Act of 2009 to allow eligible consumers to receive rebates for the purchase of new energy-efficient appliances when they replace used appliances. So, how's the program working? The answer is: great overall. The response has been enormous (as many of you have probably witnessed) as people have purchased an unprecedented number of clothes washers, refrigerators, and other home appliances. Here's an example of the program's impact in Florida:

437

West Virginia Consumers Have Appliance Rebate 'Trifecta' | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumers Have Appliance Rebate 'Trifecta' Consumers Have Appliance Rebate 'Trifecta' West Virginia Consumers Have Appliance Rebate 'Trifecta' September 13, 2010 - 10:30am Addthis West Virginia Governor Joe Manchin announces the Energy Efficient Rebate Program in June. The state received $1.7 million in Recovery Act funding to encourage residents to purchase ENERGY STAR appliances. | Photo courtesy of WVDEP West Virginia Governor Joe Manchin announces the Energy Efficient Rebate Program in June. The state received $1.7 million in Recovery Act funding to encourage residents to purchase ENERGY STAR appliances. | Photo courtesy of WVDEP Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? West Virginia residents receive up to $100 in rebates for ENERGY STAR appliances

438

Energy Efficient, Summer-Friendly Appliances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient, Summer-Friendly Appliances Energy Efficient, Summer-Friendly Appliances Energy Efficient, Summer-Friendly Appliances June 2, 2009 - 1:43pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Last week's question of the week included a little reference to the No-Cost and Low-Cost Tips to Save Energy this Summer. So I thought I'd follow that up with some, well, not-so-low-cost tips that you can consider this summer: Purchasing summertime, energy-friendly appliances. If you're looking to replace any major cooling appliances this summer, you might want to look into Energy Saver's information on cooling systems-and especially the section on selecting and replacing heating and cooling systems. That'll help you know what questions to ask before you start looking. And once you're ready to go out and start looking at appliances, you might

439

Appliance Standby Power and Energy Consumption in South African Households  

Open Energy Info (EERE)

Appliance Standby Power and Energy Consumption in South African Households Appliance Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South African Households Focus Area: Appliances & Equipment Topics: Policy Impacts Website: active.cput.ac.za/energy/web/DUE/DOCS/422/Paper%20-%20Shuma-Iwisi%20M. Equivalent URI: cleanenergysolutions.org/content/appliance-standby-power-and-energy-co Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance A modified engineering model is proposed to estimate standby power and energy losses in households. The modified model accounts for the randomness of standby power and energy losses due to unpredicted user appliance operational behavior.

440

Appliance and Equipment Energy Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards < Back Program Info State District of Columbia Program Type Appliance/Equipment Efficiency Standards Provider Washington State Department of Commerce '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Efficiency Standards for Appliances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Standards for Appliances Energy Efficiency Standards for Appliances Energy Efficiency Standards for Appliances < Back Program Info State District of Columbia Program Type Appliance/Equipment Efficiency Standards Provider District Department of the Environment '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for

442

Land of Enchantment's Appliance Rebate Program Spurs Shopping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land of Enchantment's Appliance Rebate Program Spurs Shopping Land of Enchantment's Appliance Rebate Program Spurs Shopping Land of Enchantment's Appliance Rebate Program Spurs Shopping September 20, 2010 - 10:00am Addthis Lindsay Gsell What does this project do? Issued 8830 appliance rebates in Arizona. One local business saw an 80% sales increase weeks after the launch of the appliance rebate program. Rebates can add up quickly - especially when 8,830 are issued. Through Recovery Act funding, New Mexico has distributed about 8,830 rebates worth $200 for ENERGY STAR qualified refrigerators, clothes washers and gas furnaces. The state's appliance rebate program launched on April 22 -- Earth Day -- and is currently winding down, with a little more than $125,000 available for furnace rebates. Program manager Harold Trujillo says that more than half the rebates were

443

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China  

E-Print Network (OSTI)

A Guidebook for Appliances, Equipment and Lighting (2 ndDC: Collaborative Labeling and Appliance Standards Program.Collaborative Labeling and Appliance Standards Program (

Zhou, Nan

2011-01-01T23:59:59.000Z

444

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

E-Print Network (OSTI)

EPRI EA-3409, "Household Appliance Choice: Revision of REEPSEA",3409: "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPSreport EA-3409, "Household Appliance Choice: Revi- sion of

Wood, D.J.

2010-01-01T23:59:59.000Z

445

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China  

E-Print Network (OSTI)

Efficiency in Domestic Appliances and Lighting (EEDAL), 1:Reduction of Home Appliances and Commercial Equipments inSaheb Collaborative Labeling and Appliance Standards Program

Zhou, Nan

2010-01-01T23:59:59.000Z

446

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

for Residential  Appliances.  Prepared by Lawrence Berkeley Emissions from Residential Appliances.  LBNL?XXXX, December FROM RESIDENTIAL APPLIANCES Brett C. Singer, Michael G.

Singer, Brett C.

2010-01-01T23:59:59.000Z

447

Creating and Implementing a Regularized Monitoring and Enforcement System for China's Mandatory Standards and Energy Information Label for Appliances  

E-Print Network (OSTI)

Information Label for Appliances Author: Jiang Lin MarchBasic Structure of China’s Appliance Standards and Labelingbasic infrastructure for appliance performance testing is in

Lin, Jiang

2008-01-01T23:59:59.000Z

448

An Intercommunication Home Energy Management System with Appliance Recognition in Home Network  

Science Conference Proceedings (OSTI)

In present days there are wide varieties of household electric appliances along with different power consumption habits of consumers, making identifying electric appliances without presetting difficulty. This paper introduces smart appliance management ... Keywords: appliance recognition, home energy management, smart appliance management system

Ying-Xun Lai; Joel José Rodrigues; Yueh-Min Huang; Hong-Gang Wang; Chin-Feng Lai

2012-02-01T23:59:59.000Z

449

Louisville Private Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Private Sector Attendees Private Sector Attendees ENERGY STAR Kick-off Meeting December 2007 5/3rd Bank Al J Schneider Company (The Galt House East) Baptist Hospital East Brown - Forman Building Owner and Managers Association (BOMA) Louisville CB Richard Ellis Commercial Real Estate Women (CREW) Louisville Cushman Wakefield General Electric Company Golden Foods Greater Louisville Chapter of International Facility Management Association (IFMA) Hines Humana, Inc Institute of Real Estate Management (IREM) Kentucky Chapter Jewish Hospital & St Mary's Healthcare Kentucky Chapter, Certified Commercial Investment Managers (CCIM) Kentucky Governor's Office of Energy Policy Kentucky Society of Health Care Engineers Kindred Health Care Louisville Air Pollution Control Board

450

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

5.1 Building Materials/Insulation 5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 5 contains market and technology data on building materials and equipment. Sections 5.1 and 5.2 cover the building envelope, including building assemblies, insulation, windows, and roofing. Sections 5.3 through 5.7 cover equipment used in buildings, including space heating, water heating, space cooling, lighting, thermal distribution (ventilation and hydronics), and appliances. Sections 5.8 and 5.9 focus on energy production from on-site power equipment. The main points from this chapter are summarized below:

451

International Cooperation on Advancing Equipment and Appliance Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Equipment and Equipment and Appliance Efficiency The Superefficient Equipment and Appliance Deployment (SEAD) Initiative 1 What is SEAD? * SEAD is a global market transformation initiative for deploying super-efficient equipment and appliances. * SEAD has three goals: - To raise the efficiency ceiling * Pull super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and R&D investments - To raise the efficiency floor * Work together to bolster national or regional policies like minimum efficiency standards - To strengthen the foundations of efficiency programs * Coordinate technical work to support these activities 2 SEAD Partners Australia European Commission Canada France Germany India Japan Korea Mexico

452

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount New Construction Home Options Builder Option Package 1: $50 (single family), $50 (multifamily) Builder Option Package 2: $100 (single family), $100 (multifamily) Energy Star 3.0: $300 (single family), $200 (multifamily) High Performance Home: $500 (single family), $300 (multifamily)

453

Both State and Federal governments have appliance efficiency ...  

U.S. Energy Information Administration (EIA)

Some nationwide appliance standards, such as the general service light-bulb standard, are legislated directly by Congress. More often, though, ...

454

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

455

Appliance Standards Update and Review of Certification, Compliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011 Appliance Standards Update and Review of Certification,...

456

Fort Collins Utilities - Residential and Small Commercial Appliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RefrigeratorFreezer Recycling: 35, plus free pick-up Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers....

457

DOE Solar Decathlon: 2005 Contests and Scoring - Appliances  

NLE Websites -- All DOE Office Websites (Extended Search)

bill. Whereas many energy-efficient appliances are readily available on the commercial market, the Solar Decathlon teams seek any competitive advantage they can find, and may...

458

ASKO Appliances: Compliance Determination (2010-SE-0601) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(2010-SE-0601) Septemer 8, 2010 DOE tested four units of the model D5122XXLB dishwasher manufactured by ASKO Appliances, Inc. Applying statistical analysis, DOE found that...

459

ASKO Appliances: Notice of Investigation (2010-SE-0601) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 28, 2010 DOE notified ASKO Appliances, Inc., by letter that DOE believes ASKO dishwasher model D5122XXLB may violate federal minimum standards for energy efficiency, based...

460

Refrigerator Efficiency in Ghana: Tailoring an Appliance Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Refrigerator Efficiency in Ghana: Tailoring an Appliance Market Transformation Program Design for Africa Publication Type Report LBNL Report Number LBNL-61251 Year of...

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Adoption of ENERGY STAR equipment varies among appliances ...  

U.S. Energy Information Administration (EIA)

Appliances with the ENERGY STAR® logo are intended to represent more-efficient options in the marketplace. The adoption of this more-efficient equipment can vary ...

462

Innovative Concept Appliances: Order (2010-CE-03/0415) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order (2010-CE-030415) Innovative Concept Appliances: Order (2010-CE-030415) November 1, 2010 DOE issued an Order after entering into a Compromise Agreement with Innovative...

463

Waste Home Appliances Recycling in Some European and ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... The recycling of waste home appliances has been an eminent issue globally. In European Communities, the directive on waste electrical and ...

464

Study of abnormal combustion oscillations in gas fired appliances.  

E-Print Network (OSTI)

??The thesis work discusses abnormal combustion noise in gas-fired appliances. An experimental model was made to provide insight into the causes of abnormal combustion noises.… (more)

Kumar, Dasari

2006-01-01T23:59:59.000Z

465

Guidelines for Designing Kitchen Appliances for the Elderly.  

E-Print Network (OSTI)

??The number of elderly people in the United States is growing due to the baby boom. The life span of kitchen appliances is also growing… (more)

RAVEN, SUSAN

2006-01-01T23:59:59.000Z

466

Innovative Concept Appliances: Proposed Penalty (2010-CE-03/0415...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2010-CE-030415) Innovative Concept Appliances: Proposed Penalty (2010-CE-030415) October 1, 2010 DOE alleged in a Notice of Proposed Civil Penalty that...

467

Impact of Natural Gas Appliances on Pollutant Levels in California...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Appliances on Pollutant Levels in California Homes NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated...

468

Reading Municipal Light Department - Residential ENERGY STAR Appliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program Reading Municipal Light Department - Residential ENERGY STAR Appliance Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Water Heating Maximum Rebate One rebate per Energy Star appliance or two rebates on the purchase of programmable thermostats Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Electric Heat Pump Water Heater: $250 Air Source Heat Pump: $100 Central AC: $100 Refrigerator: $50 Washing Machine: $50 Dishwasher: $50 Room A/C: $25 Dehumidifier: $25 Programmable Thermostat:$15 (limit 2) Ceiling Fan: $10

469

PJM shows how smart appliances could help stabilize power systems ...  

U.S. Energy Information Administration (EIA)

Applied to enough end-use appliances, this smart grid technology would allow generators to operate without moment-to-moment adjustments in output, thereby saving money.

470

Solar buildings. Overview: The Solar Buildings Program  

DOE Green Energy (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

471

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

472

New analysis techniques for estimating impacts of federal appliance efficiency standards  

SciTech Connect

Impacts of U.S. appliance and equipment standards have been described previously. Since 2000, the U.S. Department of Energy (DOE) has updated standards for clothes washers, water heaters, and residential central air conditioners and heat pumps. A revised estimate of the aggregate impacts of all the residential appliance standards in the United States shows that existing standards will reduce residential primary energy consumption and associated carbon dioxide (CO{sub 2}) emissions by 89 percent in 2020 compared to the levels expected without any standards. Studies of possible new standards are underway for residential furnaces and boilers, as well as a number of products in the commercial (tertiary) sector, such as distribution transformers and unitary air conditioners. The analysis of standards has evolved in response to critiques and in an attempt to develop more precise estimates of costs and benefits of these regulations. The newer analysis elements include: (1) valuing energy savings by using marginal (rather than average) energy prices specific to an end-use; (2) simulating the impacts of energy efficiency increases over a sample population of consumers to quantify the proportion of households having net benefits or net costs over the life of the appliance; and (3) calculating marginal markups in distribution channels to derive the incremental change in retail prices associated with increased manufacturing costs for improving energy efficiency.

McMahon, James E.

2003-06-24T23:59:59.000Z

473

Energy-conservation policies for builders' purchases of domestic appliances  

SciTech Connect

Policy makers should become more interested in the impact that imposed-choice purchases of energy-using equipment by builders have on residential-sector energy consumption. Canadian data suggest that builder purchases account for 48% of the annual energy consumption attributable to all purchases of furnaces and space-heating equipment, water heaters, and major kitchen and laundry appliances. An analysis is presented of the information inputs and intervention possibilities available to policy makers interested in encouraging the specification and purchase by builders of more energy-efficient equipment. 4 figures, 5 tables.

Quelch, J.A.

1980-06-01T23:59:59.000Z

474

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

475

ASKO Appliances: Order (2012-CE-19/2004) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASKO Appliances: Order (2012-CE-192004) ASKO Appliances: Order (2012-CE-192004) July 20, 2012 DOE ordered ASKO Appliances, Inc. to pay a 36,500 civil penalty after finding ASKO...

476

An Analysis of the Price Elasticity of Demand for Household Appliances  

E-Print Network (OSTI)

Customers’ Choice of Appliance Efficiency Level: CombiningThe Effect of Income on Appliances in U.S. Households. U.S.Household’s Choice of Appliance Efficiency Level. Review of

Dale, Larry

2008-01-01T23:59:59.000Z

477

Sector 7  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 7 : Time Resolved Research Group Sector 7 is operated by the Time Resolved Research Group, which is part of the X-ray Science Division (XSD) of the Advanced Photon Source. Our research focus is the study of Ultrafast fs-laser excitation of matter, using x-ray scattering and spectroscopy techniques. The sector developped two hard x-ray beamlines (7ID and 7BM) focused on time-resolved science. The 7BM beamline has been dedicated for time-resolved radiography of fuel sprays. Sector 7 Links: What's New Beamlines Overview User information: Getting Beamtime Current Research Programs Links to our partners, and collaborators (New) Publications Contact information Operational data (w/ current 7ID schedule) ES&H information (ESAF, EOR, TMS training, User Training)

478

Building Technologies Office: Nanolubricants Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanolubricants Research Nanolubricants Research Project to someone by E-mail Share Building Technologies Office: Nanolubricants Research Project on Facebook Tweet about Building Technologies Office: Nanolubricants Research Project on Twitter Bookmark Building Technologies Office: Nanolubricants Research Project on Google Bookmark Building Technologies Office: Nanolubricants Research Project on Delicious Rank Building Technologies Office: Nanolubricants Research Project on Digg Find More places to share Building Technologies Office: Nanolubricants Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

479

Building Technologies Office: Emerging Technologies Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Activities to someone by E-mail Share Building Technologies Office: Emerging Technologies Activities on Facebook Tweet about Building Technologies Office: Emerging Technologies Activities on Twitter Bookmark Building Technologies Office: Emerging Technologies Activities on Google Bookmark Building Technologies Office: Emerging Technologies Activities on Delicious Rank Building Technologies Office: Emerging Technologies Activities on Digg Find More places to share Building Technologies Office: Emerging Technologies Activities on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research

480

Building Technologies Office: Sensors and Controls Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Controls Sensors and Controls Research to someone by E-mail Share Building Technologies Office: Sensors and Controls Research on Facebook Tweet about Building Technologies Office: Sensors and Controls Research on Twitter Bookmark Building Technologies Office: Sensors and Controls Research on Google Bookmark Building Technologies Office: Sensors and Controls Research on Delicious Rank Building Technologies Office: Sensors and Controls Research on Digg Find More places to share Building Technologies Office: Sensors and Controls Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

Note: This page contains sample records for the topic "buildings sector appliance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Waste water heat recovery appliance. Final report  

SciTech Connect

An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

1983-11-21T23:59:59.000Z

482

Advances in Household Appliances- A Review  

Science Conference Proceedings (OSTI)

An overview of options and potential barriers and risks for reducing the energy consumption, peak demand, and emissions for seven key energy consuming residential products (refrigerator-freezers, dishwashers, clothes washers, clothes dryers, electric ovens, gas ovens and microwave ovens) is presented. The paper primarily concentrates on the potential energy savings from the use of advanced technologies in appliances for the U.S. market. The significance and usefulness of each technology was evaluated in order to prioritize the R&D needs to improve energy efficiency of appliances in view of energy savings, cost, and complexity. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Although significant energy savings may be achieved, one of the major barriers in most cases is high first cost. One way of addressing this issue and promoting the introduction of new technologies is to level the playing field for all manufacturers by establishing Minimum Energy Performance Standards (MEPS) which are not cost prohibitive and promoting energy efficient products through incentives to both manufacturers and consumers.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2011-01-01T23:59:59.000Z

483

Incorporating Experience Curves in Appliance Standards Analysis  

Science Conference Proceedings (OSTI)

The technical analyses in support of U.S. energy conservation standards for residential appliances and commercial equipment have typically assumed that manufacturing costs and retail prices remain constant during the projected 30-year analysis period. There is, however, considerable evidence that this assumption does not reflect real market prices. Costs and prices generally fall in relation to cumulative production, a phenomenon known as experience and modeled by a fairly robust empirical experience curve. Using price data from the Bureau of Labor Statistics, and shipment data obtained as part of the standards analysis process, we present U.S. experience curves for room air conditioners, clothes dryers, central air conditioners, furnaces, and refrigerators and freezers. These allow us to develop more representative appliance price projections than the assumption-based approach of constant prices. These experience curves were incorporated into recent energy conservation standards for these products. The impact on the national modeling can be significant, often increasing the net present value of potential standard levels in the analysis. In some cases a previously cost-negative potential standard level demonstrates a benefit when incorporating experience. These results imply that past energy conservation standards analyses may have undervalued the economic benefits of potential standard levels.

Garbesi, Karina; Chan, Peter; Greenblatt, Jeffery; Kantner, Colleen; Lekov, Alex; Meyers, Stephen; Rosenquist, Gregory; Buskirk, Robert Van; Yang, Hung-Chia; Desroches, Louis-Benoit

2011-10-31T23:59:59.000Z

484

Building Energy Code (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

modified on September 28, 2012. Rules Regulations Policies Program Place Connecticut Name Building Energy Code Incentive Type Building Energy Code Applicable Sector Commercial,...

485

China Building Design Consultants | Open Energy Information  

Open Energy Info (EERE)

Building Design Consultants Jump to: navigation, search Name China Building Design Consultants Place Beijing Municipality, China Sector Solar Product Beijing-based architecture...

486

Towards appliance usage prediction for home energy management  

Science Conference Proceedings (OSTI)

In this paper, we address the problem of predicting the usage of home appliances where a key challenge is to model the everyday routine of homeowners and the inter-dependency between the use of different appliances. To this end, we propose an agent based ... Keywords: home energy management, usage prediction

Ngoc Cuong Truong, Long Tran-Thanh, Enrico Costanza, Sarvapali D. Ramchurn

2013-01-01T23:59:59.000Z

487

Low-cost appliance state sensing for energy disaggregation  

Science Conference Proceedings (OSTI)

Reliable detection of appliance state change is a barrier to the scalability of Non Intrusive Load Monitoring (NILM) beyond a small number of sufficiently distinct and large loads. We advocate a hybrid approach where a NILM algorithm is assisted by ultra-low-cost ... Keywords: appliance state change, energy disaggregation, sensor

Tianji Wu; Mani Srivastava

2012-11-01T23:59:59.000Z

488

Towards Security Auto-Configuration for Smart Appliances  

E-Print Network (OSTI)

Now that smart home appliances are easily plugged into smart home networks, the question of how to simplify security management, especially of access rights, for such appliances arises. The problem is aggravated by the fact that home users cannot be considered as "skilled" administrators, but are instead often technology-unaware users.

Jean-marc Seigneur; Christian Damsgaard Jensen; Stephen Farrell; Elizabeth Gray; Yong Chen

2003-01-01T23:59:59.000Z

489

Exploring smartphone-based web user interfaces for appliances  

Science Conference Proceedings (OSTI)

We describe the SAWUI architecture by which smartphones can easily show user interfaces for nearby appliances, with no modification or pre-installation of software on the phone, no reliance on cloud services or networking infrastructure, and modest additional ... Keywords: appliances, smartphones, user interfaces

Katie Derthick; James Scott; Nicolas Villar; Christian Winkler

2013-08-01T23:59:59.000Z

490

As We May Read: The Reading Appliance Revolution  

Science Conference Proceedings (OSTI)

In the 1970s, Alan Kay and his colleagues at Xerox PARC envisioned a dynamic, interactive electronic book. Now, nearly 30 years later, that vision has become a reality. A new kind of personal information appliance-the reading appliance- is emerging as ...

Bill N. Schilit; Morgan N. Price; Gene Golovchinsky; Kei Tanaka; Catherine C. Marshall

1999-01-01T23:59:59.000Z

491

Creating New Business Opportunities With Smart Appliances: A Market Assessment  

Science Conference Proceedings (OSTI)

The networked home features smart appliances that interconnect with other devices in the home. Their incorporation into communications networks opens up a range of potential benefits for energy companies that provide residential services. This report explores the present and future U.S. market for smart appliances.

1999-09-04T23:59:59.000Z

492

Forecasting multi-appliance usage for smart home energy management  

Science Conference Proceedings (OSTI)

We address the problem of forecasting the usage of multiple electrical appliances by domestic users, with the aim of providing suggestions about the best time to run appliances in order to reduce carbon emissions and save money (assuming time-of-use ...

Ngoc Cuong Truong, James McInerney, Long Tran-Thanh, Enrico Costanza, Sarvapali D. Ramchurn

2013-08-01T23:59:59.000Z

493

Table HC8.9 Home Appliances Characteristics by Urban/Rural ...  

U.S. Energy Information Administration (EIA)

Table HC8.9 Home Appliances Characteristics by Urban/Rural Location, 2005 Home Appliances Characteristics Million U.S. Housing Units Housing Units (millions)

494

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

E-Print Network (OSTI)

costs. Establish a national appliance database and develop aestablishing a national appliance database. This databaseappliance registrations recorded on regulator databases are

McMahon, James E.; Wiel, Stephen

2001-01-01T23:59:59.000Z

495

Table HC15.10 Home Appliances Usage Indicators by Four Most...  

Gasoline and Diesel Fuel Update (EIA)

Used at All... 2.9 Q Q Q 0.3 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

496

Table AP6. Average Consumption for Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

Natural Gas LPG Total Refrigerators Other Appliances and Lighting Table AP6. Average Consumption for Home Appliances and Lighting by Fuels Used, 2005

497

U-126: Cisco Adaptive Security Appliances Port Forwarder ActiveX...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Cisco Adaptive Security Appliances Port Forwarder ActiveX Control Buffer Overflow Vulnerability U-126: Cisco Adaptive Security Appliances Port Forwarder ActiveX Control Buffer...

498

Table HC5-7a. Appliances by Four Most Populated States, Million U ...  

U.S. Energy Information Administration (EIA)

Table HC5-7a. Appliances by Four Most Populated States, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total

499

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network (OSTI)

ng/J) distributions from residential natural gas appliances.ng/J) distribution from residential natural gas appliances.Pollutant Emissions from Residential Heating Systems, EPA-

Traynor, G.W.

2011-01-01T23:59:59.000Z

500

Barron Electric Cooperative- Energy Star Appliance & Energy Efficient Lighting Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Barron Electric Cooperative (BEC) offers rebates to any member receiving electrical service for the purchase of Energy Star appliances and energy efficient lighting. All appliance rebates are $25...