Powered by Deep Web Technologies
Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The evolution of building integrated photovoltaics (BIPV) in the German and French technological innovation systems for solar cells.  

E-Print Network (OSTI)

??Building integrated photovoltaics (BIPV) are photovoltaic (PV) systems, fulfilling a function of a building and therefore allowing synergy effects by substituting the ordinary envelope of… (more)

Rode, Johannes

2007-01-01T23:59:59.000Z

2

PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--  

E-Print Network (OSTI)

know that solar energy is environ- mentally attractive--and that photovoltaic or PV systems have made's electrical output matches well with patterns of energy use in commercial buildings, promoting effective convey tax advantages, such as accelerated depreciation and a federal income tax credit. M ost people

Perez, Richard R.

3

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network (OSTI)

INTEGRATING SOLAR THERMAL AND PHOTOVOLTAIC SYSTEMS IN WHOLE BUILDING ENERGY SIMULATION Soolyeon Cho1 and Jeff S. Haberl2 1The Catholic University of America, Washington, DC 2Texas A&M University, College Station, TX ABSTRACT... This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which then can be available to analyze...

Cho, S.; Haberl, J.

4

Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems  

SciTech Connect

To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

Ong, S.; Campbell, C.; Clark, N.

2012-12-01T23:59:59.000Z

5

Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings  

SciTech Connect

This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

2005-10-01T23:59:59.000Z

6

Application and Development of Building-Integrated Photovoltaics(BIPV) System in China  

Science Journals Connector (OSTI)

Building integrated photovoltaics (BIPV) has potential of becoming the...2 of photovoltaics integrated into the roof and facade will be built in Shanghai this year. Its design, BIPV modules, grid-connected scheme...

Guoqiang Hao; Xiaotong Yu; Yong Huang…

2009-01-01T23:59:59.000Z

7

Design and Simulation for a Solar House with Building Integrated Photovoltaic-Thermal System and Thermal Storage  

Science Journals Connector (OSTI)

Building integrated photovoltaic-thermal systems (BIPV/T) that pre-heat ambient air may be used in combination with ventilated concrete slabs for thermal storage purposes. This is one of many feasible ways to ...

YuXiang Chen; A. K. Athienitis; K. E. Galal…

2009-01-01T23:59:59.000Z

8

A Novel Approach to Build a Generic Model of Photovoltaic Solar System Using Sound Biometric Techniques  

Science Journals Connector (OSTI)

This chapter presents the proposed model of combination between Photovoltaic solar system resources and sound biometric techniques, to generate power energy from the sunlight using the PVS controlled by a sound biometric technique. This work contributes ... Keywords: Electricity Consumption, Energy Conversion, Energy Storage Device, Photovoltaic Solar System (PVS), Sound Recognition Techniques

Khalid T. Al-Sarayreh, Kenza Meridji, Ebaa Fayyoumi, Sahar Idwan

2014-01-01T23:59:59.000Z

9

Enhancing the performance of building integrated photovoltaics  

Science Journals Connector (OSTI)

Recent research in Building Integrated Photovoltaics (BIPV) is reviewed with the emphases on a range of key systems whose improvement would be likely to lead to improved solar energy conversion efficiency and/or economic viability. These include invertors, concentrators and thermal management systems. Advances in techniques for specific aspects of systems design, installation and operation are also discussed.

Brian Norton; Philip C. Eames; Tapas K. Mallick; Ming Jun Huang; Sarah J. McCormack; Jayanta D. Mondol; Yigzaw G. Yohanis

2011-01-01T23:59:59.000Z

10

INTEGRATING PHOTOVOLTAIC SYSTEMS  

E-Print Network (OSTI)

INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview

Delaware, University of

11

Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings  

E-Print Network (OSTI)

-33586 Page 936. Available at: http://www.nrel.gov/docs/fy03osti/35645.pdf . ESL-IC-10-10-40 Proceedings of the Tenth International Conference for Enhanced Building Operations, Kuwait, October 26-28, 2010 ... of the Tenth International Conference for Enhanced Building Operations, Kuwait, October 26-28, 2010 References [1] Abu Dhabi Water & Electricity Company (ADWEC). 2009. See: http://www.adwec.ae/maps_graphs/ [2] Kumar K, Sharma SD, Jain L, 2007. Stand...

Radhi, H.

2010-01-01T23:59:59.000Z

12

Building-integrated photovoltaics  

SciTech Connect

This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

NONE

1993-01-01T23:59:59.000Z

13

Analysis of the Benefits of Photovoltaic in High Rise Commercial Buildings  

E-Print Network (OSTI)

further, recent studies have integrated photovoltaic glazed window systems into the building shell. To understand the relationship between photovoltaic windows, energy use and human satisfaction, this paper presents a study of the effects of photovoltaic...

Sylvester, K. E.; Haberl, J. S.

2000-01-01T23:59:59.000Z

14

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by by Pacific Northwest National Laboratory & Oak Ridge National Laboratory June 4, 2007 June 2007 * NREL/TP-550-41085 PNNL-16362 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Volume 6 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Prepared by Pacific Northwest National Laboratory, a DOE national laboratory Michael C. Baechler Theresa Gilbride, Kathi Ruiz, Heidi Steward and Oak Ridge National Laboratory, a DOE national laboratory Pat M. Love June 4, 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty,

15

Optimal building-integrated photovoltaic applications  

SciTech Connect

Photovoltaic (solar electric) modules are clean, safe and efficient devices that have long been considered a logical material for use in buildings. Recent technological advances have made PVs suitable for direct integration into building construction. PV module size, cost, appearance and reliability have advanced to the point where they can function within the architectural parameters of conventional building materials. A building essentially provides free land and structural support for a PV module, and the module in turn displaces standard building components. This report identifies the highest-value applications for PVs in buildings. These systems should be the first markets for BIPV products in the commercial buildings, and should remain an important high-end market for the foreseeable future.

Kiss, G.; Kinkead, J. [Kiss and Co. Architects, New York, NY (United States)

1995-11-01T23:59:59.000Z

16

Connector device for building integrated photovoltaic device  

SciTech Connect

The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

2014-06-03T23:59:59.000Z

17

Facade Design in Building Integrated Photovoltaics  

Science Journals Connector (OSTI)

As a response to the crisis of energy, the design of building integrated photovoltaic(BIPV) plays an important role in energy saving building, this article uses many practical projects of BIPV to expound the d...

Xuan Xiaodong; Zheng Xianyou

2009-01-01T23:59:59.000Z

18

The interaction between photovoltaic materials and building forms.  

E-Print Network (OSTI)

??There is an intrinsic relationship between photovoltaic materials and building forms; although there are numerous imaginations and concepts about buildings integrated photovoltaic materials. The relationship… (more)

Qiu, Liming

2009-01-01T23:59:59.000Z

19

Development of a Design Tool for Building Integrated Photovoltaics  

Science Journals Connector (OSTI)

Abstract: This paper outlines the design objectives, approach and results of the development of a building integrated photovoltaic (BIPV) system visualisation prototype design tool which was coded in Visual Basic for Applications. It provides the designer ...

2001-07-01T23:59:59.000Z

20

Environmental and economic analysis of building integrated photovoltaic systems in Italian regions  

Science Journals Connector (OSTI)

Abstract Solar energy is a form of renewable energy that can be used to combat climate change through an environmentally accepted energy supply policy with support from both private and public consumers. There are numerous factors contributing to the definition of the economic and environmental performance of solar energy investments, such as average annual irradiation, consumers' consumption, Feed in Tariff incentive system, energy portfolio, emissions produced by the photovoltaic system, rated power of the individual modules, disposable income of the investor, availability of surface for the installation of the photovoltaic panels and mission, that characterise the project (environmental maximisation, economic maximisation or self-sufficiency of the system during the first year). Given the particular geographical position of Italy, the economic profitability and environmental impact of such system were estimated, first on the provincial scale and then on the regional scale, to delineate the general characteristics that are not caused by a single scenario. The indicators used include the following: net present value (NPV), internal rate of return (IRR), discounted payback period (DPbP), discounted aggregate cost-benefit ratio (BCr) and reduction of emissions of carbon dioxide (ERcd). The ultimate objective of the paper is to define the number of photovoltaic (PV) systems necessary to reach the target of renewable energy production in the above settings. A general scenario appropriate to achieve this goal, as well as implementing the total wealth generated by this framework and the reduction of CO2 emissions resulting from the implementation of that plan, will be examined. The indicators used are total net present value per capita and reduction of carbon dioxide emissions per capita.

Federica Cucchiella; Idiano D'Adamo; S.C. Lenny Koh

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Path to the Building Integrated Photovoltaics of Tomorrow  

Science Journals Connector (OSTI)

Building integrated photovoltaic (BIPV) systems may represent a powerful and versatile tool for achieving the ever increasing demand for zero energy and zero emission buildings of the near future, offering an aesthetical, economical and technical solution to integrate solar cells producing electricity within the climate envelopes of buildings. This work addresses possible research opportunities and pathways for the \\{BIPVs\\} of tomorrow.

Bjørn Petter Jelle; Christer Breivik

2012-01-01T23:59:59.000Z

22

BUILDING INTEGRATED PHOTOVOLTAICS: A KOREAN CASE STUDY  

Science Journals Connector (OSTI)

We describe a building-integrated photovoltaic system, believed to be the first of its kind in Korea. The PV cells are mounted on the south facade and on the roof of the Samsung Institute of Engineering and Construction Technology (SIECT), in the Gihung area. Special care was taken in the building design to have the PV modules shade the building in the summer, so as to reduce cooling loads, while at the same time allowing solar energy to enter the building during the heating season, and also to provide daylight. The paper gives an account of the integration of the system into the building, an analysis of the system performance, and an evaluation of the system efficiency and the power output, taking into account the weather conditions. As part of certain design compromises that took into account aesthetic, safety, and cost considerations, non-optimal tilt angles and occasional shading of the PV modules made the PV system efficiency lower than the peak rating of the cells. Nonetheless, the PV share of the SIECT building's electrical demand reaches 10% on a typical July day.

SEUNG-HO YOO; EUN-TACK LEE; JONG-KEUK LEE

1998-01-01T23:59:59.000Z

23

SERC Photovoltaics for Residential Buildings Webinar Transcript  

Energy.gov (U.S. Department of Energy (DOE))

A presentation sponsored by the U.S. Department of Energy about using solar photovoltaics (PV) systems to provide electricity for homes.

24

State-of-the-art Building Integrated Photovoltaics  

Science Journals Connector (OSTI)

Building integrated photovoltaic (BIPV) systems may represent a powerful and versatile tool for achieving the ever increasing demand for zero energy and zero emission buildings of the near future. In this respect \\{BIPVs\\} offer an aesthetical, economical and technical solution to integrate solar cells harvesting solar radiation to produce electricity within the climate envelopes of buildings. This work summarizes the current state-of-the-art of BIPVs, including both BIPV foil, tile, module and solar cell glazing products.

Bjørn Petter Jelle; Christer Breivik

2012-01-01T23:59:59.000Z

25

Comparison of Fresnel concentrators for building integrated photovoltaics  

Science Journals Connector (OSTI)

To develop concentrating photovoltaic systems for building integration applications, two optical devices are proposed. The concentrators are based in stationary linear Fresnel lenses and secondary CPC. The moving focal area is ten times smaller than the Fresnel lens aperture. Concentrator characteristics are studied in detail: shadowing effect, placement of the focal area and optical concentration efficiency. The main contribution of this paper is the three-dimensional optical analysis of the non-imaging concentrating systems. In terms of solar radiation, photovoltaic moving modules placed in the focal area of stationary concentrators are compared with simply fixed photovoltaic modules. In favourable weather locations, the beam radiation incident on the concentrating modules would be a large percentage, more than 50%, of the global radiation received by the fixed photovoltaic devices.

Daniel Chemisana; Manuel Ibáñez; Jerome Barrau

2009-01-01T23:59:59.000Z

26

A Program Plan for Photovoltaic Buildings in Florida  

Energy.gov (U.S. Department of Energy (DOE))

This document outlines plans developed by the Florida Solar Energy Center (FSEC) to support photovoltaic buildings application in the state through the first decade of the 21st century. The emphasis of this program is on identifying and increasing the value of rooftop systems to targeted end users through the use of application experiments.

27

Sociotechnical complexities associated with the development of Building Integrated Photovoltaic fac?ade systems  

E-Print Network (OSTI)

Significant opportunities to improve the energy use in buildings open remarkable possibilities for innovation over the next two decades. Particularly in the United States, 41% of primary energy consumption in 2010 went ...

Moreno, Jorge (Jorge Alejandro Moreno de la Carrera)

2013-01-01T23:59:59.000Z

28

Residential photovoltaic systems costs  

SciTech Connect

A study of costs associated with the installation and operation of a residential photovoltaic system has been conducted to determine present and projected (1986) status. As a basis for the study, a residential photovoltaic system design projected for 1986 was assumed, consisting of two principal components: a roof-mounted array and a utility-interactive inverter. The scope of the study encompassed both silicon and cadmium sulfide photovoltaic modules. Cost estimates were obtained by a survey and study of reports generated by companies and agencies presently active in each of the subsystem area. Where necessary, supplemental estimates were established as part of this study. The range of estimates for silicon-based systems strongly suggest that such systems will be competitive for new installations and reasonably competitive for retrofit applications. The cadmium-sulfide-based system cost estimates, which are less certain than those for silicon, indicate that these systems will be marginally competitive with silicon-based systems for new construction, but not competitive for retrofit applications. Significant variations from the DOE system price sub-goals were found, however, particularly in the areas of array mounting, wiring and cleaning. Additional development work appears needed in these areas.

Cox, C.H. III

1980-01-01T23:59:59.000Z

29

Apparatus and method for mounting photovoltaic power generating systems on buildings  

DOE Patents (OSTI)

Rectangular PV modules (6) are mounted on a building roof (4) by mounting stands that are distributed in rows and columns. Each stand comprises a base plate (10) that rests on the building roof (4) and first and second brackets (12, 14) of different height attached to opposite ends of the base plate (10). Each bracket (12, 14) has dual members for supporting two different PV modules (6), and each PV module (6) has a mounting pin (84) adjacent to each of its four corners. Each module (6) is supported by attachment of two of its mounting pins (84) to different first brackets (12), whereby the modules (6) and their supporting stands are able to resist uplift forces resulting from high velocity winds without the base plates (10) being physically attached to the supporting roof structure (4). Preferably the second brackets (14) have a telescoping construction that permits their effective height to vary from less than to substantially the same as that of the first brackets (12).

Russell, Miles Clayton (Lincoln, MA)

2008-10-14T23:59:59.000Z

30

Building Energy Software Tools Directory: Photovoltaics Economics  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics Economics Calculator Photovoltaics Economics Calculator Web-based tool which allows you to describe your solar system in detail and provides a detailed breakdown of what sort of power you'll get out of it and how economical of a investment the system will be. It uses the TMY2 solar data from the NREL Renewable Resource Data Center. This calculator allows users to customize their setup, providing greater feedback on how much power is provided when, and most importantly, a detailed economics breakdown of how the investment works out. It also keeps track of battery charge states for off-grid users. Screen Shots Keywords solar, photovoltaic, economics Validation/Testing Validated against PVWatts, a widely recognized solar power output calculator. When given the exact same conditions, power production is

31

Opportunities for thin film photovoltaics in Building Integrated photovoltaics (BIPV)with a focus on Australia.  

E-Print Network (OSTI)

??Building Integrated Photovoltaic (BIPV) products can not only generate electricity but also provide structural stability, thermal insulation, shading, natural lighting, protection from water and other… (more)

Tominaga, Miwa

2009-01-01T23:59:59.000Z

32

Photovoltaic module mounting system  

DOE Patents (OSTI)

A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

2012-09-18T23:59:59.000Z

33

Photovoltaic module mounting system  

DOE Patents (OSTI)

A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

2012-04-17T23:59:59.000Z

34

Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: The case of Jordan  

Science Journals Connector (OSTI)

This paper studies the feasibility of utilizing photovoltaic systems in a standard residential apartment in Amman city in Jordan. Data on solar radiation, sunshine duration and the ambient temperature has been recorded in Amman city. An apartment in Amman was chosen as a case study to conduct energy and economic calculations. The electrical power needs and cost were calculated for the apartment. The component design and cost of PV system required to supply required energy was calculated and the payback period for the suggested stand-alone PV system in this paper was estimated in a constant inflation rate in electricity price similar to that of interest rate. The calculated payback period was high in a stand-alone system, to decrease payback period a grid-connected PV system is suggested. Considering an annual increase of 3% in electricity price, 15% of payback period was decreased in a stand-alone PV system and 21% in a grid-connected PV system. The output results of this study show that installation of PV system in a residential flat in Jordan may not be economically rewarding owing to the high cost of PV system compared to the cost of grid electricity. A feed-in tariff law of solar electricity may help to reduce PV system cost like the case of Germany. Additional conclusions are PV systems may be economically rewarding in Jordan if applied in locations far from electrical grid or in remote large scale PV power installations to overcome economical limitations of PV technology.

A. Al-Salaymeh; Z. Al-Hamamre; F. Sharaf; M.R. Abdelkader

2010-01-01T23:59:59.000Z

35

Photovoltaics: New opportunities for utilities  

SciTech Connect

This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

Not Available

1991-07-01T23:59:59.000Z

36

Photovoltaic System Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Performance Basics System Performance Basics Photovoltaic System Performance Basics August 20, 2013 - 4:17pm Addthis Photovoltaic (PV) systems are usually composed of numerous solar arrays, which in turn, are composed of numerous PV cells. The performance of the system is therefore dependent on the performance of its components. Reliability The reliability of PV arrays is an important factor in the cost of PV systems and in consumer acceptance. However, the building blocks of arrays, PV cells, are considered "solid-state" devices with no moving parts and, therefore, are highly reliable and long-lived. Therefore, reliability measurements of PV systems are usually focused not on cells but on modules and whole systems. Reliability can be improved through fault-tolerant circuit design, which

37

Chapter 179 - Building Integrated Photovoltaics — Public Opinion  

Science Journals Connector (OSTI)

Publisher Summary It is noted that the research into the environmental benefits and impacts of renewable energy technologies and their implementation and the way in which they interface with society is generally imperative. As with any man-made structure and particularly with the imposition of power plant construction on natural or urban landscapes, a potential environmental impact of the renewables is believed to be visual intrusion. This area of research, which explores public perception of photovoltaic systems in the built environment, is vital if visual and other impacts that can be detrimental to the environment are to be avoided. It is also observed that the continuation of research of a similar nature into renewable energy technologies can ensure that future sites are publicly acceptable and aesthetically desirable without compromise of a project's viability.

T. Blewett-Silcock

2000-01-01T23:59:59.000Z

38

Efficiency characteristic of building integrated photovoltaics as a shading device  

Science Journals Connector (OSTI)

A building-integrated photovoltaic system (BIPV) has been operated over 1 year in the Samsung Institute of Engineering & Construction Technology (SIECT) in Korea. The PV cells are mounted on the south facade and on the roof of the SIECT in the Giheung area. Special care was taken in the building design to have the PV modules shade the building in the summer, so as to reduce cooling loads, while at the same time allowing solar energy to enter the building during the heating season, and providing daylight. This paper gives a 1 year analysis of the system performance, evaluation of the system efficiency and the power output, taking into account the weather conditions. As a part of certain design compromises, that took into account, aesthetic, safety, and cost considerations, non-optimal tilt angles and occasional shading of the PV modules made the efficiency of PV system lower than the peak rating of the cells. The yearly average efficiency of the sunshade solar panel is 9.2% (average over 28.6°C surface temperature), with a minimum of 3.6% (average over 27.9°C surface temperature) in June and a maximum of 20.2% (average over 19.5°C surface temperature) in December.

Seung-Ho Yoo; Eun-Tack Lee

2002-01-01T23:59:59.000Z

39

SIMULATION OF THE THERMAL INTERACTION BETWEEN A BUILDING INTEGRATED PHOTOVOLTAIC COLLECTOR AND AN AIR-  

E-Print Network (OSTI)

SIMULATION OF THE THERMAL INTERACTION BETWEEN A BUILDING INTEGRATED PHOTOVOLTAIC COLLECTOR simultaneously equipped with air-source heat pumps and photovoltaic collectors is constantly increasing. In addition to electricity, the photovoltaic collector produces heat which can be used to increase

Boyer, Edmond

40

205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's Forrestal Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Integrated Photovoltaics: New trends and Challenges'  

E-Print Network (OSTI)

2015 with an about more than 10% growth Solar Cell Glass Market #12;PV Technologies 2000 20302010 2020 for photovoltaics solar energy technology Edition September 2011, by EUPV platform #12;The built environment terrestrial solar PV market. #12;The solar cell glass market showed 6.8% degrowth in 2012 over last year

Painter, Kevin

42

Photovoltaic Geographical Information System | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Geographical Information System Photovoltaic Geographical Information System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Geographical Information System Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: re.jrc.ec.europa.eu/pvgis/ Equivalent URI: cleanenergysolutions.org/content/photovoltaic-geographical-information Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This tool provides a geographical inventory of solar energy resources and an assessment of the electricity generation from photovoltaic systems in Europe, Africa, and southwest Asia. The tools allows for analysis of the technical, environmental, and socio-economic factors of solar electricity generation. Users may access maps and posters generated using the tool, as

43

Building integrated photovoltaic (BIPV) roofs for sustainability and energy  

NLE Websites -- All DOE Office Websites (Extended Search)

integrated photovoltaic (BIPV) roofs for sustainability and energy integrated photovoltaic (BIPV) roofs for sustainability and energy efficiency Title Building integrated photovoltaic (BIPV) roofs for sustainability and energy efficiency Publication Type Report Year of Publication 2013 Authors Ly, Peter, George Ban-Weiss, Nathan Finch, Craig Wray, Mark de Ogburn, William W. Delp, Hashem Akbari, Scott Smaby, Ronnen Levinson, and Bret Gean Corporate Authors SEI Group Inc. Document Number ESTCP EW-200813 Pagination 156 pp. Date Published 09/2013 Publisher Naval Facilities Engineering Command - Engineering and Expeditionary Warfare Center Type Technical Report Report Number TR-NAVFAC-EXWC-PW-1303 Keywords Buildings Energy Efficiency, energy efficiency, Energy Usage, renewable energy, Renewable Energy: Policy & Programs Abstract

44

Sandia National Laboratories: Photovoltaic Systems Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

can consistently perform over time, the DOE -in ... Second Annual Electric Power Research InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in...

45

Large-scale experimental wind-driven rain exposure investigations of building integrated photovoltaics  

Science Journals Connector (OSTI)

Building integrated photovoltaics (BIPVs) are photovoltaic materials that replace conventional building materials in parts of the building envelopes, such as roofs or facades, i.e. the BIPV system serves dual purposes, as both a building envelope material and a power generator. Hence, it is important to focus on the building envelope properties of a BIPV system in addition to energy generation performance when conducting experimental investigations of BIPVs. The aim of this work was to illustrate challenges linked to the building envelope properties of a BIPV system, and to develop and evaluate relevant methods for testing the building envelope properties of BIPV systems. A sample roof area with two BIPV modules was built and tested in a turnable box for rain and wind tightness testing of sloping building surfaces with the aim of investigating the rain tightness of the BIPV system, and observing how it withstood wind-driven rain at large-scale conditions. The BIPV sample roof went through testing with run-off water and wind-driven rain with incremental pulsating positive differential pressure over the sample at two different inclinations. The BIPV sample roof was during testing constantly visually monitored, and various leakage points were detected. In order to prevent such water penetration, the steel fittings surrounding the BIPV modules should ideally be better adapted to the BIPV modules and constricted to some extent. It is however important to maintain a sufficient ventilation rate simultaneously.

Christer Breivik; Bjørn Petter Jelle; Berit Time; Øystein Holmberget; John Nygård; Einar Bergheim; Arvid Dalehaug

2013-01-01T23:59:59.000Z

46

A prototype photovoltaic/thermal system integrated with transpired collector  

SciTech Connect

Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Maisonneuve W., Montreal, Quebec (Canada)

2011-01-15T23:59:59.000Z

47

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network (OSTI)

Residential Photovoltaic Energy Systems in California: Themarginal impacts of photovoltaic (PV) energy systems on home

Hoen, Ben

2014-01-01T23:59:59.000Z

48

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network (OSTI)

Residential Photovoltaic Energy Systems in California: Themarginal impacts of photovoltaic (PV) energy systems on home

Hoen, Ben

2013-01-01T23:59:59.000Z

49

Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof  

SciTech Connect

Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

2009-10-15T23:59:59.000Z

50

Concentrator Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use of relatively inexpensive materials such as plastic lenses and metal housings to capture the solar energy shining on a fairly large area and focus that energy onto a smaller area-the solar cell. One measure of the effectiveness of this approach is the concentration ratio-in other words, how much concentration the cell is receiving. Concentrator PV systems have several advantages over flat-plate systems. First, concentrator systems reduce the size or number of cells needed and

51

Photovoltaic roof heat flux  

E-Print Network (OSTI)

Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

52

25 Year Lifetime for Flexible Buildings Integrated Photovoltaics  

SciTech Connect

Although preliminary proof-of-principle of the efficacy of barrier materials and processes, first developed by Battelle at PNNL and commercialized by Vitex, has been demonstrated at the laboratory scale, there are several challenges to the practical commercial implementation of these developments in the Buildings Integrated Photovoltaics (BIPV) market. Two important issues that are addressed in this project are identifying a low cost substrate material that can survive in the outside environment (rain, heat, dust, hail, etc.) for 25 years and developing an encapsulation method for the photovoltaic (PV) cells that can meet the required barrier performance without driving the cost of the total barrier package out of range (remaining below $3.00/Wp). Without these solutions, current encapsulation technologies will limit the use of PV for BIPV applications. Flexible, light-weight packaging that can withstand 25 years in the field is required for a totally flexible integrated PV package. The benefit of this research is to make substantial progress in the development of a cost-effective, viable thin film barrier package which will be a critical enabling technology to meet the Solar America Initiative cost and device reliability goals, and to make photovoltaics (PV) more cost-competitive with electricity generated using fossil fuels. Increased PV installations will enable increased US electrical capacity and reduce dependence on imported oil through increased utilization of a widely abundant source of renewable energy (sunlight).

Gross, Mark E.

2010-07-10T23:59:59.000Z

53

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

54

Future contingencies and photovoltaic system worth  

SciTech Connect

The value of dispersed photovoltaic systems connected to the utility grid has been calculated using the General Electric Optimized Generation Planning program. The 1986 to 2001 time period was used for this study. Photovoltaic systems were dynamically integrated, up to 5% total capacity, into 9 NERC based regions under a range of future fuel and economic contingencies. Value was determined by the change in revenue requirements due to the photovoltaic additions. Displacement of high cost fuel was paramount to value, while capacity displacement was highly variable and dependent upon regional fuel mix.

Jones, G. J.; Thomas, M. G.; Bonk, G. J.

1982-01-01T23:59:59.000Z

55

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

E-Print Network (OSTI)

Effects of Residential Photovoltaic Energy Systems on HomeEffects of Residential Photovoltaic Energy Systems on Homewith existing photovoltaic (PV) energy systems have sold in

Hoen, Ben

2011-01-01T23:59:59.000Z

56

Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.  

E-Print Network (OSTI)

DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECThave sold with photovoltaic (PV) energy systems installed at

Hoen, Ben

2012-01-01T23:59:59.000Z

57

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

E-Print Network (OSTI)

Effects of Residential Photovoltaic Energy Systems on Homewith existing photovoltaic (PV) energy systems have sold ingrid-connected solar photovoltaic (PV) energy systems were

Cappers, Peter

2012-01-01T23:59:59.000Z

58

Effect of building integrated photovoltaics on microclimate of urban canopy layer  

Science Journals Connector (OSTI)

Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature.

Wei Tian; Yiping Wang; Yiyang Xie; Danzhu Wu; Li Zhu; Jianbo Ren

2007-01-01T23:59:59.000Z

59

Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics  

Science Journals Connector (OSTI)

Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five \\{PCMs\\} were selected for evaluation all with melting temperatures ?25 ± 4 °C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 °C was achieved for 30 min while 10 °C temperature reduction was maintained for 5 h at ?1000 W/m2 insolation.

A. Hasan; S.J. McCormack; M.J. Huang; B. Norton

2010-01-01T23:59:59.000Z

60

Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics  

SciTech Connect

Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures {proportional_to}25 {+-} 4 C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 C was achieved for 30 min while 10 C temperature reduction was maintained for 5 h at -1000 W/m{sup 2} insolation. (author)

Hasan, A.; Norton, B. [Dublin Energy Lab., Focas Institute, School of Physics, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); McCormack, S.J. [Department of Civil, Structure and Environmental Engineering, Trinity College Dublin, Dublin 1 (Ireland); Huang, M.J. [Centre for Sustainable Technologies, University of Ulster, Newtownabbey, N. Ireland, BT370QB (United Kingdom)

2010-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Basics System Basics Photovoltaic System Basics August 20, 2013 - 4:00pm Addthis A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An individual PV cell is usually small, typically producing about 1 or 2 watts of power. To boost the power output of PV cells, they are connected together to form larger units called modules. Modules, in turn, can be connected to form even larger units called arrays, which can be interconnected to produce more power, and so on. In this way, PV systems can be built to meet almost any electric power need, small or large. Illustration of solar cells combined to make a module and modules combined to make an array. The basic PV or solar cell produces only a small amount of power. To produce more power, cells can be interconnected to

62

NREL: Photovoltaics Research - Pholtovoltaic System Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pholtovoltaic System Performance Data Photo looking north-northwest at solar panels aligned in rows on the roof of a commercial building. The Terry Sanford Federal Building in...

63

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network (OSTI)

21st European Photovoltaic Solar Energy Conference, Dresden,21st European Photovoltaic Solar Energy Conference, Dresden,International Energy Agency Photovoltaic Power System

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

64

Photovoltaic Systems Interconnected onto Secondary Network Distribution Systems – Success Stories  

Energy.gov (U.S. Department of Energy (DOE))

This report examines six case studies of photovoltaic (PV) systems integrated into secondary network systems. The six PV systems were chosen for evaluation because they are interconnected to secondary network systems located in four major Solar America Cities.

65

Methodology for estimating building integrated photovoltaics electricity production under shadowing conditions and case study  

Science Journals Connector (OSTI)

Abstract Building integrated photovoltaic (BIPV) systems are a relevant application of photovoltaics. In countries belonging to the International Energy Agency countries, 24% of total installed PV power corresponds to BIPV systems. Electricity losses caused by shadows over the PV generator have a significant impact on the performance of BIPV systems, being the major source of electricity losses. This paper presents a methodology to estimate electricity produced by BIPV systems which incorporates a model for shading losses. The proposed methodology has been validated on a one year study with real data from two similar PV systems placed on the south façade of a building belonging to the Technical University of Madrid. This study has covered all weather conditions: clear, partially overcast and fully overcast sky. Results of this study are shown at different time scales, resulting that the errors committed by the best performing model are below 1% and 3% in annual and daily electricity estimation. The use of models which account for the reduced performance at low irradiance levels also improves the estimation of generated electricity.

Daniel Masa-Bote; Estefanía Caamaño-Martín

2014-01-01T23:59:59.000Z

66

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

67

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Jose - Solar Hot Water Heaters and Photovoltaic Systems San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider City of San Jose Building, Planning and Electrical Permits are required for Photovoltiac (PV) systems installed in San Jose. In most cases, PV systems must also undergo a Building Plan Review and an Electrical Plan Review. Building Plan Reviews are not required for installations that meet all of the following criteria: 1. Total panel weight (including frame) is not greater than 5 lbs. per

68

Building-Integrated Photovoltaic Desings for Commerical and Institutional Structures: A Sourcebook for Architects  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Integrated Photovoltaic Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures A Sourcebook for Architects Patrina Eiffert, Ph.D. Gregory J. Kiss Acknowledgements Building-Integrated Photovoltaics for Commercial and Institutional Structures: A Sourcebook for Architects and Engineers was prepared for the U.S. Department of Energy's (DOE's) Office of Power Technologies, Photovoltaics Division, and the Federal Energy Management Program. It was written by Patrina Eiffert, Ph.D., of the Deployment Facilitation Center at DOE's National Renewable Energy Laboratory (NREL) and Gregory J. Kiss of Kiss + Cathcart Architects. The authors would like to acknowledge the valuable contributions of Sheila Hayter, P.E., Andy Walker, Ph.D., P.E., and Jeff Wiechman of NREL, and Anne

69

Building-Integrated Photovoltaic Desings for Commerical and Institutional Structures: A Sourcebook for Architects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building-Integrated Photovoltaic Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures A Sourcebook for Architects Patrina Eiffert, Ph.D. Gregory J. Kiss Acknowledgements Building-Integrated Photovoltaics for Commercial and Institutional Structures: A Sourcebook for Architects and Engineers was prepared for the U.S. Department of Energy's (DOE's) Office of Power Technologies, Photovoltaics Division, and the Federal Energy Management Program. It was written by Patrina Eiffert, Ph.D., of the Deployment Facilitation Center at DOE's National Renewable Energy Laboratory (NREL) and Gregory J. Kiss of Kiss + Cathcart Architects. The authors would like to acknowledge the valuable contributions of Sheila Hayter, P.E., Andy Walker, Ph.D., P.E., and Jeff Wiechman of NREL, and Anne

70

Photovoltaic Pumping Systems A Comparison of Two Concepts  

E-Print Network (OSTI)

Photovoltaic Pumping Systems A Comparison of Two Concepts Hans Bloos, Markus Genthner, Detlev of Oldenburg two different concepts of photovoltaic pumping subsystems available on the market were Photovoltaic pumping (PVP) has established itself as a water lifting technique for remote areas in sun

Heinemann, Detlev

71

El Paso Electric photovoltaic-system analyses  

SciTech Connect

Four analyses were performed on the Newman Power Station PV system. Two were performed using the Photovoltaic Transient Analysis Program (PV-TAP) and two with the SOLCEL II code. The first was to determine the optimum tilt angle for the array and the sensitivity of the annual energy production to variation in tilt angle. The optimum tilt angle was found to be 28/sup 0/, and variations of 2/sup 0/ produce losses of only 0.06% in the annual energy production. The second analysis assesses the power loss due to cell-to-cell variations in short circuit current and the degree of improvement attainable by sorting cells and matching modules. Typical distributions on short circuit current can cause losses of about 9.5 to 11 percent in peak array power, and sorting cells into 4 bins prior to module assembly can reduce the losses to about 6 to 8 percent. Using modules from the same cell bins in building series strings can reduce the losses to about 4.5 to 6 percent. Results are nearly the same if the array is operated at a fixed votage. The third study quantifies the magnitude and frequency of occurrence of high cell temperatures due to reverse bias caused by shadowing, and it demonstrates that cell temperatures achieved in reverse bias are higher for cells with larger shunt resistance. The last study assesses the adequacy of transient protection devices on the dc power lines to transients produced by array switching and lightning. Large surge capacitors on the dc power line effectively limit voltage excursions at the array and at the control room due to lightning. Without insertion of series resistors, the current may be limited only by cable and switch impedances, and all elements could be severely stressed. (LEW)

Not Available

1982-05-01T23:59:59.000Z

72

Phase Change Materials for Thermal Regulation of Building Integrated Photovoltaics.  

E-Print Network (OSTI)

?? In outdoor deployed photovoltaics (PV), standard test conditions (STC) of 25 °C PV temperature, 1000 Wm-2 solar radiation intensity and 1.5 air-mass rarely prevail.… (more)

Hassan, Ahmad, (Thesis)

2010-01-01T23:59:59.000Z

73

Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case  

Open Energy Info (EERE)

Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Focus Area: Solar Topics: Market Analysis Website: www.leonardo-energy.org/webinar-introduction-small-scale-photovoltaic- Equivalent URI: cleanenergysolutions.org/content/introduction-small-scale-photovoltaic Language: English Policies: Deployment Programs DeploymentPrograms: Project Development This video teaches the viewer about photovoltaic arrays and RETscreen's photovoltaic module, which can be used to project the cost and production of an array. An example case study was

74

Phase change materials for limiting temperature rise in building integrated photovoltaics  

Science Journals Connector (OSTI)

Elevated operating temperatures reduce the solar to electrical conversion efficiency of photovoltaic devices. This paper presents an experimental evaluation of phase change materials for thermal management of photovoltaic devices. Two particular phase change materials were used to moderate the temperature rise of photovoltaics. The thermal performance of different internal fin arrangements for improving bulk PCM thermal conductivity are presented. Using RT25 with internal fins, the temperature rise of the PV/PCM system can be reduced by more than 30 °C when compared with the datum of a single flat aluminium plate during phase change. Phase change materials are shown to be an effective means of limiting temperature rise in photovoltaic devices.

M.J. Huang; P.C. Eames; B. Norton

2006-01-01T23:59:59.000Z

75

Circuit Topology Study of Grid-Connected Photovoltaic System.  

E-Print Network (OSTI)

??Many different circuit topologies have been suggested for large scale photovoltaic systems. The cost and the efficiency are still the major issues of large scale… (more)

Mansouri, Seyed Akbar

2011-01-01T23:59:59.000Z

76

Electric Storage in California's Commercial Buildings  

E-Print Network (OSTI)

Distributed photovoltaic generation and energy storageenergy management in buildings and microgrids with e.g. installed Photovoltaic (energy storage, TS – thermal storage, FB – Flow Battery, AC – Absorption Chiller, ST – solar thermal system, PV – photovoltaic.

Stadler, Michael

2014-01-01T23:59:59.000Z

77

The impact of building-integrated photovoltaics on the energy demand of multi-family dwellings in Brazil  

Science Journals Connector (OSTI)

Brazil faces a continuous increase of energy demand and a decrease of available resources to expand the generation system. Residential buildings are responsible for 23% of the national electricity demand. Thus, it is necessary to search for new energy sources to both diversify and complement the energy mix. Building-integrated photovoltaic (BIPV) is building momentum worldwide and can be an interesting alternative for Brazil due its solar radiation characteristics. This work analyses the potential of seven BIPV technologies implemented in a residential prototype simulated in three different cities in Brazil (Natal, Brasília and Florianópolis). Simulations were performed using the software tool EnergyPlus to integrate PV power supply with building energy demand (domestic equipment and HVAC systems). The building model is a typical low-cost residential building for middle-class families, as massively constructed all over the country. Architectural input and heat gain schedules are defined from statistical data (Instituto Brasileiro de Geografia e Estatística—Brazilian Institute for Geography and Statistics (IBGE) and Sistema de Informações de Posses de Eletrodomésticos e Hábitos de Consumo—Consumer Habits and Appliance Ownership Information System (SIMPHA)). BIPV is considered in all opaque surfaces of the envelope. Results present an interesting potential for decentralized PV power supply even for vertical surfaces at low-latitude sites. In each façade, BIPV power supply can be directly linked to local climatic conditions. In general, for 30% of the year photovoltaic systems generate more energy than building demand, i.e., during this period it could be supplying the energy excess to the public electricity grid. Contrary to the common belief that vertical integration of PV is only suitable for high latitude countries, we show that there is a considerable amount of energy to be harvested from vertical façades at the sites investigated.

Martin Ordenes; Deivis Luis Marinoski; Priscila Braun; Ricardo Rüther

2007-01-01T23:59:59.000Z

78

Microsystems Enabled Photovoltaics  

ScienceCinema (OSTI)

Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

2014-06-23T23:59:59.000Z

79

Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System  

E-Print Network (OSTI)

area of photovoltaic and other clean energy technologies.Energy recently hosted a day-long public workshop on the variability of photovoltaic (photovoltaic power plants into the utility system. Nicholas Miller is Director, Energy

Mills, Andrew

2010-01-01T23:59:59.000Z

80

Sandia National Laboratories: Photovoltaic Systems Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory (PSEL) Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid Integration,...

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sandia National Laboratories: Photovoltaic Systems Research ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others...

82

Sandia National Laboratories: Glitter-Sized Photovoltaic Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyGlitter-Sized Photovoltaic Cells in Utility-Scale Solar Power Systems Glitter-Sized Photovoltaic Cells in Utility-Scale Solar Power Systems Building a Microgrid Greg...

83

Evaluating Future Standards and Codes with a Focus on High Penetration Photovoltaic (HPPV) System Deployment (Poster)  

SciTech Connect

Poster displaying solutions for evaluating future standards and codes for high penetration photovoltaic (HPPV) systems.

Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.

2010-12-01T23:59:59.000Z

84

Operational results from the Saudi Solar Village Photovoltaic power system  

SciTech Connect

The world's largest photovoltaic power system was carried into the operation phase a few months ago. This system was developed and fabricated in the United States and it is providing electrical energy to three remote villages in Saudi Arabia. The facility includes a 350 kW photovoltaic array, 1-MW diesel powered generator, 1100 kWH lead acid batteries, a 300 KVA inverter and a solar weather data monitoring station. The photovoltaic power system is capable of completely automatic operation. It is designed to operate in stand-alone and cogeneration modes of operation.

Huraib, F.; Al-Sani, A.; Khoshami, B.H.

1982-08-01T23:59:59.000Z

85

Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil  

Science Journals Connector (OSTI)

Abstract Photovoltaic (PV) generation depends directly on the amount of radiation received by solar modules at a given temperature, and annual irradiation varies according to site location and PV array position. In this paper, the limitations and the solar irradiation levels received by building surfaces in different positions (with azimuth and tilt angle variation) in capital cities in Brazil are shown, making use of the Brazilian global horizontal solar irradiation data provided by the SWERA (Solar and Wind Energy Resource Assessment) project. These data were processed to generate figures on the irradiation at various PV module orientations and slopes for each city, which show the relative radiation levels received on specific azimuth and tilt angles in relation to the ideal position. Results were validated using four real and operating PV systems. In general, variations in azimuth or slope did not cause large annual irradiation losses up to around 20° tilt angles. This shows to PV system planners that under these fairly flexible conditions it is possible to install PV on any orientation, keeping high levels of annual irradiation, and that limitations in orientation and tilt can be relatively low. It also allows a quick analysis of PV retrofit in building-applied photovoltaics (BAPV), when seeking the best building surfaces to incorporate PV.

Ísis Portolan dos Santos; Ricardo Rüther

2014-01-01T23:59:59.000Z

86

Mandatory Photovoltaic System Cost Estimate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Photovoltaic System Cost Estimate Mandatory Photovoltaic System Cost Estimate Mandatory Photovoltaic System Cost Estimate < Back Eligibility Utility Savings Category Solar Buying & Making Electricity Program Info State Colorado Program Type Line Extension Analysis Provider Colorado Public Utilities Commission At the request of a customer or a potential customer, Colorado electric utilities are required to conduct a cost comparison of a photovoltaic (PV) system to any proposed distribution line extension if the customer or potential customer provides the utility with load data (estimated monthly kilowatt-hour usage) requested by the utility to conduct the comparison, and if the customer's or potential customer's peak demand is estimated to be less than 25 kilowatts (kW). In performing the comparison analysis, the

87

The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems.

88

Whole Building Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

89

Flat-Plate Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flat-Plate Photovoltaic System Basics Flat-Plate Photovoltaic System Basics Flat-Plate Photovoltaic System Basics August 20, 2013 - 4:03pm Addthis The most common photovoltaic (PV) array design uses flat-plate PV modules or panels. These panels can be fixed in place or allowed to track the movement of the Illustration of a cutaway of a typical flat-plate module. The layers, in order from top to bottom, are: cover film, solar cell, encapsulant, substrate, cover film, seal, gasket, and frame. One typical flat-plate module design uses a substrate of metal, glass, or plastic to provide structural support in the back; an encapsulant material to protect the cells; and a transparent cover of plastic or glass. sun. They respond to sunlight that is direct or diffuse. Even in clear skies, the diffuse component of sunlight accounts for between 10% and 20%

90

Building diagnosable distributed systems  

E-Print Network (OSTI)

Building diagnosable distributed systems Petros Maniatis Intel Research Berkeley ICSI ­ Security] Project response@R (R, K, SI) lookup response Specification #12;2/8/2006 Petros Maniatis9 Strawman Design Join lookup.NI == node.NI Join lookup.NI == succ.NI Select K in (N, S] Project response@R (R, K, SI

Maniatis, Petros

91

Simulation and simplified design studies of photovoltaic systems  

SciTech Connect

Results of TRNSYS simulations of photovoltaic systems with electrical storage are described. Studies of the sensitivity of system performance, in terms of the fraction of the electrical load supplied by the solar energy system, to variables such as array size, battery size, location, time of year, and load shape are reported. An accurate simplified method for predicting array output of max-power photovoltaic systems is presented. A second simplified method, which estimates the overall performance of max-power systems, is developed. Finally, a preliminary technique for predicting clamped-voltage system performance is discussed.

Evans, D.L.; Facinelli, W.A.; Koehler, L.P.

1980-09-01T23:59:59.000Z

92

Analysis of the Potential Applications of Solar Termal and Photovoltaic Systems for Northwest Vista College  

E-Print Network (OSTI)

the following RE technologies as viable: ground source heat pump (GSHP) systems, closed loop solar thermal system and photovoltaic (PV)....

Ugursal, A.; Martinez, J.; Baltazar, J. C.; Zilbershtein, G.

2013-01-01T23:59:59.000Z

93

Building Integrated Photovoltaics - A State-of-the-Art Review, Future Research Opportunities and Large-Scale Experimental Wind-Driven Rain Exposure Investigations.  

E-Print Network (OSTI)

?? This work consists of three scientific journal articles on the subject building integrated photovoltaics (BIPVs), and was initiated by a student project work which… (more)

Breivik, Christer

2012-01-01T23:59:59.000Z

94

Sandia National Laboratories: photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Guides New Photovoltaic Requirements On January 8, 2013, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Systems Analysis Sandia's Photovoltaic (PV)...

95

Models Used to Assess the Performance of Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization.

96

Next-Generation Distributed Power Management for Photovoltaic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

97

A stochastic method for stand-alone photovoltaic system sizing  

SciTech Connect

Photovoltaic systems utilize solar energy to generate electrical energy to meet load demands. Optimal sizing of these systems includes the characterization of solar radiation. Solar radiation at the Earth's surface has random characteristics and has been the focus of various academic studies. The objective of this study was to stochastically analyze parameters involved in the sizing of photovoltaic generators and develop a methodology for sizing of stand-alone photovoltaic systems. Energy storage for isolated systems and solar radiation were analyzed stochastically due to their random behavior. For the development of the methodology proposed stochastic analysis were studied including the Markov chain and beta probability density function. The obtained results were compared with those for sizing of stand-alone using from the Sandia method (deterministic), in which the stochastic model presented more reliable values. Both models present advantages and disadvantages; however, the stochastic one is more complex and provides more reliable and realistic results. (author)

Cabral, Claudia Valeria Tavora; Filho, Delly Oliveira; Martins, Jose Helvecio; Toledo, Olga Moraes [Department of Agricultural Engineering, Federal University of Vicosa, Av. P. H. Rolfs, s/n. 36570-000 Vicosa, Minas Gerais (Brazil); Diniz, Antonia Sonia Alves C.; Machado Neto, Lauro de Vilhena B. [Group of Studies in Energy - GREEN Solar, Pontifical Catholic University of Minas Gerais - PUC Minas, Rua Dom Jose Gaspar no. 500, Predio 03, Sala 218 - Coracao Eucaristico 30535-610 Belo Horizonte - Minas Gerais (Brazil)

2010-09-15T23:59:59.000Z

98

Development of Building Automation and Control Systems  

E-Print Network (OSTI)

A design flow for building automation and control systems,’’Development of Building Automation and Control Systems Yangdesign of the build- ing automation system (including the

Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

99

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network (OSTI)

side hybrid photovoltaic and battery energy storage system,to combined photovoltaic and battery energy storage systemsphotovoltaic systems, IEEE Transactions on Sustainable Energy (

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

100

Building Technologies Office: Building-Level Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Impact of City-level Permitting Processes on Residential Photovoltaic Installation Prices and Development Times: An Empirical Analysis of Solar Systems in California Cities  

E-Print Network (OSTI)

L. 1978. Cost of photovoltaic energy systems as determinedmodel of solar photovoltaic deployment. ” Energy Policy, 36:economics of photovoltaic power. ” Renewable Energy 53 (0):

Wiser, Ryan

2014-01-01T23:59:59.000Z

102

Environmental Assessment of Photovoltaic Systems and Effectiveness Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment of Photovoltaic Systems and Effectiveness Analysis Environmental Assessment of Photovoltaic Systems and Effectiveness Analysis of U.S. Renewable Energy Policies Speaker(s): Pei Zhai Date: October 25, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay This presentation mainly covers two perspectives relevant to solar energy technologies. The first one is the environmental aspect. The questions to be answered are how "green" photovoltaic technology is (embodied energy and carbon are two main indicators); and, how have these two indicators evolved during the past 10 years. The methodology for analysis is a hybrid Life Cycle Assessment. The second part involves a policy analysis of the effectiveness of U.S. renewable energy policies, such as state-level Renewable Portfolio Standards, for supporting solar energy adoption. A

103

Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society  

Science Journals Connector (OSTI)

This paper assesses the technical and economic performance of PV technology integrated into residential buildings in the Gulf Cooperation Council (GCC) countries. It highlights the value of PV electricity for the GCC society from the perspective of consumers, utilities and environment. Through a systematic modelling analysis it is shown that the efficiency of PV system drops by 4–6% due to high range of module temperature and also a change in power output due to high ambient temperatures. Consequently, the outputs of horizontal and vertical PV modules are found to be less than estimates based on standard test conditions. Economically, this study shows that building integrated photovoltaic (BIPV) systems are not viable in GCC countries and cannot compete with conventional electricity sources on a unit cost basis. From a society point of view, however, the integration of PV technology into buildings would have several benefits for the GCC countries, including: first, savings in capital cost due to central power plants and transmission and distribution processes; second, an increase in the exported oil and natural gas used for electricity generation; and third, a reduction in the CO2 emissions from conventional power plants. When these considerations are taken into account then BIPV should become a feasible technology in GCC countries.

Steve Sharples; Hassan Radhi

2013-01-01T23:59:59.000Z

104

Utilizing Photovoltaic Cells and Systems (9 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

These nine projects allow students to set up their own investigations and manipulate the variables that influence photovoltaic cells. The projects can be easily integrated into a normal science classroom curriculum, or can be completed by students individually for science fair projects. All of the projects will fit easily into classroom lessons surrounding scientific inquiry and the scientific method. They will also help illustrate concepts in electricity, light and color, velocity and gravity, chemistry and polarity, and could even lead to social studies or social action projects.

105

Building America Whole-House Solutions for New Homes: Grupe,...  

Energy Savers (EERE)

Production Builders - Building America Top Innovation High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series...

106

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

107

Building Technology and Urban Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior and infrared thermograph Office building exterior and infrared thermograph Building Technology and Urban Systems Building Technology and Urban Systems application/pdf icon btus-org-chart-03-2013.pdf In the areas of Building Technology and Urban Systems, EETD researchers conduct R&D and develop physical and information technologies to make buildings and urban areas more energy- and resource-efficient. These technologies create jobs and products for the marketplace in clean technology industries. They improve quality of life, and reduce the emissions of pollutants, including climate-altering greenhouse gases. BTUSD's goal is to provide the technologies needed to operate buildings at 50 to 70 percent less energy use than average today. BTUS develops, demonstrates and deploys: Information technologies for the real-time monitoring and control of

108

Benchmarking Non-Hardware Balance-of-System (Soft) Costs for U.S. Photovoltaic Systems Using a Bottom-Up Approach and Installer Survey  

E-Print Network (OSTI)

Photovoltaic System Prices in the United States: Current Drivers and Costsoft” costs— for residential and commercial photovoltaic (of-System (Soft) Costs for U.S. Photovoltaic Systems Using a

Ardani, Kristen

2014-01-01T23:59:59.000Z

109

Optimization in solar heating/photovoltaic systems. Master's thesis  

SciTech Connect

This thesis is a design of an alternative system which may provide heating to the Naval Postgraduate School swimming pool. Particularly, it is a solar heating/photovoltaic system designed for a better efficiency and less cost of installation and maintenance. Principles of heat transfer, control and fluid dynamics theory are used for the determination of this heating system elements. The feasibility of its installation and use is analyzed.

Vourazelis, D.G.

1990-12-01T23:59:59.000Z

110

Photovoltaic array mounting apparatus, systems, and methods  

DOE Patents (OSTI)

An apparatus for mounting a photovoltaic (PV) module on a surface, including a support with an upper surface, a lower surface, tabs, one or more openings, and a clip comprising an arm and a notch, where the apparatus resists wind forces and seismic forces and creates a grounding electrical bond between the PV module, support, and clip. The invention further includes a method for installing PV modules on a surface that includes arranging supports in rows along an X axis and in columns along a Y axis on a surface such that in each row the distance between two neighboring supports does not exceed the length of the longest side of a PV module and in each column the distance between two neighboring supports does not exceed the length of the shortest side of a PV module.

West, John Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

2014-12-02T23:59:59.000Z

111

Evaluation of the photovoltaic generation potential and real-time analysis of the photovoltaic panel operation on a building facade in southern Brazil  

Science Journals Connector (OSTI)

Abstract Solar photovoltaic systems are an alternative to the current model of power generation, supplying clean energy with little environmental impact and no significant losses associated with distribution networks. This study aims to obtain data on electricity generation in real time for a photovoltaic panel installed in the city of Lajeado, Rio Grande do Sul, Brazil, comparing the electric power generation of the photovoltaic panel with the solar radiation data of the city, obtained with the use of a pyranometer. Data from incident solar radiation, measured in the city, on the period of 2007–2012 were used. Comparisons with data from power generation of the photovoltaic panel and assessment of the solar potential were performed. The photovoltaic panel has an area of 16.5 m2 and was installed on the campus of UNIVATES University Center, arranged so that it faces the true north and tilted at an angle of 24°, for better utilization of solar radiation incident along the year. At the end of this phase of the study, it was obtained an average power generation of 11.0 kWh/day and efficiency of the modules in the order of 12.6%.

João Vicente Akwa; Odorico Konrad; Gustavo Vinícius Kaufmann; Cezar Augusto Machado

2014-01-01T23:59:59.000Z

112

Energy Department Issues Green Building Certification System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building...

113

Energy Department Issues Green Building Certification System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification...

114

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

concentrators for building integrated photovoltaics,” 2013,the performance of building integrated photovoltaics,” Sol.evaluation of building-integrated photovoltaics,” Energy,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

115

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

for building integrated photovoltaics,” 2013, vol. 8821, pp.of building integrated photovoltaics,” Sol. Energy, vol. 85,of building-integrated photovoltaics,” Energy, vol. 26, no.

Leow, Shin Woei

2014-01-01T23:59:59.000Z

116

Acoustic Building Infiltration Measurement System (ABIMS)  

Energy.gov (U.S. Department of Energy (DOE))

The Acoustic Building Infilitration Measurement System project is developing an acoustic method of measuring the infiltration of a building envelope.

117

Residential photovoltaic flywheel storage system performance and cost  

SciTech Connect

A subscale prototype of a flywheel energy storage and conversion system for use with photovoltaic power systems of residential and intermediate load-center size has been designed, built and tested by MIT Lincoln Laboratory. System design, including details of such key components as magnetic bearings, motor generator, and power-conditioning electronics, are described. Performance results of prototype testing are given and indicate that this system is the equal of or superior to battery and inverter systems for the same application. Results of cost and user-worth analysis show that residential systems are economically feasible in stand-alone and in utility-interactive applications.

Hay, R.D.; Millner, A.R.; Jarvinen, P.O.

1980-01-01T23:59:59.000Z

118

Photovoltaic Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies October 7, 2013 - 9:22am Addthis Graphic of the eTraining logo Training Available Selecting, Implementing, and Funding Photovoltaic Systems in Federal Facilities: Learn how to select, implement, and fund a photovoltaic system by taking this FEMP eTraining course. This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector. Overview Photovoltaic cells convert sunlight into electricity. Systems typically include a PV module or array made of individual PV cells installed on or near a building or other structure. A power inverter converts the direct current (DC) electricity produced by the PV cells to alternative current

119

Implementations of electric vehicle system based on solar energy in Singapore : assessment of solar photovoltaic systems  

E-Print Network (OSTI)

To evaluate the feasibility of solar energy based Electric Vehicle Transportation System in Singapore, the state of the art Photovoltaic Systems have been reviewed in this report with a focus on solar cell technologies. ...

Sun, Li

2009-01-01T23:59:59.000Z

120

Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System  

SciTech Connect

The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

Thompson, J. R.; McConnell, R. D.; Mosleh, M.

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Applications of Optimal Building Energy System Selection and Operation  

E-Print Network (OSTI)

battery PDP: Peak Day Pricing PV: solar photovoltaic systems SaaS: Software as a Service ST: solar thermal

Marnay, Chris

2014-01-01T23:59:59.000Z

122

Solar integration: applying hybrid photovoltaic/thermal systems.  

E-Print Network (OSTI)

??On-site energy production is becoming increasingly prevalent in building systems design with a renewed public awareness of sustainability, decreased energy resources, and an increase in… (more)

Williams, Kristen

2010-01-01T23:59:59.000Z

123

Models used to assess the performance of photovoltaic systems.  

SciTech Connect

This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

Stein, Joshua S.; Klise, Geoffrey T.

2009-12-01T23:59:59.000Z

124

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic  

E-Print Network (OSTI)

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic Inverters Under of existing low- voltage distribution systems with high photovoltaic (PV) gen- eration have focused relaxation techniques. Index Terms--Distribution networks, microgrids, photovoltaic systems, inverter control

Giannakis, Georgios

125

National System Templates: Building Sustainable National Inventory...  

Open Energy Info (EERE)

Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable...

126

Building Technologies Office: Energy Systems Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Energy Systems Innovations to someone by E-mail Share Building Technologies Office: Energy Systems Innovations on Facebook Tweet about Building Technologies Office: Energy Systems Innovations on Twitter Bookmark Building Technologies Office: Energy Systems Innovations on Google Bookmark Building Technologies Office: Energy Systems Innovations on Delicious Rank Building Technologies Office: Energy Systems Innovations on Digg Find More places to share Building Technologies Office: Energy Systems Innovations on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

127

Comparative study of Non -Tracking and Low Concentrating Photovoltaic systems Using Low -Cost Reflectors.  

E-Print Network (OSTI)

??The traditional high concentrating photovoltaic systems have proved to be expensive as they use high grade silicon solar cells, highly specular reflecting materials and require… (more)

Hatwaambo, Sylvester

2012-01-01T23:59:59.000Z

128

Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)  

SciTech Connect

This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

James, T.

2014-03-01T23:59:59.000Z

129

ATLAS Nightly Build System Upgrade  

E-Print Network (OSTI)

The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

2013-01-01T23:59:59.000Z

130

The option of phase change materials as temperature regulation for building integrated photovoltaics.  

E-Print Network (OSTI)

??The performance of photovoltaic modules outdoors suffers from attained high temperatures due to irradiation as a result of the negative temperature coefficient of their efficiency.… (more)

Hendricks, J.H.C.

2010-01-01T23:59:59.000Z

131

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

Energy.gov (U.S. Department of Energy (DOE))

To achieve a sizable and self-sustaining market for grid-connected, customer-sited photovoltaic (PV) systems, solar will likely need to be competitive with retail electricity rates. In this report, we examine the impact of retail rate design on the economic value of commercial PV systems in California. Using 15-minute interval building load and PV production data from 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial customer retail rates currently offered in the state. We find that the specifics of the rate structure, combined with the characteristics of the customer’s underlying load and the size of the PV system, can have a substantial impact on the customer-economics of commercial PV systems.

132

Optimum Energy Management of a Photovoltaic Water Pumping System  

Science Journals Connector (OSTI)

This paper presents a new management of the energy of a photovoltaic water pumping installation composed of a battery, a water pump and a photovoltaic panel. The approach makes decision on the optimum connecti...

Souhir Sallem; Maher Chaabene; M. B. A. Kamoun

2009-01-01T23:59:59.000Z

133

Efficient scale for photovoltaic systems and Florida's solar rebate program  

Science Journals Connector (OSTI)

This paper presents a critical view of Florida's photovoltaic (PV) subsidy system and proposes an econometric model of PV system installation and generation costs. Using information on currently installed systems, average installation cost relations for residential and commercial systems are estimated and cost-efficient scales of installation panel wattage are identified. Productive efficiency in annual generating capacity is also examined under flexible panel efficiency assumptions. We identify potential gains in efficiency and suggest changes in subsidy system constraints, providing important guidance for the implementation of future incentive programs. Specifically, we find that the subsidy system discouraged residential applicants from installing at the cost-efficient scale but over-incentivized commercial applicants, resulting in inefficiently sized installations.

Christopher S. Burkart; Nestor M. Arguea

2012-01-01T23:59:59.000Z

134

System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report  

SciTech Connect

The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

2013-12-01T23:59:59.000Z

135

Integral energy performance characterization of semi-transparent photovoltaic elements for building integration under real operation conditions  

Science Journals Connector (OSTI)

Abstract In this paper, a methodology for the integral energy performance characterization (thermal, daylighting and electrical behavior) of semi-transparent photovoltaic modules (STPV) under real operation conditions is presented. An outdoor testing facility to analyze simultaneously thermal, luminous and electrical performance of the devices has been designed, constructed and validated. The system, composed of three independent measurement subsystems, has been operated in Madrid with four prototypes of a-Si STPV modules, each one corresponding to a specific degree of transparency. The extensive experimental campaign, continued for a whole year rotating the modules under test, has validated the reliability of the testing facility under varying environmental conditions. The thermal analyses show that both the solar protection and insulating properties of the laminated prototypes are lower than those achieved by a reference glazing whose characteristics are in accordance with the Spanish Technical Building Code. Daylighting analysis shows that STPV elements have an important lighting energy saving potential that could be exploited through their integration with strategies focused to reduce illuminance values in sunny conditions. Finally, the electrical tests show that the degree of transparency is not the most determining factor that affects the conversion efficiency.

L. Olivieri; E. Caamaño-Martin; F .Olivieri; J. Neila

2014-01-01T23:59:59.000Z

136

Solar Leasing for Residential Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place. As a result of the $2,000 cap on the residential ITC being lifted in 2009, the expansion of the solar lease model across the United States may be slower than anticipated. The lease model, though, still offers homeowners some distinct advantages. This publication helps homeowners revisit the comparison between the solar lease and home-equity financing in light of the change to the ITC.

137

A dynamic model for air-based photovoltaic thermal systems working under real operating conditions  

Science Journals Connector (OSTI)

Abstract In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical efficiency and the second law efficiency increased with the increase of the solar irradiation. The efficiencies found to be very sensitive for low level of solar irradiations. At about 400 W m?2 irradiation efficiencies became less sensitive.

M. Imroz Sohel; Zhenjun Ma; Paul Cooper; Jamie Adams; Robert Scott

2014-01-01T23:59:59.000Z

138

Comparison of Photovoltaic Models in the System Advisor Model: Preprint  

SciTech Connect

The System Advisor Model (SAM) is free software developed by the National Renewable Energy Laboratory (NREL) for predicting the performance of renewable energy systems and analyzing the financial feasibility of residential, commercial, and utility-scale grid-connected projects. SAM offers several options for predicting the performance of photovoltaic (PV) systems. The model requires that the analyst choose from three PV system models, and depending on that choice, possibly choose from three module and two inverter component models. To obtain meaningful results from SAM, the analyst must be aware of the differences between the model options and their applicability to different modeling scenarios. This paper presents an overview the different PV model options and presents a comparison of results for a 200-kW system using different model options.

Blair, N. J.; Dobos, A. P.; Gilman, P.

2013-08-01T23:59:59.000Z

139

INTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE  

E-Print Network (OSTI)

Integrated Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting & Air FlowINTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems

140

Sandia National Laboratories: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia's solar photovoltaic (PV) work is focused on developing cost-effective, reliable photovoltaic energy systems and accelerating the integration of PV technology in the...

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sandia National Laboratories: photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity. Sandia photovoltaic work is centered on developing cost-effective, reliable photovoltaic energy systems produced by US industry and used worldwide. Learn More...

142

Research & Development Needs for Building-Integrated Solar Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Building Integrated Solar Technologies (BIST) can help achieve the Building Technologies Office goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

143

Technical analysis of prospective photovoltaic systems in Utah.  

SciTech Connect

This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

Quiroz, Jimmy Edward; Cameron, Christopher P.

2012-02-01T23:59:59.000Z

144

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

L ABORATORY Integrated Building Energy Systems Design7301 Integrated building energy systems design considering

Stadler, Michael

2009-01-01T23:59:59.000Z

145

Analysis of Photovoltaic System Energy Performance Evaluation Method  

SciTech Connect

Documentation of the energy yield of a large photovoltaic (PV) system over a substantial period can be useful to measure a performance guarantee, as an assessment of the health of the system, for verification of a performance model to then be applied to a new system, or for a variety of other purposes. Although the measurement of this performance metric might appear to be straight forward, there are a number of subtleties associated with variations in weather and imperfect data collection that complicate the determination and data analysis. A performance assessment is most valuable when it is completed with a very low uncertainty and when the subtleties are systematically addressed, yet currently no standard exists to guide this process. This report summarizes a draft methodology for an Energy Performance Evaluation Method, the philosophy behind the draft method, and the lessons that were learned by implementing the method.

Kurtz, S.; Newmiller, J.; Kimber, A.; Flottemesch, R.; Riley, E.; Dierauf, T.; McKee, J.; Krishnani, P.

2013-11-01T23:59:59.000Z

146

Building systems optimization controls calibration  

SciTech Connect

During the period between May 9, 1994 and June 2, 1994, Engineered Facility Management (EFM) conducted a comprehensive investigation into the condition and operation of the equipment and systems at a major high-rise building owned by a large California bank. The goal of the project was to improve the project`s energy cost per square foot without major system retrofit and capital expenditure. This report is a compilation of the findings, actions taken and recommendations.

NONE

1995-02-01T23:59:59.000Z

147

Predicting the Effects of Short-Term Photovoltaic Variability on Power System Frequency for Systems with Integrated Energy Storage.  

E-Print Network (OSTI)

?? The percentage of electricity supplied by photovoltaic (PV) generators is steadily rising in power systems worldwide. This rise in PV penetration may lead to… (more)

Traube, Joshua White

2014-01-01T23:59:59.000Z

148

Green Building Certification Systems Requirement for New Federal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Green Building Certification Systems Requirement...

149

PHOTOVOLTAIC MODULE AND SHADOW: STUDY AND INTEGRATION OF A CURRENT BALANCING SYSTEM  

E-Print Network (OSTI)

PHOTOVOLTAIC MODULE AND SHADOW: STUDY AND INTEGRATION OF A CURRENT BALANCING SYSTEM Stéphane: Current crystalline photovoltaic modules (PV) are designed with 36 or 72 series ­ connected PV cells of shadow, keep the reliability and the cost imposed by the market [7, 8, and 9]. This study concerns

Paris-Sud XI, Université de

150

Assessing the prospective environmental impacts of photovoltaic systems based on a simplified LCA model  

E-Print Network (OSTI)

Assessing the prospective environmental impacts of photovoltaic systems based on a simplified LCA cycle analysis (LCA). However, LCA requires the collection of a large amount of data and is thus time-consuming. Besides, LCA results found in the literature corresponding to the photovoltaic energy pathway show a large

Paris-Sud XI, Université de

151

National System Templates: Building Sustainable National Inventory  

Open Energy Info (EERE)

National System Templates: Building Sustainable National Inventory National System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable National Inventory Management Systems Agency/Company /Organization: United States Environmental Protection Agency, United States Agency for International Development Sector: Energy, Land Focus Area: Non-renewable Energy, Forestry, Agriculture Topics: GHG inventory Resource Type: Guide/manual, Training materials Website: www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/templ National System Templates: Building Sustainable National Inventory Management Systems Screenshot References: National System Templates: Building Sustainable National Inventory Management Systems[1]

152

A Computer Program Development for Sizing Stand-alone Photovoltaic-Wind Hybrid Systems  

Science Journals Connector (OSTI)

Abstract The exhaustion and all the drawbacks of fossil fuels are the main elements that led to the development and use of new alternativesfor power generation based on renewable energy,amongthem: photovoltaic energy systems, windenergy systems and their combination in a hybrid photovoltaic-wind system. In this paper we proposed a sizing approach of stand-alone Photovoltaic-Wind systems which is evaluated by the development of a computer applicationbased essentially on Loss of Power Supply Probability (LPSP) algorithmto provide an optimal technical-economic configuration. An example of a PV-Wind plant sizing is presented and discussed.

H. Belmili; M.F. Almi; B.Bendib; S. Bolouma

2013-01-01T23:59:59.000Z

153

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network (OSTI)

cycle impacts and costs of photovoltaic systems: currentcosts: 2004early 2005 status. Progress in Photovoltaicphotovoltaic systems often do not consider panel installation, even though it is a major component of their financial cost.

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

154

Study of the Overall Efficiency of a 7 pkw Solar Photovoltaic Pumpng System at Mugombwa (Rwanda)  

Science Journals Connector (OSTI)

The solar pumping system installed since 1985 by the ... is powered by a photovoltaic array of 132 pannels of 52 peak watt each. Our concern ... efficiency of the system by measuring both the solar global radiati...

Prosper Mpawenayo

1991-01-01T23:59:59.000Z

155

A Photovoltaic-Hydrogen-Fuel Cell Energy System: Preliminary Operational Results  

Science Journals Connector (OSTI)

We report preliminary operational results for a photovoltaic (PV) energy system which uses hydrogen as the storage medium and a fuel cell as the regeneration technology. The system installed at the Humboldt St...

P. A. Lehman; C. E. Chamberlin

1991-01-01T23:59:59.000Z

156

Government policy and innovation activity : a patent study of solar photovoltaic balance of system in Japan.  

E-Print Network (OSTI)

??This report studied innovation activity in four areas of the solar photovoltaic balance-of-system (BOS) technologies (inverters, mounting equipment, monitoring systems, and site assessment) in the… (more)

Takeda, Chihiro

2014-01-01T23:59:59.000Z

157

Photovoltaic low power systems and their environmental impact:Yuma, Arizona, U.S.A. case study and projections for Mexicali, Mexico  

Science Journals Connector (OSTI)

Abstract This article presents a proposal for the implementation of photovoltaic systems in homes located in Mexicali, Mexico. With exhibition of new insulation and different consumption characteristics. The photovoltaic low power system is proposed as a type of electrical supply that helps in reducing the environmental impact of generating energy by burning fossil fuels. A photovoltaic system installed in the city of Yuma, Arizona in the United States, which supplies the electrical needs to a building is selected as a reference for solar resource use. Energy use improvement and consumption costs are calculated, and the equivalent amounts of greenhouse gases, not generated since solar technologies were implemented are determined. Furthermore, comparisons of the solar potential between Yuma and Mexicali show that the Mexican city has a higher annual solar potential, so the applicability of this solar technology is too feasible in Mexicali.

Néstor Santillán Soto; O. Rafael García Cueto; Sara Ojeda Benítez; Alejandro Adolfo Lambert Arista

2014-01-01T23:59:59.000Z

158

System for characterizing semiconductor materials and photovoltaic devices through calibration  

DOE Patents (OSTI)

A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

Sopori, Bhushan L. (Denver, CO); Allen, Larry C. (Arvada, CO); Marshall, Craig (Littleton, CO); Murphy, Robert C. (Golden, CO); Marshall, Todd (Littleton, CO)

1998-01-01T23:59:59.000Z

159

Performances of photovoltaic water pumping systems: a case study  

Science Journals Connector (OSTI)

This paper presents a mathematical motor-pump model for photovoltaic (PV) applications which allow us to contribute in the studies of PV pumping sizing. The modelled motor-pump characteristic is flow rate-power (Q, P). The model is established for centrifugal pump (CP) coupled to DC motor. The non-linear relation between flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enabled us to simulate the electric and hydraulic performances of CP pumps versus the total water heads for different PV array configuration. The experimental data are obtained with our pumping test facility. The performances are calculated using the measured meteorological data of different sites located in Saudi Arabia. The size of the PV array is varied to achieve the optimum performance of the proposed system.

M. Benghanem

2009-01-01T23:59:59.000Z

160

System for characterizing semiconductor materials and photovoltaic devices through calibration  

DOE Patents (OSTI)

A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

1998-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sustainable feasibility of solar photovoltaic powered street lighting systems  

Science Journals Connector (OSTI)

Abstract In the last few years, due to soaring fuel prices and gas emissions, renewable energy technologies have been suggested as the power source for infrastructures. The interest in solar photovoltaic (PV) assisted street lighting systems stems from the fact that they are sustainable and environmentally friendly compared to conventional energy powered systems. The present paper investigates and compares the economic feasibility of two types of systems: islanded and grid-connected system, for the street lighting systems in Hunan Province, China. Based on two options of solar panel materials, a simulation model of the system is developed for economic, technical and environmental feasibility. The comprehensively sustainability feasibility of these systems is conducted taking into account the cost, energy generation, CO2 emissions and renewable fraction. Radar plot is employed to integrate all the sustainability indicators into a general indicator, which presents system’s sustainability as a real number in the interval [0, 2]. Results show that for street lighting systems of all the cities, single crystal panel has a larger number of annual electricity generation, less emissions and higher environmental performance, but is more expansive than polycrystalline. It is also found that when the feed-in tariff higher than 1.27 CNY/kW h, the cost of energy (COE) of the solar powered lighting systems is less than a pure grid powered system. This will incite the use of solar PV in infrastructures. Through comparing the scores of sustainability, it is found that the Loudi system has the highest feasibility while the Yongzhou system has the lowest in the province.

Gang Liu

2014-01-01T23:59:59.000Z

162

Chapter 7 - Active Solar Systems in Buildings  

Science Journals Connector (OSTI)

Abstract This chapter deals with the review of solar active thermal systems. They are discussed from a point of view of different technological concepts, mode of operation, heating needs, complexity of their design, and construction. Different classifications of these systems are also presented. The focus is put on system configuration depending on its heating functions. Some consideration is given to the structure of solar heating systems, methods of energy storage, and cooperation with alternative, auxiliary, or peak heat sources, including heat pumps. Flat-plate, evacuated tube, unglazed, and some other types of solar collectors and their main components are described. Advantages and disadvantages of the main types of solar collectors are analyzed. Methods of determining energy efficiency of solar collectors and graphical interpretation of their thermal characteristics are presented in order to show how different collector types can be evaluated for their use in buildings in different weather conditions and applications. Use of photovoltaics (PV) in buildings is also considered. Physical fundamentals of the internal PV effect are presented. Technologies of solar PV cells and systems are described along with different operating modes. The stress is put on technologies applied in buildings. It is emphasized that the dual nature of building elements, with coherency between architecture and energy production (PV systems and solar heating), will be standard in solar self-energy sufficient buildings. To give a full picture of solar active systems applied in buildings, solar cooling technologies are also discussed. It is underlined that sorption cooling technologies may help in solving a problem of working fluid overheating in the collector loop and in storage encountered in solar combisystems (i.e., space heating plus hot water heating).

Dorota Chwieduk

2014-01-01T23:59:59.000Z

163

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

SciTech Connect

This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-minute interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05/kWh to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when commercial PV systems represent a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

Mills, Andrew; Wiser, Ryan; Barbose, Galen; Golove, William

2008-05-11T23:59:59.000Z

164

The impact of retail rate structures on the economics of commercial photovoltaic systems in California  

SciTech Connect

This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-min interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05 to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when energy from commercial PV systems represents a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

Mills, Andrew D.; Wiser, Ryan; Barbose, Galen; Golove, William

2008-06-24T23:59:59.000Z

165

Solar photovoltaic residence in Carlisle, Massachusetts  

SciTech Connect

The first solar photovoltaic house designed and constructed under the US Department of Energy's Solar Photovoltaic Residential Project has been completed. The house, which is powered by a 7-kWp PV system, will be used to assess the occupants' acceptance of and reactions to residential photovoltaic systems and to familiarize utilities, builders, developers, town building officials and others with issues concerning photovoltaic installations. The house is located on a two-acre lot in Carlisle, approximately twenty miles northwest of Boston. Built by a local architect/developer team, the house includes energy conservation and passive solar features. It utilizes a roof-mounted, flat-plate PV array which operates in a two-way energy exchange mode with the electric utility. The energy conservation and passive solar features of this house are described and a detailed description of the utility-interactive photovoltaic system is presented, along with initial performance data.

Strong, S. J.; Nichols, B. E.

1981-01-01T23:59:59.000Z

166

Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule  

Energy.gov (U.S. Department of Energy (DOE))

Document details the Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings' Final Rule for 10 CFR Parts 433, 435 and 436.

167

Photovoltaic Powering And Control System For Electrochromic Windows  

DOE Patents (OSTI)

A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

Schulz, Stephen C. (Tewksbury, MA); Michalski, Lech A. (Pennington, NJ); Volltrauer, Hermann N. (Englishtown, NJ); Van Dine, John E. (Faribault, MN)

2000-04-25T23:59:59.000Z

168

Justification of village scale photovoltaic powered electrodialysis desalination systems for rural India  

E-Print Network (OSTI)

This thesis justifies photovoltaic (PV)-powered electrodialysis (ED) as an energy and cost-effective means of desalinating groundwater in rural India and presents the design requirements for a village-level system. Saline ...

Wright, Natasha C. (Natasha Catherine)

2014-01-01T23:59:59.000Z

169

Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltaic Energy Systems  

Energy.gov (U.S. Department of Energy (DOE))

Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltaic Energy Systems, a report from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy

170

Optical design guidelines for spectral splitting photovoltaic systems : a sensitivity analysis approach  

E-Print Network (OSTI)

Solar power has unmatched ability to provide greater security and reduced environmental impact for the energy sector. Photovoltaic (PV) systems provide the most popular method used today for harnessing this power. However, ...

Berney Needleman, David

2014-01-01T23:59:59.000Z

171

Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

Blair, N.; Mehos, M.; Christiansen, C.

2006-10-03T23:59:59.000Z

172

Home | Buildings Technology & Urban Systems Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Buildings & Urban Systems Buildings Lab Buildings & Urban Systems Buildings Technology & Urban Systems Department Search Search Home About Us Groups Tools & Guides Facilities Publications News Links Contact Us Staff The Building Technology and Urban Systems Department (BTUS) works closely with industry to develop technologies for buildings that increase energy efficiency, and improve the comfort, health, and safety of building occupants. Berkeley Lab Hosts 5 Emerging Leaders During TechWomen 2013 As part of TechWomen 2013, emerging leaders from around the world toured a number of scientific facilities in the Bay Area, including the Advanced Light Source at Berkeley Lab. Pho Read More The Retrocommissioning Sensor Suitcase Brings Energy Efficiency to Small Commercial Buildings The data module communicates wirelessly with the smart pad, which launches

173

Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls  

SciTech Connect

This report summarizes efforts to reconfigure loads during outages to allow individual customers the opportunity to enhance the reliability of their electric service through the management of their loads, photovoltaics, and energy storage devices.

Manz, D.; Schelenz, O.; Chandra, R.; Bose, S.; de Rooij, M.; Bebic, J.

2008-02-01T23:59:59.000Z

174

ancient building system | OpenEI Community  

Open Energy Info (EERE)

ancient building system ancient building system Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

175

Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System  

E-Print Network (OSTI)

and Uncertainty of Photovoltaics for Integration with themodels and datasets. Photovoltaics fall under the broader

Mills, Andrew

2010-01-01T23:59:59.000Z

176

NREL: Technology Deployment - Building Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

177

Modeling of Residential Buildings and Heating Systems  

E-Print Network (OSTI)

-zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

Masy, G.; Lebrun, J.

2004-01-01T23:59:59.000Z

178

See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics  

SciTech Connect

Thin semi-transparent hydrogenated amorphous silicon (a-Si:H) solar cells with selectively transparent and conducting photonic crystal (STCPC) back-reflectors are demonstrated. Short circuit current density of a 135?nm thick a-Si:H cell with a given STCPC back-reflector is enhanced by as much as 23% in comparison to a reference cell with an ITO film functioning as its rear contact. Concurrently, solar irradiance of 295?W/m{sup 2} and illuminance of 3480 lux are transmitted through the cell with a given STCPC back reflector under AM1.5 Global tilt illumination, indicating its utility as a source of space heating and lighting, respectively, in building integrated photovoltaic applications.

Yang, Yang [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Room GB254B, Toronto, Ontario M5S 3G4 (Canada)] [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Room GB254B, Toronto, Ontario M5S 3G4 (Canada); O’Brien, Paul G. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Room 140, Toronto, Ontario M5S 3E4 (Canada) [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Room 140, Toronto, Ontario M5S 3E4 (Canada); Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada); Ozin, Geoffrey A., E-mail: gozin@chem.utoronto.ca, E-mail: kherani@ecf.utoronto.ca [Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada); Kherani, Nazir P., E-mail: gozin@chem.utoronto.ca, E-mail: kherani@ecf.utoronto.ca [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Room GB254B, Toronto, Ontario M5S 3G4 (Canada); Department of Materials Science and Engineering, University of Toronto, 184 College Street, Room 140, Toronto, Ontario M5S 3E4 (Canada)

2013-11-25T23:59:59.000Z

179

Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

180

Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses  

Science Journals Connector (OSTI)

A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all direct radiation will block up to 77% of the solar energy from entering the greenhouse in summer, reducing the required cooling capacity by about a factor 4. This drastically reduce the need for cooling in the summer and reduce the use of screens or lime coating to reflect or block radiation. All of the direct radiation is concentrated by a factor of 25 on a photovoltaic/thermal (PV/T) module and converted to electrical and thermal (hot water) energy. The PV/T module is kept in position by a tracking system based on two electric motors and steel cables. The energy consumption of the tracking system, ca. 0.51 W m?2, is less than 2% of the generated electric power yield. A peak power of 38 W m?2 electrical output was measured at 792 W m?2 incoming radiation and a peak power of 170 W m?2 thermal output was measured at 630 W m?2 incoming radiation of. Incoming direct radiation resulted in a thermal yield of 56% and an electric yield of 11%: a combined efficiency of 67%. The annual electrical energy production of the prototype system is estimated to be 29 kW h m?2 and the thermal yield at 518 MJ m?2. The collected thermal energy can be stored and used for winter heating. The generated electrical energy can be supplied to the grid, extra cooling with a pad and fan system and/or a desalination system. The obtained results show a promising system for the lighting and temperature control of a greenhouse system and building roofs, providing simultaneous electricity and heat. It is shown that the energy contribution is sufficient for the heating demand of well-isolated greenhouses located in north European countries.

P.J. Sonneveld; G.L.A.M. Swinkels; B.A.J. van Tuijl; H.J.J. Janssen; J. Campen; G.P.A. Bot

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building America Webinar: Ductless Hydronic Distribution Systems...  

Energy Savers (EERE)

Ductless Hydronic Distribution Systems This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility...

182

High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009  

SciTech Connect

Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

Not Available

2009-06-01T23:59:59.000Z

183

Treatment of Biodiesel Contaminants Through Solar Photo-Fenton Oxidation Using a Stand-Alone Photovoltaic System  

Science Journals Connector (OSTI)

Biodiesel effluents were treated via photo-Fenton oxidation absorbing sunlight through a catalytic reactor connected to a stand-alone photovoltaic system, decreasing of almost 34% the...

Oliveira, Miriam F; Santos, Whelton B; Vieira, Fernando F; Lima, Geralda C; Lima, Carlos P; de Oliveira, Tâmara P

184

Improvement of photovoltaic pumping systems based on standard frequency converters by means of programmable logic controllers  

SciTech Connect

Photovoltaic pumping systems (PVPS) based on standard frequency converters (SFCs) are currently experiencing a growing interest in pumping programmes implemented in remote areas because of their high performance in terms of component reliability, low cost, high power range and good availability of components virtually anywhere in the world. However, in practical applications there have appeared a number of problems related to the adaptation of the SFCs to the requirements of the photovoltaic pumping systems (PVPS). Another disadvantage of dedicated PVPS is the difficulty in implementing maximum power point tracking (MPPT). This paper shows that these problems can be solved through the addition of a basic industrial programmable logic controller (PLC) to the system. This PLC does not increase the cost and complexity of the system, but improves the adaptation of the SFC to the photovoltaic pumping system, and increases the overall performance of the system. (author)

Fernandez-Ramos, Jose [Departamento de Electronica, Universidad de Malaga, Complejo Tecnologico de Teatinos (2.2.39), 29071 Malaga (Spain); Narvarte-Fernandez, Luis; Poza-Saura, Fernando [Instituto de Energia Solar, Universidad Politecnica de Madrid (IES-UPM), Avenida Complutense s/n (204), 28040 Madrid (Spain)

2010-01-15T23:59:59.000Z

185

SOLERAS - Photovoltaic Power Systems Project. Rural solar applications. Final report: project summary  

SciTech Connect

The Saudi Solar Village Project photovoltaic system is described, consisting of 160 arrays, a computerized control system, 1100 kW of electrical storage in lead-acid batteries, and an automatic weather data gathering system. Satisfactory overall system performance is reported. Performance degradation due to dust on the array lenses was determined. Field operational problems are discussed. (LEW)

Not Available

1985-01-01T23:59:59.000Z

186

Sandia National Laboratories: photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

187

Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System  

SciTech Connect

We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

Barney, P.; Ingersoll, D.; Jungst, R.; O'Gorman, C.; Paez, T.L.; Urbina, A.

1998-11-24T23:59:59.000Z

188

SURVEILLANCE OF PHOTOVOLTAIC SOLAR ENERGY SYSTEMS USING METEOSAT DERIVED IRRADIANCES  

E-Print Network (OSTI)

, OltmannstraÃ?e 5, D-79100 Freiburg 4University of Applied Sciences Magdeburg, BreitscheidstraÃ?e 2, D-29114 Magdeburg 5Department of Science, Technology and Society, Utrecht University, Padualaan 14, NL-3584 CH Utrecht ABSTRACT In this paper, we describe a surveillance procedure for grid connected photovoltaic (PV

Heinemann, Detlev

189

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network (OSTI)

microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

190

A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems  

E-Print Network (OSTI)

th European Photovoltaic Solar Energy Conference, Barcelona,the 24 th European Photovoltaic Solar Energy Conference andst European Photovoltaic Solar Energy Conference, Dresden,

Zhang, Teresa; Dornfeld, David

2010-01-01T23:59:59.000Z

191

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network (OSTI)

An Assessment of Photovoltaic Energy Availability DuringPhotovoltaic Generation in South Australia. ” Energy Policy,Solar Photovoltaic Cells. ” Center for the Study of Energy

Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

2007-01-01T23:59:59.000Z

192

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network (OSTI)

An Assessment of Photovoltaic Energy Availability DuringPhotovoltaic Generation in South Australia. ” Energy Policy,Solar Photovoltaic Cells. ” Center for the Study of Energy

Mills, Andrew

2009-01-01T23:59:59.000Z

193

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network (OSTI)

and Optimization of Photovoltaic and Wind Energy Conversionand Optimization of Photovoltaic and Wind Energy Conversionpower of Photovoltaic modules and Wind Energy Conversion

Ghaffari, Azad

2013-01-01T23:59:59.000Z

194

The impact of retail rate structures on the economics of commercial photovoltaic systems in California  

E-Print Network (OSTI)

An Assessment of Photovoltaic Energy Availability DuringPhotovoltaic Generation in South Australia. ” Energy Policy,Solar Photovoltaic Cells. ” Center for the Study of Energy

Mills, Andrew D.

2009-01-01T23:59:59.000Z

195

Building operating systems services: An architecture for programmable buildings.  

E-Print Network (OSTI)

7.3.2 Building Performance Analysis . . . . . . 7.4 RelatedWork 2.1 Building Physical Design . . . . . . . . . .3.2.6 Building Applications . . . . . . . . . . .

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

196

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

Developing an Integrated Building Design Tool by Couplingdesign energy ecient building systems in this complex setting, integrated

Trcka, Marija

2010-01-01T23:59:59.000Z

197

Application of smart grid in photovoltaic power systems, ForskEL (Smart  

Open Energy Info (EERE)

smart grid in photovoltaic power systems, ForskEL (Smart smart grid in photovoltaic power systems, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Application of smart grid in photovoltaic power systems, ForskEL Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Using Building Control System for Commissioning  

E-Print Network (OSTI)

France-USA Finland France Japan USA Netherlands Main End-Users BOp MC ES BD BOp BI BOp MC ES BOp BOw BS BOp ES BOp MC ES MI CA BOp MC ES BOp Type building Large commercial buildings Any types Medium and large commercial... 34, VTT, Finland, ISBN 951-38-5725-5. [4] Castro, N.S., Galler, M. A., Bushby, S. T. ?A Test Shell for Developing Automated Commissioning Tools for BACnet Systems? National Conference on Building Commissioning, 2003. ...

Vaezi-Nejad, H.; Salsbury, T.; Choiniere, D.

2004-01-01T23:59:59.000Z

199

Development of tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar panels with reflective layer and 4-step laser scribing for building-integrated photovoltaic applications  

Science Journals Connector (OSTI)

In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and ...

Chin-Yi Tsai, Chin-Yao Tsai

2014-01-01T23:59:59.000Z

200

Results of testing a development module of the second-generation E-Systems concentrating photovoltaic-thermal module  

SciTech Connect

An actively-cooled linear Fresnel lens concentrating photovoltaic and thermal module, designed and built by E-Systems, was tested in the Photovoltaic Advanced Systems Test Facility. Physical, electrical, and thermal characteristics of the module are presented. Module performance is characterized through the use of multiple linear regression techniques.

Harrison, T D

1982-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System  

Science Journals Connector (OSTI)

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System ... In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. ...

A.I. Schäfer; A. Broeckmann; B.S. Richards

2006-12-29T23:59:59.000Z

202

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES  

E-Print Network (OSTI)

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique materials, flywheels, pumped hydro (PH), superconducting magnetic energy storage (SMES) and compressed air-grid alternative to the large-scale compressed air energy storage systems we propose to examine the viability

Deymier, Pierre

203

3D World Building System  

SciTech Connect

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2013-10-30T23:59:59.000Z

204

3D World Building System  

ScienceCinema (OSTI)

This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

None

2014-02-26T23:59:59.000Z

205

Montana Sustainable Building Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Logo: Montana Sustainable Building Systems Name Montana Sustainable Building Systems Address 201 Second St E Place Whitefish, Montana Zip 59937 Sector Buildings Product Cross-laminated timber panel building systems Year founded 2009 Phone number 406-862-9222 Website http://www.smartwoods.com Coordinates 48.410317°, -114.340704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.410317,"lon":-114.340704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 2: Performance analysis  

Science Journals Connector (OSTI)

Abstract This paper is the second of two companion papers focused on energy modeling and performance analysis of building-integrated photovoltaic thermal (PV/T) systems with corrugated unglazed transpired solar collectors (UTCs). In Part 1, energy models are presented for two configurations: UTC only and UTC with PV panels. The models predict the energy output of the system for different weather and system design conditions and are validated using measured data from an outdoor test facility. In this paper (Part 2), the system performance is evaluated based on data drawn from the literature and simulations with Computational Fluid Dynamics (CFD) and energy models. The analysis includes parameters that are unique for this system, such as the corrugation geometry and the collector orientation. Validated, high resolution CFD simulations are used to study the impact of plate orientation and incident turbulence intensity, based on the comparison of exterior and interior Nusselt (Nu) number and the cavity exit air temperature, as well as the PV surface temperature when \\{UTCs\\} are integrated with PV panels. It is found that for configurations with UTC only, both exterior and interior convective heat transfer is enhanced in the ‘vertical’ installation, while similar results were obtained for increased incident turbulence intensity levels. However, only minor influences from these two parameters are observed for \\{UTCs\\} with PV panels. The energy model is used to investigate the optimal geometry for both configurations. It is found that parameters such as slope length and corrugation wavelength have the most significant impact on UTC performance while the wavelength and PV panel height have the largest effect for \\{UTCs\\} with PV panels.

Siwei Li; Panagiota Karava

2014-01-01T23:59:59.000Z

207

Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document  

Energy.gov (U.S. Department of Energy (DOE))

Document details the Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings' OIRA Comparison Document for 10 CFR Parts 433, 435 and 436.

208

Thermal distribution systems in commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal distribution systems in commercial buildings Thermal distribution systems in commercial buildings Title Thermal distribution systems in commercial buildings Publication Type Journal Article LBNL Report Number LBNL-51860 Year of Publication 2003 Authors Diamond, Richard C., Craig P. Wray, Darryl J. Dickerhoff, Nance Matson, and Duo Wang Start Page Chapter Abstract Previous research suggests that HVAC thermal distribution systems in commercial buildings suffer from thermal losses, such as those caused by duct air leakage and poor duct location. Due to a lack of metrics and data showing the potentially large energy savings from reducing these losses, the California building industry has mostly overlooked energy efficiency improvements in this area. The purpose of this project is to obtain the technical knowledge needed to properly measure and understand the energy efficiency of these systems. This project has three specific objectives: to develop metrics and diagnostics for determining system efficiencies, to develop design and retrofit information that the building industry can use to improve these systems, and to determine the energy impacts associated with duct leakage airflows in an existing large commercial building. The primary outcome of this project is the confirmation that duct leakage airflows can significantly impact energy use in large commercial buildings: our measurements indicate that adding 15% duct leakage at operating conditions leads to an increase in fan power of about 25 to 35%. This finding is consistent with impacts of increased duct leakage airflows on fan power that have been predicted by previous simulations. Other project outcomes include the definition of a new metric for distribution system efficiency, the demonstration of a reliable test for determining duct leakage airflows, and the development of new techniques for duct sealing. We expect that the project outcomes will lead to new requirements for commercial thermal distribution system efficiency in future revisions of California's Title 24.

209

Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982  

SciTech Connect

The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

Loferski, J.J. (ed.)

1983-12-01T23:59:59.000Z

210

Building Groupwares over Duplicated Object Systems  

Science Journals Connector (OSTI)

Groupware toolkits let developers build applications for synchronous and distributed computer-based conferencing. Duplicated object systems (or DoS), on the other hand, manage distributed objects over the Internet and, since they include high-level features ...

Hechmi Khlifi; Jocelyn Desbiens; Mohamed Cheriet

2002-09-01T23:59:59.000Z

211

A Photovoltaic Test Platform Realized with Multiple Independent Outputs.  

E-Print Network (OSTI)

??In this thesis, a project to design and build a photovoltaic test platform is discussed. Essentially, it is a photovoltaic simulator designed to have multiple… (more)

Crawford, Kevin P.

2011-01-01T23:59:59.000Z

212

Building operating systems services: An architecture for programmable buildings.  

E-Print Network (OSTI)

architecture of an Automated Logic building managementAssociation. [24] Automated Logic Corporation. ALC systemarchitecture of an Automated Logic building management

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

213

Recommendations for Maximizing Battery Life in Photovoltaic Systems: A Review of Lessons Learned  

Energy.gov (U.S. Department of Energy (DOE))

Notes, observations and recommendations about the use of batteries in small stand-alone photovoltaic system drawn from over a decade of research at FSEC. The most critical findings were battery life and the importance of an adequate PV array-to-load ratio.

214

Electric Arc Locator in Photovoltaic Power Systems Using Advanced Signal Processing Techniques  

E-Print Network (OSTI)

in detecting the partial discharges associated with the production of an electric arc in a high voltage power in fault detection and localization. In [1] we have shown that electric arc (or partial dischargeElectric Arc Locator in Photovoltaic Power Systems Using Advanced Signal Processing Techniques

Paris-Sud XI, Université de

215

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network (OSTI)

Commission (CPUC) "CPUC California Solar Initiative: 2009California has been and continues to be the country’s largest market for photovoltaic solar (solar PV is expanding rapidly in the U.S. Almost 100,000 PV systems have been installed in California

Hoen, Ben

2013-01-01T23:59:59.000Z

216

Balancing Hydronic Systems in Multifamily Buildings  

SciTech Connect

In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

Ruch, R.; Ludwig, P.; Maurer, T.

2014-07-01T23:59:59.000Z

217

Small- and Medium-Size Building Automation and Control System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Emerging...

218

Energy Savings Through Improved Mechanical Systems and Building...  

Office of Environmental Management (EM)

Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

219

Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system  

Science Journals Connector (OSTI)

A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system.

H.D. Fu; G. Pei; J. Ji; H. Long; T. Zhang; T.T. Chow

2012-01-01T23:59:59.000Z

220

Sandia National Laboratories: photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE SunShot Program On November 27, 2013, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis, Systems Engineering On October...

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Field Test and Evaluation Report Five Photovoltaic Power Systems for the City of Tucson  

Energy.gov (U.S. Department of Energy (DOE))

Members of the DOE solar energy Tiger Team tested five municipally owned, grid connected photovoltaic (PV) power systems for the City of Tucson on March 26 and 27, 2008. The five PV systems tested were Southeast Service Center, Clements Fitness Center, and Thonydale water treatment plant systems 1, 2, and 3. During all tests, skies were virtually cloudless with only occasional, high cirrus present, and none during array testing.

222

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network (OSTI)

reductions in costs for installed photovoltaic systems. Thisreductions in costs for installed photovoltaic systems. Thisphotovoltaic technologies that improve upon current solutions by being lower cost,

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

223

Holistic modelling of a combined Photovoltaic, Wind and Fuel Cell power system  

E-Print Network (OSTI)

Abstract – The research work presented in this paper is focused on the holistic modelling of a combined Photovoltaic (PV), Wind and Fuel Cell, (FC) power system. The modelling approach is based on the Handel C programming language and is using the DK5 modelling / design environment from Mentor Graphics. The aim of the research was to achieve a combined model of a photovoltaic – wind-fuel cell energy system, enabling an holistically optimized digital control system design, followed by its rapid Field Programmable Gate Array (FPGA) prototyping. Initially, the functional simulations of the integrated system were performed, than, the controller design was downloaded in hardware onto a RC10 development board containing a Xilinx Spartan FPGA and was successfully tested experimentally. This approach enables the design and fast hardware implementation of efficient controllers for Distributed Energy Resource (DER) hybrid systems.

A. Tisan; M. Cirstea

224

Durra Building Systems | Open Energy Information  

Open Energy Info (EERE)

Durra Building Systems Durra Building Systems Jump to: navigation, search Name Durra Building Systems Place Whitewright, Texas Zip 75491 Product Creates contruction panels from wheat straw using a patented production process. Coordinates 33.512685°, -96.393299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.512685,"lon":-96.393299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Accelerated climate ageing of building materials, components and structures in the laboratory  

Science Journals Connector (OSTI)

An example of such new materials and solutions is building integrated photovoltaics (BIPV), where the developed solar cell...26 [75]. A BIPV system then also has to fulfil the requirements of a building envelope ...

Bjørn Petter Jelle

2012-09-01T23:59:59.000Z

226

Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power  

Science Journals Connector (OSTI)

Abstract In recent years, policy approaches that build upon the notion of innovation systems have enjoyed increasing attention in science, technology and innovation policy. But while the usefulness of systemic thinking in policy-making has been demonstrated in a large number of empirical settings, we still lack a detailed understanding of the dynamics at play when policy makers address systemic problems. In this paper, we show how complex interdependencies and the uncertain nature of technological change shape the process of targeted policy interventions in socio-technical systems. Toward this end we analyzed the evolution of the German feed-in tariff (FIT) system for solar photovoltaic power, a highly effective and widely copied policy instrument targeted at fostering the diffusion and development of renewable energy technologies. We find that the policy has been subject to a considerable amount of changes, many of which are the result of policy makers addressing specific system issues and bottlenecks. Interestingly, however, often these issues themselves were driven by unforeseen technological developments induced by previous policy interventions. We argue that the pattern of policy serving as both a solution to and a driver of technological bottlenecks shows strong similarities with what Rosenberg (1969) called ‘compulsive sequences’ in the development of technical systems. By shedding more light on how the characteristics of socio-technical systems affect policy interventions, our framework represents a first step toward more closely integrating the literature on innovation systems with the work on policy learning.

Joern Hoppmann; Joern Huenteler; Bastien Girod

2014-01-01T23:59:59.000Z

227

Building operating systems services: An architecture for programmable buildings.  

E-Print Network (OSTI)

few feeds into the building substation, which are split intodown to 480V at the building substation, from where it isService Meter West Campus Substation 12KV Service 12KV/480V

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

228

Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems  

SciTech Connect

A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

None

1983-11-15T23:59:59.000Z

229

Building automation systems (BAS) are concerned with control and monitoring of buildings, while aiming to  

E-Print Network (OSTI)

Building automation systems (BAS) are concerned with control and monitoring of buildings, while alarm systems or physical access control), · control the climate in the building/supervise and control operating and energy costs Realization and Experiences with a Low-Cost Building Automation Security Testbed

Behnke, Sven

230

Performance of a Dynamically Controlled Inverter in a Photovoltaic System Interconnected with a Secondary Network Distribution System  

SciTech Connect

In 2008, a 300 kW{sub peak} photovoltaic (PV) system was installed on the rooftop of the Colorado Convention Center (CCC). The installation was unique for the electric utility, Xcel Energy, as it had not previously permitted a PV system to be interconnected on a building served by the local secondary network distribution system (network). The PV system was installed with several provisions; one to prevent reverse power flow, another called a dynamically controlled inverter (DCI), that curtails the output of the PV inverters to maintain an amount of load supplied by Xcel Energy at the CCC. The DCI system utilizes current transformers (CTs) to sense power flow to insure that a minimum threshold is maintained from Xcel Energy through the network transformers. The inverters are set to track the load on each of the three phases and curtail power from the PV system when the generated PV system current reaches 95% of the current on any phase. This is achieved by the DCI, which gathers inputs from current transformers measuring the current from the PV array, Xcel, and the spot network load. Preventing reverse power flow is a critical technical requirement for the spot network which serve this part of the CCC. The PV system was designed with the expectation that the DCI system would not curtail the PV system, as the expected minimum load consumption was historically higher than the designed PV system size. However, the DCI system has operated many days during the course of a year, and the performance has been excellent. The DCI system at the CCC was installed as a secondary measure to insure that a minimum level of power flows to the CCC from the Xcel Energy network. While this DCI system was intended for localized control, the system could also reduce output percent if an external smart grid control signal was employed. This paper specifically focuses on the performance of the innovative design at this installation; however, the DCI system could also be used for new s- art grid-enabled distribution systems where renewables power contributions at certain conditions or times may need to be curtailed.

Coddington, M. H.; Kroposki, B. D.; Basso, T.; Berger, D.; Crowell, K.; Hayes, J.

2011-01-01T23:59:59.000Z

231

Duct Systems in Large Commercial Buildings: Physical  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Systems in Large Commercial Buildings: Physical Characterization, Air Leakage, and Heat Conduction Gains William 1. Fisk, Woody Delp, Rick Diamond, Darryl Dickerhoff, Ronnen Levinson, Mark Modera, Matty Nematollahi, Duo Wang Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley CA 94720 March 30, 1999 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology and Community Systems, of the US Department of Energy under Contract No. DE-AC03-76SF00098 and by the California Institute For Energy Efficiency. LBNL-42339

232

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

233

Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System  

E-Print Network (OSTI)

variability of photovoltaic (PV) plants to avoid unnecessaryhowever, occurs within PV plants. The degree of smoothingof photovoltaic (PV) plants. The workshop brought together

Mills, Andrew

2010-01-01T23:59:59.000Z

234

Energy Management Systems Package for Small Commercial Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Building America System Research Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Buildings Performance Database - 2013 BTO...

235

Green Building Certification Systems Requirement for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CFR Parts 433, 435 and 436. greenblgcertcompare2014.docx More Documents & Publications Green Building Certification Systems Requirement for New Federal Buildings and Major...

236

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Building Type and System Type (Million SF) Total Education Food Sales Food Service Health Care Lodging Mercantile and Service Office Public Buildings WarehouseStorage Total...

237

Performance testing and economic analysis of a photovoltaic flywheel energy storage and conversion system  

SciTech Connect

A subscale prototype of a flywheel energy storage and conversion system for use with photovoltaic power systems of residential and intermediate load-center size has been designed, built and tested by MIT Lincoln Laboratory. System design, including details of such key components as magnetic bearings, motor generator, and power conditioning electronics, is described. Performance results of prototype testing are given and indicate that this system is the equal of or superior to battery-inverter systems for the same application. Results of cost and user-worth analysis show that residential systems are economically feasible in stand-alone and in some utility-interactive applications.

Hay, R.D.; Millner, A.R.; Jarvinen, P.O.

1980-01-01T23:59:59.000Z

238

Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system   

E-Print Network (OSTI)

This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration – nanofiltration / reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating ...

Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

2008-01-01T23:59:59.000Z

239

Tracking the Sun VI: An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2012  

E-Print Network (OSTI)

Global Market Outlook for Photovoltaics 2013-2016. Brussels,Building-Integrated Photovoltaics (BIPV) in the ResidentialThe Installed Price of Photovoltaics in the United States

Barbose, Galen

2014-01-01T23:59:59.000Z

240

A model and framework for reliable build systems Derrick Coetzee  

E-Print Network (OSTI)

A model and framework for reliable build systems Derrick Coetzee Anand Bhaskar George Necula, requires prior specific permission. #12;A model and framework for reliable build systems Derrick Coetzee- distributed, incremental, parallel build systems. We de- fine a general model for resources accessed by build

Necula, George

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Are CHP Systems Ready for Commercial Buildings?  

SciTech Connect

This paper highlights challenges associated with integration of CHP systems with existing buildings and maintaining their performance over time. The paper also identifies key research and development needs to address the challenges, so that CHP technologies can deliver the promised performance and reach their full potential market penetration.

Katipamula, Srinivas; Brambley, Michael R.; Zaltash, Abdi; Sands, Jim

2005-06-27T23:59:59.000Z

242

Optimization of a photovoltaic pumping system based on the optimal control theory  

SciTech Connect

This paper suggests how an optimal operation of a photovoltaic pumping system based on an induction motor driving a centrifugal pump can be realized. The optimization problem consists in maximizing the daily pumped water quantity via the optimization of the motor efficiency for every operation point. The proposed structure allows at the same time the minimization the machine losses, the field oriented control and the maximum power tracking of the photovoltaic array. This will be attained based on multi-input and multi-output optimal regulator theory. The effectiveness of the proposed algorithm is described by simulation and the obtained results are compared to those of a system working with a constant air gap flux. (author)

Betka, A.; Attali, A. [Laboratoire de Genie Electrique de Biskra (LGEB), Electrical Engineering Department, University of Biskra (Algeria)

2010-07-15T23:59:59.000Z

243

Solar Photovoltaic Electricity  

Science Journals Connector (OSTI)

Most solar photovoltaic systems use 12 V deep cycle ... voltage, or combined in parallel for greater capacity without changing the voltage. The batteries used...

Ramchandra Pode; Boucar Diouf

2011-01-01T23:59:59.000Z

244

Sandia National Laboratories: photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Systems On February 6, 2012, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar Consistent appraisals of homes and businesses...

245

System for characterizing semiconductor materials and photovoltaic device  

DOE Patents (OSTI)

Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device. 22 figs.

Sopori, B.L.

1996-12-03T23:59:59.000Z

246

Cycling and Transit Green Buildings  

E-Print Network (OSTI)

solar thermal panels at the LSC. 2. Solar wall on the Mona Campbell Bld. 3. 80 solar Photovoltaic (PV) panels installed in front of a solar wall system on the roof of the Computer Science Bld. Water Green Buildings Renewable Energy 1. Solar Thermal and PV Panels are mounted on C Building for research

Lotze, Heike K.

247

The Prospects for Photovoltaics in Mexico  

Science Journals Connector (OSTI)

Prospects for photovoltaics in Mexico are reviewed in relation to the activities in R & V, commercial and demonstration photovoltaic systems, commerce and industry.

E. J. Perez; J. L. Del Valle

1981-01-01T23:59:59.000Z

248

Solar Concentrators: Using Optics to Boost Photovoltaics  

Science Journals Connector (OSTI)

The use of solar energy requires optimizing each part of a photovoltaic system: collection optics, the photovoltaic array, switches, controllers, current inverters, storage devices...

Coffey, Valerie C

2011-01-01T23:59:59.000Z

249

System design, test results, and economic analysis of a flywheel energy storage and conversion system for photovoltaic applications  

SciTech Connect

MIT Lincoln Laboratory is developing a flywheel interface and storage system for use with photovoltaic power sources. Test data on the performance of components built to investigate the feasibility of such a system, and the results of economic studies of the system showing user-worth analysis and manufacturing-cost estimates, are presented. The system has magnetic bearings, a maximum-power-point tracker, DC input, and cycloconverter output from an ironless-armature motor-generator.

Millner, A.R.; Dinwoodie, T.

1980-01-01T23:59:59.000Z

250

NREL: Photovoltaics Research - Company Partners in Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Company Partners in Photovoltaic Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful efforts within the PV Manufacturing R&D Project. They included manufacturers of crystalline silicon, thin-film, and concentrator solar technologies. The companies are listed below. Advanced Energy Systems Alpha Solarco ASE Americas AstroPower/GE Energy Boeing Aerospace BP Solar Cronar Crystal Systems Dow Corning Energy Conversion Devices Energy Photovoltaics ENTECH Evergreen Solar First Solar Glasstech Solar Global Photovoltaic Specialists Global Solar Energy Golden Photon Iowa Thin Film Technologies ITN Energy Systems Kopin Mobil Solar Energy Omnion Power Engineering Photon Energy Photovoltaics International PowerLight RWE Schott Solar/Schott Solar

251

An Analysis of the Effects of Residential Photovoltaic Energy Systems on  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of the Effects of Residential Photovoltaic Energy Systems on An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California Title An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Hoen, Ben, Ryan H. Wiser, Peter Cappers, and Mark Thayer Pagination 60 Date Published 04/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department, photovoltaics, property values, public acceptance Abstract The Working Group III Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) presents an assessment of the literature on the scientific, technological, environmental, economic and social aspects of the contribution of six renewable energy (RE) sources to the mitigation of climate change. It is intended to provide policy relevant information to governments, intergovernmental processes and other interested parties. This Summary for Policymakers provides an overview of the SRREN, summarizing the essential findings. The SRREN consists of 11 chapters. Chapter 1 sets the context for RE and climate change; Chapters 2 through 7 provide information on six RE technologies, and Chapters 8 through 11 address integrative issues. References to chapters and sections are indicated with corresponding chapter and section numbers in square brackets. An explanation of terms, acronyms and chemical symbols used in this SPM can be found in the glossary of the SRREN (Annex I).Conventions and methodologies for determining costs, primary energy and other topics of analysis can be found in Annex II and Annex III. This report communicates uncertainty where relevant.

252

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network (OSTI)

ABSTRACT Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy

Hoen, Ben

2014-01-01T23:59:59.000Z

253

High performance organic photovoltaic cells with blade-coated active layers Siew-Lay Lim a  

E-Print Network (OSTI)

-weight and versatile products, such as portable battery chargers and window shades in building integrated photovoltaic

254

Building Energy Monitoring System: Making Energy Manageable  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Monitoring System: Making Energy Manageable Building Energy Monitoring System: Making Energy Manageable Speaker(s): Bob Hunter Date: July 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Peng Xu For any line-item expense to be managed, it must first be manageable. In most organizations, this means bringing that expense into the budget/forecast/variance cycle at the department and individual level. While energy costs are the second fastest growing for most organizations, they have simply received a pass on individual accountability. TrendPoint provides a patented system for monitoring energy at the department and user-level. By monitoring each circuit, we assign a circuit to a user, each user to a group and each group to a site. Energy budgets can then be created and assigned to departments, allowing energy costs become a part of

255

Building Energy Software Tools Directory: System Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

System Analyzer System Analyzer System Analyzer logo. Software package for load calculation and energy and economic comparative analysis. System Analyzer permits a quick evaluation of virtually any building, system, and equipment combination. Thus, it can be used either as a scoping tool to decide what systems may be appropriate for an initial design, or to get a general feeling of how one system/equipment combination may perform over another. If a certain combination seems especially promising, further analysis can be done by exporting inputs into TRACE 600. The possibilities are endless. And since the program is Windows-based, virtually anyone with minimal HVAC training and experience can use it. Keywords Energy analyses, load calculation, comparison of system and equipment

256

Testing and evaluation of a solar photovoltaic flywheel energy storage system  

SciTech Connect

A thorough series of experimental measurements are reported that have been made on a 1/10-scale, magnetically levitated, residential solar photovoltaic (PV) flywheel energy storage system which acts as a complete interface between a solar PV array and an ac load. The overall in-out electrical storage efficiency of the flywheel unit was measured along with the power-transfer efficiencies of individual components and the system spin-down tare losses. An overall storage efficiency of 82% was measured for the flywheel storage system when operated in a utility-interactive mode.

Jarvinen, P. O.; Brench, B. L.; Hay, R. D.; Rasmussen, N. E.

1981-01-01T23:59:59.000Z

257

Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)  

SciTech Connect

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

Not Available

2009-02-01T23:59:59.000Z

258

Pitfalls in Building and HVAC Systems  

E-Print Network (OSTI)

the summer savings. ? Consider all forms of savings, not just en ergy. Opportunities are often missed be cause only energy savings are consideted. For example, the installation of extetior wall insulation or aluminum thermopane win dows result in a...PITFALLS IN BUILDING AND HVAC SYSTEMS B. N. Gidwani, P.E. Roy F. Weston, Inc. West Chester, Pennsylvania ABSTRACT The purpose of an energy audit is to identify and analyze areas of energy consumption and to pro pose methods of conservation...

Gidwani, B. N.

259

Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 1: Model development and validation  

Science Journals Connector (OSTI)

Abstract Building-integrated photovoltaic–thermal (BIPV/T) systems with unglazed transpired solar collectors (UTCs) can provide a key solution for on-site electricity and thermal energy generation. Although the energy saving potential of this technology is significant, no systematic thermal analysis model has been developed for optimal system design and integration with building operation. This paper is the first of two companion papers focused on modeling and performance analysis of BIPV/T systems with UTC. In Part 1, energy models are presented for two configurations: UTC only and UTC with PV panels, to predict the cavity exit air temperature and plate surface temperature with weather (incident solar radiation, ambient air temperature, dew point temperature and wind speed) and design (airflow rate or suction velocity and geometry) parameters used as inputs. Nusselt number and effectiveness correlations, representing both the exterior and interior convective heat transfer processes, have been obtained from experimentally validated, three-dimensional, Reynolds-Averaged Navier–Stokes (RANS), Computational Fluid Dynamics (CFD) simulations, using high resolution grids and the ReNormalization Group Methods k–? (RNG k–?) turbulence closure model. The energy models were validated with measurements in an outdoor test-facility. Good agreement was observed between the model prediction and the experimental data, with the root mean square error (RMSE) being within 1 °C for the UTC-only model and within 2 °C for the model of UTC with PV modules. In the companion paper, Part 2, the effects of important parameters on system performance are demonstrated based on information from the literature and simulations using CFD and energy models. The optimal geometry is investigated for both configurations and the performance curves, under different levels of solar radiation, wind speed and suction velocity, are presented to provide guidelines for system design.

Siwei Li; Panagiota Karava; Sam Currie; William E. Lin; Eric Savory

2014-01-01T23:59:59.000Z

260

Photovoltaics Manufacturing in Developing Countries  

Science Journals Connector (OSTI)

The need for energy sources in the developing countries might be partially satisfied by using photovoltaic power systems in addition to conventional means. A review of photovoltaic manufacturing in developing ...

G. Darkazalli; S. Hogan

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Road to very large scale photovoltaic power generation systems  

Science Journals Connector (OSTI)

Große Photovoltaiksysteme zur Energieerzeugung im Giga-Watt-Bereich stellen eine vielversprechende Lösung für eine breite Weiterentwicklung der Photovoltaiktechnologie dar. Diese Systeme könnten in Zukunft auc...

K. Komoto

2009-08-01T23:59:59.000Z

262

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers (EERE)

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 3:00PM to 4:30PM EST This...

263

Building America Webinar: Central Multifamily Water Heating Systems...  

Energy Savers (EERE)

Building America Webinar: Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 11:00AM to 12:30PM MST...

264

Status of DOE and AID stand-alone photovoltaic system field tests  

SciTech Connect

The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PVpowered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

Bifano, W.J.; DeLombard, R.; Ratajczak, A.F.; Scudder, L.R.

1984-05-01T23:59:59.000Z

265

SunShot Initiative: Transformational Approach to Reducing the Total System  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Approach to Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics to someone by E-mail Share SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Facebook Tweet about SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Twitter Bookmark SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Google Bookmark SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Delicious Rank SunShot Initiative: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics on Digg

266

Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems  

E-Print Network (OSTI)

and phase angle of the inverter cells is proposed. This improves differential power processing amongst cells while keeping the voltage and current ratings of the devices low. A battery energy storage system for the multilevel PV converter has also been...

Essakiappan, Somasundaram

2014-04-30T23:59:59.000Z

267

Photovoltaic array driven adjustable speed heat pump and power system scheme for a lunar based habitat  

SciTech Connect

A high reliability power system scheme, incorporating a photovoltaic power supply and adjustable speed heat pump for life support is presented in this paper. Initial design guidelines and also a description of the state of technology available is presented herein. The power supply scheme will be used as input to an Adjustable Speed Drive (ASD) which will be driving a heat pump. A brief study of various aspects of ASDs is presented, further a summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems and control techniques for a photovoltaic array driven ASD for an aerospace application are discussed. Also discussed are several possible power system designs for a potential lunar habitat.

Domijan, A. Jr.; Buchh, T.A. [Univ. of Florida, Gainesville, FL (United States). Dept. of Electrical and Computer Engineering] [Univ. of Florida, Gainesville, FL (United States). Dept. of Electrical and Computer Engineering

1998-12-01T23:59:59.000Z

268

Photovoltaic Power Systems: A Tour Through the Alternatives  

Science Journals Connector (OSTI)

...clean-639 ing difficulties, and life expectancies is inadequate to permit...are usually not serious problems for gas utili-ties or oil delivery systems...obsolete before the end of its productive life as a result of progress in manufactur-ing...

Henry Kelly

1978-02-10T23:59:59.000Z

269

Study Guide for Photovoltaic System Installers and Sample Examination Questions  

Energy.gov (U.S. Department of Energy (DOE))

This study guide presents some of the basic cognitive material that individuals who install and maintain PV systems should understand. This information is intended primarily as a study guide to help better prepare for the NABCEP PV installer examination but does not provide all of the information needed for completing the certification examination.

270

Building a Smarter Distribution System in Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study - PPL Electric Utilities Corporation Smart Grid Investment Grant Study - PPL Electric Utilities Corporation Smart Grid Investment Grant 1 Building a Smarter Distribution System in Pennsylvania PPL Electric Utilities Corporation (PPL) provides electricity to 1.4 million customers across central and eastern Pennsylvania. Having installed smart meters and other advanced technologies over the last several years, PPL has experience with operating smart grid systems and achieving operational improvements. To further improve quality of service for its customers, PPL is implementing a $38 million Smart Grid Investment Grant, which includes $19 million in Recovery Act funds from the U.S. Department of Energy (DOE). PPL is installing a distribution management system (DMS), distribution automation (DA) devices, and supporting communication systems in a pilot program in the Harrisburg

271

Solar electric buildings: An overview of today`s applications  

SciTech Connect

This brochure presents a broad look at photovoltaic-powered buildings. It includes residential and commercial systems, both stand-alone and connected to utility power, that are located in urban, near-urban, and rural settings around the world. As photovoltaic (PV) technology continues to improve and costs drop, opportunities for PV will multiply. PV systems for buildings, such as those shown here, represent one of the strongest near-term markets.

NONE

1997-02-01T23:59:59.000Z

272

Design of control circuit of grid-connected photovoltaic system based on SPMC75F2413A  

Science Journals Connector (OSTI)

This paper discusses the experimental design of a grid-*connected photovoltaic system based on 16-bit Microprocessor (MCU) SPMC75F2413A. In this paper, the SPMC75F2413A as the main topology control the main circuit of the Single-phase bridge type inverter. The system can track the maximum power point by detecting PV(photovoltaic) voltage, current and grid-connected output voltage and current, and simultaneously can track the frequency and phase by the software phase locked loop. The testing results of the grid-connected photovoltaic system shows that the grid-connected voltage and network voltage are synchronous, and the system is feasible and practical.

Ma Hongmei; Li Peng; Zhang Dan

2010-01-01T23:59:59.000Z

273

Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage  

Science Journals Connector (OSTI)

Abstract The operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage is proposed in this paper. The photovoltaic generation system is composed of a full-bridge inverter, a DC–DC boost converter, an isolated bidirectional DC–DC converter, a solar cell array and a battery set. Since the battery set acts as an energy buffer to adjust the power generation of the solar cell array, the negative impact on power quality caused by the intermittent and unstable output power from a solar cell array is alleviated, so the penetration rate of the grid-connected photovoltaic generation system is increased. A lab-scale prototype is developed to verify the performance of the system. The experimental results show that it achieves the expected performance.

Hurng-Liahng Jou; Yi-Hao Chang; Jinn-Chang Wu; Kuen-Der Wu

2015-01-01T23:59:59.000Z

274

Index to Evaluate Energy Efficiency of the Building HVAC System  

E-Print Network (OSTI)

1An Index to Evaluate Energy Efficiency of the Entire Building HVAC System Presented by Dr. Claridge Date: 09/15/2014 ESL-IC-14-09-15 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14..., Beijing, China, September 14-17, 2014 3• Why we need the Energy/Load Ratio 1. Building 2. HVAC Systems 3. Common Index • Building sector consumes 40% of total energy usage in US (Residential buildings – 22%, Commercial building – 19%) • HVAC systems...

Wang, L.; Wang, L.; Claridge,D.

2014-01-01T23:59:59.000Z

275

Distributed generation with photovoltaic systems: A utility perspective  

SciTech Connect

Today PV power systems are already cost-effective and commonly employed in a wide range of remote applications such as electricity supply to isolated users and small communities; water pumping and desalination; powering of service equipment such as radio repeaters; pipelines and well-heads cathodic protection. PV systems can easily cover a broad range of power requirements, allowing them to take advantage of new niche markets as they develop. Besides such applications a ``non-power'', low performance, consumer market also exists (watches, calculators, gadgets) that has already reached a stable growth condition. In the last decade, an increase has been experienced of about three times in the amount of module shipments (103 MW expected in 1997), a more balanced regional manufacturer share has developed, crystalline technology has maintained its lead, and a more market-oriented application share has appeared (at present most applications are for stand-alone).

Vigotti, R.

1998-07-01T23:59:59.000Z

276

EELE408 Photovoltaics Lecture 22: Grid Tied Systems  

E-Print Network (OSTI)

48 Volt Battery Backup 23 Inverter and Charge Controller 24 #12;5 Inverter 25 Read-out 26 New solar Specifications ­ Rated Power = 6,750 W ­ 30 panels: SunPower 225 ­ Inverter: SPR 7000m · 7000 W · Price Estimate/Garage #3 · System Specifications ­ Rated Power = 10,080 W ­ 48 panels: Kyrocera 210 ­ Inverter: Fronius IG

Kaiser, Todd J.

277

Efficient design of desalination system using photovoltaic and packed bed systems  

SciTech Connect

This work presents a new way to realize continuous operation of a solar desalination system to produce fresh water using solar energy for a dual purpose. Here, solar energy is used directly as heat energy through solar radiation incident on an inverse V-shape still cover during sunlight hours. At the same time, the solar energy can be converted through a photovoltaic (PV) array into electric energy, which is stored in the battery system during sunlight hours. To realize the continuity of still operation daily and overnight, the batteries are discharged during the night at a suitable rate to feed an electric heater. The electric heater is designed to generate the required heat for desalination during the night. The heat is equivalent to that which can be absorbed during the day and that gives the temperature difference to gain evaporation and fresh water (productivity). This modified still is provided with a packed bed layer installed in the bottom of the basin to assist the system during the day and at night, i.e., this modified still will be more efficient. The quantity of heat energy during the night is adjusted to give a saline water temperature in the range that occurs in the actual solar still during sunlight hours. The performance of all components of the present still are discussed. The use of PV and backed bed systems means higher efficiency than the passive still, as the modified still produces large quantities of fresh water in August for a saline water depth of 0.01 m by using glass wool insulation 0.05 m thick and glass spheres as a packed bed with 0.0213 m bed length.

Fahmy, F.H.; Abdel-Rehim, Z.S. [National Research Center, Cairo (Egypt)

1998-08-01T23:59:59.000Z

278

A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems  

E-Print Network (OSTI)

from the solar energy technologies,” Energy Policy, vol. 33,solar footprint for photovoltaic generation in the United States,” Energy Policy,

Zhang, Teresa; Dornfeld, David

2010-01-01T23:59:59.000Z

279

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Markets and Policy Group * Energy Analysis Department Energy Markets and Policy Group * Energy Analysis Department An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California Ben Hoen, Peter Cappers, Mark Thayer, Ryan Wiser Lawrence Berkeley National Laboratory LBNL Webinar June 9 th , 2011 This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by the National Renewable Energy Laboratory under Contract No. DEK-8883050, and by the Clean Energy States Alliance.

280

SunShot Initiative: Organic Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Photovoltaics Research to Organic Photovoltaics Research to someone by E-mail Share SunShot Initiative: Organic Photovoltaics Research on Facebook Tweet about SunShot Initiative: Organic Photovoltaics Research on Twitter Bookmark SunShot Initiative: Organic Photovoltaics Research on Google Bookmark SunShot Initiative: Organic Photovoltaics Research on Delicious Rank SunShot Initiative: Organic Photovoltaics Research on Digg Find More places to share SunShot Initiative: Organic Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Organic Photovoltaics Research Graphic showing the seven layers of an organic PV cell: electrode, donor, acceptor, active layer, PEDOT:PSS, transparent conductive oxide, and glass.

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Graphite-based photovoltaic cells  

DOE Patents (OSTI)

The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

2010-12-28T23:59:59.000Z

282

Integrated Energy Systems (IES) for Buildings: A Market Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Systems (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally...

283

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

284

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

285

Cyber-Physical Energy Systems: Focus on Smart Buildings  

E-Print Network (OSTI)

of a deeply coupled system of energy usage, comfort and work derived. At a macroscale, buildings use approxiCyber-Physical Energy Systems: Focus on Smart Buildings Jan Kleissl Dept. of Mechanical- tributions: one, a careful examination of different types of buildings and their energy use; two

Gupta, Rajesh

286

Reliability analysis of solar photovoltaic system using hourly mean solar radiation data  

SciTech Connect

This paper presents the hourly mean solar radiation and standard deviation as inputs to simulate the solar radiation over a year. Monte Carlo simulation (MCS) technique is applied and MATLAB program is developed for reliability analysis of small isolated power system using solar photovoltaic (SPV). This paper is distributed in two parts. Firstly various solar radiation prediction methods along with hourly mean solar radiation (HMSR) method are compared. The comparison is carried on the basis of predicted electrical power generation with actual power generated by SPV system. Estimation of solar photovoltaic power using HMSR method is close to the actual power generated by SPV system. The deviation in monsoon months is due to the cloud cover. In later part of the paper various reliability indices are obtained by HMSR method using MCS technique. Load model used is IEEE-RTS. Reliability indices, additional load hours (ALH) and additional power (AP) reduces exponentially with increase in load indicates that a SPV source will offset maximum fuel when all of its generated energy is utilized. Fuel saving calculation is also investigated. Case studies are presented for Sagardeep Island in West Bengal state of India. (author)

Moharil, Ravindra M. [Department of Electrical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, Maharashtra (India); Kulkarni, Prakash S. [Department of Electrical Engineering, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440011, Maharashtra (India)

2010-04-15T23:59:59.000Z

287

WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

J. D. Bigbee

2000-06-21T23:59:59.000Z

288

Performance Comparison of a BIPV Roofing Tile System in Two Mounting Configurations: Preprint  

SciTech Connect

This work examined the thermal and power characteristics of a building-integrated photovoltaic (BIPV) roofing system using two installation techniques, counter-batten and direct-mount.

Muller, M. T.; Rodrigeuz, J.; Marion, B.

2009-06-01T23:59:59.000Z

289

Building Energy Information Systems: User Case Studies  

SciTech Connect

Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

2010-03-22T23:59:59.000Z

290

Performance and Economic Analysis of Distributed Power Electronics in Photovoltaic Systems  

SciTech Connect

Distributed electronics like micro-inverters and DC-DC converters can help recover mismatch and shading losses in photovoltaic (PV) systems. Under partially shaded conditions, the use of distributed electronics can recover between 15-40% of annual performance loss or more, depending on the system configuration and type of device used. Additional value-added features may also increase the benefit of using per-panel distributed electronics, including increased safety, reduced system design constraints and added monitoring and diagnostics. The economics of these devices will also become more favorable as production volume increases, and integration within the solar panel?s junction box reduces part count and installation time. Some potential liabilities of per-panel devices include increased PV system cost, additional points of failure, and an insertion loss that may or may not offset performance gains under particular mismatch conditions.

Deline, C.; Marion, B.; Granata, J.; Gonzalez, S.

2011-01-01T23:59:59.000Z

291

Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.  

SciTech Connect

An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/watt across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.

Hoen, Ben; Cappers, Pete; Wiser, Ryan; Thayer, Mark

2011-04-12T23:59:59.000Z

292

Energy management systems for commercial buildings. Final report  

SciTech Connect

Increasing costs of energy and the development of lower cost microelectronics have created a growing market for energy management systems applied to commercial buildings. This report examines the spectrum of EMS available and how they are used in different types of commercial buildings. An informal survey of 197 commercial building owners provided additional information on EMS installed and the energy savings attributed to those systems. Evaluations were performed to identify types of EMS appropriate to specific types of commercial buildings.

Woody, A.W.

1986-02-01T23:59:59.000Z

293

Building thermal envelope systems and materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-10-01T23:59:59.000Z

294

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-12-01T23:59:59.000Z

295

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-01-01T23:59:59.000Z

296

Basement Insulation Systems- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

297

Adaptive fuzzy logic control based optimal Hopfield neural network of standalone photovoltaic system with battery storage  

Science Journals Connector (OSTI)

This paper presents the optimized Hopfield Neural Network (HFNN) based Fuzzy Logic Control (FLC) Maximum Power Tracking structure for a renewable Photovoltaic (PV) system under changing climatic conditions. Changing climatic condition of photovoltaic panel yield multiple local and global maximum power points which creates tracing of the extreme power which is a problematic task. Most of existing traditional techniques fail to operate accurately under this changing weather condition. This paper advances the technique by considering wide search and changing climate so that the designed HFNN trace the maximum power for the entire situation. It is verified for dissimilar weather condition through simulation and proved experimentally. In this paper the major merit of using optimized new FLC is also presented. HFNN neurons are optimized using new FLC. Comparative tests have been conducted for conventional Perturb and Observe and Incremental Conductance methods. From the outcomes of the simulation results it is measured that the HFNN technique decreases error and it contributes quick reaction to climatic variations. Moreover it does not need any external fine-tuning of the structure unlike existing traditional FLC technique wherein the regulator gain components want to be altered when solar illumination varies.

2014-01-01T23:59:59.000Z

298

Integrated Building Management System (IBMS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Management System Building Management System (IBMS) Integrated Building Management System (IBMS) The U.S. Department of Energy (DOE) is currently conducting research into an integrated building management system (IBMS). Project Description This project seeks to develop an open integration framework that allows multivendor systems to interoperate seamlessly using internet protocols. The applicant will create an integrated control platform for implementing new integrated control strategies and to enable additional enterprise control applications, such as demand response. The project team seeks to develop several strategies that take advantage of the sensors and functionality of heating, ventilation, and air conditioning (HVAC); security; and information and communication technologies (ICT) subsystems;

299

Building Automation Systems Design. Guidelines for Systems with Complex Requirements.  

E-Print Network (OSTI)

??Buildings today are becoming more and more advanced and the demands on building services are increasing. A modern building is expected to provide a number… (more)

Kensby, Johan

2012-01-01T23:59:59.000Z

300

SunShot Initiative: Reducing Photovoltaic Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Photovoltaic Costs to Reducing Photovoltaic Costs to someone by E-mail Share SunShot Initiative: Reducing Photovoltaic Costs on Facebook Tweet about SunShot Initiative: Reducing Photovoltaic Costs on Twitter Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Google Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Delicious Rank SunShot Initiative: Reducing Photovoltaic Costs on Digg Find More places to share SunShot Initiative: Reducing Photovoltaic Costs on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Systems Integration Balance of Systems Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. Past Incubator awardee, Innovalight, is creating high-efficiency, low-cost

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Economic evaluation of a residential photovoltaic system based on a probability model using actual meteorological data  

SciTech Connect

To design a photovoltaic (PV) generation system economically, it is necessary to use date of the total insolation on a horizontal surface. However, such data is only the total daily values and does not represent the power variation caused by the cloud cover. This paper presents the probability method which represents not only the average but also the variance of the PV generation power, and shows simulated results using this methodology. This study's results indicate that the distribution of the PV power divided by the estimated value of the total insolation on a tilted surface is similar to a normal distribution and that a residential (privately-owned) system without storage, whose PV capacity is more than 2 kWp, has little effect upon the reduction of the energy of an average Japanese household.

Sutoh, T.; Suzuki, H.; Sekine, Y.

1987-03-01T23:59:59.000Z

302

NREL: Photovoltaics Research - PV News  

NLE Websites -- All DOE Office Websites (Extended Search)

PV News PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. November 8, 2013 New Solar Cell Is More Efficient, Less Costly Innovation by NREL and First Solar acquisition TetraSun wins a 2013 R&D 100 Award. November 6, 2013 NREL's Energy Systems Integration Facility Garners LEED® Platinum The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colo., has earned a LEED® Platinum designation for new construction from the U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building design and construction.

303

A building life-cycle information system for tracking building performance metrics  

SciTech Connect

Buildings often do not perform as well in practice as expected during pre-design planning, nor as intended at the design stage. While this statement is generally considered to be true, it is difficult to quantify the impacts and long-term economic implications of a building in which performance does not meet expectations. This leads to a building process that is devoid of quantitative feedback that could be used to detect and correct problems both in an individual building and in the building process itself. One key element in this situation is the lack of a standardized method for documenting and communicating information about the intended performance of a building. This paper describes the Building Life-cycle Information System (BLISS); designed to manage a wide range of building related information across the life cycle of a building project. BLISS is based on the Industry Foundation Classes (IFC) developed by the International Alliance for Interoperability. A BLISS extension to th e IFC that adds classes for building performance metrics is described. Metracker, a prototype tool for tracking performance metrics across the building life cycle, is presented.

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1999-04-01T23:59:59.000Z

304

Benchmarking and Performance Based Rating System for Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking and Performance Based Rating System for Commercial Buildings Benchmarking and Performance Based Rating System for Commercial Buildings in India Speaker(s): Saket Sarraf Date: May 4, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Girish Ghatikar The Indian building sector has witnessed huge surge in interest in energy performance in the last decade. The 'intention' based codes like the national Energy Conservation Building Code (ECBC) and green building rating systems such as Leadership in Energy and Environment Design (LEED-India) and Green Rating for Integrated Habitat Assessment (GRIHA) have been the prime mechanisms to design and assess energy efficient buildings. However, they do not rate the 'achieved' energy performance of buildings over time or reward their performance through a continuous evaluation process.

305

Fault Detection and Diagnosis in Building HVAC Systems.  

E-Print Network (OSTI)

??Building HVAC systems account for more than 30% of annual energy consumption in United States. However, it has become apparent that only in a small… (more)

Najafi, Massieh

2010-01-01T23:59:59.000Z

306

Building America Webinar: Central Multifamily Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

307

System/Building Tech Integration | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

System/Building Integration System/Building Integration SHARE System Building Technologies Integration ZEBRAlliance home The buildings industry encompasses numerous designers, builders, construction materials and components manufacturers, distributors, dealers, and other vendors and service providers. Whether coming together for new construction or retrofitting established structures, these stakeholders often face research limitations and challenges when integrating components, equipment, and systems. This is especially true for anything that is new. System/Building Integration provides the means for our industry partners to work out the wrinkles in their new products in low-risk, realistic test bed environments before market introduction. In ORNL's residential and light commercial building test beds, in addition to natural exposure to weather,

308

Initial operating experience of the 12-MW La Ola photovoltaic system.  

SciTech Connect

The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

Ellis, Abraham; Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Jay; Quiroz, Jimmy Edward; Schenkman, Benjamin L.

2011-10-01T23:59:59.000Z

309

Advanced photovoltaic/hydro hybrid renewable energy system for remote areas  

Science Journals Connector (OSTI)

This paper presents modeling and simulation of the advanced photovoltaic (PV)/hydro based Hybrid Renewable Energy System (HRES) to electrify such isolated/remote areas where grid accessibility is not possible. For 7.5?kW hydro generation system a Self Excited Induction Generator (SEIG) with improved technique is used to optimize the utilization of hydro power. To achieve this aim an uncontrolled bridge rectifier coupled with Hydro side Voltage Source Inverter is implemented for the SEIG based advanced hydro system. The PV system is configured by PV array battery DC/DC converter maximum power point tracking controller and PV side Voltage Source Inverter. A Constant Current Control scheme is developed in this paper to control active and reactive power flow and to synchronize hydro and PV systems. The proposed system uses fewer controlled switches hence complexity of control has been reduced and system has higher efficiency and lower switching losses. The performance analysis of the HRES has been done to authenticate the existence of the system using the MATLAB software and results demonstrate that power quality of the proposed system is better and HRES is able to put into services.

2014-01-01T23:59:59.000Z

310

Seawater pumping as an electricity storage solution for photovoltaic energy systems  

Science Journals Connector (OSTI)

Abstract The stochastic nature of several renewable energy sources has raised the problem of designing and building storage facilities, which can help the electricity grid to sustain larger and larger contribution of renewable energy. Seawater pumped electricity storage is proposed as a good option for PV (Photovoltaic) or solar thermal power plants, located in suitable places close to the coast line. Solar radiation has a natural daily cycle, and storage reservoirs of limited capacity can substantially reduce the load to the electricity grid. Different modes of pump operation (fixed or variable speed) are considered, the preliminary sizing of the PV field and seawater reservoir is performed, and the results are comparatively assessed over a year-long simulated operation. The results show that PV pumped storage, even if not profitable in the present situation of the renewable energy Italian electricity market, is effective in decreasing the load on the transmission grid, and would possibly be attractive in the future, also in the light of developing off-grid applications.

Giampaolo Manfrida; Riccardo Secchi

2014-01-01T23:59:59.000Z

311

Effects of surroundings snow coverage and solar tracking on photovoltaic systems operating in Canada  

Science Journals Connector (OSTI)

This paper deals with demonstrating the energy performance of solar tracking photovoltaic (PV) systems in Canada. In this study a grid connected stand-alone PV system has been designed and coupled with four different tracking systems: fixed horizontal fixed tilted single-axis tracking and dual-axis tracking. The performance analysis of the systems focuses on the variation of array irradiance electricity generation and efficiency without considerations for economic impacts at this stage. The simulation results show that the dual-axis tracking array provides the best performance over a year. It receives 33% more solar radiation and generates 36% more electricity than the tilted system. On clear winter days compared to the tilted system the dual-axis tracking system produces 32% and 29% more electricity in high albedo and low albedo conditions respectively. High albedo due to surroundings snow coverage has been found to cause an increase of 3.1% 5.8% and 7.9% in electricity production of the tilted single-axis tracking and dual-axis tracking system respectively over a winter. The results of this research support the idea that tracking the sun is effective on clear days and could be counterproductive on overcast days. Therefore in high albedo conditions it is recommended to track the sun and stay fixed once the sky becomes overcast.

Mostafa Mehrtash; Daniel R. Rousse; Guillermo Quesada

2013-01-01T23:59:59.000Z

312

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

NLE Websites -- All DOE Office Websites (Extended Search)

4476E 4476E An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California Ben Hoen, Ryan Wiser, Peter Cappers and Mark Thayer Environmental Energy Technologies Division April 2011 Download from http://eetd.lbl.gov/ea/emp/reports/lbnl-4476e.pdf This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by the National Renewable Energy Laboratory under Contract No. DEK-8883050, and by the Clean Energy States Alliance. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government.

313

Optimum penetration of utility-scale grid-connected solar photovoltaic systems in Illinois  

Science Journals Connector (OSTI)

Abstract Although solar photovoltaics (PV) are recognized as a promising source of clean energy production, researchers and policy makers need to know the optimum level of solar PV capacity penetration into the existing generation structure under the current fuel mix for the region. As the level of installed PV capacity increases, it is possible that the aggregated generation mix could produce electrical power exceeding electrical demand, thus requiring generator curtailment. Therefore, determining the optimum penetration of large-scale PV and aggregated technical and economic benefits is becoming an issue for both power utilities and policy makers. We report the development and validation of a new methodology for assessing the optimum capacity and benefits of state-wide grid-connected large scale solar PV systems in Illinois. The solar carve-out portion of the current renewable portfolio standard is also evaluated within the context of the state's sustainable energy plan for the near term future.

J.H. Jo; D.G. Loomis; M.R. Aldeman

2013-01-01T23:59:59.000Z

314

Development of discrete event system specification (DEVS) building performance models for building energy design  

Science Journals Connector (OSTI)

The discrete event system specification (DEVS) is a formalism for describing simulation models in a modular fashion. In this study, it is exploited by forming submodels that allow different professions involved in the building design process to work ... Keywords: DEVS, energy simulation in building design, modular BPS, stochastic occupant models

Huseyin Burak Gunay; Liam O'Brien; Rhys Goldstein; Simon Breslav; Azam Khan

2013-04-01T23:59:59.000Z

315

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

SciTech Connect

An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.

Cappers, Peter; Wiser, Ryan; Thayer, Mark; Hoen, Ben

2011-04-12T23:59:59.000Z

316

Technology Enablers for Next-Generation Economic Building Monitoring Systems  

E-Print Network (OSTI)

specific context for analysis. Primary duties include aggregating building data, managing measurement devices (loggers), and analyzing data for quality, diagnostics, and savings. Modern EMCS may encompass all of the subsystems. Simple monitoring systems... Control data to the logger Master Building Server Aggregate building data, manage measurement devices (loggers), analyze data for quality, savings, and unknowns Control network of local servers and loggers Large computer system with RDBMS and online...

Sweeney, J., Jr.; Culp, C.

2001-01-01T23:59:59.000Z

317

Building America Systems Integration Research Annual Report: FY 2012  

SciTech Connect

This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

Gestwick, M.

2013-05-01T23:59:59.000Z

318

Sandia National Laboratories: concentrating photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Systems Engineering MODE...

319

Building-Level Energy Management Systems (BLEMS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Building-Level Energy Management Systems Emerging Technologies » Building-Level Energy Management Systems (BLEMS) Building-Level Energy Management Systems (BLEMS) The U.S. Department of Energy (DOE) is currently conducting research into building-level energy management systems (BLEMS). Project Description BLEMS provide an integrated plug-and-play capability for legacy energy management systems (EMSs), such as those based on X-10, Zigbee, 802.15, and newly developed EMS for buildings of any size. Project Partners Research is being undertaken by DOE, the University of Southern California, General Electric (GE) Global Research, and GE Consumer & Industrial Division. Project Goals The goal of this project is to develop practical solutions that bring together ad-hoc legacy energy management systems under a single, unified

320

Effect of Solar Panel Cooling on Photovoltaic Performance.  

E-Print Network (OSTI)

?? One of the main problems in using the photovoltaic system is the low energy conversion efficiency of photovoltaic cells and, furthermore, during the long… (more)

Ali, Rehan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy 101: Solar Photovoltaics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

101: Solar Photovoltaics 101: Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? The literal translation of the word photovoltaic is light-electricity. Photovoltaic systems generate power without pollution - and recent advancements have greatly increased their efficiency. Enough energy from the sun hits the earth every hour to power the planet for an entire year-and solar photovoltaic (PV) systems are a clean, cost-effective way to harness that power for homes and businesses. The literal translation of the word photovoltaic is light-electricity-and this is exactly what photovoltaic materials and devices do-they convert

322

Economic Analysis of a Brackish Water Photovoltaic-Operated (BWRO-PV) Desalination System: Preprint  

SciTech Connect

The photovoltaic (PV)-powered reverse-osmosis (RO) desalination system is considered one of the most promising technologies in producing fresh water from both brackish and sea water, especially for small systems located in remote areas. We analyze the economic viability of a small PV-operated RO system with a capacity of 5 m3/day used to desalinate brackish water of 4000 ppm total dissolve solids, which is proposed to be installed in a remote area of the Babylon governorate in the middle of Iraq; this area possesses excellent insolation throughout the year. Our analysis predicts very good economic and environmental benefits of using this system. The lowest cost of fresh water achieved from using this system is US $3.98/ m3, which is very reasonable compared with the water cost reported by small-sized desalination plants installed in rural areas in other parts of the world. Our analysis shows that using this small system will prevent the release annually of 8,170 kg of CO2, 20.2 kg of CO, 2.23 kg of CH, 1.52 kg of particulate matter, 16.41 kg of SO2, and 180 kg of NOx.

Al-Karaghouli, A.; Kazmerski, L. L.

2010-10-01T23:59:59.000Z

323

Reliability and Geographic Trends of 50,000 Photovoltaic Systems in the USA: Preprint  

SciTech Connect

This paper presents performance and reliability data from nearly 50,000 photovoltaic (PV) systems totaling 1.7 gigawatts installed capacity in the USA from 2009 to 2012 and their geographic trends. About 90% of the normal systems and about 85% of all systems, including systems with known issues, performed to within 10% or better of expected performance. Although considerable uncertainty may exist due to the nature of the data, hotter climates appear to exhibit some degradation not seen in the more moderate climates. Special causes of underperformance and their impacts are delineated by reliability category. Hardware-related issues are dominated by inverter problems (totaling less than 0.5%) and underperforming modules (totaling less than 0.1%). Furthermore, many reliability categories show a significant decrease in occurrence from year 1 to subsequent years, emphasizing the need for higher-quality installations but also the need for improved standards development. The probability of PV system damage because of hail is below 0.05%. Singular weather events can have a significant impact such as a single lightning strike to a transformer or the impact of a hurricane. However, grid outages are more likely to have a significant impact than PV system damage when extreme weather events occur.

Jordan, D. C.; Kurtz, S. R.

2014-09-01T23:59:59.000Z

324

Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China  

Science Journals Connector (OSTI)

Abstract This study performs a life-cycle assessment for a photovoltaic (PV) system with multi-crystalline silicon (multi-Si) modules in China. It considers the primary energy demand, energy payback time (EPBT), and environmental impacts, such as global warming potential and eutrophication, over the entire life cycle of the PV system, including the upstream process, ranging from silica extraction to the multi-Si purification, the midstream process, involving crystalline silicon ingot growth and wafering; and the downstream process, consisting of cell and module fabrication. The data were collected with recommendations provided by the ISO norms and acquired from typical PV companies in China. The results show that the most critical phase of life cycle of Chinese PV system was the transformation of metallic silicon into solar silicon, which was characterized by high electricity consumption, representing most of the environmental impact. The other electricity generation systems were compared to PV. Considering that Chinese electricity is mainly produced by coal-fired power plants, the installation of multi-Si PV systems is recommended over exporting them from China. Furthermore, being higher solar radiation areas, areas in western China, such as the Tibet Autonomous Region, northeastern Qinghai, and the western borders of Gansu, are best suited for the installation of the PV systems even if the long distance of transportation. Finally, recommendations were provided with respect to the sustainable development of the Chinese PV industry and environmental protection.

Yinyin Fu; Xin Liu; Zengwei Yuan

2014-01-01T23:59:59.000Z

325

Increase energy efficiency in systems and buildings and improve indoor  

NLE Websites -- All DOE Office Websites (Extended Search)

Increase energy efficiency in systems and buildings and improve indoor Increase energy efficiency in systems and buildings and improve indoor environment: How to validate comfort and energy reduction Speaker(s): Wouter Borsboom Date: December 8, 2009 - 12:00pm Location: 90-3122 TNO is a research institute which is active in the energy saving and indoor environment. We like to present our research, our goals and discuss the challenges and the opportunities for cooperation. Therefore we like to give a presentation about the following topic and we are also interested in a presentation of LBL and UC Berkeley. An important topic in the building industry is near zero energy buildings. Most countries in Europe implemented programs to advance this goal in one way or another. In near-zero energy buildings, the interaction between building and systems

326

Cyber-physical energy systems: focus on smart buildings  

Science Journals Connector (OSTI)

Operating at the intersection of multiple sensing and control systems designed for occupant comfort, performability and operational efficiency, modern buildings represent a prototypical cyber-physical system with deeply coupled embedded sensing and networked ... Keywords: LEED, ZNEB, buildings, cyber-physical, embedded, energy management, energy metering, smart grid

Jan Kleissl; Yuvraj Agarwal

2010-06-01T23:59:59.000Z

327

Sandia National Laboratories: Photovoltaic Specialists Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Surety, Facilities, Grid Integration, Infrastructure Security, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter, Systems Engineering Matthew Reno,...

328

NREL: Photovoltaics Research - Emerging Technologies Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

and the potential benefit of increasing system efficiency. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

329

Energy Saving in Office Building by Floor Integration System: Reducing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving in Office Building by Floor Integration System: Reducing Energy Saving in Office Building by Floor Integration System: Reducing Total Energy of HVAC and Lighting system using daylight Speaker(s): Yoshifumi Murakami Date: May 20, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Naoya Motegi Information Technology that is featured by standard communication protocol like Lon Works, BACnet is very useful for managing building systems. Now we can collect much data quickly and easily and to analyze them in detail with this technology. Under the circumstances in that saving energy and reducing CO2 are required strongly, important thing is finding the effective information for building operation and control from collected data and the analysis of them. In our project, the floor integration controller that integrates the each building systems was proposed. It

330

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network (OSTI)

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of… (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

331

Indoor humidity and human health: part II--buildings and their systems  

E-Print Network (OSTI)

Northwest homes. Healthy Buildings: Proceeding of IAQ ’91,inside an HVAC system compatible with a healthy building?Healthy Buildings: Proceeding of IAQ ’91, September,

Arens, Edward A; Baughman, A.

1996-01-01T23:59:59.000Z

332

Theoretical Minimum Energy Use of a Building HVAC System  

E-Print Network (OSTI)

This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air...

Tanskyi, O.

2011-01-01T23:59:59.000Z

333

Sandia National Laboratory Photovoltaic Design Resources | Open Energy  

Open Energy Info (EERE)

Sandia National Laboratory Photovoltaic Design Resources Sandia National Laboratory Photovoltaic Design Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Design Resources at Sandia National Laboratories Agency/Company /Organization: Sandia National Laboratories Sector: Energy Focus Area: Renewable Energy, Solar Topics: Pathways analysis Website: www.sandia.gov/ References: Sandia's Photovoltaic Research and Development Program [1] Sandia National Laboratories' Photovoltaic Research and Development program works with industry and academia to accelerate development and acceptance of technologies for photovoltaic energy systems. The program has published a series of handbooks and booklets that describe design guidelines for stand-alone photovoltaic system installations, photovoltaic water pumping systems, and evaluating photvoltaic applications

334

Building energy modeling programs comparison Research on HVAC systems  

NLE Websites -- All DOE Office Websites (Extended Search)

energy modeling programs comparison Research on HVAC systems energy modeling programs comparison Research on HVAC systems simulation part Title Building energy modeling programs comparison Research on HVAC systems simulation part Publication Type Journal Year of Publication 2013 Authors Zhou, Xin, Da Yan, Tianzhen Hong, and Dandan Zhu Keywords Building energy modeling programs, comparison tests, HVAC system simulation, theory analysis Abstract Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in simulated results when different BEMPs are used to model the same building has caused wide concern. Urgent research is needed to identify the main elements that contribute towards the simulation results. This technical report summarizes methodologies, processes, and the main assumptions of three building energy modeling programs (BEMPs) for HVAC calculations: EnergyPlus, DeST, and DOE-2.1E, and test cases are designed to analyze the calculation process in detail. This will help users to get a better understanding of BEMPs and the research methodology of building simulation. This will also help build a foundation for building energy code development and energy labeling programs.

335

An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

Developing an Integrated Building Design Tool by Couplingdesign energy efficient building systems in this complex setting, integrated

Trcka, Marija

2010-01-01T23:59:59.000Z

336

Photovoltaic Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Energy Technology Module Photovoltaic Energy Technology Module Jump to: navigation, search Tool Summary Name: Photovoltaic Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Photovoltaic Energy Technology Module[1] Resources Portable Solar Photovoltaic Lanterns: Performance and Certification Specification, and Type Approval, ESMAP TECHNICAL PAPER 078 Testing of Storage Batteries used in Stand Alone Photovoltaic Power Systems, Test procedures and examples of test results Technical Specifications for Solar Home Systems (SHS), Rural Electrification and Renewable Energy Development (PV Component) Project

337

System-Level Monitoring and Diagnosis of Building HVAC System.  

E-Print Network (OSTI)

??Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC… (more)

Wu, Siyu

2013-01-01T23:59:59.000Z

338

Building America Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet)  

SciTech Connect

In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

Not Available

2014-09-01T23:59:59.000Z

339

Organic Photovoltaics  

Science Journals Connector (OSTI)

Satisfying the world's growing demand for energy is an urgent societal challenge. Organic photovoltaics holds promise as a cost-efficient and environmentally friendly solution.

Kippelen, Bernard

2007-01-01T23:59:59.000Z

340

Energy Management Systems Package for Small Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnMS (energy management EnMS (energy management systems) Package for Small Commercial Buildings Jessica Granderson Lawrence Berkeley National Laboratory JGranderson@lbl.gov 510.486.6792 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Small commercial buildings present two challenges for implementing energy efficiency strategies 1) high transaction cost relative to total savings 2) lack of personnel time or skill available for energy management

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Photovoltaic Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cell Basics Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that convert sunlight to electricity. Commonly known as solar cells, individual PV cells are electricity-producing devices made of semiconductor materials. PV cells come in many sizes and shapes, from smaller than a postage stamp to several inches across. They are often connected together to form PV modules that may be up to several feet long and a few feet wide. Modules, in turn, can be combined and connected to form PV arrays of different sizes and power output. The modules of the array make up the major part of a PV system, which can also include electrical connections,

342

Design, development and deployment of public service photovoltaic power/load systems for the Gabonese Republic. Final report  

SciTech Connect

Five different types of public service photovoltaic power/load systems installed in the Gabonese Republic are discussed. The village settings, the systems, performance results and some problems encountered are described. Most of the systems performed well, but some of the systems had problems due to failure of components or installation errors. The project was reasonably successful in collecting and reporting data for system performance evaluation that will be useful for guiding officials and system designers involved in village power applications in developing countries.

Kaszeta, W.J.

1987-04-01T23:59:59.000Z

343

A hybrid method combining JFPSO and probabilistic three-phase load flow for improving unbalanced voltages in distribution systems with photovoltaic generators  

Science Journals Connector (OSTI)

This paper presents a new hybrid method that combines jumping frog and particle swarm optimization and probabilistic three-phase load flow to improve unbalanced voltages in distribution systems with photovoltaic

F. J. Ruiz-Rodriguez; F. Jurado; M. Gomez-Gonzalez

2014-09-01T23:59:59.000Z

344

Ball State building massive geothermal system | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

345

Ball State building massive geothermal system | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

346

Sandia National Laboratory Photovoltaic Design Resources | Open Energy  

Open Energy Info (EERE)

Sandia National Laboratory Photovoltaic Design Resources Sandia National Laboratory Photovoltaic Design Resources (Redirected from Photovoltaic Design Resources at Sandia National Laboratories) Jump to: navigation, search Tool Summary Name: Photovoltaic Design Resources at Sandia National Laboratories Agency/Company /Organization: Sandia National Laboratories Sector: Energy Focus Area: Renewable Energy, Solar Topics: Pathways analysis Website: www.sandia.gov/ References: Sandia's Photovoltaic Research and Development Program [1] Sandia National Laboratories' Photovoltaic Research and Development program works with industry and academia to accelerate development and acceptance of technologies for photovoltaic energy systems. The program has published a series of handbooks and booklets that describe design guidelines for stand-alone photovoltaic system installations,

347

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

(The following text is derived from NREL's description of photovoltaic (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual solar PV systems. Utility companies are also using PV technology for large

348

Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings  

E-Print Network (OSTI)

simulation and experimental verification. The unique characteristic of such system consists in the integrated loop heat pipe and heat pump unit (LHP-HP), which was proposed to improve solar photovoltaic (PV) generation, capture additional solar heat...

Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

2012-01-01T23:59:59.000Z

349

High Performance Commercial Building Systems William L. Carroll  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy underHigh Performance Commercial Building Systems William L. Carroll Ernest Orlando Lawrence Berkeley.2 ­ Retrofit Tools Task 2 HPBCS E2P2.2T3 LBNL - 57775 California Energy Commission Public Interest Energy

350

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...photoelectrochemical conversion of solar energy Michael Gratzel * * ( michael...industry, have dominated photovoltaic solar energy converters. These systems have...promising perspectives. renewable energy|solar energy conversion|photovoltaic...

2007-01-01T23:59:59.000Z

351

Network Analysis of Photovoltaic Energy Conversion  

Science Journals Connector (OSTI)

Photovoltaic energy conversion in photovoltaic cells has been analyzed by the detailed balance approach or by thermodynamic arguments. Here we introduce a network representation to analyze the performance of such systems once a suitable kinetic model (...

Mario Einax; Abraham Nitzan

2014-11-03T23:59:59.000Z

352

An economic analysis of grid-connected residential solar photovoltaic power systems  

E-Print Network (OSTI)

The question of the utility grid-connected residential market for photovoltaics is examined from a user-ownership perspective. The price is calculated at which the user would be economically indifferent between

Carpenter, Paul R.

353

Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions  

E-Print Network (OSTI)

in wholesale energy markets. Progress in Photovoltaics:designs (e.g. , an energy market with a price cap, combinedmarket designs feature an energy market with a lower price

Darghouth, Naim

2014-01-01T23:59:59.000Z

354

Simulation of a green wafer fab featuring solar photovoltaic technology and storage system  

Science Journals Connector (OSTI)

A semiconductor wafer fab requires a significant amount of energy to maintain its daily operations. Solar photovoltaics (PV) is a clean and renewable technology that can be potentially used to power large wafer fabs. There exist some critical factors ...

Leann Sanders; Stephanie Lopez; Greg Guzman; Jesus Jimenez; Tongdan Jin

2012-12-01T23:59:59.000Z

355

Paul Mathew Staff Scientist, Commercial Building Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Mathew Mathew Staff Scientist, Commercial Building Systems Group A Datapalooza for Measured Building Performance: The DOE Buildings Performance Database Lawrence Berkeley National Laboratory November 4, 2013 BPD Team Rich Brown Claudine Custudio Laurel Dunn Paul Mathew John Mejia Andrea Mercado Michael Sohn Travis Walter Software partner: Sponsor: ..... analytical revolution upending the way campaigns political are run in the 21st century... the smartest campaigns now believe they know who you will vote for even before you do... Energy Benchmarking Policies (selected) * California - AB1103 requires benchmarking of all commercial buildings at time of lease or sale. - Executive order S-20-04 requires benchmarking of all state buildings. - SB1 requires buildings applying for solar incentives to benchmark

356

The Impacts of Utility Rates and Building Type on the Economics of  

Open Energy Info (EERE)

Impacts of Utility Rates and Building Type on the Economics of Impacts of Utility Rates and Building Type on the Economics of Commercial Photovoltaic Systems Jump to: navigation, search Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems[1] Authors:Sean Ong, Clinton Campbell, and Nathan Clark National Renewable Energy Laboratory, 2012. Abstract To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories. The digital appendix is available with results for the different locations

357

Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system  

Science Journals Connector (OSTI)

Abstract 3D Reynolds-Averaged Navier-Stokes (RANS) simulations using an unsteady solver with steady inlet conditions are carried out to investigate the wind load and flow field around a ground mounted stand-alone photovoltaic (PV) system with 25° panel tilt angle immersed in the atmospheric boundary layer (ABL) using the shear stress transport (SST) k-? turbulence closure. Wind directions of the incoming flow are varied from 0° to 180° at 45° intervals. Mean pressure coefficients on the surfaces of the PV panel are compared with the wind tunnel measurement by Abiola-Ogedengbe (2013) and an agreement within 46% is found. Coefficients of drag, lift and overturning moment for the PV system are computed from the numerical simulations. In terms of maximum uplift, 180° is found to be the critical wind direction whereas in terms of overturning moments, 45° and 135° are the critical wind directions. The wind velocity and vorticity fields around the panel are correlated and analyzed with respect to the pressure distribution on the panel surfaces.

Chowdhury Mohammad Jubayer; Horia Hangan

2014-01-01T23:59:59.000Z

358

Photovoltaic cell  

DOE Patents (OSTI)

In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

Gordon, Roy G. (Cambridge, MA); Kurtz, Sarah (Somerville, MA)

1984-11-27T23:59:59.000Z

359

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

SciTech Connect

An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

2011-04-19T23:59:59.000Z

360

Modelling of a stand alone photovoltaic system with dedicated hybrid battery energy storage system by Nicholas Vanden Eynde.  

E-Print Network (OSTI)

??Includes abstract. The purpose of this thesis project was to model and simulate a stand-alone photovoltaic (PV) plant that utilized the maximum power point tracking… (more)

Vanden Eynde, Nicholas.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale  

Science Journals Connector (OSTI)

Abstract This study is concerned with the results of a Life Cycle Assessment comparison between photovoltaic – silicon based modules and thin film modules – and solar thermal systems, as technologies which are usually installed for partially covering household energy demand. Several studies focused on energy and environmental performances of photovoltaic and solar thermal collectors, however they have been always analysed separately. This study proposes the comparison of different systems to exploit the solar energy, producing different energy types. The comparison was done referring to one square meter of roof surface occupied by the equipment. The environmental burdens were calculated according to the indicators proposed by Eco-indicator'95 method. The results showed that the system based on thermal solar collector obtained the major number of more favourable indicators: eight out of ten, in the case of no-recycling of materials after dismantling phase, and six out of ten in the case of recycling of materials after dismantling phase. The thin film modules and solar thermal collector showed the lowest values of energy payback time and \\{CO2eq\\} payback time. Results clearly show that photovoltaic and solar thermal collector can effectively provide comparable environmental and energy benefits as regard to domestic scale installation.

E. Carnevale; L. Lombardi; L. Zanchi

2014-01-01T23:59:59.000Z

362

Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation  

Science Journals Connector (OSTI)

Concentrating solar thermal power and photovoltaics are two major technologies for converting sunlight to electricity. Variations of the annual solar irradiation depending on the site influence their annual efficiency, specific output and electricity generation cost. Detailed technical and economical analyses performed with computer simulations point out differences of solar thermal parabolic trough power plants, non-tracked and two-axis-tracked PV systems. Therefore, 61 sites in Europe and North Africa covering a global annual irradiation range from 923 to 2438 kW h/m2 a have been examined. Simulation results are usable irradiation by the systems, specific annual system output and levelled electricity cost. Cost assumptions are made for today's cost and expected cost in 10 years considering different progress ratios. This will lead to a cost reduction by 50% for PV systems and by 40% for solar thermal power plants. The simulation results show where are optimal regions for installing solar thermal trough and tracked PV systems in comparison to non-tracked PV. For low irradiation values the annual output of solar thermal systems is much lower than of PV systems. On the other hand, for high irradiations solar thermal systems provide the best-cost solution even when considering higher cost reduction factors for PV in the next decade. Electricity generation cost much below 10 Eurocents per kW h for solar thermal systems and about 12 Eurocents/kW h for PV can be expected in 10 years in North Africa.

Volker Quaschning

2004-01-01T23:59:59.000Z

363

Operation Diagnosis for Buildings Connecting Building Management Systems with Energy Management Systems  

E-Print Network (OSTI)

Reducing energy consumption of buildings is a good contribution to protect the environment and to reduce costs. The first and most important step to operate a building most efficiently is to make aware of most of the technical parameters. Connecting...

Mehler, G.

2008-01-01T23:59:59.000Z

364

Applications of HVAC System Utilizing Building Thermal Mass in Japan  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications of HVAC System Utilizing Building Thermal Mass in Japan Applications of HVAC System Utilizing Building Thermal Mass in Japan Speaker(s): Katsuhiro Miura Date: January 27, 2012 - 10:00am Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Buildings have a large thermal capacity and it affects much on building thermal load for the HVAC system. The thermal mass can be utilized also to control the thermal load by storing thermal energy before HVAC operation. There are two ways to store thermal energy. One is by operating the HVAC system and the other is by natural ventilation, mainly at night. The latter could be combined with daily HVAC operation as a hybrid ventilation. Thermal mass storage is useful to decrease the hourly peak load and the daily thermal load and can be used for both cooling and heating purpose.

365

Generative Design Systems Applied to Low-Energy Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Generative Design Systems Applied to Low-Energy Buildings Generative Design Systems Applied to Low-Energy Buildings Speaker(s): Maria Luisa de Oliveira Gama Caldas Date: March 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Paul Mathew Generative Design Systems (GDS) represent a step beyond parametric models, integrating design goals, building simulations and shape generation. In this seminar, present and future research projects on the application of different GDS to low-energy buildings are discussed. The software GENE_ARCH integrates energy simulations with multicriteria search methods such as pareto genetic algorithms, to locate acceptable alternatives that move the current design towards performance goals set by the user. DIVA, a system that integrates parametric geometrical modeling with Radiance, Daysim and

366

Building America Webinar: Central Multifamily Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

367

NREL: News Feature - Solar System Tops Off Efficient NREL Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar System Tops Off Efficient NREL Building September 29, 2010 Photo of the sun reflecting off of a solar panel on a roof. Enlarge image More than 1,800 solar panels are being...

368

Monitoring Buildings with Energy Management and Control Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Monitoring Buildings with Energy Management and Control Systems Monitoring and evaluation are important parts of all energy-efficiency programs. With the increasing regulatory requirements for verification of demand-side management program savings and continued development of more innovative financing mechanisms, the ability to substantiate claims of energy savings using measured data takes on added importance. Although expensive, the accurate monitoring of energy consumption and building operations is a necessary part of conservation savings analysis. Energy management and control systems (EMCSs), intended for building operations and control functions, already contain most of the same equipment usually installed for energy monitoring and can often be used for

369

The feed-in tariff in the UK: A case study focus on domestic photovoltaic systems  

Science Journals Connector (OSTI)

This paper explores the photovoltaic (PV) industry in the United Kingdom (UK) as experienced by those who are working with it directly and with consideration of current standards, module efficiencies and future environmental trends. The government's consultation on the comprehensive review for solar PV tariffs, proposes a reduction of the generation tariff for PV installations in the UK of more than 50%. The introduction of the Feed-In Tariffs scheme (FITs) has rapidly increased deployment of PV technologies at small scale since its introduction in April 2010. The central principle of FIT policies is to offer guaranteed prices for fixed periods to enable greater number of investors. A financial analysis was performed on two real-life installations in Cornwall, UK to determine the impact of proposed cuts to the FIT will make to a typical domestic PV system under 4 kW. The results show that a healthy Return on Investment (ROI) can still be made but that future installations should focus on off-setting electricity required from the national grid as a long term push for true sustainability rather than subsidised schemes. The profitability of future installations will have to be featured within in-service and end-of-service considerations such as the feed-in tariff, module efficiencies and the implications of costs associated with end-of-life disposal.

R. Cherrington; V. Goodship; A. Longfield; K. Kirwan

2013-01-01T23:59:59.000Z

370

Simulation of one-minute power output from utility-scale photovoltaic generation systems.  

SciTech Connect

We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

2011-08-01T23:59:59.000Z

371

SunShot Initiative: Thin Film Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Film Photovoltaics Research Thin Film Photovoltaics Research to someone by E-mail Share SunShot Initiative: Thin Film Photovoltaics Research on Facebook Tweet about SunShot Initiative: Thin Film Photovoltaics Research on Twitter Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Google Bookmark SunShot Initiative: Thin Film Photovoltaics Research on Delicious Rank SunShot Initiative: Thin Film Photovoltaics Research on Digg Find More places to share SunShot Initiative: Thin Film Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Thin Film Photovoltaics Research The U.S. Department of Energy (DOE) supports research and development of

372

Performance of thermal distribution systems in large commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of thermal distribution systems in large commercial buildings Performance of thermal distribution systems in large commercial buildings Title Performance of thermal distribution systems in large commercial buildings Publication Type Journal Article LBNL Report Number LBNL-44331 Year of Publication 2002 Authors Xu, Tengfang T., François Rémi Carrié, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Duo Wang, and Mark P. Modera Journal Energy and Buildings Volume 34 Start Page Chapter Pagination 215-226 Abstract This paper presents major findings of a field study on the performance of five thermal distribution systems in four large commercial buildings. The five systems studied are typical single-duct or dual-duct constant air volume (CAV) systems and variable air volume (VAV) systems, each of which serves an office building or a retail building with floor area over 2,000 m2. The air leakage from ducts are reported in terms of effective leakage area (ELA) at 25 Pa reference pressure, the ASHRAE-defined duct leakage class, and air leakage ratios. The specific ELAs ranged from 0.7 to 12.9 cm2 per m2 of duct surface area, and from 0.1 to 7.7 cm2 per square meter of floor area served. The leakage classes ranged from 34 to 757 for the five systems and systems sections tested. The air leakage ratios are estimated to be up to one-third of the fan- supplied airflow in the constant-air-volume systems. The specific ELAs and leakage classes indicate that air leakage in large commercial duct systems varies significantly from system to system, and from system section to system section even within the same thermal distribution system. The duct systems measured are much leakier than the ductwork specified as "unsealed ducts" by ASHRAE. Energy losses from supply ducts by conduction (including convection and radiation) are found to be significant, on the scale similar to the losses induced by air leakage in the duct systems. The energy losses induced by leakage and conduction suggest that there are significant energy-savings potentials from duct-sealing and insulation practice in large commercial buildings

373

EELE408 Photovoltaics Lecture 01: Intro & Safety  

E-Print Network (OSTI)

1 EELE408 Photovoltaics Lecture 01: Intro & Safety Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman EELE408 Photovoltaics & Ventre: Photovoltaic Systems Engineering , 3E · Resources: ­ Green: Solar Cells: Operating Principles

Kaiser, Todd J.

374

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network (OSTI)

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

375

Exergoeconomic analysis of high concentration photovoltaic thermal co-generation system for space cooling  

Science Journals Connector (OSTI)

Abstract This paper provides an exergetic analysis of a 10 MW high concentration photovoltaic thermal (HCPVT) power plant case study located in Hammam Bou Hadjar, Algeria. The novel HCPVT multi-energy carrier plant converts 25% of the direct normal irradiance (DNI) into electrical energy and 62.5% to low grade heat for a combined efficiency of 87.5%. The HCPVT system employs a point focus dish concentrator with a cooled PV receiver module. The novel “hot-water” cooling approach is used for energy reuse purposes and is enabled by our state-of-the-art substrate integrated micro-cooling technology. The high performance cooler of the receiver with a thermal resistance of <0.12 cm2 K/W enables the receiver module to handle concentrations of up to 5000 suns. In the present study, a concentration of 2000 suns allows using coolant fluid temperatures of up to 80 °C. This key innovation ensures reliable operation of the triple junction PV (3JPV) cells used and also allows heat recovery for utilization in other thermal applications such as space cooling, heating, and desalination. Within this context, an exergoeconomics analysis of photovoltaic thermal co-generation for space cooling is presented in this manuscript. The valuation method presented here for the HCPVT multi-energy carrier plant comprises both the technical and economic perspectives. The proposed model determines how the cost structure is evolving in four different scenarios by quantifying the potential thermal energy demand in Hammam Bou Hadjar. The model pins down the influence of technical details such as the exergetic efficiency to the economic value of the otherwise wasted heat. The thermal energy reuse boosts the power station?s overall yield, reduces total average costs and optimizes power supply as fixed capital is deployed more efficiently. It is observed that even though potential cooling demand can be substantial (19,490 MWh per household), prices for cooling should be 3 times lower than those of electricity in Algeria (18 USD/MWh) to be competitive. This implies a need to reach economies of scale in the production of individual key components of the HCPVT system. The net present value (NPV) is calculated taking growth rates and the system?s modular efficiencies into account, discounted over 25 years. Scenario 1 shows that even though Algeria currently has no market for thermal energy, a break-even quantity (49,728 MWh) can be deduced by taking into account the relation between fixed costs and the marginal profit. Scenario 2 focuses on the national growth rate needed to break even, i.e. +10.92%. Scenario 3 illustrates thermal price variations given an increase in the Coefficient of Performance (COP) of a thermally driven adsorption chiller after year 10. In this case, the price for cooling will decrease from 18 USD/MWh to 14 USD/MWh. Finally, scenario 4 depicts Hammam Bou Hadjar?s potential cooling demand per household and the growth rate needed to break even if a market for heat would exist.

Veronica Garcia-Heller; Stephan Paredes; Chin Lee Ong; Patrick Ruch; Bruno Michel

2014-01-01T23:59:59.000Z

376

Residential Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Building Renovations Residential Building Renovations Residential Building Renovations October 16, 2013 - 4:57pm Addthis Renewable Energy Options Residential Building Renovations Photovoltaics Daylighting Solar Water Heating Geothermal Heat Pumps (GHP) Biomass Heating In some circumstances, Federal agencies may face construction or renovation of residential units, whether single-family, multi-family, barracks, or prisons. Based on typical domestic energy needs, solar water heating and photovoltaic systems are both options, depending on the cost of offset utilities. These systems can be centralized for multi-family housing to improve system economics. Daylighting can reduce energy costs and increase livability of units. Geothermal heat pumps (GHP) are a particularly cost-effective option in

377

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

5 5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than those with some ductwork. 2) Strong dependence on building type. BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 3-1, p. 3-6. 0.3 - 1.0 0.1 - 0.3 0.1 - 0.4

378

ENERGY STAR Building Upgrade Manual Chapter 8: Air Distribution Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

8: Air Distribution 8: Air Distribution Systems Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

379

Development of Building Automation and Control Systems  

E-Print Network (OSTI)

Johnson Controls, 70 in Automated Logic EIKON language, 42systems developed by Automated Logic. Similarly as shown in

Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

380

Sandia National Laboratories: Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Microelectronic Photovoltaics On June 13, 2012, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar Sandia National Laboratories semiconductor engineer...

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sandia National Laboratories: photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Security National Solar Thermal Test Facility NSTTF photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar...

382

A Buildings Module for the Stochastic Energy Deployment System  

SciTech Connect

The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

2008-05-15T23:59:59.000Z

383

Chapter 2 - Photovoltaic  

Science Journals Connector (OSTI)

Abstract This chapter discusses solar radiation characteristics: solar constant, direct and diffuse sunlight, air mass, irradiance, insolation, peak sun hours, and the solar window. Moreover, it considers photovoltaic (PV) conversion, the photovoltaic cell, and the performance evaluation of PV cells, module, panels and arrays that include: current?voltage (I–V) characteristics, power–voltage (P–V) characteristics. The chapter also studies the effect of irradiance on a PV cell voltage and current, the equivalent circuit of a solar cell, and the connection of the PV devices (parallel and series). The chapter explores ways of optimization PV arrays: maximum power point trackers, sun trackers, batteries' use, and proper matching with loads and solar concentration. It talks about photovoltaic systems: stand-alone and interactive, PV sizing of a stand-alone PV systems, PV applications, and utility interconnection issues and requirements.

Ziyad Salameh

2014-01-01T23:59:59.000Z

384

Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Hardware Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results November 2012 Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 LBNL's work was supported by the U.S. Department of Energy SunShot program under Contract No. DE-AC02-05CH11231 Technical Report DOE/GO-10212-3834 * November 2012 National Renewable Energy Laboratory 15013 Denver West Parkway

385

A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources  

Science Journals Connector (OSTI)

Abstract Several factors must be considered before adopting a full-phase power generation system based on renewable energy sources. Long-term necessary data (for one year if possible) should be collected before making any decisions concerning implementation of such a systems. To accurately assess the potential of available resources, we measured solar irradiation, wind speed, and ambient temperature at two high-altitude locations in Nepal: the Lama Hotel in Rasuwa District and Thingan in Makawanpur District. Here, we propose two practical, economical hybridization methods for small off-grid systems consisting entirely of renewable energy sources—specifically solar photovoltaic (PV), wind, and micro-hydro sources. One of the methods was tested experimentally, and the results can be applied to help achieve Millennium Development Goal 7: Ensuring environmental sustainability. Hydro, wind, and solar photovoltaic energy are the top renewable energy sources in terms of globally installed capacity. However, no reports have been published about off-grid hybrid systems comprised of all three sources, making this implementation the first of its kind anywhere. This research may be applied as a practical guide for implementing similar systems in various locations. Of the four off-grid PV systems installed by the authors for village electrification in Nepal, one was further hybridized with wind and hydro power sources. This paper presents a novel approach for connecting renewable energy sources to a utility mini-grid.

Binayak Bhandari; Kyung-Tae Lee; Caroline Sunyong Lee; Chul-Ki Song; Ramesh K. Maskey; Sung-Hoon Ahn

2014-01-01T23:59:59.000Z

386

Comparison of Building Energy Modeling Programs: HVAC Systems  

E-Print Network (OSTI)

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: HVACassumptions of three building energy modeling programs (

Zhou, Xin

2014-01-01T23:59:59.000Z

387

Active Integrated Perimeter Building Systems | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sensor data, but sharing the data with faade and HVAC control systems to implement load reduction or demand-side ventilation strategies is difficult because the data are...

388

Building a Smarter Distribution System in Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of an advanced distribution management system (DMS) software is at the heart of the project. The DMS monitors and controls all of the smart devices being installed...

389

EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org  

E-Print Network (OSTI)

EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org DOI: 10.1051/epjpv/2011001 c Owned by the authors, published by EDP Sciences, 2011 EPJ PhotovoltaicsEPJ Photovoltaics Geometrical optimization and electrical online: 1 April 2011 Abstract This article investigates the optimal efficiency of a photovoltaic system

Paris-Sud XI, Université de

390

Building Hierarchical Grid Storage Using the GFARM Global File System  

E-Print Network (OSTI)

-sharing service and the GFARM grid file system; then, it introduces our hybrid architecture. Section 4 gives Work One of the major goals of grid infrastructures is to transparently provide access to comBuilding Hierarchical Grid Storage Using the GFARM Global File System and the JUXMEM Grid Data

Paris-Sud XI, Université de

391

The Impact of City-level Permitting Processes on Residential Photovoltaic Installation Prices and Development Times: An Empirical Analysis of Solar Systems in California Cities  

E-Print Network (OSTI)

V: The Installed Price of Photovoltaics in the United Statescost of energy for photovoltaics. ” Energy & EnvironmentalInc. case study. ” Progress in Photovoltaics 19 (4): 498–500

Wiser, Ryan

2014-01-01T23:59:59.000Z

392

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

E-Print Network (OSTI)

applied earlier for building energy modeling applicationstowards building HVAC system modeling and simulation. Forof equation-based modeling for building systems. We believe

Wetter, Michael

2010-01-01T23:59:59.000Z

393

Thermal Performance of Ferrocement Green Building System  

Science Journals Connector (OSTI)

System must not only cope with strengths and flexibility requirements, but the insulation value is of high importance. In summer heat must be kept outside as much as possible. The great demands of electric power ...

Wail N. Al-Rifaie; Waleed K. Ahmed…

2014-01-01T23:59:59.000Z

394

Building dependability arguments for software intensive systems  

E-Print Network (OSTI)

A method is introduced for structuring and guiding the development of end-to-end dependability arguments. The goal is to establish high-level requirements of complex software-intensive systems, especially properties that ...

Seater, Robert Morrison

2009-01-01T23:59:59.000Z

395

Building interactive systems using unconventional electronics  

Science Journals Connector (OSTI)

Many interactive systems use "conventional" silicon- based sensors and electronics that limit their functionality and scalability. Organic, amorphous inorganic, and other "unconventional" electronics are ideal for applications that require mechanical ... Keywords: fabrication, large-area, organic light- emitting diode, piezoelectric

John Sarik; Ioannis Kymissis

2011-01-01T23:59:59.000Z

396

Review: Business Process Implementation: Building Workflow Systems  

Science Journals Connector (OSTI)

......flouting control systems and list characteristics of computer fraudsters: these...Philip Sargent Laser-Scan Intranets ?? Intranets: The Surf Within James Cimino...into the need for a secure intranet. His facts and figures on......

Philip Sargent

1998-01-01T23:59:59.000Z

397

Tracking the Sun V: An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2011  

E-Print Network (OSTI)

Building-Integrated Photovoltaics (BIPV) in the ResidentialV: The Installed Price of Photovoltaics in the United StatesV: The Installed Price of Photovoltaics in the United States

Barbose, Galen

2014-01-01T23:59:59.000Z

398

Photovoltaic Materials  

SciTech Connect

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

399

Resource Repletion , Role of Buildings  

Science Journals Connector (OSTI)

For example, cleaner indoor air enhances productivity; recycling water reduces water fees; building integrated photovoltaics can be less expensive than other claddings...

Dr. Katja Hansen; Dr. Michael Braungart…

2013-01-01T23:59:59.000Z

400

Resource Repletion , Role of Buildings  

Science Journals Connector (OSTI)

For example, cleaner indoor air enhances productivity; recycling water reduces water fees; building integrated photovoltaics can be less expensive than other claddings...

Dr. Katja Hansen; Dr. Michael Braungart…

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Techno-economic analysis of hybrid photovoltaic/diesel/battery off-grid system in northern Nigeria  

Science Journals Connector (OSTI)

The rate of dependence on stand-alone diesel generator for individual electricity generation among households in Nigeria is geometrically increasing and has thus led to significant increase of the environment pollution. This is due to the inability of the utility company to meet the energy demand of its yearning consumers due to ageing and limitations in power infrastructures. This has led to about 40% of the country's population been cut off from the national grid. In view of these hazardous effects posed from the usage of these individual diesel-powered generations this paper reports on the assessment of techno-economic viability of a hybrid photovoltaic diesel/battery off-grid system as an alternative solution to these threats. For that purpose a remote area located far in the northern part of Nigeria was taken as the case study in which an international institution with peak demand of 90?kW was considered. The HOMER optimization software is used to evaluate both the technical and economic viability of the proposed energy system by taking into account the variations of both the solar radiation and diesel prices as experienced in most part of Nigeria. The study reveals the potential capability of the hybrid photovoltaic/diesel energy system with battery backup as a good alternative energy source for individual household replacement for diesel-powered generator. In addition the proposed system is of high energy potential as well as low carbon emission at affordable cost of electricity.

Hafeez Olasunkanmi Tijani; Chee Wei Tan

2014-01-01T23:59:59.000Z

402

FEMP--Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaics is a technology that converts radiant Photovoltaics is a technology that converts radiant light energy (photo) to electricity (voltaics). Photo- voltaic (PV) cells are the basic building blocks of this energy technology. PV cells (also called solar cells) are made of semicon- ductor materials, most typically silicon. The amount of electricity a PV cell produces depends on its size, its conversion efficiency (see box on reverse), and the intensity of the light source. Sunlight is the most common source of the energy used by PV cells to produce an electric current. It takes just a few PV cells to produce enough elec- tricity to power a small watch or solar calculator. For more power, cells are connected together to form larger units called modules. Modules, in turn, are connected to form arrays, and arrays can be

403

Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings- Steam Systems, Retrofit Measure Packages, Hydronic Systems  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is included in the July 16, 2014, Building America webinar, and provides information about best practices, costs, and savings associated with optimizing steam and hydronic systems through increased main line air venting, replacing radiator vents, improving circulation pump efficiency, and upgrading boiler control systems.

404

Concentrating photovoltaic solar panel  

DOE Patents (OSTI)

The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

2014-04-15T23:59:59.000Z

405

NREL: Photovoltaics Research - Accomplishments in Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments in Photovoltaic Manufacturing R&D Accomplishments in Photovoltaic Manufacturing R&D Successful efforts within the PV Manufacturing R&D Project were recognized by the solar industry. Key highlights from the project are summarized below. Overall, the project resulted in a more than 50% reduction in manufacturing costs and a substantial return on investment for both the U.S. government and the industries involved. A number of companies participating in the project were able to make technological advances that helped them attract millions of dollars in private investment capital. The project focused on four primary areas of solar manufacturing: Solar cells and modules Manufacturing processes Systems integration System components. Solar Cells and Modules Advances in solar cells and modules were made that significantly reduced

406

Building embedded systems with embedded DSLs  

Science Journals Connector (OSTI)

We report on our experiences in synthesizing a fully-featured autopilot from embedded domain-specific languages (EDSLs) hosted in Haskell. The autopilot is approximately 50k lines of C code generated from 10k lines of EDSL code and includes control laws, ... Keywords: embedded domain specific languages, embedded systems

Patrick C. Hickey, Lee Pike, Trevor Elliott, James Bielman, John Launchbury

2014-08-01T23:59:59.000Z

407

A toolkit for building earth system models  

SciTech Connect

An earth system model is a computer code designed to simulate the interrelated processes that determine the earth's weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

Foster, I.

1993-03-01T23:59:59.000Z

408

A toolkit for building earth system models  

SciTech Connect

An earth system model is a computer code designed to simulate the interrelated processes that determine the earth`s weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

Foster, I.

1993-03-01T23:59:59.000Z

409

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

SciTech Connect

This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

Wetter, Michael

2010-08-22T23:59:59.000Z

410

Energy-Efficient Building HVAC Control Using Hybrid System LBMPC  

E-Print Network (OSTI)

Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

2012-01-01T23:59:59.000Z

411

Life Cycle Assessment of novel Building Integrated Concentrating Photovoltaic systems through environmental and energy evaluations.  

E-Print Network (OSTI)

??La realització d'estudis de LCA per a sistemes fotovoltaics és una eina essencial per mesurar el seu nivell de sostenibilitat En aquest sentit, i després… (more)

Menoufi, Karim Ali Ibrahim

2014-01-01T23:59:59.000Z

412

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network (OSTI)

inputs. The idea of modeling building thermal behavior usingThe detail of building thermal modeling is pre- sented in [Modeling and optimal control algorithm design for hvac systems in energy efficient buildings,’’

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

413

Architectural Building Blocks for Plug-and-Play System Design  

E-Print Network (OSTI)

Architectural Building Blocks for Plug-and-Play System Design Shangzhu Wang, George S. Avrunin semantics. Our approach is also integrated with design-time verification to provide feedback about with each other. Given the com- plexity of the behavior that is being described and the large design space

Avrunin, George S.

414

Justification to remove 333 Building fire suppression system  

SciTech Connect

Justification to remove the 333 Building fire suppression system is provided. The Maximum Possible Fire Loss (MPFL) is provided (approximately $800K), potential radiological and toxicological impacts from a postulated fire are discussed, Life Safety Code issues are addressed, and coordination with the Hanford Fire Department is assured.

Benecke, M.W.

1995-12-04T23:59:59.000Z

415

HVAC & Building Management Control System Energy Efficiency Replacements  

SciTech Connect

The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

Hernandez, Adriana

2012-09-21T23:59:59.000Z

416

Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids  

SciTech Connect

The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

Jennings, W.; Green, J.

2001-01-01T23:59:59.000Z

417

Plug-and-Play Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

On December 7, 2012, DOE announced $21 million in funding for the Plug-and-Play Photovoltaics funding opportunity. Part of the SunShot Systems Integration efforts, the following projects were...

418

Integrated Energy Systems (IES) for Buildings: A Market Assessment  

SciTech Connect

Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.

LeMar, P.

2002-10-29T23:59:59.000Z

419

Integrating fuel cell power systems into building physical plants  

SciTech Connect

This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

1996-12-31T23:59:59.000Z

420

Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $9,000 on average Projected Energy Savings: 10.2% heating savings Chicago's older multifamily housing stock is primarily heated by centrally metered steam or hydronic systems. Often, significant temperature differentials

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

Canada: International Building Perfor- mance SimulationExternal coupling between building energy simulation andexternal coupling of building energy and air ow modeling

Trcka, Marija

2010-01-01T23:59:59.000Z

422

Build, Own, Operate and Maintain (BOOM) Boiler Systems  

E-Print Network (OSTI)

Build, Own, Operate and Maintain (BOOM) Boiler Systems Tom Henry, Annstrong Service, Inc. Overview: The article addresses the growing trend in outsourcing boiler equipment, installation, operation, maintenance and ownership by large.... In most cases, thennal, electric and air energy systems are not considered "core" assets resulting in the need to find "other" solutions to providing the needed energy. ? Reduced staffing has resulted in fewer experienced and knowledgeable boiler...

Henry, T.

423

Energy Signal Tool for Decision Support in Building Energy Systems  

SciTech Connect

A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

2014-12-01T23:59:59.000Z

424

Dazhan Photovoltaic Co | Open Energy Information  

Open Energy Info (EERE)

City, Zhejiang Province, China Sector: Solar Product: China-based solar energy cell and LED automatic lighting systems manufacturer. References: Dazhan Photovoltaic Co1 This...

425

NREL: Photovoltaics Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's...

426

Reliability Assessment of Fault-Tolerant Dc-Dc Converters for Photovoltaic Applications  

E-Print Network (OSTI)

Reliability Assessment of Fault-Tolerant Dc-Dc Converters for Photovoltaic Applications Sairaj V in photovoltaic energy processing applications is presented. The proposed approach acknowledges the influence through several case studies. Index Terms-- Markov reliability modeling, photovoltaic systems, power

Liberzon, Daniel

427

Integrating Photovoltaic Inverter Reliability into Energy Yield Estimation with Markov Models  

E-Print Network (OSTI)

Integrating Photovoltaic Inverter Reliability into Energy Yield Estimation with Markov Models of the inverters. Keywords-Photovoltaic energy conversion, Markov reliability models, utility-interactive inverters, energy yield estimation. I. INTRODUCTION Photovoltaic systems have gained prominence as economically

Liberzon, Daniel

428

Building.  

NLE Websites -- All DOE Office Websites (Extended Search)

System ITER LHD Magnetic Confinement Neutral Beam Plasma Confinement Systems Primary Heat Transfer System Remote Handling Systems Shield Module Steady-State (Tokamak) Reactor...

429

The Study on Building of Virtual Reality System in Large Surface Coal Mine  

Science Journals Connector (OSTI)

The building of virtual reality system for the opencast mine is a complicated and systemic project. The building process of virtual system includes data collection, GIS geodabase, model designing and raster te...

Baoying Ye; Nisha Bao; Zhongke Bai

2011-01-01T23:59:59.000Z

430

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

431

NREL: Learning - Photovoltaics for Small Business  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics for Small Business Photovoltaics for Small Business Photo of a factory with a photovoltaic system. This furniture factory in Massachusetts uses a photovoltaic system to generate its own electricity. The following resources will help your small business install a photovoltaic (PV) system. If you are unfamiliar with PV systems, see the introduction to PV. Resources American Solar Energy Society Provides consumers with information about solar energy and resources. Database of State Incentives for Renewables and Efficiency Provides information on state, local, utility, and selected federal incentives that promote renewable energy. Florida Solar Energy Center The Florida Solar Energy Center provides basic information on photovoltaics for consumers. Own Your Power! A Consumer Guide to Solar Electricity

432

Supporting Photovoltaics in Market-Rate Residential New Construction: A Summary of Programmatic Experience to Date and Lessons Learned  

E-Print Network (OSTI)

Photovoltaic System and New York Energy Star- Labeled HomePhotovoltaic System and New York Energy Star- Labeled Homes Photovoltaic System and New York Energy Star-Labeled Home

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

433

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

SciTech Connect

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01T23:59:59.000Z

434

Small- and Medium-Size Building Automation and Control System Needs: Scoping Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small- and Medium-Size Building Automation and Control System Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 2, 2013 2 | Building Technologies Office eere.energy.gov Problem Statement * Less than 10% of the buildings have building automation systems (BAS) * Over 90% of buildings stock either: - small (<5,000 sf) or - medium-sized (between 5,000 sf and 50,000 sf)

435

Small- and Medium-Size Building Automation and Control System Needs: Scoping Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Small- and Medium-Size Building Automation and Control System Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 2, 2013 2 | Building Technologies Office eere.energy.gov Problem Statement * Less than 10% of the buildings have building automation systems (BAS) * Over 90% of buildings stock either: - small (<5,000 sf) or - medium-sized (between 5,000 sf and 50,000 sf)

436

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

437

Titan's New Build Attracts Magnetic Systems Research Impossible Until Now  

NLE Websites -- All DOE Office Websites (Extended Search)

Titan's New Build Attracts Magnetic Systems Research Impossible Until Now Titan's New Build Attracts Magnetic Systems Research Impossible Until Now November 01, 2013 Researchers using Titan are studying the behavior of magnetic systems by simulating nickel atoms as they reach their Curie temperature-the threshold between order (right) and disorder (left) when atoms spin into random magnetic directions of fluctuating magnetic strengths, causing the material to lose its magnetism. As simple as magnets seemed during school science lessons (opposites attract, likes repel), improving the performance of magnetic materials and creating new alloys is so complicated Markus Eisenbach, computational scientist at Oak Ridge National Laboratory, has been waiting for a computer that can perform as many as twenty quadrillion calculations per second to

438

Install renewable energy systems | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Install renewable energy systems Install renewable energy systems Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach Install renewable energy systems

439

SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Ballasted Flat Roof Innovative Ballasted Flat Roof Solar Photovoltaic Racking System to someone by E-mail Share SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Facebook Tweet about SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Twitter Bookmark SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Google Bookmark SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Delicious Rank SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Digg Find More places to share SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on AddThis.com... Concentrating Solar Power Photovoltaics

440

Performance of thermal distribution systems in large commercial buildings  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy, Office of BuildingEnergy Efficiency and Renewable Energy, Office of Building

Xu, T.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Photovoltaic Energy Program Overview Fiscal Year 1996  

SciTech Connect

Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

NONE

1997-05-01T23:59:59.000Z

442

Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm  

SciTech Connect

The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

Chao, R.M.; Ko, S.H.; Lin, I.H. [Department of Systems and Naval Mechatronics Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Pai, F.S. [Department of Electronic Engineering, National University of Tainan (China); Chang, C.C. [Department of Environment and Energy, National University of Tainan (China)

2009-12-15T23:59:59.000Z

443

Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint  

SciTech Connect

With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

Mather, B. A.; Kromer, M. A.; Casey, L.

2013-01-01T23:59:59.000Z

444

Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems  

SciTech Connect

A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

Xiao, Bailu [ORNL; Hang, Lijun [ORNL; Riley, Cameron [University of Tennessee, Knoxville (UTK); Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

2013-01-01T23:59:59.000Z

445

SunShot Initiative: Photovoltaics Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Research and Development to someone by E-mail Share SunShot Initiative: Photovoltaics Research and Development on Facebook Tweet about SunShot Initiative: Photovoltaics Research and Development on Twitter Bookmark SunShot Initiative: Photovoltaics Research and Development on Google Bookmark SunShot Initiative: Photovoltaics Research and Development on Delicious Rank SunShot Initiative: Photovoltaics Research and Development on Digg Find More places to share SunShot Initiative: Photovoltaics Research and Development on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Photovoltaics Research and Development

446

Technology & System Specifications | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

& System Specifications & System Specifications Activities Technology Solutions Teams Public Sector Teams Market Solutions Teams Technology & System Specifications The Better Buildings Alliance Technology Solutions Teams develop specifications for you to customize and use to obtain quotes for high-efficiency products and services. Collective support for these product and performance specifications demonstrates a market need to manufacturers and leads to greater product availability, higher quality, and more competitive pricing. Get started by clicking below. Available Specifications Sign your support for the Wireless Meter Challenge and review the specification The wireless meter challenge has been launched to catalyze the development of low cost metering solutions. Meters are an integral component of energy

447

Gaussian Process Modeling: Applications to Building Systems and Algorithmic  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaussian Process Modeling: Applications to Building Systems and Algorithmic Gaussian Process Modeling: Applications to Building Systems and Algorithmic Challenges Speaker(s): Victor M. Zavala Date: November 5, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette Michael Sohn We review applications and algorithmic challenges of Gaussian Process (GP) modeling. GP is a powerful and flexible uncertainty quantification and data analysis technique that enables the construction of complex models without the need to specify algebraic relationships between variables. This is done by working directly in the space of the kernel or covariance matrix. In addition, it derives from a Bayesian framework and, as such, it naturally provides predictive probability distributions. We describe how these features can be exploited in Measurement and Verification (M&V) tasks and

448

Annual measured performance of building-integrated solar energy systems in demonstration low-energy solar house  

Science Journals Connector (OSTI)

This paper presents the details of the output and efficiency of the annual performance of building-integrated solar energy systems for a solar water heating system and solar photovoltaic (PV) modules of a demonstration near-zero-energy solar house that was constructed on the campus of the Korea Institute of Energy Research. The thermal systems installed in the house were a solar water heating system with building-integrated solar collectors for water heating and for part of the space heating and a ground-coupled heat pump for space cooling and part of the space heating. Solar PV modules were installed on the roof of the house. The performance of these systems was monitored for more than 1 yr. The annual efficiencies of the building's integrated solar collectors and solar PV were 22.8% and 10.9% respectively. The total annual solar fraction of the solar heating system was 69.7% with an annual solar heat production of 248?kW h/m2. This paper also focuses on the efficiency of the house's solar storage based upon intentionally varied drainage of hot water from the storage tank. It was found that the thermal loss from the solar storage tank has a strong functional relationship with the thermal demand of the solar storage tank per unit volume. For example when the hot water consumption was reduced by half during September the thermal loss increased to more than 70% which would otherwise have been around 30%.

2014-01-01T23:59:59.000Z

449

A Data and Knowledge Management System for Intelligent Buildings  

E-Print Network (OSTI)

words: Intelligent building; Assessment; Methodology; Information system 1. INTRODUCTION It is the development and application of modern technologies in the areas of information, communication, materials, and machinery in the construction... Future, Vol.VIII-6-3 management of IBs. It is the authors? initiative to put forward an integrated methodology for lifecycle information management and knowledge utilization of IBs. The methodology will be described by using a novel prototype based...

Hong, J.; Chen, Z.; Li, H.; Xu, Q.

2006-01-01T23:59:59.000Z

450

FORTRAN M as a language for building earth system models  

SciTech Connect

FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

Foster, I.

1992-01-01T23:59:59.000Z

451

FORTRAN M as a language for building earth system models  

SciTech Connect

FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

Foster, I.

1992-12-31T23:59:59.000Z

452

NREL: Photovoltaics Research - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

success. The following events and meetings are of interest to partners of NREL Photovoltaics (PV) Research and the National Center for Photovoltaics (NCPV). Printable Version...

453

Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting  

Science Journals Connector (OSTI)

Abstract A battery storage dispatch strategy that optimizes demand charge reduction in real-time was developed and the discharge of battery storage devices in a grid-connected, combined photovoltaic-battery storage system (PV+ system) was simulated for a summer month, July 2012, and a winter month, November 2012, in an operational environment. The problem is formulated as a linear programming (LP; or linear optimization) routine and daily minimization of peak non-coincident demand is sought to evaluate the robustness, reliability, and consistency of the battery dispatch algorithm. The LP routine leverages solar power and load forecasts to establish a load demand target (i.e., a minimum threshold to which demand can be reduced using a photovoltaic (PV) array and battery array) that is adjusted throughout the day in response to forecast error. The LP routine perfectly minimizes demand charge but forecasts errors necessitate adjustments to the perfect dispatch schedule. The PV+ system consistently reduced non-coincident demand on a metered load that has an elevated diurnal (i.e., daytime) peak. The average reduction in peak demand on weekdays (days that contain the elevated load peak) was 25.6% in July and 20.5% in November. By itself, the PV array (excluding the battery array) reduced the peak demand on average 19.6% in July and 11.4% in November. PV alone cannot perfectly mitigate load spikes due to inherent variability; the inclusion of a storage device reduced the peak demand a further 6.0% in July and 9.3% in November. Circumstances affecting algorithm robustness and peak reduction reliability are discussed.

R. Hanna; J. Kleissl; A. Nottrott; M. Ferry

2014-01-01T23:59:59.000Z

454

Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China  

Science Journals Connector (OSTI)

The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

Jing Zhao; Yong Wu; Neng Zhu

2009-01-01T23:59:59.000Z

455

NREL: Learning - Photovoltaics for Electricity Providers  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics for Electricity Providers Photovoltaics for Electricity Providers Photo of a photovoltaic system in Virginia. This 15-kilowatt photovoltaic system in Virginia feeds clean energy into the utility grid that supplies the Pentagon with electricity. Utility companies can use the resources on this page to find out more about how utilities are using solar photovoltaics (PV) as well as information about designing solar energy programs. Research, Development and Deployment Utility Technical Engagement A central resource for utilities interested in designing solar energy programs and networking with other utilities with existing solar programs from the U.S. Department of Energy (DOE) Solar Program. NREL Photovoltaics Research A central resource for our nation's capabilities in PV, uniting diverse R&D

456

Design and Optimization of Control Strategies and Parameters by Building and System Simulation  

E-Print Network (OSTI)

temperatures have been tested and analyzed within simulation calculations. SIMULATION MODEL Building Model The part of the building considered for this study is modeled using the TRNSYS Type 56 multi-zone building model [3]. The model consists of 13... is integrated into the TRNSYS building model [4]. System Model The detailed model of the peripheric systems, the occupancy and load schedules of the building and the control strategies is built using the appropriate types from the model library of TRNSYS...

Baumann, O.

2003-01-01T23:59:59.000Z

457

Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009  

E-Print Network (OSTI)

Investigation of Photovoltaic Cost Trends in California.photovoltaic (PV) systems has increased, so too has the desire to track the installed costPhotovoltaic Power Systems. Figure 13. Comparison of Average Installed Costs (

Barbose, Galen

2011-01-01T23:59:59.000Z

458

Economic evaluation of small-scale photovoltaic hybrid systems for mini-grid applications in far north Cameroon  

Science Journals Connector (OSTI)

A comparison between photovoltaic hybrid systems (PVHS), standalone photovoltaic (PV) and standalone diesel generator options is performed using the net present value (NPV) technique. A typical village mini-grid energy demand of 7.08 kWh/day is considered in the computation of energy costs and breakeven grid distances. A first sensitivity analysis is conducted using remote diesel prices of 0.8 €/l, 0.98 €/l, 1.12 €/l, 1.28 €/l with a PV module cost of 7.5 €/Wp. A second sensitivity analysis is also done using PV module costs of 5.25 €/Wp, 6 €/Wp, 6.75 €/Wp, 7.5 €/Wp with a diesel price of 1.12 €/l. The energy cost for the diesel option was found to be 0.812 €/kWh at a diesel fuel price of 1.12 €/l. The sensitivity analyses showed that minimum energy costs were attained in PVHS at renewable energy fractions in the range 82.6–95.3%. In the second sensitivity analysis the energy costs and breakeven grid distances were found to be in the ranges 0.692–0.785 €/kWh and 5.1–5.9 km respectively. For a PV module cost of 5.25 €/Wp, the lowest energy cost for the PVHS option was 0.692 €/kWh at a final renewable energy fraction of 95.3% with the diesel generator hours being 37 h compared to 2075 h in the standalone diesel generator option. Consequently, a 30% reduction in custom duties and taxes on imported PV modules and sub-systems would increase the use of small-scale and climate friendly PV mini-grids in remote areas of far north Cameroon that have an annual insolation of at least 5.55 kWh/m2/day.

Nfah Eustace Mbaka; Ngundam John Mucho; Kenne Godpromesse

2010-01-01T23:59:59.000Z

459

In search for sustainable globally cost-effective energy efficient building solar system – Heat recovery assisted building integrated PV powered heat pump for air-conditioning, water heating and water saving  

Science Journals Connector (OSTI)

Abstract Obtained as a research result of conducted project, this paper presents an innovative, energy efficient multipurpose system for a sustainable globally cost-effective building's solar energy use and developed methodology for its dynamic analysis and optimization. The initial research and development goal was to create a cost-effective technical solution for replacing fossil fuel and electricity with solar energy for water heating for different purposes (for pools, sanitary water, washing) in one SPA. After successful realization of the initial goal, the study was proceeded and as a result, the created advanced system has been enriched with AC performance. The study success was based on understanding and combined measurements and by BPS made predictions of AC loads and solar radiation dynamics as well as on the determination of the synergetic relations between all relevant quantities. Further, by the performed BPS dynamic simulations for geographically spread buildings locations, it has been shown that the final result of the conducted scientific engineering R&D work has been the created system of confirmed prestigious to the sustainability relevant performance – globally cost-effective building integrated photovoltaic powered heat pump (HP), assisted by waste water heat recovery, for solar AC, water heating and saving.

Marija S. Todorovic; Jeong Tai Kim

2014-01-01T23:59:59.000Z

460

Comparison of Control Strategies for Energy Efficient Building HVAC Systems  

E-Print Network (OSTI)

transfer in rooms in the modelica buildings library. [18] A.Building models are first captured in Modelica [1]to leverage Modelica’s rich building component library and

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A Buildings Module for the Stochastic Energy Deployment System  

E-Print Network (OSTI)

F.W. Dodge 1991: Building Stock Database Methodology andEnd-Use Flow Maps for the Buildings Sector, D.B. Belzer,N ATIONAL L ABORATORY A Buildings Module for the Stochastic

Marnay, Chris

2008-01-01T23:59:59.000Z

462

Final Draft Building Automation Systems Design and Construction Standards October 3rd  

E-Print Network (OSTI)

Final Draft Building Automation Systems Design and Construction Standards October 3rd , 2013 1 Building Automation System Design and Construction Standards University of Rochester Utilities and Energy Automation Systems Design and Construction Standards October 3rd , 2013 2 University of Rochester Building

Portman, Douglas

463

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network (OSTI)

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

464

Innovative System and Method for Monitoring Energy Efficiency in Buildings  

Science Journals Connector (OSTI)

Improving energy efficiency (EE) in buildings may significantly reduce...@lisee, for achieving energy efficiency in buildings (households, officies, campus, data centers, etc. ... devices, locally estimating indo...

Grazia Fattoruso; Saverio De Vito; Ciro Di Palma; Girolamo Di Francia

2014-01-01T23:59:59.000Z

465

Nanostructured photovoltaics  

Science Journals Connector (OSTI)

Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III–V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the III–V quantum well superlattice and quantum dot solar cells, Si quantum dot tandem cells, nanostructure-enhanced dye-sensitized solar cells and nanopatterned organic solar cells. We thank all the authors and reviewers for their contribution to this special issue. Special thanks are due to the journal's Publisher, Dr Olivia Roche and the editorial and publishing staff for their help and support.

Lan Fu; H Hoe Tan; Chennupati Jagadish

2013-01-01T23:59:59.000Z

466

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy A B C D E F G H I L M N O P R S T U Z Tool Applications Free Recently Updated AEPS System Planning electrical system, renewable energy system, planning and design software, modeling, simulation, energy usage, system performance, financial analysis, solar, wind, hydro, behavior characteristics, usage profiles, generation load storage calculations, on-grid, off-grid, residential, commercial, system sizing, utility rate plans, rate comparison, utility costs, energy savings Software has been updated. Archelios PRO Photovoltaic simulation, 3D design, economics results BlueSol PV system sizing, PV system simulation, grid-connected PV systems, electrical components, shading, economic analysis. COMFIE energy performance, design, retrofit, residential buildings, commercial buildings, passive solar Software has been updated.

467

Small and Medium-Sized Building Automation and Control System Needs Scoping  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small and Medium-Sized Building Automation Small and Medium-Sized Building Automation and Control System Needs Scoping Study Small and Medium-Sized Building Automation and Control System Needs Scoping Study The U.S. Department of Energy (DOE) is currently conducting a scoping research study of small- and medium-sized building automation and control system needs. Project Description This project seeks to develop a scoping study to identify the building automation system needs-such as end-uses and systems to be controlled-and control capabilities for small- and medium-sized buildings. Researchers also plan to develop a case study to show that building controls for small- and medium-sized buildings can be cost-effective. The monitoring needs to ensure proper and persistent operations will also be identified.

468

Building Energy Optimization (BEopt) Software | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of BEopt-CA (Ex) that supports balanced integration of energy efficiency, demand response, and photovoltaics in the residential retrofit market. To help meet Building...

469

Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator  

SciTech Connect

In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R. [Universidade Federal de Uberlandia, Uberlandia-MG, CEP 38400-902 (Brazil)

2010-07-15T23:59:59.000Z

470

Building GHGs National Inventory Systems | Open Energy Information  

Open Energy Info (EERE)

GHGs National Inventory Systems GHGs National Inventory Systems Jump to: navigation, search Name Building GHGs National Inventory Systems - Capacity Development for National GHG´s Inventories in Non-Annex I Countries Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy, Greenhouse Gas Topics GHG inventory, Low emission development planning, -LEDS, -NAMA Resource Type Lessons learned/best practices References Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)[1] Program Overview The forthcoming climate regime will include a global mechanism called REDD - Reducing Emissions from Deforestation and Forest Degradation. Each developing country must draw up a Greenhouse Gas Inventory (GHG Inventory)

471

A Scenario-based Predictive Control Approach to Building HVAC Management Systems  

E-Print Network (OSTI)

A Scenario-based Predictive Control Approach to Building HVAC Management Systems Alessandra Parisio and Air Conditioning (HVAC) systems while minimizing the overall energy use. The strategy uses

Johansson, Karl Henrik

472

Building Scientific Workflows for Earth System Modelling with Windows Workflow Foundation  

E-Print Network (OSTI)

Building Scientific Workflows for Earth System Modelling with Windows Workflow Foundation Matthew J developed a framework for the composition, execution and management of integrated Earth system models

473

Building a Global Federation System for Climate Change Research: The Earth System Grid Center for Enabling  

E-Print Network (OSTI)

Building a Global Federation System for Climate Change Research: The Earth System Grid Center for Enabling Technologies (ESG-CET) The Earth System Grid Center for Enabling Technologies Team: R Ananthakrishnan1 , D E Bernholdt7,9 , S Bharathi8 , D Brown5 , M Chen7 , A L Chervenak8 , L Cinquini5 , R Drach3

Chervenak, Ann

474

Historic Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Building Renovations Historic Building Renovations Historic Building Renovations October 16, 2013 - 4:52pm Addthis Renewable Energy Options for Historical Building Renovations Photovoltaics (PV) Solar Water Heating Geothermal Heat Pumps Biomass Heating When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

475

Energy efficiency in public buildings through ICT based control and monitoring systems  

E-Print Network (OSTI)

Energy efficiency in public buildings through ICT based control and monitoring systems G, France Keywords: energy efficiency, existing public buildings, control strategies, dynamic simulations a project entitled "Smart Energy Efficient Middleware for Public Spaces" (SEEMPubS). The project addresses

Paris-Sud XI, Université de

476

EPA ENERGY STAR Webcast: ENERGY STAR and Green Building Rating Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

During this session, attendees will learn how to use EPA tools and resources to help meet requirements for green building rating systems such as the U.S. Green Building Council’s Leadership in...

477

Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008  

E-Print Network (OSTI)

Investigation of Photovoltaic Cost Trends in California,Investigation of Photovoltaic Cost Trends in California.photovoltaic (PV) systems have grown in number, so too has the desire to track the installed cost

Barbose, Galen L

2010-01-01T23:59:59.000Z

478

List of Energy Mgmt. Systems/Building Controls Incentives | Open Energy  

Open Energy Info (EERE)

Mgmt. Systems/Building Controls Incentives Mgmt. Systems/Building Controls Incentives Jump to: navigation, search The following contains the list of 261 Energy Mgmt. Systems/Building Controls Incentives. CSV (rows 1 - 261) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional

479

Performance and Analysis of Photovoltaic (PV)Technologies  

E-Print Network (OSTI)

Performance and Analysis of Photovoltaic (PV)Technologies at Selected Sites This report presents As part of Cooperative Agreement No. DE-EE0003507 Under Task 3.1: Photovoltaic Systems September 2014`i at Manoa #12;Performance and Analysis of Different Photovoltaic Technologies at Selected Sites Prepared

480

CMOS Photovoltaic-cell Layout Configurations for Harvesting Microsystems  

E-Print Network (OSTI)

CMOS Photovoltaic-cell Layout Configurations for Harvesting Microsystems Rajiv Damodaran Prabha, and radiation, photovoltaic (PV) systems are appealing options. Still, chip-sized CMOS PV cells produce only well in substrate cell are better. Index Terms--Ambient light energy, harvester, CMOS photovoltaic (PV

Rincon-Mora, Gabriel A.

Note: This page contains sample records for the topic "buildings photovoltaic systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Policy 30 (2002) 477499 Photovoltaic module quality in  

E-Print Network (OSTI)

Energy Policy 30 (2002) 477­499 Photovoltaic module quality in the Kenyan solar home systems market purchases of clean decentralized photovoltaic technologies. Small amorphous-silicon modules dominate. This article analyzes market failure associated with photovoltaic module quality in the Kenyan SHS market

Kammen, Daniel M.

482

NREL: Photovoltaics Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of Photovoltaic Solar Panels. Photo of Photovoltaic Solar Panels. Solar Installer Surveys DOE needs your input to reduce the "soft costs" of solar PV installations that impact your business. Complete the residential survey and commercial survey today! Photovoltaic (PV) research at the National Renewable Energy Laboratory (NREL) focuses on boosting solar cell conversion efficiencies, lowering the cost of solar cells, modules, and systems, and improving the reliability of PV components and systems. NREL's PV effort contributes to these goals through fundamental research, advanced materials and devices, and technology development. Our scientists are pursuing critical activities that will help to accomplish the goal of the U.S. Department of Energy's SunShot Initiative-to make large-scale solar energy systems cost-competitive with

483

Lawrence Livermore to build advanced laser system in Czech Republic  

NLE Websites -- All DOE Office Websites (Extended Search)

9-06 9-06 For immediate release: 09/17/2013 | NR-13-09-06 High Resolution Image The High Repetition-Rate Advanced Petawatt Laser System, or HAPLS, will be designed, developed, assembled and tested at Lawrence Livermore. It will be transferred to the ELI Beamlines facility in 2016, where it will be commissioned for use by the international scientific community. Lawrence Livermore to build advanced laser system in Czech Republic Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image Artist renderings of the ELI Beamlines facility, currently under construction in the Czech Republic. High Resolution Image A CAD image of the ELI-HAPLS laser. LIVERMORE, Calif. - Lawrence Livermore National Laboratory (LLNL), through Lawrence Livermore National Security LLC (LLNS), has been awarded more than

484

Photovoltaic Systems, the experience curve, and learning by doing : who is learning and what are they doing?  

E-Print Network (OSTI)

The photovoltaics industry has been growing at extraordinary rates over the past ten years as a result of increased government support for the technology. Yet supporting the technology is expensive and there is uncertainty ...

Colatat, Phech C

2009-01-01T23:59:59.000Z

485

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network (OSTI)

77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system,” in

Ghaffari, Azad

2013-01-01T23:59:59.000Z

486

Optimum wind- and photovoltaic-based stand-alone systems on the basis of life cycle energy analysis  

Science Journals Connector (OSTI)

The main aim of the specific research is the comparison of the energy pay-back period of optimum renewable energy sources (RES)-based configurations, meaning wind-battery and photovoltaic-battery stand-alone installations that may ensure the energy autonomy of a typical remote consumer under the condition of minimum life cycle (LC) energy content. In this context, energy autonomy is first ensured on the basis of an appropriate sizing methodology, while accordingly, by developing a calculation algorithm for the estimation of the LC energy content of such energy autonomous systems, minimum LC embodied energy configurations are eventually obtained. On top of that, three representative areas are examined so as to investigate the influence of the local wind and solar potential. According to the results, the sustainable character of both RES-based solutions is designated, especially when comparison with the conventional diesel-engine solution is carried out. On the other hand, the situation is inversed when comparing stand-alone and grid-connected RES systems of the same size, with significant contribution of the battery storage component being reflected.

J.K. Kaldellis; D. Zafirakis; V. Stavropoulou; El. Kaldelli

2012-01-01T23:59:59.000Z

487

Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge  

Science Journals Connector (OSTI)

Abstract In the present study, we model and analyse the performance of a dielectric based linear concentrating photovoltaic system using ray tracing and finite element methods. The results obtained are compared with the experiments. The system under study is a linear asymmetric CPC (Compound Parabolic Concentrator) designed to operate under extreme incident angles of 0° and 55° and have a geometrical concentration ratio of 2.8×. Initial experiments showed a maximum PR (power ratio) of 2.2 compared to a non concentrating counterpart. An improvement to this has been proposed and verified by adding a reflective film along the edges of the concentrator to capture the escaping rays and minimise optical losses. The addition of the reflective film changes the incoming distribution on the solar cell. Results show an increase of 16% in the average power output while using this reflective film. On including the thermal effects it was found that the overall benefit changes to about 6% while using a reflective film. Additionally, the effects of the non-uniformity of the incoming radiation are also analysed and reported for both the cases. It is found that adding the reflective film drops the maximum power at the output by only 0.5% due to the effect of non-uniformity.

Hasan Baig; Nabin Sarmah; Daniel Chemisana; Joan Rosell; Tapas K. Mallick

2014-01-01T23:59:59.000Z

488

Estimating potential photovoltaic yield with r.sun and the open source Geographical Resources Analysis Support System  

SciTech Connect

The package r.sun within the open source Geographical Resources Analysis Support System (GRASS) can be used to compute insolation including temporal and spatial variation of albedo and solar photovoltaic yield. A complete algorithm is presented covering the steps of data acquisition and preprocessing to post-simulation whereby candidate lands for incoming solar farms projects are identified. The optimal resolution to acquire reliable solar energy outputs to be integrated into PV system design software was determined to be 1 square km. A case study using the algorithm developed here was performed on a North American region encompassing fourteen counties in South-eastern Ontario. It was confirmed for the case study that Ontario has a large potential for solar electricity. This region is found to possess over 935,000 acres appropriate for solar farm development, which could provide 90 GW of PV. This is nearly 60% of Ontario's projected peak electricity demand in 2025. The algorithm developed and tested in this paper can be generalized to any region in the world in order to foster the most environmentally-responsible development of large-scale solar farms. (author)

Nguyen, H.T.; Pearce, J.M. [Department of Mechanical and Materials Engineering, Queen's University, 60 Union Street, Kingston, Ontario (Canada)

2010-05-15T23:59:59.000Z

489

A System for Energy Saving in Commercial and Organizational Buildings  

Science Journals Connector (OSTI)

Energy consumption in commercial and organizational buildings with ... these buildings in order to achieve a sustainable energy saving. The method provides a direct control to ... behavior that is essential for e...

Hamid Abdi; Michael Fielding; James Mullins…

2013-01-01T23:59:59.000Z

490

Improving Building Energy System Performance by Continuous Commissioning  

E-Print Network (OSTI)

data. The first buildings to undergo a continuous commissioning process were in the Texas LoanSTAR program [Liu, et al, 1994, Claridge, et al, 1994]. These buildings had been retrofitted with various energy efficiency improvements, and measured hourly...

Turner, W. D.; Liu, M.; Claridge, D. E.; Haberl, J. S.

1996-01-01T23:59:59.000Z

491

Sustainability Assessment of Residential Building Energy System in Belgrade  

E-Print Network (OSTI)

of harmful substances. Multi-criteria method is a basic tool for the sustainability assessment in metropolitan cities. The design of potential options is the first step in the evaluation of buildings. The selection of a number of residential buildings...

Vucicevic, B.; Bakic, V.; Jovanovic, M.; Turanjanin, V.

2010-01-01T23:59:59.000Z

492

Software for fault detection in HVAC systems in commercial buildings  

E-Print Network (OSTI)

The building sector of the United States currently consumes over 41% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Deshmukh, Suhrid Avinash

2014-01-01T23:59:59.000Z

493

Building America Case Study: Balancing Hydronic Systems in Multifamily...  

Energy Savers (EERE)

The buildings become under- and over- heated, which causes tenant discomfort and higher energy use intensity. In this project, the U.S. Department of Energy Building America team...

494

Daylighting control systems : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

control systems control systems Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Daylighting control systems Lighting energy savings were greater in zones daylit bilaterally from both the southwest and northwest facades, typically 50-60% at 11 feet from the windows and 25-40% at 14-25 feet from the façade. Total illuminance was maintained in all lighting zones to within -10% of the setpoint for 95-100% of the day throughout most of the nine-month monitored period. Daylight "harvesting" strategies are implemented using daylighting control systems that dim the electric lighting in response to interior daylight levels. For commercial applications, the light output of fluorescent lamps (T5 or T8) are varied by using electronic dimming ballasts. Photosensors, typically mounted in the ceiling, are used to measure the quantity of daylight in the space then determine the amount of dimming required to maintain the design work plane illuminance level. If daylight levels are more than adequate, the electric lights can be shut off. Simulation studies indicate that annual energy use and peak demand can be reduced by 20-30% compared to a non-daylit building. These technological solutions are increasingly becoming one of the key means to achieving compliance with stringent energy-efficiency standards and achieving LEED ratings for sustainable design.

495

Basic photovoltaic principles and methods  

SciTech Connect

This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

Hersch, P.; Zweibel, K.

1982-02-01T23:59:59.000Z

496

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics (Redirected from Photovoltaic) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

497

NREL: Learning - Photovoltaics for Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Homes Homes Photo of solar panels on the roof of a traditional looking home in Colorado. Photovoltaic solar panels installed on the roof of a home in Boulder, Colorado. The following resources will help you install a photovoltaic (PV) system on your home. If you are unfamiliar with PV systems, see the introduction to PV. Resources American Solar Energy Society Provides consumers with information about solar energy and resources. Database of State Incentives for Renewables and Efficiency Provides information on state, local, utility, and selected federal incentives that promote renewable energy. Florida Solar Energy Center Provides basic information on photovoltaics for consumers. Own Your Power! A Consumer G