Powered by Deep Web Technologies
Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

2

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

3

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

4

High Performance Buildings Database  

DOE Data Explorer (OSTI)

The High Performance Buildings Database is a shared resource for the building industry. The Database, developed by the U.S. Department of Energy and the National Renewable Energy Laboratory (NREL), is a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The Database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses.

The Database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site. Early partners using the database include:

  • The Federal Energy Management Program
  • The U.S. Green Building Council
  • The American Institute of Architects' Committee on the Environment
  • The Massachusetts Technology Collaborative
  • Efficiency Vermont
    • Copied (then edited) from http://eere.buildinggreen.com/partnering.cfm

5

Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical...

6

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

7

Buildings Performance Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings » Buildings Performance Database Buildings » Buildings Performance Database Buildings Performance Database The Buildings Performance Database (BPD) unlocks the power of building energy performance data. The platform enables users to perform statistical analysis on an anonymous dataset of tens of thousands of commercial and residential buildings from across the country. Users can compare performance trends among similar buildings to identify and prioritize cost-saving energy efficiency improvements and assess the range of likely savings from these improvements. Access BPD Contact Us Key Features The BPD contains actual data on tens of thousands of existing buildings -- not modeled data or anecdotal evidence. The BPD enables statistical analysis without revealing information about individual buildings.

8

Buildings Performance Database | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database Buildings Performance Database Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV Source Department of Energy's Buildings Performance Database Date Released July 09th, 2012 (2 years ago) Date Updated Unknown Keywords Buildings Performance Database Dayton Electricity Gainesville Natural Gas open data Residential Data application/zip icon BPD Dayton and Gainesville Residential csv files in a zip file (zip, 2.8 MiB) text/csv icon BPD Dayton and Gainesville Residential Building Characteristics data (csv, 1.4 MiB) text/csv icon BPD Dayton and Gainesville Residential data headers (csv, 5.8 KiB)

9

High Performance Buildings Database | Open Energy Information  

Open Energy Info (EERE)

High Performance Buildings Database High Performance Buildings Database Jump to: navigation, search The High Performance Buildings Database (HPBD), developed by the United States Department of Energy and the National Renewable Energy Laboratory, is "a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad."[1] Map of HPBD entries Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"-","intro":"","outro":"","searchlabel":"\u2026

10

DOE Buildings Performance Database, sample Residential data ...  

Open Energy Info (EERE)

18px" classApple-style-span>The Buildings PerformanceDatabase will havean API that allows access to the statistics about the data without exposing private...

11

Frequently Asked Questions About the Buildings Performance Database |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Commercial Buildings » Buildings Performance Database » Frequently Asked Questions About the Buildings Performance Database Frequently Asked Questions About the Buildings Performance Database On this page you will find answers to frequently asked questions pertaining to the DOE Buildings Performance Database (BPD). General What is the purpose of the BPD? What building energy performance data is included in the BPD? Access Information How can I access the database? How can I contribute data to the BPD? Database and Analysis Information What kinds of buildings does the BPD have? What are the data sources that populate the BPD? Does the BPD have time series data? How do you ensure that the data from these multiple sources is consistent and valid? What data format does the BPD utilize?

12

DOE Buildings Performance Database, sample Residential data | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database, sample Residential data Buildings Performance Database, sample Residential data Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV The Buildings Performance Database will have an API that allows access to the statistics about the data without exposing private information about individual buildings. The data available in this sample is limited due to the nature of the original datasets; the Buildings Performance database combines data from multiple sources to improve overall robustness. Data fields stored in the database can be seen in the BPD taxonomy: http://www1.eere.energy.gov/buildings/buildingsperformance/taxonomy.html

13

Buildings Performance Database Analysis Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Buildings Commercial Buildings » Buildings Performance Database » Buildings Performance Database Analysis Tools Buildings Performance Database Analysis Tools The Buildings Performance Database will offer four analysis tools for exploring building data and forecasting financial and energy savings: a Peer Group Tool, a Retrofit Analysis Tool, a Data Table Tool, and a Financial Forecasting Tool. Available now: Peer Group Tool The Peer Group Tool allows users to peruse the BPD, define peer groups, and analyze their performance. Users can create Peer Groups by filtering the dataset based on parameters such as building type, location, floor area, age, occupancy, and system characteristics such as lighting and HVAC type. The graphs show the energy performance distribution of those

14

About the Buildings Performance Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » About the Commercial Buildings » Buildings Performance Database » About the Buildings Performance Database About the Buildings Performance Database "Upgrading the energy efficiency of America's buildings is one of the fastest, easiest, and cheapest ways to save money, cut down on harmful pollution, and create good jobs right now." -President Obama Open data has fueled entrepreneurship and transformed fields such as weather, GPS and health. Yet in the energy efficiency market, one of the primary challenges is the lack of empirical data demonstrating the relationship between building characteristics and energy performance. Rigorous performance risk assessments of potential energy efficiency measures could support better decision-making among building owners and

15

Building Technologies Office: Life Cycle Inventory Database  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Inventory Database to someone by E-mail Share Building Technologies Office: Life Cycle Inventory Database on Facebook Tweet about Building Technologies Office: Life...

16

Building Technologies Office: Performance Metrics Tiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Metrics Performance Metrics Tiers to someone by E-mail Share Building Technologies Office: Performance Metrics Tiers on Facebook Tweet about Building Technologies Office: Performance Metrics Tiers on Twitter Bookmark Building Technologies Office: Performance Metrics Tiers on Google Bookmark Building Technologies Office: Performance Metrics Tiers on Delicious Rank Building Technologies Office: Performance Metrics Tiers on Digg Find More places to share Building Technologies Office: Performance Metrics Tiers on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

17

Database Supported Bacnet Data Acquisition System for Building Energy Diagnostics  

E-Print Network (OSTI)

This paper reports a tool that can be used to acquire and store the BACnet (A Data Communication Protocol for Building Automation and Control Networks) data for the purpose of building energy system Fault Detection and Diagnostics (FDD). Building Automation Control (BAC) systems have become a common practice in recently constructed buildings in the United States. Although building operational data could readily be collected for various analysis purposes, there is still a debate in building community which or what FDD method is better in terms of performance matrix, such as false alarm rate and training data requirement, etc. Therefore, from the user's perspective, it is potentially beneficial to try out different FDD methods before the deployment, or even develop a dedicated FDD method in a specific case. This is the motivation for development of the BACnet data storage system discussed in this paper, which could then be used together with BACnet data acquisition module in an open source Building Control Virtual Test Bed (BCVTB) environment [2]. This paper discusses (1) Relational database schema development for the purpose of storing building operational data and FDD analysis data (2) Development of the connector in BCVTB that enables the transition from the BACnet module to the database module and (3)Testing of the integrated system in a real building. The relational database is intended to be general and detailed enough so that it can be applied to different buildings and projects with various complexity without any major structure change. The BACnet-reader to database connector enables seamless data flow from commercial BACnet system to user's customized workstation. The integrated system enables users to analyze building operational data in an effective and efficient way, which helps achieve automated FDD in buildings.

Li, Z.; Augenbroe, G.

2011-01-01T23:59:59.000Z

18

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings  

E-Print Network (OSTI)

available from authors. DOE EERE. High Performance BuildingsProgram: Building Database. DOE EERE; August Available from:buildings/database/. DOE EERE. State Energy Alternatives:

Selkowitz, Stephen

2008-01-01T23:59:59.000Z

19

Communicating Building Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Communicating Building Energy Performance Communicating Building Energy Performance Speaker(s): William Bordass Date: August 26, 2008 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Paul Mathew The heightened interest in building energy performance has exposed problems with reporting and benchmarking. Established conventions may no longer suit current needs, and new complications are emerging as national and corporate reporting (e.g. for carbon accounting and trading) begin to impact on the certification and labelling of building energy performance. If we are to achieve genuinely low-energy and carbon buildings, we need to get much better at reporting and benchmarking our intentions and outcomes, and particularly making performance visible and communicating it to all the people concerned. In design, this could help us to reduce the persistent

20

Buildings Performance Metrics Terminology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Commercial Building Initiative Page 1 Energy's Commercial Building Initiative Page 1 January 2009 Buildings Performance Metrics Terminology To clarify how the terms are used in the Department of Energy's Performance Metrics Research Project, a list of terms related to performance metrics are defined and include examples and comments. Visit www.commercialbuildings.energy.gov/performance_metrics.html to learn more. Baseline - a standard reference case used as a basis for comparison Examples: a simulation model of an ASHRAE 90.1 compliant building, control building, measurement of energy consumption prior to application of an energy conservation measure Comments: Establishing a clearly defined baseline very important and is often the most difficult task. Defining a repeatable baseline is essential if the work is to be compared to results of other

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Performance Sustainable Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

become a High Performance Sustainable Building in 2013. On the former County landfill, a photovoltaic array field uses solar energy to provide power for Los Alamos County and the...

22

Building a database of 3D scenes from user annotations  

E-Print Network (OSTI)

In this paper, we wish to build a high quality database of images depicting scenes, along with their real-world three-dimensional (3D) coordinates. Such a database is useful for a variety of applications, including training ...

Russell, Bryan C.

23

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecasts cash flows for energy efficiency projects. Application Programming Interface (API). Allows external software to conduct analysis of the BPD data. Get Involved Receive...

24

High Performance and Sustainable Buildings Guidance | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance More Documents &...

25

Performance Metrics for Commercial Buildings  

SciTech Connect

Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

2010-09-30T23:59:59.000Z

26

Development of a California commercial building benchmarking database  

SciTech Connect

Building energy benchmarking is a useful starting point for commercial building owners and operators to target energy savings opportunities. There are a number of tools and methods for benchmarking energy use. Benchmarking based on regional data can provides more relevant information for California buildings than national tools such as Energy Star. This paper discusses issues related to benchmarking commercial building energy use and the development of Cal-Arch, a building energy benchmarking database for California. Currently Cal-Arch uses existing survey data from California's Commercial End Use Survey (CEUS), a largely underutilized wealth of information collected by California's major utilities. Doe's Commercial Building Energy Consumption Survey (CBECS) is used by a similar tool, Arch, and by a number of other benchmarking tools. Future versions of Arch/Cal-Arch will utilize additional data sources including modeled data and individual buildings to expand the database.

Kinney, Satkartar; Piette, Mary Ann

2002-05-17T23:59:59.000Z

27

High Performance Buildings - Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

... Buildings - Alternative/Renewable Energy. High Performance Buildings - Alternative/Renewable Energy Information at NIST. ...

2010-09-23T23:59:59.000Z

28

Building Energy Efficiency Policies (BEEP) Database | Open Energy  

Open Energy Info (EERE)

Building Energy Efficiency Policies (BEEP) Database Building Energy Efficiency Policies (BEEP) Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Energy Efficiency Policies (BEEP) Database Focus Area: Energy Efficiency Topics: Best Practices Website: www.sustainablebuildingscentre.org/pages/beep Equivalent URI: cleanenergysolutions.org/content/building-energy-efficiency-policies-b Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: "Building Certification,Building Codes,Enabling Legislation,Energy Standards,Incandescent Phase-Out" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

29

INL High Performance Building Strategy  

SciTech Connect

High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nations premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, Federal Leadership in Environmental, Energy, and Economic Performance [2009], EO 13423, Strengthening Federal Environmental, Energy, and Transportation Management [2007], and DOE Order 430.2B, Departmental Energy, Renewable Energy, and Transportation Management [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design (LEED) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.

Jennifer D. Morton

2010-02-01T23:59:59.000Z

30

Energy Performance Certificate Non-Domestic Building  

U.S. Energy Information Administration (EIA)

66 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

31

Action-Oriented Benchmarking: Using the CEUS Database to Benchmark Commercial Buildings in California  

E-Print Network (OSTI)

Using the CEUS Database to Benchmark Commercial Buildings infeatures allow users to benchmark the presence or absencefor Required Building Data Benchmark Applicable Metrics &

Mathew, Paul

2008-01-01T23:59:59.000Z

32

Benchmarking Building Performance & the Australian Building Greenhouse  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Building Performance & the Australian Building Greenhouse Benchmarking Building Performance & the Australian Building Greenhouse Rating Scheme Speaker(s): Paul Bannister Date: August 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Stephen Selkowitz (Two topics): Benchmarking Building Performance: In a variety of voluntary and regulatory initiatives around the globe, including the introduction of the European Building Performance Directive, the question of how to assess the performance of commercial buildings has become a critical issue. There are presently a number of initiatives for the assessment of actual building performance internationally, including in particular US Energy Star Buildings rating tools and the Australian Building Greenhouse Rating scheme. These schemes seek to assess building energy performance on the

33

Building Energy Software Tools Directory: Building Performance Compass  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance Compass Building Performance Compass Building Performance Compass logo Building Performance Compass analyzes commercial and multi-family building energy use patterns in a simple, easy-to-use Web-based interface. Using building details and energy data from the building’s utility bills, it is unique in its ability to benchmark and compare all buildings, whether residential or commercial. Recent enhancements to Building Performance Compass include new multi-family support, the ability to track non-energy quantities such as water and waste, and features such as its fast-feedback report, which enables reporting energy savings as early as one month after work is completed. Building Performance Compass also provides extensive tracking of building data and usage, as well as the ability to upload and track

34

Building Distributed Energy Performance Optimization for China...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization...

35

Building Technologies Office: High Performance Windows Volume...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Office: High Performance Windows Volume Purchase to someone by E-mail Share Building Technologies Office: High Performance Windows Volume Purchase on Facebook...

36

Improving Building Performance at Urban Scale with a Framework for  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance at Urban Scale with a Framework for Building Performance at Urban Scale with a Framework for Real-time Data Sharing Title Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing Publication Type Conference Proceedings LBNL Report Number LBNL-6303E Year of Publication 2013 Authors Pang, Xiufeng, Tianzhen Hong, and Mary Ann Piette Date Published 05/2013 Keywords building performance, energy efficiency, energy modeling, optimal operation, urban scale. Abstract This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.

37

Building Technologies Office: Commercial Building Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

38

Building Technologies Office: About the Buildings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

39

Building Technologies Office: High Performance Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

40

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most  

E-Print Network (OSTI)

A new database of residential building measures and estimated costs helps the U.S. building at the National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures with using various measures to improve the efficiency of residential buildings. This database offers

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High-Performance Building Requirements for State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

42

Wynkoop Building Performance Measurement: Water  

SciTech Connect

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (< 30 psi) is less than half the pressure on the 7th floor (>80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

43

Wynkoop Building Performance Measurement: Water  

Science Conference Proceedings (OSTI)

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

44

Building Technologies Office: Diagnostic Measurement and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic Measurement and Performance Feedback for Residential Space Conditioning Equipment Expert Meeting Building America hosted the "Diagnostic Measurement and Performance...

45

Building Energy Performance Certificate. Asset Rating.  

U.S. Energy Information Administration (EIA)

Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA029636 Keywords: Energy Performance Certificate ...

46

Building America Top Innovations Hall of Fame Profile … National Residential Efficiency Measures Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robust cost data for energy-efficiency Robust cost data for energy-efficiency measures provide an essential framework for transforming the housing industry to high-performance homes. These data allow for effective optimization capabilities to guide builders, researchers, HERS raters, contractors, and designers. Researchers at the U.S. Department of Energy (DOE)'s National Renewable Energy Laboratory (NREL) have developed a public database that characterizes the performance and costs of common residential energy-efficiency measures. The database, called the National Residential Efficiency Measures Database, can be found at www.buildingamerica.gov. The data are available for use in software programs that evaluate cost-effective measures to improve the energy efficiency of new and existing residential buildings.

47

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Global Superior Energy Performance Partnership to someone by E-mail Share Building Technologies Office: Global Superior Energy Performance Partnership on Facebook Tweet about Building Technologies Office: Global Superior Energy Performance Partnership on Twitter Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Google Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Delicious Rank Building Technologies Office: Global Superior Energy Performance Partnership on Digg Find More places to share Building Technologies Office: Global Superior Energy Performance Partnership on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

48

NIST BUILDING SCIENCE SERIES 180 Database-Assisted Design for Wind  

E-Print Network (OSTI)

framework for analysis and design of buildings for wind loads that makes direct use of pressure timeNIST BUILDING SCIENCE SERIES 180 Database-Assisted Design for Wind: Concepts, Software Database-Assisted Design for Wind: Concepts, Software, and Examples for Rigid and Flexible Buildings Joseph

Magee, Joseph W.

49

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

50

High Performance Building Standards in State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Oklahoma Program Type Energy Standards for Public Buildings Provider Oklahoma Department of Central Services In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification program for state construction and renovation projects. The standard, which

51

High-performance commercial building systems  

E-Print Network (OSTI)

HVAC engineers and operators to optimize energy performance of buildings; and Develop simulation-based test and optimization

Selkowitz, Stephen

2003-01-01T23:59:59.000Z

52

Whole Building Performance-Based Procurement Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole Building Performance-Based Whole Building Performance-Based Procurement Training TDM - Shalon Brown (BTO) Shanti Pless National Renewable Energy Laboratory Shanti.Pless@nrel.gov 303-384-6365 April 4, 2013 2 | Building Technologies Office eere.energy.gov Project Definition Replicating NREL/DOE procurement process successes in reaching 50% building energy savings at typical construction costs, by: - Creating a how-to guide that outlines the entire acquisition process, including: setting a building energy requirement, project

53

Buildings Performance Metrics Terminology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Terminology Buildings Performance Metrics Terminology This document provides the terms and definitions used in the Department of Energys Performance Metrics Research...

54

Development of a California commercial building benchmarking database  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology, State andand Renewable Energy, Office of Building Technology, State and

Kinney, Satkartar; Piette, Mary Ann

2002-01-01T23:59:59.000Z

55

Building Technologies Office: Frequently Asked Questions About the  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Frequently Asked Questions About the Buildings Performance Database to someone by E-mail Share Building Technologies Office: Frequently Asked Questions About the Buildings Performance Database on Facebook Tweet about Building Technologies Office: Frequently Asked Questions About the Buildings Performance Database on Twitter Bookmark Building Technologies Office: Frequently Asked Questions About the Buildings Performance Database on Google Bookmark Building Technologies Office: Frequently Asked Questions About the Buildings Performance Database on Delicious Rank Building Technologies Office: Frequently Asked Questions About the Buildings Performance Database on Digg Find More places to share Building Technologies Office: Frequently Asked Questions About the Buildings Performance Database on AddThis.com...

56

Data Visualization for Quality-Check Purposes of Monitored Electricity Consumption in All Office Buildings in the ESL Database  

E-Print Network (OSTI)

This report comprises an effort to visualize the monitored electricity consumption in all office buildings (not including the office buildings comprising other functions as classrooms and laboratories, for instance) in the ESL database. This data visualization, basically long-term and short-term time series plots serves as a preliminary quality check of the data available. A preliminary inspection of the data was performed, by viewing the channels to provide a clear identification of creep, missing data gaps, turned-off periods, and sudden big changes that suggest changes in the building operation or an addition to the building.

Sreshthaputra, A.; Abushakra, B.; Haberl, J. S.; Claridge, D. E.

2000-01-01T23:59:59.000Z

57

High Performance Building Faade Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

systems that enable reliable, routine, and cost-effective reductions in energy use and peak demand at the perimeter zone in commercial buildings with both commercially available...

58

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

59

Better Buildings Alliance Equipment Performance Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

60

Project materials [Commercial High Performance Buildings Project  

Science Conference Proceedings (OSTI)

The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

None

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Improve building and plant performance | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

performance Through ENERGY STAR, EPA provides tools and resources to help you save money and reduce your carbon emissions by improving the energy efficiency of building and...

62

Building Technologies Office: Diagnostic Measurement and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic Measurement and Performance Feedback for Residential Space Conditioning Equipment Expert Meeting to someone by E-mail Share Building Technologies Office: Diagnostic...

63

Building Performance Monitoring, Control, and Information Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

are of critical importance in achieving optimal low-energy building performance. Advanced monitoring and control technologies with high energy saving potential are widely...

64

Related Links on High-Performance Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Below are related links to resources for incorporating energy efficiency and renewable energy into high-performance commercial and residential buildings.

65

Assuring Building Performance: Creating BLISS  

NLE Websites -- All DOE Office Websites (Extended Search)

life cycle. The initial focus will be on developing a chiller commissioning module. A new building on the UC Berkeley campus will provide a living laboratory for developing and...

66

Development of a California commercial building benchmarking database  

E-Print Network (OSTI)

benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings.

Kinney, Satkartar; Piette, Mary Ann

2002-01-01T23:59:59.000Z

67

Development of Energy Consumption Database Management System of Existing Large Public Buildings  

E-Print Network (OSTI)

The statistic data of energy consumption are the base of analyzing energy consumption. The scientific management method of energy consumption data and the development of database management system plays an important role in building energy conservation. At present, the large public buildings have been the emphasis of building energy conservation in China. The functions and the basic construction of energy consumption database management system (ECDBMS) for large public buildings are introduced. The ECDBMS is developed by using SQL Server 2000 as the database and PowerBuilder10.0 as the developing tool. It includes five parts such as the basic information of public buildings, the designing parameters of energy-consuming equipments, the operational parameters of energy-consuming equipments, the electric and fuel consumption of buildings, the evaluation of energy efficiency for equipments. The energy consumption database can be accumulated and some functions can be realized by using this database such as the management of building designing parameters and energy consumption data, the evaluation and analysis of building energy consumption.

Li, Y.; Zhang, J.; Sun, D.

2006-01-01T23:59:59.000Z

68

High Performance and Sustainable Buildings Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIGH PERFORMANCE and SUSTAINABLE BUILDINGS GUIDANCE Final (12/1/08) PURPOSE The Interagency Sustainability Working Group (ISWG), as a subcommittee of the Steering Committee established by Executive Order (E.O.) 13423, initiated development of the following guidance to assist agencies in meeting the high performance and sustainable buildings goals of E.O. 13423, section 2(f). 1 E.O. 13423, sec. 2(f) states "In implementing the policy set forth in section 1 of this order, the head of each agency shall: ensure that (i) new construction and major renovations of agency buildings comply with the Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings set forth in the Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding (2006)

69

Development of a California commercial building benchmarking database  

E-Print Network (OSTI)

Used to determine the climate zone. Floor Area. This is usedBuilding Activity, Climate Zone, and Floor Area. A number ofbuildings with. Climate Zone. The California Energy

Kinney, Satkartar; Piette, Mary Ann

2002-01-01T23:59:59.000Z

70

Commercial Building Partners Catalyze High Performance Buildings Across the Nation  

SciTech Connect

In 2008 the US Department of Energy (DOE) launched the Commercial Buildings Partnership (CBP) project to accelerate market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The CBP represents a unique collaboration between industry leaders and DOE to develop high performance buildings as a model for future construction and renovation. CBP was implemented in two stages. This paper focuses on lessons learned at Pacific Northwest National Laboratory (PNNL) in the first stage and discusses some partner insights from the second stage. In the first stage, PNNL and the National Renewable Energy Laboratory recruited CBP partners that own large portfolios of buildings. The labs provide assistance to the partners' design teams and make a business case for energy investments.

Baechler, Michael C.; Dillon, Heather E.; Bartlett, Rosemarie

2012-08-01T23:59:59.000Z

71

Improving Real World Efficiency of High Performance Buildings  

E-Print Network (OSTI)

Improving Real World Efficiency of High Performance Buildings Buildings End-Use Energy Efficiency Research www.energy.ca.gov/research/buildings February 2012 The Issue Highperformance buildings efficiency in highperformance buildings, however, are not always realized in practice. Addressing

72

High Performance Sustainable Building Design RM  

Energy.gov (U.S. Department of Energy (DOE))

The High Performance Sustainable Building Design (HPSBD) Review Module (RM) is a tool that assists the DOE federal project review teams in evaluating the technical sufficiency for projects that may...

73

Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance  

E-Print Network (OSTI)

and P. Price, 2009. Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

2011-01-01T23:59:59.000Z

74

Assessment of methods for creating a national building statistics database for atmospheric dispersion modeling  

SciTech Connect

Mesoscale meteorological codes and transport and dispersion models are increasingly being applied in urban areas. Representing urban terrain characteristics in these models is critical for accurate predictions of air flow, heating and cooling, and airborne contaminant concentrations in cities. A key component of urban terrain characterization is the description of building morphology (e.g., height, plan area, frontal area) and derived properties (e.g., roughness length). Methods to determine building morphological statistics range from manual field surveys to automated processing of digital building databases. In order to improve the quality and consistency of mesoscale meteorological and atmospheric dispersion modeling, a national dataset of building morphological statistics is needed. Currently, due to the expense and logistics of conducting detailed field surveys, building statistics have been derived for only small sections of a few cities. In most other cities, modeling projects rely on building statistics estimated using intuition and best guesses. There has been increasing emphasis in recent years to derive building statistics using digital building data or other data sources as a proxy for those data. Although there is a current expansion in public and private sector development of digital building data, at present there is insufficient data to derive a national building statistics database using automated analysis tools. Too many cities lack digital data on building footprints and heights and many of the cities having such data do so for only small areas. Due to the lack of sufficient digital building data, other datasets are used to estimate building statistics. Land use often serves as means to provide building statistics for a model domain, but the strength and consistency of the relationship between land use and building morphology is largely uncertain. In this paper, we investigate whether building statistics can be correlated to the underlying land use. If a reasonable correlation exists, then a national building statistics database could be created since land use is available for the entire U.S. Digital datasets of building footprint and height information have been obtained, validated and analyzed for eight western U.S. cities covering areas ranging from 6 km{sup 2} to 1653 km{sup 2}. Building morphological statistics (including mean and standard deviation of building height, plan area fraction and density, rooftop area density, frontal area index and density, building-to-plan area ratio, complete aspect ratio, height-to-width ratio, roughness length, displacement height, and sky view factor) have been computed for each city at 250-m resolution and are being correlated to underlying land use type. This paper will summarize the building statistics from the eight cites focusing on the variability within each city and between cities as a function of land use.

Velugubantla, S. P. (Srinivas, P.); Burian, S. J. (Steven J.); Brown, M. J. (Michael J.); McKinnon, A. T. (Andrew T.); McPherson, T. N. (Timothy N.); Han, W. S. (Woo Suk)

2004-01-01T23:59:59.000Z

75

Building America Roadmap to High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Name or Ancillary Text Program Name or Ancillary Text eere.energy.gov Building America Technical Update Meeting - April 29, 2013 Building America Roadmap to High Performance Homes Eric Werling Building America Coordinator Denver, CO April 29, 2013 Building Technology Office U.S. Department of Energy EERE's National Mission Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 2 | Building Technologies Office eere.energy.gov Why It Matters to America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation

76

High-Performance Building Requirements for State Buildings (South...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

77

Transformer Industry-wide Database: Equipment Performance and Failure Database Analysis - Status Update  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) Transformer Industry-Wide Database (IDB) is a collaborative effort to pool appropriate transformer operating and failure data in order to assemble a statistically valid population of many types of power transformers. Analysis of these data will provide information about transformer historical performance and models for projecting future performance that will be useful for aiding both asset management and maintenance managers. This report presents the curre...

2011-12-19T23:59:59.000Z

78

Object-Oriented Database for Managing Building Modeling Components and Metadata: Preprint  

SciTech Connect

Building simulation enables users to explore and evaluate multiple building designs. When tools for optimization, parametrics, and uncertainty analysis are combined with analysis engines, the sheer number of discrete simulation datasets makes it difficult to keep track of the inputs. The integrity of the input data is critical to designers, engineers, and researchers for code compliance, validation, and building commissioning long after the simulations are finished. This paper discusses an application that stores inputs needed for building energy modeling in a searchable, indexable, flexible, and scalable database to help address the problem of managing simulation input data.

Long, N.; Fleming, K.; Brackney, L.

2011-12-01T23:59:59.000Z

79

High-performance commercial building systems  

SciTech Connect

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC

Selkowitz, Stephen

2003-10-01T23:59:59.000Z

80

High-performance commercial building systems  

SciTech Connect

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

Selkowitz, Stephen

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Integrating advanced facades into high performance buildings  

SciTech Connect

Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability can also offer solutions to building owners where reliable access to the electric grid is a challenge, in both less-developed countries and in industrialized countries where electric generating capacity has not kept pace with growth. We find that when properly designed and executed as part of a complete building solution, advanced facades can provide solutions to many of these challenges in building design today.

Selkowitz, Stephen E.

2001-05-01T23:59:59.000Z

82

A Sensitivity Study of Building Performance Using 30-Year Actual...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Media Contacts A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual...

83

Federal Leadership in High Performance and Sustainable Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding Federal Leadership in High Performance and Sustainable Buildings Memorandum of...

84

Federal Leadership in High Performance and Sustainable Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership in High Performance and Sustainable Buildings Memorandum of Understanding Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding...

85

Memorandum of American High-Performance Buildings Coalition DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This...

86

A Survey on Database Performance in Virtualized Cloud Environments  

Science Conference Proceedings (OSTI)

Cloud Computing emerged as a major paradigm over the years. Major challenges it poses to computer science are related to latency, scale, and reliability issues. It leverages strong economical aspects and provides sound answers to questions like energy ... Keywords: Cloud Computing, Database Management Systems DBMS, Online Transaction Processing OLTP, Performance, Virtualization

Alejandro Buchmann; Todor Ivanov; Ilia Petrov

2012-07-01T23:59:59.000Z

87

Industry-wide Substation Equipment Performance and Failure Database - Enhancements  

Science Conference Proceedings (OSTI)

EPRIs Transformer Industrywide Database (IDB) is a collaborative effort to pool appropriate transformer operating and failure data in order to assemble a statistically valid population of many types of power transformers. Analysis of this data will provide information about transformer historical performance useful for aiding both asset management and maintenance management. This report presents the current status of the Transformer IDB development.

2009-12-23T23:59:59.000Z

88

High-performance commercial building facades  

SciTech Connect

This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

2002-06-01T23:59:59.000Z

89

High-performance commercial building facades  

SciTech Connect

This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

2002-06-01T23:59:59.000Z

90

Industry-Wide Substation Equipment Performance and Failure Database  

Science Conference Proceedings (OSTI)

The Electric Power Research Institutes (EPRIs) Transformer Industrywide Database (IDB) is a collaborative effort to pool appropriate transformer operating and failure data in order to assemble a statistically valid population of many types of power transformers. Analysis of these data will provide information about transformer historical performance and models for projecting future performance useful for aiding both asset management and maintenance managers. This report presents the current status of the...

2010-12-23T23:59:59.000Z

91

Modeling and visualization of lifecycle building performance assessment  

Science Conference Proceedings (OSTI)

Lifecycle building performance assessment (LBPA) ensures that buildings perform and operate as intended during building lifecycle. Such assessment activities are typically multi-phase and multi-disciplinary, and generate large amounts of information ...

Ipek Gursel; Sevil Sariyildiz; mer Akin; Rudi Stouffs

2009-10-01T23:59:59.000Z

92

Energy Performance Certification of Buildings: A Policy Tool to Improve  

Open Energy Info (EERE)

Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary Name: Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: www.iea.org/papers/pathways/buildings_certification.pdf Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Screenshot References: nergy Performance Certification of Buildings[1] Logo: Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency

93

Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database  

SciTech Connect

Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stock is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.

Loper, Susan A.; Sandusky, William F.

2010-12-31T23:59:59.000Z

94

Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database  

SciTech Connect

Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stock is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.

Loper, Susan A.; Sandusky, William F.

2010-12-31T23:59:59.000Z

95

Rating the energy performance of buildings  

SciTech Connect

In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-12-01T23:59:59.000Z

96

Commercial Building Performance Monitoring and Evaluation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Projects » Commercial Building Research Projects » Commercial Building Performance Monitoring and Evaluation Commercial Building Performance Monitoring and Evaluation The Building Technologies Office (BTO) uses performance metrics to standardize the measurement and characterization of energy performance in commercial buildings. These metrics help inform the effectiveness of energy efficiency measures in existing buildings and highlight opportunities to improve performance. Various tiers of metrics are available for different users. Performance Metrics Objectives Performance metrics deal with building energy consumption and on-site energy production. To be useful, industry must agree on standard definitions for these metrics and share consistent procedures for collecting and reporting data as well as ensuring data quality.

97

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New Construction and Major Renovations New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies along with other innovative strategies. Also see Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Performance-Based Design Build Typically, architects, engineers, and project managers consider the potential to build a high-performance building to be limited by the initial cost. A different approach-performance-based design build-makes high performance the priority, from start to finish. Contracts are developed that focus on both limiting construction costs and meeting performance targets. The approach is not a source of funding, but rather a strategy to make the most out of limited, appropriated, funds.

98

Rating the energy performance of buildings  

E-Print Network (OSTI)

Journal of Low Energy and Sustainable Buildings, 2004Journal of Low Energy and Sustainable Buildings, Vol. 3, (Journal of Low Energy and Sustainable Buildings, Vol. 2 pp.

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

99

Rating the energy performance of buildings  

E-Print Network (OSTI)

Energy and Sustainable Buildings, 2004 Available at http://Energy and Sustainable Buildings, Vol. 3, (2004), Olofsson,for a commercial office building in Melbourne, Australia,

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

100

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Performance Partnership Global Superior Energy Performance Partnership Graphic of Global Superior Energy Performance working groups, including energy management led by the United States, power led by Japan, combined heat and power led by Finland, steel led by Japan, cool roofs led by the United states, and cement led by Japan. GSEP, a multi-country effort to create and coordinate nationally accredited energy performance certification programs, comprises a number of working groups. Credit: DOE The U.S. Department of Energy (DOE) supports the Superior Energy Performance (SEP) program, which provides industrial facilities and commercial buildings a framework for achieving continual improvement in energy efficiency while maintaining market competitiveness. SEP aims to provide a transparent, globally accepted system for energy management and continuous energy performance improvement.

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Most Cited Papers, Journal of Building Performance Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Most Cited Papers, Journal of Building Performance Simulation September 18, 2013 Michael Wetter The Department of Energy-funded scientific paper "Co-simulation of building energy...

102

Making The Business Case For High Performance Green Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Making The Business Case For High Performance Green Buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings...

103

Multi-dimensional building performance data management for continuous commissioning  

Science Conference Proceedings (OSTI)

Current buildings' performance assessment tools are deficient in their ability to integrate and process building monitoring data to generate actionable information that can assist in achieving a higher level of building performance. Therefore, this paper ... Keywords: Building performance, Data warehouse, Energy management, Multi-dimensional data analysis, User interfaces

Ammar Ahmed; Joern Ploennigs; Karsten Menzel; Brian Cahill

2010-11-01T23:59:59.000Z

104

Rating the energy performance of buildings  

E-Print Network (OSTI)

and present results, Energy and Buildings Vol. 33, pp. 229-for Existing Houses, Energy and Buildings, Vol. 29, pp. 107-Laboratory Building, Energy and Buildings, Vol. 34, pp. 203-

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

105

Strategic Energy Management Through Optimizing the Energy Performance of Buildings  

E-Print Network (OSTI)

1/12/2007 Strategic Energy Management Through Optimizing the Energy Performance of Buildings Oak ambitious federal energy goals and achieve energy independence. The energy engineers, building equipment Buildings and Industrial Energy Efficiency areas has engendered a unique, comprehensive capability

106

A framework for simulation-based real-time whole building performance  

NLE Websites -- All DOE Office Websites (Extended Search)

A framework for simulation-based real-time whole building performance A framework for simulation-based real-time whole building performance assessment Title A framework for simulation-based real-time whole building performance assessment Publication Type Journal Article Refereed Designation Unknown LBNL Report Number 0360-1323 Year of Publication 2012 Authors Pang, Xiufeng, Michael Wetter, Prajesh Bhattacharya, and Philip Haves Journal Building and Environment Volume 54 Start Page 100 Pagination 100-108 Date Published 08/2012 ISSN 0360-1323 Keywords building controls virtual test bed, building performance, energy modeling, energyplus, real-time building simulation Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures. One approach to addressing this problems is to compare the predictions of an energy simulation model of the building to the measured performance and analyze significant differences to infer the presence and location of faults. This paper presents a framework that allows a comparison of building actual performance and expected performance in real time. The realization of the framework utilized the EnergyPlus, the Building Controls Virtual Test Bed (BCVTB) and the Energy Management and Control System (EMCS) was developed. An EnergyPlus model that represents expected performance of a building runs in real time and reports the predicted building performance at each time step. The BCVTB is used as the software platform to acquire relevant inputs from the EMCS through a BACnet interface and send them to the EnergyPlus and to a database for archiving. A proof-of-concept demonstration is also presented.

107

Action-Oriented Benchmarking: Using the CEUS Database to Benchmark Commercial Buildings in California  

SciTech Connect

The 2006 Commercial End Use Survey (CEUS) database developed by the California Energy Commission is a far richer source of energy end-use data for non-residential buildings than has previously been available and opens the possibility of creating new and more powerful energy benchmarking processes and tools. In this article--Part 2 of a two-part series--we describe the methodology and selected results from an action-oriented benchmarking approach using the new CEUS database. This approach goes beyond whole-building energy benchmarking to more advanced end-use and component-level benchmarking that enables users to identify and prioritize specific energy efficiency opportunities - an improvement on benchmarking tools typically in use today.

Mathew, Paul; Mills, Evan; Bourassa, Norman; Brook, Martha

2008-02-01T23:59:59.000Z

108

High Performance Sustainable Building Design RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Sustainable High Performance Sustainable Building Design Review Module March 2010 CD-0 O High 0 This Re Les OFFICE OF h Perform CD-1 eview Module ssons learned f F ENVIRON Standard R mance Su Revi Critical D CD-2 M has been pilot from the pilot h NMENTAL Review Plan ustainabl iew Module Decision (CD C March 2010 ted at the SRS have been incor L MANAGE n (SRP) le Buildin e D) Applicabili D-3 SWPF and MO rporated in Rev EMENT ng Design ity CD-4 OX FFF projec view Module n Post Ope cts. eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The

109

V-016: HP Performance Insight Bugs with Sybase Database Let Remote...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Insight Bugs with Sybase Database Let Remote Users Deny Service and Take Full Control of the Target System V-016: HP Performance Insight Bugs with Sybase Database Let...

110

High-performance commercial building facades  

E-Print Network (OSTI)

Institute of Building Services Engineers (CIBSE) (1997).in non-domestic buildings: CIBSE applications manual AM10:Inkarojrit, LBNL Hertzsch 1998. CIBSE 1997. V. Inkarojrit,

Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

2002-01-01T23:59:59.000Z

111

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

112

Hybrid Model of Existing Buildings for Transient Thermal Performance Estimation  

E-Print Network (OSTI)

Building level energy models are important to provide accurate prediction of energy consumption for building performance diagnosis and energy efficiency assessment of retrofitting alternatives for building performance upgrading. Simplified but physically meaningful models for existing buildings are preferable for practical applications. In this study, a hybrid building model is developed to describe building system for thermal performance prediction at building level. The model includes two parts. One part is the detailed physical models, which are the CTF models of building envelopes based on the easily available coincident detailed physical properties. The other part is the simplified 2R2C model for building internal mass, whose parameters are estimated and optimized using short-term monitored operation data. A genetic algorithm estimator is developed to optimize these parameters. The parameter optimization of the simplified model and the hybrid building model are validated in a high-rise commercial office building under various weather conditions.

Xu, X.; Wang, S.

2006-01-01T23:59:59.000Z

113

Improving Building Performance at Urban Scale with a Framework...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing Title Improving Building Performance at Urban Scale with a Framework for Real-time Data...

114

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) Rebuilding It Better: Greensburg,...

115

High-performance Computing Applied to Semantic Databases  

SciTech Connect

To-date, the application of high-performance computing resources to Semantic Web data has largely focused on commodity hardware and distributed memory platforms. In this paper we make the case that more specialized hardware can offer superior scaling and close to an order of magnitude improvement in performance. In particular we examine the Cray XMT. Its key characteristics, a large, global shared-memory, and processors with a memory-latency tolerant design, offer an environment conducive to programming for the Semantic Web and have engendered results that far surpass current state of the art. We examine three fundamental pieces requisite for a fully functioning semantic database: dictionary encoding, RDFS inference, and query processing. We show scaling up to 512 processors (the largest configuration we had available), and the ability to process 20 billion triples completely in-memory.

Goodman, Eric L.; Jimenez, Edward; Mizell, David W.; al-Saffar, Sinan; Adolf, Robert D.; Haglin, David J.

2011-06-02T23:59:59.000Z

116

High-performance computing applied to semantic databases.  

Science Conference Proceedings (OSTI)

To-date, the application of high-performance computing resources to Semantic Web data has largely focused on commodity hardware and distributed memory platforms. In this paper we make the case that more specialized hardware can offer superior scaling and close to an order of magnitude improvement in performance. In particular we examine the Cray XMT. Its key characteristics, a large, global shared-memory, and processors with a memory-latency tolerant design, offer an environment conducive to programming for the Semantic Web and have engendered results that far surpass current state of the art. We examine three fundamental pieces requisite for a fully functioning semantic database: dictionary encoding, RDFS inference, and query processing. We show scaling up to 512 processors (the largest configuration we had available), and the ability to process 20 billion triples completely in-memory.

al-Saffar, Sinan (Pacific Northwest National Laboratory, Richland, WA); Jimenez, Edward Steven, Jr.; Adolf, Robert (Pacific Northwest National Laboratory, Richland, WA); Haglin, David (Pacific Northwest National Laboratory, Richland, WA); Goodman, Eric L.; Mizell, David (Cray, Inc., Seattle, WA)

2010-12-01T23:59:59.000Z

117

Durham County - High-Performance Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider Durham City and County Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and facilities greater than

118

Building America's Top Innovations Advance High Performance Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Top America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently

119

Energy Performance Certification of Buildings: A Policy Tool...  

Open Energy Info (EERE)

Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary Name: Energy Performance Certification of...

120

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High Performance Buildings in Greensburg, Kansas | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

129 citizens. In a town of 900 people, that's the highest per-capita concentration of LEED buildings in the United States. Commercial Buildings Greensburg has achieved many LEED...

122

Digitization Regime as a Cause for Variation in Algorithm Performance Across Two Mammogram Databases  

Science Conference Proceedings (OSTI)

This paper addresses the problem of variation in performance of the same algorithm, when it was tested out on images from two different public domain databases of digitized mammograms. Investigation of this variation revealed that the two databases had ...

Ramachandran Chandrasekhar; Yianni Attikiouzel

1999-06-01T23:59:59.000Z

123

TC 89 Thermal performance of buildings and building components  

E-Print Network (OSTI)

of cavities 6 7 Report 10 ANNEX A (informative) Tabulated thermal conductivity (-value) of selected materials and building components. Introduction The test method according to prEN 12412­2 "Windows, doors and shutters. The standard does not include effects of solar radiation and heat transfer caused by air leakage and three

Massachusetts at Amherst, University of

124

Building Performance Simulation for Sustainable Energy Use in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance Simulation for Sustainable Energy Use in Buildings Speaker(s): Jan Hensen Date: March 18, 2011 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact:...

125

High Performance Building Standards in New State Construction  

Energy.gov (U.S. Department of Energy (DOE))

In January 2008, New Jersey enacted legislation mandating the use of high performance green building standards in new state construction. The standard requires that new buildings larger than 15...

126

Experimental Method to Determine the Energy Envelope Performance of Buildings  

E-Print Network (OSTI)

In France, buildings represent 40% of the annual energy consumption. This sector represents an important stack to achieve the objective of reducing by 4 the greenhouse gas emissions by 2050. Knowledge of construction techniques and the use of equipments are the main keys to realize low energy buildings. To achieve this aim, we monitored 24 experimental buildings. In order to evaluate these experimental buildings we compare the monitored energy performance to the predicted energy performance and explain the differences between both performances. Therefore, we developed an in-situ method to determine the thermal envelope performance of buildings (Ubuilding). The buildings are monitored in order to know the followings inputs: Occupancy rate; Heat supply; Solar supply; Ventilation and airflow losses; Distributions losses. The aim of this paper is to present the developed method and monitoring protocol. In order to validate the proposed experimental approach, we will present applications on different monitoring buildings in context of the project PREBAT (Research Program on Building's Evaluation).

Berger, J.; Tasca-Guernouti, S. T.; Humbert, M.

2010-01-01T23:59:59.000Z

127

Procedure for Measuring and Reporting Commercial Building Energy Performance  

SciTech Connect

This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

2005-10-01T23:59:59.000Z

128

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

2 2 Case Study, The Cambria Department of Environmental Protection Office Building, Ebensburg, Pennsylvania (Office) Building Design Floor Area: Floors: 2 Open office space (1) File storage area Two small labratories Conference rooms Break room Storage areas Two mechanical rooms Telecom room Shell Windows Material: Triple Pane, low-e with Aluminum Frames and Wood Frames Triple Pane Triple Pane Aluminum Frames Wood Frames U-Factor 0.24 U-Factor 0.26 Wall/Roof Primary Material R-Value Wall : Insulating Concrete Forms 27.0 Roof: Decking and Insulation 33.0 HVAC Total Capacities(thousand Btu/hr) 12 Ground Source Heat Pumps 644 (2) 12 Auxiliary Electric Resistance Heaters 382 (3) Lighting Power Densities(W/SF) Open Office Area: 0.75 Office Area Task Lighting(4): 0.5 Energy/Power PV System: 18.2 kW grid-tie system (5)

129

Howard County - High Performance and Green Building Property Tax Credits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Howard County - High Performance and Green Building Property Tax Howard County - High Performance and Green Building Property Tax Credits Howard County - High Performance and Green Building Property Tax Credits < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Maximum Rebate High Performance Buildings: none specified High Performance R-2, R-3 Buildings: $5,000 per building or owner-occupied unit Green Buildings (w/energy conservation devices): limited to assessed property taxes on the structure Program Info Start Date 07/01/2008 State Maryland

130

Benchmarking and Performance Based Rating System for Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking and Performance Based Rating System for Commercial Buildings Benchmarking and Performance Based Rating System for Commercial Buildings in India Speaker(s): Saket Sarraf Date: May 4, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Girish Ghatikar The Indian building sector has witnessed huge surge in interest in energy performance in the last decade. The 'intention' based codes like the national Energy Conservation Building Code (ECBC) and green building rating systems such as Leadership in Energy and Environment Design (LEED-India) and Green Rating for Integrated Habitat Assessment (GRIHA) have been the prime mechanisms to design and assess energy efficient buildings. However, they do not rate the 'achieved' energy performance of buildings over time or reward their performance through a continuous evaluation process.

131

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance High-Performance Sustainable Building Design for New Construction and Major Renovations to someone by E-mail Share Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Facebook Tweet about Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Twitter Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Google Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Delicious Rank Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Digg

132

Building performance analysis using interactive multimedia concepts  

Science Conference Proceedings (OSTI)

We describe LBL's involvement with multimedia concepts by discussing several modules of an advanced computer-based building envelope design tool. The qualitative and quantitative aspects of the building design process are accommodated within the same design tool which uses object-oriented programming procedures. This computer-based concept utilizes images (buildings, landscapes, models, documents, etc.), expert systems (knowledge bases, i.e., lighting design, site planning, HVAC design, etc.), and data bases (design criteria, utility rates, climatic data, etc.) in addition to more traditional simulation models to evaluate building design alternatives.

Selkowitz, S.; Beltran, L.; Osterhaus, W.; Papamichael, K.; Schuman, J.; Sullivan, R.; Wilde, M.

1992-04-01T23:59:59.000Z

133

Building performance analysis using interactive multimedia concepts  

Science Conference Proceedings (OSTI)

We describe LBL`s involvement with multimedia concepts by discussing several modules of an advanced computer-based building envelope design tool. The qualitative and quantitative aspects of the building design process are accommodated within the same design tool which uses object-oriented programming procedures. This computer-based concept utilizes images (buildings, landscapes, models, documents, etc.), expert systems (knowledge bases, i.e., lighting design, site planning, HVAC design, etc.), and data bases (design criteria, utility rates, climatic data, etc.) in addition to more traditional simulation models to evaluate building design alternatives.

Selkowitz, S.; Beltran, L.; Osterhaus, W.; Papamichael, K.; Schuman, J.; Sullivan, R.; Wilde, M.

1992-04-01T23:59:59.000Z

134

Whole Building Performance-Based Procurement Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Shanti.Pless@nrel.gov 303-384-6365 April 4, 2013 2 | Building Technologies Office eere.energy.gov Project Definition Replicating NRELDOE procurement process successes in...

135

Building Technologies Office: Technology Performance Exchange...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

136

High Performance and Sustainable Buildings Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

(2006) 2 , and (ii) 15- percent of the existing Federal capital asset building inventory of the agency as of the end of fiscal year 2015 incorporates the sustainable...

137

What do hourly performance data on a building tell us  

DOE Green Energy (OSTI)

Hourly performance data on a building contain valuable information on the dynamics of the building and of the HVAC systems. Quantities such as the building loss coefficient, solar gains, and the net effect of thermal masses and their couplings are all contained in the data. The building element vector analysis (BEVA) method has been applied to a multizone residential passive solar building monitored under the SERI Class B program. Using short-term data (approximately one week), the building parameters were regressed. With these as inputs, the subsequent performance of the building was well predicted. Using performance data for the period February 3-9, 1982, the building vectors were obtained by regression. The resulting best fit for the zone temperature is given. These parameters were used to predict the temperature for the period February 10-14. The resulting values are also plotted along with the outdoor temperature, solar radiation on a south vertical surface, and auxiliary energy for these periods.

Subbarao, K.

1984-11-01T23:59:59.000Z

138

U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan  

Energy.gov (U.S. Department of Energy (DOE))

Plan outlining DOE's commitment to designing, building, operating, and maintaining high performance and sustainable buildings (HPSB).

139

Memorandum of American High-Performance Buildings Coalition DOE Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Memorandum of American High-Performance Buildings Coalition DOE Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This memorandum is intended to provide a summary of a meeting between the American HighPerformance Buildings Coalition (AHBPC), a coalition of industry organizations committed to promoting performance-based energy efficiency and sustainable building standards developed through true, consensus-bases processes, and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) that took place on Monday, August 19, 2013. Memorandum of AHPBC DOE Meeting_8_19_2013_FINAL_SIGNED More Documents & Publications Federal Leadership in High Performance and Sustainable Buildings Memorandum

140

A demonstration of SQLVM: performance isolation in multi-tenant relational database-as-a-service  

Science Conference Proceedings (OSTI)

Sharing resources of a single database server among multiple tenants is common in multi-tenant Database-as-a-Service providers, such as Microsoft SQL Azure. Multi-tenancy enables cost reduction for the cloud service provider which it can pass on as savings ... Keywords: cloud computing, multitenancy, performance isolation, relational database-as-a-service, resource isolation

Vivek Narasayya; Sudipto Das; Manoj Syamala; Surajit Chaudhuri; Feng Li; Hyunjung Park

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High performance technique for database applications using a hybrid GPU/CPU platform  

Science Conference Proceedings (OSTI)

Many database applications, such as sequence comparing, sequence searching, and sequence matching, etc, process large database sequences. we introduce a novel and efficient technique to improve the performance of database applications by using a Hybrid ... Keywords: GPU, hybrid platforms, sequence alignment

M. Affan Zidan; Talal Bonny; Khaled N. Salama

2011-05-01T23:59:59.000Z

142

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

1 1 Case Study, The Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio (Education) Building Design Floor Area: Floors: 2 Footprint: 3 Classrooms (1) 1 Conference Room 1 Adminstration Office Auditorium, 100 seats 6 Small Offices Atrium Wastewater Treatment Facility Shell Windows Material: Green Tint Triple Pane Argon Fill Insulating Glass Grey Tint Double Pane Argon Fill Insulating Glass Fenestration(square feet) Window Wall (2) window/wall l Atrium, Triple Pane (3) Building, Double Pane North 1,675 4,372 38% l U-Factor 0.34 U-Factor 0.46 South 2,553 4,498 58% l SHGC 0.26 SHGC 0.46 East 1,084 2,371 46% l West 350 2,512 14% l Overall 6,063 43% l Wall/Roof Main Material R-Value Wall : Face Brink 19 Roof: Steel/Stone Ballast 30 HVAC COP(4) Offices/Classrooms: Individual GSHPs (5) 3.9-4.6

143

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

6 6 Case Study, The Solaire, New York, New York (Apartments/Multi-Family) Building Design Floor Area: 357,000 SF Units: 293 Maximum Occupancy: 700 Floors: 27 Site Size: 0.38 Acres Typical Occupancy(1): 578 Black-Water Treatment Facility (2) Shell Windows Material: Double Glazed, Low-e, Thermal Breaks with Insulated Spacers Operable Windows Fixed Windows Visual Transminttance 0.68 0.68 Solar Heat Gain Coefficient 0.35 0.35 U-Factor 0.47 0.41 Wall/Roof Material R-Value Exterior Walls: Insulated brick and concrete block 8.4 Roof: Roof top garden(green roof) 22.7 HVAC Two direct-fired natural gas absorption chillers 4-Pipe fan-coil units in individual aparments Power/Energy(3) PV System(4): 1,300 SF (76 custom panels) of west facing PV rated for 11 kW . These panels are integrated into the building facade.

144

10 ASHRAE Journal November 2004 Re: High-Performance Buildings  

E-Print Network (OSTI)

10 ASHRAE Journal November 2004 Re: High-Performance Buildings In their recent article, "High energy-per- formance for a green academic building." ASHRAE Transac- tions, 108 promoting their own buildings. But the public requires and ASHRAE should demand more. John Scofield, Ph

Scofield, John H.

145

An energy performance index for historic buildings  

E-Print Network (OSTI)

This thesis reports studies conducted on historic buildings from the 1880 to 1900 era. These buildings were recently renovated and many more years of service are expected. Derivation of an energy demand prediction index was the primary study goal. Texas Historic Commission files were a primary data source to probe the second study goal; definition of data base needs for technical studies using state historic office files. A statistically valid prediction equation was produced which covers buildings between 10,000 and 30,000 square feet in floor area. Buildings from Austin and Galveston, Texas were used in the derivation; thus, these findings are limited to climates similar to those locations. The second goal was also achieved since the file data available were sufficient to support the study. The input data file design provides a proven example for development of a final data base specification. Field audits validated method accuracy and reinforced the starting hypothesis, reused historic buildings are examples of sustainability in action. The massive construction of these buildings furnished 30?% of building energy demand. Also infiltration was found to be a minor energy demand factor for these climates. This last finding supports preserving historic windows and doors rather than replacing them with very efficient but historically inaccurate models.

Campbell, Scott

1991-01-01T23:59:59.000Z

146

Empowering the Market: How Building Energy Performance Rating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Empowering the Market: How Building Energy Performance Rating and Disclosure Policies Encourage U.S. Energy Efficiency Secondary menu About us Press room Contact Us Portfolio...

147

Net-Zero Energy, High-Performance Buildings Program  

Science Conference Proceedings (OSTI)

Net-Zero Energy, High-Performance Buildings Program. ... NIST completed design and construction of Net-Zero Energy Residential Test Facility; ...

2013-05-03T23:59:59.000Z

148

Empowering the Market: How Building Energy Performance Rating and  

NLE Websites -- All DOE Office Websites (Extended Search)

Empowering the Market: How Building Energy Performance Rating and Empowering the Market: How Building Energy Performance Rating and Disclosure Policies Encourage U.S. Energy Efficiency Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition

149

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

4 4 Case Study, The Philip Merrill Environmental Center, Annapolis, Maryland (Office) Building Design Floor Area: 31,000 SF Floors: 2 Footprint: 220 ft. x (1) 2 Floors of open office space Attached pavilion containing: Meeting space Kitchen Staff dining Conference room Shell Windows U-Factor SHGC (2) Type: Double Pane, Low-e, Argon Filled Insulating Glass 0.244 0.41 Wall/Roof Material Effective R-Value Interior Wall plywood, gypsum, SIP foam, and sheathing 28.0 Exterior Wall gypsum and insulated metal framing 9.3 Roof plywood, gypsum, SIP foam, and sheathing 38.0 HVAC 18 ground source heat pumps fin and tube radiators connected to a propane boiler 1 air condtioning unit Lighting Power Densities (W/SF) First Floor: 1.2 Second Floor: 1.6 Conference Room: 1.4 Energy/Power PV System: 4.2 kW thin-film system

150

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

3 3 Case Study, The Visitor Center at Zion National Park, Utah (Service/Retail/Office) Building Design Vistors Center (1): 8,800 SF Comfort Station (2): 2,756 SF Fee Station: 170 SF Shell Windows Type U-Factor SHGC (3) South/East Glass Double Pane Insulating Glass, Low-e, Aluminum Frames, Thermally Broken 0.44 0.44 North/West Glass Double Pane Insulating Glass, Heat Mirror, Aluminum Frames, Thermally Broken 0.37 0.37 Window/Wall Ratio: 28% Wall/Roof Materials Effective R-Value Trombe Walls: Low-iron Patterned Trombe Wall, CMU (4) 2.3 Vistor Center Walls: Wood Siding, Rigid Insulation Board, Gypsum 16.5 Comfort Station Walls: Wood Siding, Rigid Insulation Board, CMU (4) 6.6 Roof: Wood Shingles; Sheathing; Insulated Roof Panels 30.9 HVAC Heating Cooling Trombe Walls Operable Windows Electric Radiant Ceiling Panels

151

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

5 5 Case Study, The Thermal Test Facility, National Renewable Energy Laboratory, Golden, Colorado (Office/Laboratory) Building Design Floor Area: 10,000 SF Floors(1): 2 Aspect Ratio: 1.75 Offices Laboratories Conference Room Mechanical Level Shell Windows Material U-factor SHGC(2) Viewing Windows: Double Pane, Grey Tint, Low-e 0.42 0.44 Clerestory Windows: Double Pane, Clear, Low-e 0.45 0.65 Window Area(SF) North 38 South(3) 1,134 East 56 West 56 Wall/Roof Material Effective R-Value North Wall Concrete Slab/Rigid Polystyrene 5.0 South/East/West Steel Studs/Batt Insulation/Concrete 23.0 Roof: Built-up/Polyisocianurate Covering/Steel Supports 23.0 HVAC VAV air handling unit Hot water supply paralell VAV boxes Direct and Indirect evaporative cooling system Single zone roof top unit(4) Hot Water Coil(4)

152

Building Energy Performance Analysis of an Academic Building Using IFC BIM-Based Methodology  

E-Print Network (OSTI)

This paper discusses the potential to use an Industry Foundation Classes (IFC)/Building Information Modelling (BIM) based method to undertake Building Energy Performance analysis of an academic building. BIM/IFC based methodology provides a mechanism for providing quick and cost-effective feedback to building users. The paper discusses the need for IFC and BIM-based analysis of existing buildings. A case study of Building Energy Performance Analysis of an academic building is presented with a detailed discussion on various interventions undertaken to calibrate the model. The paper concludes that BIM/IFC based approaches provide a feasible alternative to conduct energy analysis of existing buildings provided various correlations are built into the model.

Aziz, Z.; Arayici, Y.; Shivachev, D.

2012-01-01T23:59:59.000Z

153

Salt Lake City- High Performance Buildings Requirement  

Energy.gov (U.S. Department of Energy (DOE))

Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

154

A building life-cycle information system for tracking building performance metrics  

SciTech Connect

Buildings often do not perform as well in practice as expected during pre-design planning, nor as intended at the design stage. While this statement is generally considered to be true, it is difficult to quantify the impacts and long-term economic implications of a building in which performance does not meet expectations. This leads to a building process that is devoid of quantitative feedback that could be used to detect and correct problems both in an individual building and in the building process itself. One key element in this situation is the lack of a standardized method for documenting and communicating information about the intended performance of a building. This paper describes the Building Life-cycle Information System (BLISS); designed to manage a wide range of building related information across the life cycle of a building project. BLISS is based on the Industry Foundation Classes (IFC) developed by the International Alliance for Interoperability. A BLISS extension to th e IFC that adds classes for building performance metrics is described. Metracker, a prototype tool for tracking performance metrics across the building life cycle, is presented.

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1999-04-01T23:59:59.000Z

155

Evaluating the performance of passive-solar-heated buildings  

DOE Green Energy (OSTI)

Methods of evaluating the thermal performance of passive-solar buildings are reviewed. Instrumentation and data logging requirements are outlined. Various methodologies that have been used to develop an energy balance for the building and various performance measures are discussed. Methods for quantifying comfort are described. Subsystem and other special-purpose monitoring are briefly reviewed. Summary results are given for 38 buildings that have been monitored.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

156

High Performance Building Façade Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsors Sponsors High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Sponsors California Energy Commission Public Interest Energy Research (PIER) Buildings End-Use Energy Efficiency Program Michael Seaman, California Energy Commission Contract Manager http://www.energy.ca.gov/research/index.html U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Office of Building Technology, State and Community Programs Office of Building Research and Standards Marc LaFrance, Program Manager http://www.eere.energy.gov/buildings/ In-kind Cost-share Advanced Glazings Ltd. Hunter Douglas Köster Lichplanung

157

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

158

V-016: HP Performance Insight Bugs with Sybase Database Let Remote Users  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: HP Performance Insight Bugs with Sybase Database Let Remote 6: HP Performance Insight Bugs with Sybase Database Let Remote Users Deny Service and Take Full Control of the Target System V-016: HP Performance Insight Bugs with Sybase Database Let Remote Users Deny Service and Take Full Control of the Target System November 5, 2012 - 6:00am Addthis PROBLEM: HP Performance Insight Bugs with Sybase Database Let Remote Users Deny Service and Take Full Control of the Target System PLATFORM: HP Performance Insight v5.31, v5.40 and v5.41 running on HP-UX, Solaris, Linux, and Windows and using Sybase as the database ABSTRACT: Two vulnerabilities were reported in HP Performance Insight. REFERENCE LINKS: HP Support Document ID: c03555488 SecurityTracker Alert ID: 1027719 CVE-2012-3269 CVE-2012-3270 IMPACT ASSESSMENT: High DISCUSSION:

159

Draft or breeze? preferences for air movement in office buildings and schools from the ASHRAE database  

E-Print Network (OSTI)

Control, and Occupant Comfort. ASHRAE Transactions 110 (2):and schools from the ASHRAE database Tyler Hoyt * , Huihave been extracted from the ASHRAE database of indoor

Hoyt, Tyler; Zhang, Hui Ph.D; Arens, Edward

2009-01-01T23:59:59.000Z

160

Performance metrics and life-cycle information management for building performance assurance  

SciTech Connect

Commercial buildings account for over $85 billion per year in energy costs, which is far more energy than technically necessary. One of the primary reasons buildings do not perform as well as intended is that critical information is lost, through ineffective documentation and communication, leading to building systems that are often improperly installed and operated. A life-cycle perspective on the management of building information provides a framework for improving commercial building energy performance. This paper describes a project to develop strategies and techniques to provide decision-makers with information needed to assure the desired building performance across the complete life cycle of a building project. A key element in this effort is the development of explicit performance metrics that quantitatively represent performance objectives of interest to various building stakeholders. The paper begins with a discussion of key problems identified in current building industry practice, and ongoing work to address these problems. The paper then focuses on the concept of performance metrics and their use in improving building performance during design, commissioning, and on-going operations. The design of a Building Life-cycle Information System (BLISS) is presented. BLISS is intended to provide an information infrastructure capable of integrating a variety of building information technologies that support performance assurance. The use of performance metrics in case study building projects is explored to illustrate current best practice. The application of integrated information technology for improving current practice is discussed.

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings  

SciTech Connect

2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.

Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

2010-06-01T23:59:59.000Z

162

High Performance Building Façade Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Building Façade Solutions High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Glazing and façade systems have very large impacts on all aspects of commercial building performance. They directly influence peak heating and cooling loads, and indirectly influence lighting loads when daylighting is considered. In addition to being a major determinant of annual energy use, they can have significant impacts on peak cooling system sizing, electric load shape, and peak electric demand. Because they are prominent architectural and design elements and because they influence occupant preference, satisfaction and comfort, the design optimization challenge is

163

Acquisition of building geometry in the simulation of energy performance  

SciTech Connect

Building geometry is essential to any simulation of building performance. This paper examines the importing of building geometry into simulation of energy performance from the users' point of view. It lists performance requirements for graphic user interfaces that input building geometry, and discusses the basic options in moving from two- to three-dimensional definition of geometry and the ways to import that geometry into energy simulation. The obvious answer lies in software interoperability. With the BLIS group of interoperable software one can interactively import building geometry from CAD into EnergyPlus and dramatically reduce the effort otherwise needed for manual input.The resulting savings may greatly increase the value obtained from simulation, the number of projects in which energy performance simulation is used, and expedite decision making in the design process.

Bazjanac, Vladimir

2001-06-28T23:59:59.000Z

164

Home Energy Ratings and Building Performance  

E-Print Network (OSTI)

This paper provides an overview of the Home Energy Rating System (HERS). A short summary of the origination and history of the HERS system will lead to a more detailed description of the inspection and testing protocol. The HERS rating provides an accepted method to determine home efficiency based on standards developed and overseen by the Residential Energy Services Network (RESNET), a not-for-profit corporation. The paper will discuss the effect of various building systems and effects of local climate as they affect the rating score of a proposed or completed structure. The rating is used to determine the most cost effective mechanical systems, building envelope design including window and door types, effect of various roofing materials and radiant barriers. The paper will conclude by comparing specifics of an actual report to the construction characteristics of a home as they relate to the HERS Rating and the result.

Gardner, J.C.

2008-12-01T23:59:59.000Z

165

Guide for High-Performance Buildings Available  

SciTech Connect

This article is an overview of the new "Sustainable, High-Performance Operations and Maintenance" guidelines.

Bartlett, Rosemarie

2012-10-01T23:59:59.000Z

166

Lachesis: robust database storage management based on device-specific performance characteristics  

Science Conference Proceedings (OSTI)

Database systems work hard to tune I/O performance, but do not always achieve the full performance potential of modern disk systems. Their abstracted view of storage components hides useful device-specific characteristics, such as disk track boundaries ...

Jiri Schindler; Anastassia Ailamaki; Gregory R. Ganger

2003-09-01T23:59:59.000Z

167

High performance bio-image database retrieval using MPI  

Science Conference Proceedings (OSTI)

Fast and accurate 3D object reconstruction and partial 3D component retrieval from 2D image slices represent a difficult and challenging problem. To group related objects on different layers in an image stack, image segmentation and sequential matching ... Keywords: 3D component retrieval, bio-images, bioinformatics, biological structures, database retrieval, edge detection, feature detection, fuzzy object matching, image contour matching, neuron confocal images, object reconstruction, parallel processing

Yong Li; Xiujuan Chen; Saeid Belkasim; Yi Pan

2008-02-01T23:59:59.000Z

168

High Performance Building Facade Solutions: PIER Final Project Report  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Building Facade Solutions: PIER Final Project Report High Performance Building Facade Solutions: PIER Final Project Report Title High Performance Building Facade Solutions: PIER Final Project Report Publication Type Report LBNL Report Number LBNL-4583E Year of Publication 2009 Authors Lee, Eleanor S., Stephen E. Selkowitz, Dennis L. DiBartolomeo, Joseph H. Klems, Robert D. Clear, Kyle Konis, Robert J. Hitchcock, Mehry Yazdanian, Robin Mitchell, and Maria Konstantoglou Date Published 12/2009 Abstract Building façades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. façades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.

169

Evaluation of the Energy Performance of Six High-Performance Buildings: Preprint  

DOE Green Energy (OSTI)

The energy performance of six high-performance buildings around the United States was monitored and evaluated by the NREL. The six buildings include the Visitor Center at Zion National Park, the NREL Thermal Test Facility, the Chesapeake Bay Foundation's Merrill Center, the BigHorn Home Improvement Center, the Cambria Office Building, and the Oberlin College Lewis Center.

Torcellini, P. A.; Pless, S.; Crawley, D. B.

2005-04-01T23:59:59.000Z

170

High Performance Homes and Buildings: State-of-the-Art Review of Multifamily Buildings  

Science Conference Proceedings (OSTI)

Multifamily households constitute a quarter of the U.S. households, including a majority of low-income households. However, energy performance of multifamily buildings has been hindered due to both technical and market barriers. This report investigates a comprehensive whole-building approach to reduce energy use in multifamily buildings, with a discussion of market barriers such as lack of energy knowledge, lack of motivation, and shortage of skilled workforce for deep energy upgrades in ...

2013-12-27T23:59:59.000Z

171

High-Performance Buildings Value, Messaging, Financial and Policy Mechanisms  

SciTech Connect

At the request of the Pacific Northwest National Laboratory, an in-depth analysis of the rapidly evolving state of real estate investments, high-performance building technology, and interest in efficiency was conducted by HaydenTanner, LLC, for the U.S. Department of Energy (DOE) Building Technologies Program. The analysis objectives were to evaluate the link between high-performance buildings and their market value to identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to appropriately value and deploy high-performance strategies and technologies across new and existing buildings to summarize financial mechanisms that facilitate increased investment in these buildings. To meet these objectives, work consisted of a literature review of relevant writings, examination of existing and emergent financial and policy mechanisms, interviews with industry stakeholders, and an evaluation of the value implications through financial modeling. This report documents the analysis methodology and findings, conclusion and recommendations. Its intent is to support and inform the DOE Building Technologies Program on policy and program planning for the financing of high-performance new buildings and building retrofit projects.

McCabe, Molly

2011-02-22T23:59:59.000Z

172

High Performance Commercial Building Systems Francis Rubinstein, LBNL  

E-Print Network (OSTI)

- Lighting, Envelope and Daylighting Project 2.1 - Lighting Controls Task 2.1.3 ­ Advanced Sensor Task 2High Performance Commercial Building Systems Francis Rubinstein, LBNL Pete Pettler, Vistron LLC fabrication of two key components of the IBECS (Integrated Building Environmental Communications System

173

Building Energy Performance Analytics on Cloud as a Service  

Science Conference Proceedings (OSTI)

Reducing energy consumption, improving energy efficiency, and reducing greenhouse gas GHG emissions are among the most important initiatives in today's world. Occupied buildings consume a substantial amount of energy, mounting to about 40% of overall ... Keywords: building energy analytics, cloud, energy performance, energy simulation, visualization

Young M. Lee, Lianjun An, Fei Liu, Raya Horesh, Young Tae Chae, Rui Zhang, Estepan Meliksetian, Pawan Chowdhary, Paul Nevill, Jane L. Snowdon

2013-06-01T23:59:59.000Z

174

Sample ENERGY STAR performance documents | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Existing buildings Existing buildings » Use Portfolio Manager » Verify and document your savings » Sample ENERGY STAR performance documents Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit

175

Duct thermal performance models for large commercial buildings  

SciTech Connect

Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

Wray, Craig P.

2003-10-01T23:59:59.000Z

176

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

426435. LBNL. (2012). Distributed Energy Resources CustomerATIONAL L ABORATORY Building Distributed Energy Performanceemployer. Building Distributed Energy Performance

Feng, Wei

2013-01-01T23:59:59.000Z

177

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network (OSTI)

used in simulation of daylighting system performance, modelsfor daylighting in green building rating systems, standardsfor daylighting in green building rating systems, standards

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

178

Montgomery County- High Performance Building Property Tax Credit  

Energy.gov (U.S. Department of Energy (DOE))

The state of Maryland permits local governments (Md Code: Property Tax 9-242) to offer property tax credits for high performance buildings if they choose to do so. Montgomery County has...

179

Assessing Plant Performance for Energy Savings | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Plant Performance for Energy Savings Assessing Plant Performance for Energy Savings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

180

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

and analysis of building energy efficiency in China.in evaluating relative building energy performance in Chinabuildings. The available building energy use data are for

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluating the energy performance of the first generation of LEED-certified commercial buildings  

E-Print Network (OSTI)

Department of Energy, Energy Star Building Rating Program.a simulation of the building's energy performance to qualifythe simulated whole building energy consumption with the

Diamond, Rick

2011-01-01T23:59:59.000Z

182

Influence of two dynamic predictive clothing insulation models on building energy performance  

E-Print Network (OSTI)

Energy Consumption, Energy and Buildings, Vol. 26, 283-291.Insulation Models on Building Energy Use, HVAC sizing andClothing Model Impact on Building Energy Performance

Lee, Kwang Ho; Schiavon, Stefano

2013-01-01T23:59:59.000Z

183

Building Cost and Performance Metrics: Data Collection Protocol, Revision 1.0  

SciTech Connect

This technical report describes the process for selecting and applying the building cost and performance metrics for measuring sustainably designed buildings in comparison to traditionally designed buildings.

Fowler, Kimberly M.; Solana, Amy E.; Spees, Kathleen L.

2005-09-29T23:59:59.000Z

184

Influence of two dynamic predictive clothing insulation models on building energy performance  

E-Print Network (OSTI)

Clothing Insulation Models on Building Energy Use, HVACClothing Insulation Models on Building Energy Performance K.insulation variation should be captured during the building

Lee, Kwang Ho; Schiavon, Stefano

2013-01-01T23:59:59.000Z

185

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

186

Building Distributed Energy Performance Optimization for China - a Regional  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-81770 Year of Publication 2012 Authors Feng, Wei, Nan Zhou, Chris Marnay, Michael Stadler, and Judy Lai Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings, August 12-17, 2012 Date Published 08/2012 Conference Location Pacific Grove, California ISBN Number 0-918249-XX-X Notes LBNL - XXXXX Refereed Designation Refereed Attachment Size PDF 5 MB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/52998

187

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

188

APPLICATION OF DOE-2 TO RESIDENTIAL BUILDING ENERGY PERFORMANCE STANDARDS  

SciTech Connect

One important requirement emerging from national and international efforts to shift from our present energy-intensive way of life to an energy conservation mode is the development of standards for assessing and regulating energy use and performance in buildings. This paper describes a life-cycle-cost approach to Building Energy Performance Standards (BEPS) calculated by using DOE-2: The Energy Use Analysis of Buildings Computer Program. The procedure outlined raises important questions that must be answered before the energy budgets devised from this approach can be reliably used as a policy tool, The DOE-2 program was used to calculate the energy consumption in prototype buildings and in their modified versions in which energy conservation measures were effected. The energy use of a modified building with lowest life-cycle-cost determines the energy budget for all buildings of that type. These calculations were based on a number of assumptions that may be controversial. These assumptions regard accuracy of the model, comparison of the DOE-2 program with other programs, stability of the energy budget, and sensitivity of the results to variations in the building parameters.

Lokmanhekim, M.; Goldstein, D. B.; Levine, M. D.; Rosenfield, A. H.

1980-10-01T23:59:59.000Z

189

Improving Building Energy System Performance by Continuous Commissioning  

E-Print Network (OSTI)

The term Continuous Commissioning (CC) was first used by engineers at the Energy Systems Lab (ESL) at Texas A&M University to describe an ongoing process which improves the operation of buildings using measured hourly energy use and environmental data. The first buildings to undergo a continuous commissioning process were in the Texas LoanSTAR program [Liu, et al, 1994, Claridge, et al, 1994]. These buildings had been retrofitted with various energy efficiency improvements, and measured hourly data were available to verify that the retrofits were performing as desired, and to analyze the overall building performance. The ESL engineers, using hourly data, site visits, and ESL-developed software [Liu and Claridge 1995], then worked with the facility engineers to fine-tune the building operation. These efforts were so successful that another 15 to 30% of the annual building energy cost was saved ~ and these were in buildings that supposedly had all cost effective retrofits and operating improvements already implemented [Liu 1996].

Turner, W. D.; Liu, M.; Claridge, D. E.; Haberl, J. S.

1996-01-01T23:59:59.000Z

190

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas, High Performance Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) This fact sheet provides a summary of how NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. 53539.pdf More Documents & Publications From Tragedy to Triumph: Rebuilding Greensburg, Kansas To Be a 100% Renewable Energy City: Preprint Rebuilding It Better; BTI-Greensburg, John Deere Dealership (Brochure) (Revised) Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study;

191

Green Building Performance Evaluation in the United States: Measured Results from LEED- New Construction Buildings  

E-Print Network (OSTI)

Is the Leadership in Energy and Environmental Design program (LEED) delivering actual energy savings? This study addresses that question with a post-occupancy assessment of 121 LEED buildings across the United State. Input to the study consisted of energy bills and brief descriptions of actual building use from owners, plus modeled energy usage information from the U.S. Green Buildings Councils (USGBC) LEED submittal files. The actual building performance was viewed through several whole-building metrics: energy use intensity (EUI) relative to national averages, Energy Star ratings, and energy use levels relative to the initial energy modeling (covered in more detail in Frankel, 2008). Two overall results emerged. First, across each of these varied measurements, LEED building performance averaged 25 30% better than the benchmark. However, there is also wide variation within the individual results, even for similar building activities and climate zones, suggesting potential for significant further improvements. This paper presents general EUI patterns, Energy Star ratings, and their relationship to LEED energy credits. The discussion also covers the study process and current challenges to such efforts.

Hewitt, D.; Turner, C.; Frankel, M.

2008-10-01T23:59:59.000Z

192

Assessment of a Building Energy Performance Dashboard in a Commercial Building  

Science Conference Proceedings (OSTI)

This report provides an assessment of the research and implementation of a building energy performance dashboard, or dashboard, in a commercial building. The purpose of the project was to create and launch a dashboard in a commercial setting and to assess the implementation experience. The eventual purpose for using dashboards is to create customer awareness of the use of energy, with potential actions by the occupants to reduce energy use or modify the timing of energy use. A dashboard is typically web ...

2010-06-30T23:59:59.000Z

193

High-Performance Sustainable Building Design for New Construction and Major  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Buildings & Campuses » Sustainable Buildings & Campuses » High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New Construction and Major Renovations October 4, 2013 - 4:52pm Addthis New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies along with other innovative strategies. Also see Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Performance-Based Design Build Typically, architects, engineers, and project managers consider the

194

U.S. Department of Energy High Performance and Sustainable Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy High Performance and Sustainable Buildings Implementation Plan U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan Plan...

195

STIL2 Swedish Office Buildings Survey The STIL2 project has performed...  

Open Energy Info (EERE)

Office Buildings Survey The STIL2 project has performed a survey of high performance office buildings in Sweden to provide energy efficiency data for non-residential...

196

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

197

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

198

Measurement of energy performance in a small bank building  

SciTech Connect

This report summarizes the measured results from a field study of the performance of a low-cost controls retrofit in a small bank building in Knoxville, Tennessee. The retrofit consisted of an upgrade of heating and cooling system controls and new operating strategies. The study was undertaken to better understand how commercial energy use measurement studies should be performed and to demonstrate the effectiveness of a low-cost controls retrofit in a small commercial building. This report describes the details of the project, including building and building system characteristics, the HVAC control changes implemented, energy end use patterns, and the heating and cooling energy savings achieved. An improved control strategy involving thermostat setback/setup and on/off control was devised around a single replacement programmable thermostat. The strategy allowed thermostat setback/setup control of the primary HVAC system in the building and provided on/off (time-of-day) control for the two secondary systems. The energy efficiency improvements provided a 33% reduction in heating and a 21% reduction in cooling energy consumptions. Simple payback for the retrofit, including installation cost, was less than 1 year. In addition to reducing the energy needs of the building, the replacement electronic thermostat provided improved interior comfort. 10 refs., 12 figs., 6 tabs.

Sharp, T.R.; MacDonald, J.M.

1990-04-01T23:59:59.000Z

199

Thermal Performance Analysis of a High-Mass Residential Building  

DOE Green Energy (OSTI)

Minimizing energy consumption in residential buildings using passive solar strategies almost always calls for the efficient use of massive building materials combined with solar gain control and adequate insulation. Using computerized simulation tools to understand the interactions among all the elements facilitates designing low-energy houses. Finally, the design team must feel confident that these tools are providing realistic results. The design team for the residential building described in this paper relied on computerized design tools to determine building envelope features that would maximize the energy performance [1]. Orientation, overhang dimensions, insulation amounts, window characteristics and other strategies were analyzed to optimize performance in the Pueblo, Colorado, climate. After construction, the actual performance of the house was monitored using both short-term and long-term monitoring approaches to verify the simulation results and document performance. Calibrated computer simulations showed that this house consumes 56% less energy than would a similar theoretical house constructed to meet the minimum residential energy code requirements. This paper discusses this high-mass house and compares the expected energy performance, based on the computer simulations, versus actual energy performance.

Smith, M.W.; Torcellini, P.A., Hayter, S.J.; Judkoff, R.

2001-01-30T23:59:59.000Z

200

Hotbox Test R-value Database from ORNL's Building Technology Center  

DOE Data Explorer (OSTI)

The Building Envelopes Program at Oak Ridge National Laboratory (ORNL) is a program within the Buildings Technology Center (BTC), the premier U.S. research facility devoted to developing technologies that improve the energy efficiency and environmental compatibility of residential and commercial buildings. Our program is divided into two parts: building envelope research, which focuses on the structural elements that enclose a building (walls, roofs and foundations), and materials research, which concentrates on the materials within the envelope systems (such as insulation). The building envelope provides the thermal barrier between the indoor and outdoor environment, and its elements are the key determinants of a building's energy requirements that result from the climate where it is located. [copied from http://www.ornl.gov/sci/roofs+walls/

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Building America Performance Analysis Procedures for Existing Homes  

Science Conference Proceedings (OSTI)

Because there are more than 101 million residential households in the United States today, it is not surprising that existing residential buildings represent an extremely large source of potential energy savings. Because thousands of these homes are renovated each year, Building America is investigating the best ways to make existing homes more energy-efficient, based on lessons learned from research in new homes. The Building America program is aiming for a 20%-30% reduction in energy use in existing homes by 2020. The strategy for the existing homes project of Building America is to establish technology pathways that reduce energy consumption cost-effectively in American homes. The existing buildings project focuses on finding ways to adapt the results from the new homes research to retrofit applications in existing homes. Research activities include a combination of computer modeling, field demonstrations, and long-term monitoring to support the development of integrated approaches to reduce energy use in existing residential buildings. Analytical tools are being developed to guide designers and builders in selecting the best approaches for each application. Also, DOE partners with the U.S. Environmental Protection Agency (EPA) to increase energy efficiency in existing homes through the Home Performance with ENERGY STAR program.

Hendron, R.

2006-05-01T23:59:59.000Z

202

Hybrid Model for Building Performance Diagnosis and Optimal Control  

E-Print Network (OSTI)

Modern buildings require continuous performance monitoring, automatic diagnostics and optimal supervisory control. For these applications, simplified dynamic building models are needed to predict the cooling and heating requirement viewing the building as a whole system. This paper proposes a new hybrid model. Half of the model is represented by detailed physical parameters and another half is described by identified parameters. 3R2C thermal network model, which consists of three resistances and two capacitances, is used to simulate building envelope whose parameters are determined in frequency domain using the theoretical frequency characteristics of the envelope. Internal mass is represented by a 2R2C thermal network model, which consists of three resistances and two capacitances. The resistances and capacitances of the 2R2C model are assumed to be constant. A GA (genetic algorithm)-based method is developed for model parameter identification by searching the optimal parameters of 3R2C models of envelopes in frequency domain and that of the 2R2C model of the building internal mass in time domain. As the model is based on the physical characteristics, the hybrid model can be used to predict the cooling and heating energy consumption of buildings accurately in wide range of operation conditions.

Wang, S.; Xu, X.

2003-01-01T23:59:59.000Z

203

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

benchmark the energy performance of Californias buildings.benchmark the energy performance of Californias buildings.benchmark with quantitative statistics guiding the building evaluation. Energy

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

204

Building performance evaluation and certification in the UK  

E-Print Network (OSTI)

for a reliable measurement and verification system was demonstrated in the US through an analysis of the wide variance of energy and carbon performance of buildings under the LEED programme. In a study by Wedding and Brown (2007, 2008) it was found...

Kelly, Scott; Pollitt, Michael G.; Crawford Brown, Doug

2012-10-04T23:59:59.000Z

205

Terry Sharp, P.E. Building Performance Benchmarking  

E-Print Network (OSTI)

Terry Sharp, P.E. Building Performance Benchmarking 3rd U.S. Army Energy Workshop January 25-26, 2007 EPA Energy Star Program and Energy Data Normalization Oak Ridge National Laboratory #12;Why You Should Care · Energy Star tools enable you to take Strategic Energy Management to a new level · Energy

Oak Ridge National Laboratory

206

Low cost performance evaluation of passive solar buildings  

DOE Green Energy (OSTI)

An approach to low-cost instrumentation and performance evaluation of passive solar heated buildings is presented. Beginning with a statement of the need for a low-cost approach, a minimum list of measured quantities necessary to compute a set of recommended performance factors is developed. Conflicts and confusion surrounding the definition of various performance factors are discussed and suggestions are made for dealing with this situation. Available instrumentation and data processing equipment is presented. The recommended system would monitor approximately ten variables and compute numerous performance factors on site at a projected system cost of less than $3,000 per installation.

Palmiter, L.S.; Hamilton, L.B.; Holtz, M.J.

1979-10-01T23:59:59.000Z

207

Performance of thermal distribution systems in large commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of thermal distribution systems in large commercial buildings Performance of thermal distribution systems in large commercial buildings Title Performance of thermal distribution systems in large commercial buildings Publication Type Journal Article LBNL Report Number LBNL-44331 Year of Publication 2002 Authors Xu, Tengfang T., François Rémi Carrié, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Duo Wang, and Mark P. Modera Journal Energy and Buildings Volume 34 Start Page Chapter Pagination 215-226 Abstract This paper presents major findings of a field study on the performance of five thermal distribution systems in four large commercial buildings. The five systems studied are typical single-duct or dual-duct constant air volume (CAV) systems and variable air volume (VAV) systems, each of which serves an office building or a retail building with floor area over 2,000 m2. The air leakage from ducts are reported in terms of effective leakage area (ELA) at 25 Pa reference pressure, the ASHRAE-defined duct leakage class, and air leakage ratios. The specific ELAs ranged from 0.7 to 12.9 cm2 per m2 of duct surface area, and from 0.1 to 7.7 cm2 per square meter of floor area served. The leakage classes ranged from 34 to 757 for the five systems and systems sections tested. The air leakage ratios are estimated to be up to one-third of the fan- supplied airflow in the constant-air-volume systems. The specific ELAs and leakage classes indicate that air leakage in large commercial duct systems varies significantly from system to system, and from system section to system section even within the same thermal distribution system. The duct systems measured are much leakier than the ductwork specified as "unsealed ducts" by ASHRAE. Energy losses from supply ducts by conduction (including convection and radiation) are found to be significant, on the scale similar to the losses induced by air leakage in the duct systems. The energy losses induced by leakage and conduction suggest that there are significant energy-savings potentials from duct-sealing and insulation practice in large commercial buildings

208

Preliminary investigation of the use of Sankey diagrams to enhance building performance simulation-supported design  

Science Conference Proceedings (OSTI)

Building performance simulation (BPS) is a powerful tool for assessing the performance of unbuilt buildings to improve their design. However, numerous obstacles resulting from limited resources of designers and poor presentation of results reduce the ... Keywords: Sankey diagrams, building performance simulation, design tools, high-performance building design, user interface

William (Liam) O'Brien

2012-03-01T23:59:59.000Z

209

Building Technologies Office: High Performance Windows Volume Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

210

Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation  

SciTech Connect

The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

Bazjanac, Vladimir

2007-08-01T23:59:59.000Z

211

Achieving Better Building Performance and Savings Using Optimal Control Strategies  

E-Print Network (OSTI)

The Continuous Commissioning (CCSM) process has become a very important energy conservation topic for new and existing commercial buildings. This process can yield substantial operating savings, improved indoor air quality, and enhanced occupant comfort. It also provides solutions to reoccurring building maintenance problems. One tool that can be implemented during commissioning work is a nearoptimal global set point method in an Energy Management Control System (EMCS) Direct Digital Controller (DDC). This algorithm is based on mathematical models for the chillers, boilers, chilled and hot water pumps, and air handler fans that relate the power of these components as a function of the chilled water and hot water differential temperature. The algorithm will minimize the total plant power consumption. These optimal control strategies make the CC process more effective. The Texas A&M University Systems State Headquarters is an office building, with a total floor area of approximately 123,960 ft2. An integrated commissioning of the HVAC systems was performed for this building. This paper describes the commissioning activities and demonstrates how newly developed optimized control strategies improved the building comfort conditions and reduced utility costs during and after the commissioning period.

Chen, H.; Deng, S.; Bruner, H.

2003-01-01T23:59:59.000Z

212

Improving Sustainability of Buildings Through a Performance-Based Design Approach: Preprint  

DOE Green Energy (OSTI)

The design of most buildings is typically driven by budget, time, safety, and energy codes, producing buildings that just meet these minimum criteria. To achieve better or even exceptional energy performance in buildings, the design team needs to work with the building owner and others involved in the building process toward a focused energy performance goal. This paper describes the performance-based design process for buildings and benefits of this approach.

Deru, M.; Torcellini, P.

2004-07-01T23:59:59.000Z

213

Broken Information Feedback Loops Prevent Good Building Energy PerformanceIntegrated Technological and Sociological Fixes Are Needed  

E-Print Network (OSTI)

Prevent Good Building Energy PerformanceIntegratedi.e. , controls) and building energy information systems, asPrevent Good Building Energy PerformanceIntegrated

Arens, Edward; Brown, Karl

2012-01-01T23:59:59.000Z

214

THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY  

E-Print Network (OSTI)

parameters for typ- ical building envelope constructions,Energy Conservation: Buildings," u. s. Dept. of Commerce,Heated Floor Structures and Buildings Foundation Soils with

Carroll, William L.

2011-01-01T23:59:59.000Z

215

Achieving Higher Performance with Cost Neutrality through Building America  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving Higher Performance Achieving Higher Performance with Cost Neutrality through Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Residential Energy Efficiency Stakeholder Meeting Agenda * Imagine Homes - An Overview * 2010 Occupied Test House - Objectives - From Modeling through Monitoring * 2012 Occupied Test House - Objectives - What's Next * Closing Remarks Residential Energy Efficiency Stakeholder Meeting Overview: * San Antonio, TX * 68 Homes in 2011 * $140k - $425k * 1,300 - 4,500 ft 2 Imagine Homes Residential Energy Efficiency Stakeholder Meeting Environment: * Hot-Humid * 2,996 CDD * 1,546 HDD * 31" Rainfall Imagine Homes Residential Energy Efficiency Stakeholder Meeting Imagine Homes History: * Established 2006 * Partnership with Beazer Homes * Builders Challenge * Building America

216

Building Scale vs. Community Scale Net-Zero Energy Performance  

SciTech Connect

Many government and industry organizations are focusing building energy-efficiency goals around producing individual net-zero buildings (nZEBs), using photovoltaic (PV) technology to provide on-site renewable energy after substantially improving the energy efficiency of the buildings themselves. Seeking net-zero energy (NZE) at the community scale instead introduces the possibility of using a wider range of renewable energy technologies, such as solar-thermal electricity generation, solar-assisted heating/cooling systems, and wind energy, economically. This paper reports results of a study comparing NZE communities to communities consisting of individual nZEBs. Five scenarios are examined: 1) base case a community of nZEBs with roof mounted PV systems; 2) NZE communities served by wind turbines on leased land; 3) NZE communities served by wind turbines on owned land; 4) communities served by solar-thermal electric generation; and 5) communities served by photovoltaic farms. All buildings are assumed to be highly efficient, e.g., 70% more efficient than current practice. The scenarios are analyzed for two climate locations (Chicago and Phoenix), and the levelized costs of electricity for the scenarios are compared. The results show that even for the climate in the U.S. most favorable to PV (Phoenix), more cost-effective approaches are available to achieving NZE than the conventional building-level approach (rooftop PV with aggressive building efficiency improvements). The paper shows that by expanding the measurement boundary for NZE, a community can take advantage of economies of scale, achieving improved economics while reaching the same overall energy-performance objective.

Katipamula, Srinivas; Fernandez, Nicholas; Brambley, Michael R.; Reddy, T. A.

2010-06-30T23:59:59.000Z

217

Thermal Performance Evaluation of Innovative Metal Building Roof Assemblies  

Science Conference Proceedings (OSTI)

In order to meet the coming energy codes, multiple layers of various insulation types will be required. The demand for greater efficiency has pushed insulation levels beyond the cavity depth. These experiments show the potential for improving metal building roof thermal performance. Additional work is currently being done by several stakeholders, so the data is expanding. These experiments are for research and development purposes, and may not be viable for immediate use.

Walker, Daniel James [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL

2011-01-01T23:59:59.000Z

218

Performance estimates for attached-sunspace passive solar heated buildings  

SciTech Connect

Performance predictions have been made for attached-sunspace types of passively solar heated buildings. The predictions are based on hour-by-hour computer simulations using computer models developed in the framework of PASOLE, the Los Alamos Scientific Laboratory (LASL) passive solar energy simulation program. The models have been validated by detailed comparison with actual hourly temperature measurements taken in attached-sunspace test rooms at LASL.

McFarland, R.D.; Jones, R.W.

1980-01-01T23:59:59.000Z

219

Broadband Model Performance for an Updated National Solar Radiation Database in the United States of America: Preprint  

DOE Green Energy (OSTI)

Updated review of broadband model performance in a project being done to update the existing United States National Solar Radiation Database (NSRDB).

Myers, D. R.; Wilcox, S.; Marion, W.; George, R.; Anderberg, M.

2005-09-01T23:59:59.000Z

220

Methodology for Rating a Building's Overall Performance based on the ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial Buildings  

E-Print Network (OSTI)

This study developed and applied a field test to evaluate the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Chartered Institute of Building Services Engineers (CIBSE)/United States Green Building Council (USGBC) Performance Measurement Protocols (PMP) for Commercial Buildings in a case-study office building in central Texas. As the first integrated protocol on building performance measurement, the ASHRAE PMP accomplished its goal of providing the standardized protocols for measuring and comparing the overall performance of a building, including energy, water, thermal comfort, Indoor Air Quality (IAQ), lighting, and acoustics. However, several areas for improvement were identified such as conflicting results from different procedures or benchmarks provided in the ASHRAE PMP; limited guidelines for performing the measurements; lack of detailed modeling techniques, graphical indices, and clear benchmarks; and some practical issues (i.e., high cost requirements and time-intensive procedures). All these observations are listed as the forty issues, including thirteen for energy, five for water, and twenty-two for Indoor Environmental Quality (IEQ). Recommendations were developed for each issue identified. For the selected high-priority issues, twelve new or modified approaches were proposed and then evaluated against the existing procedures in the ASHRAE PMP. Of these twelve new or modified approaches, the following are the most significant developments: a more accurate monthly energy use regression model including occupancy; a monthly water use regression model for a weather-normalized comparison of measured water performance; a method how to use a vertical temperature profile to evaluate room air circulation; a method how to use LCeq LAeq difference as a low-cost alternative to estimate low frequency noise annoyance; a statistical decomposition method of time-varying distribution of indices; and a real-time wireless IEQ monitoring system for the continuous IEQ measurements. The application of the forty recommendations and the twelve new or modified approaches developed in this study to the ASHRAE PMP is expected to improve the applicability of the ASHRAE PMP, which aligns the overall purpose of this study. Finally, this study developed a new single figure-of-merit rating system based on the ASHRAE PMP procedures. The developed rating system is expected to improve the usability of the protocols.

Kim, Hyojin 1981-

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improving Access to E-Journals and Databases at the MIT Libraries: Building a Database-Backed Web Site Called "Vera"  

E-Print Network (OSTI)

The MIT Libraries provide access to databases and electronic journals via the online catalog and the web. The Vera database was created in order to improve public access to a growing number of resources listed on web pages ...

Hennig, Nicole

2002-01-01T23:59:59.000Z

222

Creating High Performance Web Applications using Tcl, Display Templates, XML, and Database Content  

E-Print Network (OSTI)

We describe an online system that provides a framework for the rapid creation of high performance, database driven web sites based on content from XML files. The software that "glues" the content to the presentation is written in Tcl. The proposed architecture uses a pool of persistent Tcl engines to substantially improve performance and robustness as compared to traditional server-side programming techniques. Introduction Today's online applications demand more from web technology than C-based CGI programming can provide. A web site is a living document: the content, the presentation, and the software that drives that presentation need to change often. To meet the day to day requirements of a dynamic web site, a developer must use tools and technology that maximize flexibility and minimize development time. We will describe an online system that provides a framework for the creation of high performance, database driven dynamic web sites. Simple HTML templates that can be manipulate...

Alex Shah; Tony Darugar

1998-01-01T23:59:59.000Z

223

ASHRAE's New Performance Measurement Protocols for Commercial Buildings  

E-Print Network (OSTI)

ASHRAE, CIBSE and USGBC are developing a standardized, consistent set of protocols to facilitate the comparison of the measured performance of buildings, especially those claimed to be green, sustainable, and/or high performance. Such protocols are needed because claims of high performance cannot be credible without such standardized protocols being applied consistently in the U.S. as well as internationally. The protocols will identify what is to be measured, how it is to be measured (instrumentation and spatial resolution), and how often it is to be measured. They will address both the use and reporting of the measured data, as well as appropriate benchmarks for each of the following characteristics: Energy Use (site, and source), Indoor Environmental Quality (IEQ)-Thermal Comfort, IEQ-Indoor Air Quality, IEQ-Lighting/ Daylighting Quality, IEQ-Acoustics and Water Use. The primary users of the protocols document will be building owners and facility managers, rating and labeling system developers, government officials, as well as architects and design engineers. To date, a scoping document has been developed, an extensive literature review has been performed (available on ASHRAEs web site), and a committee formed to write the protocols, which are intended for publication in January 2009.

Haberl, J.; Davies, H.; Owens, B.; Hunn, B.

2008-10-01T23:59:59.000Z

224

High Performance Building Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentive Program Incentive Program High Performance Building Incentive Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate Residential loans/loan guarantees: 100,000 Commercial loans/loan guarantees: 2 million Grants: Lesser of 10% of project costs or 500,000 Program Info Start Date April 2009 State Pennsylvania Program Type State Loan Program Rebate Amount Vary by project, but program generally requires matching funds at least equivalent to DCED funding Provider Department of Community and Economic Development

225

What is the performance approach? | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Site Map...

226

NREL: News Feature - RSF Influences New High Performance Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

and operated. The building design team is working to meet the ambitious goals of the Living Building Challenge. The Bullitt Center will generate as much energy from rooftop...

227

NETL: Computer Software & Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Databases Crude Oil Analysis Database: Database contains information on 9,056 crude oil analyses performed at the National Institute for Petroleum and Energy Research (NIPER). The...

228

Commercial remodeling : using computer graphic imagery to evaluate building energy performance during conceptual redesign  

E-Print Network (OSTI)

This research is an investigation of the relationship between commercial remodeling and building thermal performance. A computer graphic semiotic is developed to display building thermal performance based on this relationship. ...

Williams, Kyle D

1985-01-01T23:59:59.000Z

229

Sustainable Building Case Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Studies Case Studies Sustainable Building Case Studies October 4, 2013 - 4:58pm Addthis These case studies feature examples of sustainably designed buildings and facilities from Federal agencies and industry. High Performance Federal Buildings Database The High Performance Federal Buildings database presents a sampling of sustainable buildings projects in the Federal Government. This database taps into the existing U.S. Department of Energy High Performance Buildings database, showcasing only Federal case study examples. Third-Party Certification ENERGY STAR for Federal Agencies: A site that provides access to the ENERGY STAR Portfolio Manager, the Federal High Performance Sustainable Buildings Checklist, and ENERGY STAR qualified products, and much more. Green Globes: A Web-based program from the Green Building Initiative for

230

Sustainable Building Case Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Studies Case Studies Sustainable Building Case Studies October 4, 2013 - 4:58pm Addthis These case studies feature examples of sustainably designed buildings and facilities from Federal agencies and industry. High Performance Federal Buildings Database The High Performance Federal Buildings database presents a sampling of sustainable buildings projects in the Federal Government. This database taps into the existing U.S. Department of Energy High Performance Buildings database, showcasing only Federal case study examples. Third-Party Certification ENERGY STAR for Federal Agencies: A site that provides access to the ENERGY STAR Portfolio Manager, the Federal High Performance Sustainable Buildings Checklist, and ENERGY STAR qualified products, and much more. Green Globes: A Web-based program from the Green Building Initiative for

231

High Performance Building Facade Solutions PIER Final Project Report  

SciTech Connect

Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and the US.A collaborative test, monitoring, and reporting protocol was also formulated via the Windows Testbed Facility in collaboration with industry partners, transitioning industry to focus on the importance of expecting measured performance to consistently achieve design performance expectations. The facility enables accurate quantification of energy use, peak demand, and occupant comfort impacts of synergistic facade-lighting-HVAC systems on an apples-to-apples comparative basis and its data can be used to verify results from simulations. Emerging interior and exterior shading technologies were investigated as potential near-term, low-cost solutions with potential broad applicability in both new and retrofit construction. Commercially-available and prototype technologies were developed, tested, and evaluated. Full-scale, monitored field tests were conducted over solstice-to-solstice periods to thoroughly evaluate the technologies, uncover potential risks associated with an unknown, and quantify performance benefits. Exterior shading systems were found to yield net zero energy levels of performance in a sunny climate and significant reductions in summer peak demand. Automated interior shading systems were found to yield significant daylighting and comfort-related benefits.In support of an integrated design process, a PC-based commercial fenestration (COMFEN) software package, based on EnergyPlus, was developed that enables architects and engineers to quickly assess and compare the performance of innovative facade technologies in the early sketch or schematic design phase. This tool is publicly available for free and will continue to improve in terms of features and accuracy. Other work was conducted to develop simulation tools to model the performance of any arbitrary complex fenestration system such as common Venetian blinds, fabric roller shades as well as more exotic innovative facade systems such as optical louver systems.

Lee, Eleanor; Selkowitz, Stephen

2009-12-31T23:59:59.000Z

232

High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building  

DOE Green Energy (OSTI)

This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned from 94 sensors installed in ZEH5 to monitor electric sub-metered usage, temperature and relative humidity, hot water usage, and heat pump operation for 1 year are presented. This information should be particularly useful to those considering structural insulated panel (SIP) walls and roofing; foundation geothermal heat pumps for space heating and cooling; solar water heaters; and roof-mounted, grid-tied photovoltaic systems. The document includes plans for ZEH6 (adapted from ZEH5), a one-story, high-performance house, as well as projections of how the design might perform in five major metropolitan areas across the TVA service territory. The HERS ratings for this all-electric house vary from 36 (Memphis, Tennessee) to 46 (Bristol, Tennessee).

Christian, J.

2011-01-01T23:59:59.000Z

233

High Performance Building Facade Solutions PIER Final Project Report  

E-Print Network (OSTI)

Window blinds as a potential energysaver - A case study (NBS Building Science Series 112). Washington, DC:

Lee, Eleanor

2011-01-01T23:59:59.000Z

234

Assessing U.S. ESCO industry performance and market trends: Results from the NAESCO database project  

SciTech Connect

The U.S. Energy Services Company (ESCO) industry is often cited as the most successful model for the private sector delivery of energy-efficiency services. This study documents actual performance of the ESCO industry in order to provide policymakers and investors with objective informative and customers with a resource for benchmarking proposed projects relative to industry performance. We have assembled a database of nearly 1500 case studies of energy-efficiency projects - the most comprehensive data set of the U.S. ESCO industry available. These projects include $2.55B of work completed by 51 ESCOs and span much of the history of this industry.

Osborn, Julie; Goldman, Chuck; Hopper, Nicole; Singer, Terry

2002-05-15T23:59:59.000Z

235

Some analytic models of passive solar building performance: a theoretical approach to the design of energy-conserving buildings  

DOE Green Energy (OSTI)

This paper describes an application of the fundamental methods of physics to solve a problem of environmental and economic interest: the description of the thermal performance of passive solar buildings. Such a description is of great practical interest to building designers; however, this paper is not intended to be of use to architects and engineers in its present form. Its intention is to provide a theoretical basis for understanding passive solar buildings; further effort is needed to develop rules of solar engineering.

Goldstein, D.B.

1978-11-01T23:59:59.000Z

236

Methodology for Modeling Building Energy Performance across the Commercial Sector  

Science Conference Proceedings (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

237

National Best Practices Manual for Building High Performance Schools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Best Practices Manual For Building High Performance Schools Acknowledgements The U.S. Department of Energy would like to acknowledge the help and assistance of the EnergySmart Schools team and the many authors and reviewers that provided input and feedback during the process of developing the report. Those include: US Department of Energy: David Hansen, Daniel Sze; EnergySmart Schools Team: Larry Schoff; US Environmental Protection Agency: Melissa Payne, Bob Thompson; Lawrence Berkeley National Laboratory: Rick Diamond; National Renewable Energy Laboratory: Ren Anderson, Zahra Chaudhry, Jeff Clarke, Kyra Epstein, Tony Jimenez, Patty Kappaz, Patricia Plympton, Byron Stafford, Marcy Stone, John Thornton, Paul Torcellini; Oak Ridge National Laboratory: Andre Desjarlais,

238

High-Performance Building Design: Keys to Success  

SciTech Connect

The energy-design process optimizes the interaction between the building envelope and systems. Buildings designed and constructed using this process can save between 30% and 75% in energy costs.

Hayter, S. J.; Torcellini, P. A.

2000-01-01T23:59:59.000Z

239

Project: Contaminant Control in High-Performance Buildings  

Science Conference Proceedings (OSTI)

... Specifically, the use of building materials with low VOC emissions may allow energy savings by lowering outdoor air ventilation requirements. ...

2013-01-15T23:59:59.000Z

240

Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings  

DOE Green Energy (OSTI)

This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings  

SciTech Connect

This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

2005-10-01T23:59:59.000Z

242

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network (OSTI)

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

243

Whole Building Cost and Performance Measurement: Data Collection Protocol Revision 2  

SciTech Connect

This protocol was written for the Department of Energys Federal Energy Management Program (FEMP) to be used by the public as a tool for assessing building cost and performance measurement. The primary audiences are sustainable design professionals, asset owners, building managers, and research professionals within the Federal sector. The protocol was developed based on the need for measured performance and cost data on sustainable design projects. Historically there has not been a significant driver in the public or private sector to quantify whole building performance in comparable terms. The deployment of sustainable design into the building sector has initiated many questions on the performance and operational cost of these buildings.

Fowler, Kimberly M.; Spees, Kathleen L.; Kora, Angela R.; Rauch, Emily M.; Hathaway, John E.; Solana, Amy E.

2009-03-27T23:59:59.000Z

244

Photovoltaics for Buildings: Case Studies of High-Performance Buildings with PV  

SciTech Connect

Energy efficiency maximizes the value of photovoltaics (PV) in buildings systems. A fixed-sizre PV system will offset a much larger part of the electrical load in an energy-efficient building than in a building whose energy design has not been optimized.

Hayter, S. J.; Torcellini, P. A.

2000-01-01T23:59:59.000Z

245

AERMOD: A Dispersion Model for Industrial Source Applications. Part II: Model Performance against 17 Field Study Databases  

Science Conference Proceedings (OSTI)

The performance of the American Meteorological Society (AMS) and U.S. Environmental Protection Agency (EPA) Regulatory Model (AERMOD) Improvement Committees applied air dispersion model against 17 field study databases is described. AERMOD is a ...

Steven G. Perry; Alan J. Cimorelli; Robert J. Paine; Roger W. Brode; Jeffrey C. Weil; Akula Venkatram; Robert B. Wilson; Russell F. Lee; Warren D. Peters

2005-05-01T23:59:59.000Z

246

A Sensitivity Study of Building Performance Using 30-Year Actual Weather  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity Study of Building Performance Using 30-Year Actual Weather Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Publication Type Conference Paper Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Date Published 05/2013 Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Traditional energy performance calculated using building simulation with the typical meteorological year (TMY) weather data represents the energy performance in a typical year but not necessarily the average or typical energy performance of a building in long term. Furthermore, the simulated results do not provide the range of variations due to the change of weather, which is important in building energy management and risk assessment of energy efficiency investment. This study analyzes the weather impact on peak electric demand and energy use by building simulation using 30-year actual meteorological year (AMY) weather data for three types of office buildings at two design efficiency levels across all 17 climate zones. The simulated results from the AMY are compared to those from TMY3 to determine and analyze the differences. It was found that yearly weather variation has significant impact on building performance especially peak electric demand. Energy savings of building technologies should be evaluated using simulations with multi-decade actual weather data to fully consider investment risk and the long term performance.

247

Research Support Facility (RSF): Leadership in Building Performance (Brochure)  

DOE Green Energy (OSTI)

This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

Not Available

2011-09-01T23:59:59.000Z

248

Building Technologies Office: Critical Guidance for Peak Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Effective, Low-Cost, Whole-Building Ventilation for Existing Homes Combustion Safety in Tight Houses An Overview of Gas Industry Research on Combustion Safety Model-based...

249

High Performance Building Facade Solutions PIER Final Project Report  

E-Print Network (OSTI)

of energy use, peak demand, and occupant comfort impacts ofreductions in summer peak demand. Automated interior shadingenergy efficiency, peak demand, visual comfort, buildings, x

Lee, Eleanor

2011-01-01T23:59:59.000Z

250

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building materials; thermal conductivity; databases; insulation; building technology; density; fibrous glass; guarded hot plate; heat flow; insulation ...

251

BUILDING ENERGY LABELING: A PATH TO IMPROVED ENERGY PERFORMANCE FOR COMMERCIAL BUILDINGS.  

E-Print Network (OSTI)

??Architects, engineers, and builders have a unique opportunity to lead society and the economy through the current difficult times. Since studies show that buildings account (more)

Nelson, Ronald

2010-01-01T23:59:59.000Z

252

Office building performance - Software based energy calculation of office buildings and comparison with measured energy data.  

E-Print Network (OSTI)

??The usage of energy simulation tools is widespread in the construction field. Indeed, it is useful to predict the energy consumption of a new building, (more)

Druhen, Marie

2013-01-01T23:59:59.000Z

253

Interoperable, life-cycle tools for assuring building performance: An overview of a commercial building initiative  

SciTech Connect

A key impediment to improving the energy efficiency and reducing the environmental impact of buildings is the complexity and cost of managing information over the life cycle of a building. A surprisingly large fraction of the total cost of buildings is embodied in the decision making and information management process due to the structure of the building industry, the numerous people and companies involved in the process, the current nature of the building acquisition process, and the long time periods over which buildings operate once design and construction are completed. The authors suggest that new interoperable software tools could greatly facilitate and rationalize this complex process, thereby reducing time and cost, and greatly improving the habitability and environmental impact of these buildings. They describe a series of projects in which they are building and testing several prototype toolkits as part of a building life-cycle information system that will allow interoperable software tools to function more effectively throughout the design, construction, commissioning, and operations phases.

Selkowitz, S.; Piette, M.A.; Papamichael, K.; Sartor, D.; Hitchcock, R.; Olken, F.

1996-11-01T23:59:59.000Z

254

Industry-wide Substation Equipment Performance and Failure Database--Data, Model, and Results--Electronic Media  

Science Conference Proceedings (OSTI)

Industry-wide equipment performance databases (IDBs) are a means for establishing a broad based repository of equipment performance data. With proper care and analysis, these data can provide information about the past performance of equipment groups and subgroups and the factors that influence that performance. With enough data, projections can be made about future performance. Both past and future performance information can be useful for operations, maintenance, and asset management decisions. This ne...

2009-12-23T23:59:59.000Z

255

U-Launch Winner Secures $2.4M Investment for Building Energy Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U-Launch Winner Secures $2.4M Investment for Building Energy U-Launch Winner Secures $2.4M Investment for Building Energy Performance Software U-Launch Winner Secures $2.4M Investment for Building Energy Performance Software December 14, 2011 - 3:00pm Addthis This screenshot from cleantech start-up company FirstFuel's building energy efficiency performance software shows users a building's response to all forms of weather, operational schedules, key energy metrics, daily consumption patterns, seasonal analysis, peak loading, and shell integrity. | Photo courtesy of FirstFuel. This screenshot from cleantech start-up company FirstFuel's building energy efficiency performance software shows users a building's response to all forms of weather, operational schedules, key energy metrics, daily consumption patterns, seasonal analysis, peak loading, and shell integrity.

256

Energy Modeling of a High Performance Building in the U.A.E. for Sustainability Certification  

E-Print Network (OSTI)

The Sheikh Zayed Desert Learning Centre (SZDLC) is a high performance sustainable exhibition center under construction in the U.A.E, aiming for the highest achievable sustainability ratings within the LEED and Estidama sustainability building rating programs. The Leadership in Energy and Environmental Design (LEED) sustainable building program provides a set of criteria for rating sustainable buildings (U.S. Green Building Council 2009). The Estidama rating program, currently in its pilot phase, is an upcoming sustainable building guideline for the Emirate of Abu Dhabi (Urban Planning Council, Abu Dhabi 2008). The Estidama program is similar to LEED in many ways, with a focus on the integrative design process for sustainable building projects. Both of these rating programs assign a large share of points to reducing energy usage which is related to CO2 production. To demonstrate that a design has improved performance, the rating programs encourage the use of whole building energy simulation. The building as it is designed is simulated and compared to a baseline building, where the building envelope and systems are replaced with materials and components meeting minimum acceptable standards. The percentage improvement of the As-Designed building over the Baseline building dictates the number of points awarded in the respective categories. Innovative solutions in managing the simulation complexity and visualizing energy performance were necessitated by the complexity of performing the building simulations. Improved decision support during the design phase and a better understanding of energy usage in the building are expected to improve the energy efficiency, operating costs, and environmental impact of the building. The detail available from an ambitious modeling approach is presented, demonstrating the usefulness of building energy performance simulation for sustainability ratings as well as design decision support.

Jones, M.; Ledinger, S.

2010-01-01T23:59:59.000Z

257

Lessons Learned from Field Evaluation of Six High-Performance Buildings: Preprint  

DOE Green Energy (OSTI)

The energy performance of six high-performance buildings around the United States was monitored in detail. The six buildings include the Visitor Center at Zion National Park; the National Renewable Energy Laboratory's Thermal Test Facility; the Chesapeake Bay Foundation's Merrill Center; The BigHorn Home Improvement Center; the Cambria DEP Office Building; and the Oberlin College Lewis Center. This paper discusses the design energy targets and actual performance.

Torcellini, P.; Deru, M.; Griffith, B.; Long, N.; Pless, S.; Judkoff, R.; Crawley, D. B.

2004-07-01T23:59:59.000Z

258

Development of discrete event system specification (DEVS) building performance models for building energy design  

Science Conference Proceedings (OSTI)

The discrete event system specification (DEVS) is a formalism for describing simulation models in a modular fashion. In this study, it is exploited by forming submodels that allow different professions involved in the building design process to work ... Keywords: DEVS, energy simulation in building design, modular BPS, stochastic occupant models

Huseyin Burak Gunay; Liam O'Brien; Rhys Goldstein; Simon Breslav; Azam Khan

2013-04-01T23:59:59.000Z

259

Evaluating the Energy Performance of the First Generation of LEED-Certified Commercial Buildings  

E-Print Network (OSTI)

Evaluating the Energy Performance of the First Generation of LEED-Certified Commercial Buildings Rick Diamond, Lawrence Berkeley National Laboratory Mike Opitz and Tom Hicks, U.S. Green Building ABSTRACT Over three hundred buildings have been certified under the Leadership in Energy and Environmental

Diamond, Richard

260

DOE G 413.3-6A, High Performance Sustainable Building  

Directives, Delegations, and Requirements

This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project ...

2011-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building America System Performance Test Practices: Part 1 -- Photovoltaic Systems  

DOE Green Energy (OSTI)

The report outlines the short-term field testing used by Building America staff and includes a report on the results of an example test of a PV system with battery storage on a home in Tucson, Arizona. This report is not intended as a general recommended test procedure for wide distribution. It is intended to document current practices in Building America to inform program stakeholders and stimulate further discussion. Building America staff intend to apply this procedure until relevant standards for testing PV modules are completed.

Barker, G.; Norton, P.

2003-05-01T23:59:59.000Z

262

High Performance Commercial Building Systems Clifford C. Federspiel, Luis Villafana  

E-Print Network (OSTI)

for energy and maintenance management. It uses a common database system for all components and an open of California, Berkeley 2 School of Information Management and Systems, University of California, Berkeley ABSTRACT In this paper, we describe the design of a user interface for energy and maintenance systems

263

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

1.5. Effective energy management systems. 1.6. Fill gaps incontrols and energy management systems (20-30 min) Intro:through building or energy management system trending or

Singer, Brett C.

2010-01-01T23:59:59.000Z

264

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

265

Thermal performance of the exterior envelopes of buildings IV  

Science Conference Proceedings (OSTI)

The purpose of this conference was to present for discussion the latest research from industrial, academic, and government laboratories on issues that will reduce energy consumption by improving the design and construction of buildings. The primary topics covered in the 15 sessions were Hot Climates, Daylighting, Walls/Roofs, Reflective Systems, Standards/Codes, Fenestration, Infiltration/Ventilation, Moisture, Whole Buildings, and Foundations. Abstracts were prepared for the 63 papers. (SC)

Not Available

1989-01-01T23:59:59.000Z

266

Building America Top Innovations Hall of Fame Profile … Building Americas Top Innovations Propel the Home Building Industry toward Higher Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sponsored by the U.S. Department of Energy's (DOE's) sponsored by the U.S. Department of Energy's (DOE's) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. The U.S. home building industry represents a significant opportunity for energy savings, accounting for nearly one-fourth of U.S. energy consumption, but the industry as a whole has been slow to adopt new energy-saving technologies. This is largely due to the industry's unique disaggregation, with thousands of small business owners lacking adequate resources and capabilities to invest in research and development. DOE established the Building America program in 1995 to address both the huge energy-saving opportunity and the critical research gap

267

Performance of High-Performance Glazing in IECC Compliant Building Simulation Model  

E-Print Network (OSTI)

Current specifications for glazing in the 2000 IECC code adopted by Texas imply the use of low-E glazing. However, the trends in the development of highperformance glazing technology indicate that windows have the potential to provide net positive energy benefits making it inevitable for future versions of the IECC to incorporate high-performance glazing. This study examines the performance of a number of such glazing options when incorporated in the IECC compliant residential building. The results show that in some cases the resultant energy consumption obtained from installing high-performance windows was lower than the energy consumption of a base-case windowless house (Approximately 6% total energy savings, and 40% heating).

Mukhopadhyay, J.; Haberl, J. S.

2006-08-01T23:59:59.000Z

269

Modeling and simulation of building energy performance for portfolios of public buildings  

Science Conference Proceedings (OSTI)

In the U.S., commercial and residential buildings and their occupants consume more than 40% of total energy and are responsible for 45% of total greenhouse gas (GHG) emissions. Therefore, saving energy and costs, improving energy efficiency and reducing ...

Young M. Lee; Fei Liu; Lianjun An; Huijing Jiang; Chandra Reddy; Raya Horesh; Paul Nevill; Estepan Meliksetian; Pawan Chowdhary; Nat Mills; Young Tae Chae; Jane Snowdon; Jayant Kalagnanam; Joe Emberson; Al Paskevicous; Elliott Jeyaseelan; Robert Forest; Chris Cuthbert; Tony Cupido; Michael Bobker; Janine Belfast

2011-12-01T23:59:59.000Z

270

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

NLE Websites -- All DOE Office Websites (Extended Search)

FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE BUILDINGS MEMORANDUM OF UNDERSTANDING PURPOSE: With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High- Performance and Sustainable Buildings. A major element of this strategy is the implementation of common strategies for planning, acquiring, siting, designing, building, operating, and maintaining High Performance and Sustainable Buildings. The signatory agencies will also coordinate with complementary efforts in the private and public sectors. BACKGROUND AND FEDERAL POLICY: The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of

271

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE BUILDINGS MEMORANDUM OF UNDERSTANDING PURPOSE: With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High- Performance and Sustainable Buildings. A major element of this strategy is the implementation of common strategies for planning, acquiring, siting, designing, building, operating, and maintaining High Performance and Sustainable Buildings. The signatory agencies will also coordinate with complementary efforts in the private and public sectors. BACKGROUND AND FEDERAL POLICY: The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of

272

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE BUILDINGS MEMORANDUM OF UNDERSTANDING PURPOSE: With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High- Performance and Sustainable Buildings. A major element of this strategy is the implementation of common strategies for planning, acquiring, siting, designing, building, operating, and maintaining High Performance and Sustainable Buildings. The signatory agencies will also coordinate with complementary efforts in the private and public sectors. BACKGROUND AND FEDERAL POLICY: The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of

273

The Simulation and Mapping of Building Performance Indicators based on European Weather Stations  

E-Print Network (OSTI)

Due to the climate change debate, a lot of research and maps of external climate parameters are available. However, maps of indoor climate performance parameters are still lacking. This paper presents a methodology for obtaining maps of performances of similar buildings that are virtually spread over whole Europe. The produced maps are useful for analyzing regional climate influence on building performance indicators such as energy use and indoor climate. This is shown using the Bestest building as a reference benchmark. An important application of the mapping tool is the visualization of potential building measures over the EU. Also the performances of single building components can be simulated and mapped. It is concluded that the presented method is efficient as it takes less than 15 minutes to simulate and produce the maps on a 2.6GHz/4GB computer. Moreover, the approach is applicable for any type of building.

van Schijndel, A W M

2012-01-01T23:59:59.000Z

274

Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT  

E-Print Network (OSTI)

The present paper aims at describing the methodology and presents some final results of a work developed in the field of building energy benchmarking applied to the buildings of the Polytechnic Institute of Leiria, based on a thorough energy performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same typology and against targets previously defined. The energy performance indicator was computed based on two different relevant elements, the net floor area and number of served meals. Then, the results were ranked according to the percentile rules previously established, and compared. An environmental analysis based on equivalent CO2 emissions was also performed for each building.

Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

2012-01-01T23:59:59.000Z

275

Approach for the Improvement of Energy Performance of a Stock of Buildings  

E-Print Network (OSTI)

This paper summarizes the work performed by CSTB, ADEME and the Ministry of equipment in France to improve the energy performance of the ministry stock of buildings: 7 millions square meters, 10 000 buildings, wide range of different buildings of different sizes and uses. The project has four major phases: analysis of existing tools for energy performance evaluation, identification of the endusers of the tools and definition of a building typology, development of tools adapted to the endusers, validation and improvement of the tools. Since the building managers' motivation is an important factor to improve the energy performance of the buildings, the study has tried to incorporate the endusers needs and constraints in the different phases of tools development.

Vaezi-Nejad, H.; Bouillon, J.; Crozier, L.; Guyot, G.

2003-01-01T23:59:59.000Z

276

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

China Environmental Energy Technologies Division 2012 ACEEEsuitable building energy technologies in different regionssuitable building energy technologies for different building

Feng, Wei

2013-01-01T23:59:59.000Z

277

Optimizing HVAC Control to Improve Building Comfort and Energy Performance  

E-Print Network (OSTI)

This paper demonstrates the benefits of optimal control in well-designed and operated buildings using a case study. The case study building was built in 2001. The HVAC and control systems have been installed with state-of-the-art equipment which include a terminal box temperature integrated minimum airflow reset. The building has been used and operated based on the design intents. This paper presents both the existing and the optimal control schedules, which include the VAV box operation schedule, AHUs optimal control, chiller and chilled water pump control, and boiler and hot water pump control. The measured hourly HVAC electricity consumption shows that annual savings of up to 40% can be achieved with an optimal control schedule.

Song, L.; Joo, I.; Dong, D.; Liu, M.; Wang, J.; Hansen, K.; Quiroz, L.; Swiatek, A.

2003-01-01T23:59:59.000Z

278

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

of Public Buildings. Energy and Buildings (41), 426435.and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

279

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

as buildings energy load profile, citys solar radiationthe buildings energy load profiles. The annual energythe buildings energy load profiles. The Chinese residential

Feng, Wei

2013-01-01T23:59:59.000Z

280

U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy High Performance and Sustainable Buildings Implementation Plan August 15, 2008 U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan TABLE OF CONTENTS ACRONYMS................................................................................................................................. iii 1 DOE COMMITMENT TO HPSB .......................................................................................... 1 1.1 Federal HPSB Drivers and Commitments ........................................................................... 1 1.2 DOE-Specific HPSB Commitments .................................................................................... 2 2 DOE HPSB DIRECTIVES..................................................................................................... 3

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study  

SciTech Connect

This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

Wang, Na

2013-03-13T23:59:59.000Z

282

Energy Performance Evaluation of a Low-Energy Academic Building: Preprint  

SciTech Connect

This paper considers the energy performance analyses conducted to document and verify progress toward the building's design objectives. The authors present and discuss energy performance data and draw lessons that can be applied to improve the design of this and future low-energy buildings.

Pless, S.; Torcellini, P.

2005-10-01T23:59:59.000Z

283

Energy Performance Evaluation of a Low-Energy Academic Building: Preprint  

SciTech Connect

This paper considers the energy performance analyses conducted to document and verify progress toward the building's design objectives. The authors present and discuss energy performance data and draw lessons that can be applied to improve the design of this and future low-energy buildings.

Pless, S.; Torcellini, P.

2005-10-01T23:59:59.000Z

284

A critical analysis on the effectiveness of energy performance assessment for green building labelling scheme in Hong Kong.  

E-Print Network (OSTI)

???Green building labelling system is widely accepted worldwide for benchmarking the environmental performance of buildings, which provides ratings and labels to indicate the achievement of (more)

Leu, Ching Yin (???)

2012-01-01T23:59:59.000Z

285

Development of whole-building energy performance models as benchmarks for retrofit projects  

Science Conference Proceedings (OSTI)

This paper presents a systematic development process of whole-building energy models as performance benchmarks for retrofit projects. Statistical regression-based models and computational performance models are being used for retrofit projects in industry ...

Omer Tugrul Karaguzel; Khee Poh Lam

2011-12-01T23:59:59.000Z

286

Proactive Energy Management for High-Performance Buildings: Exploiting and  

E-Print Network (OSTI)

]. These EM systems exploit sensor data and predictive building models to allow for a more proactive, sensors, predictive models, and real-time optimization algorithms to anticipate uncertain factors with basic controllers that track the set-points dictated by the human operator or by the EM system which

287

Documenting performance metrics in a building life-cycle information system  

SciTech Connect

In order to produce a new generation of green buildings, it will be necessary to clearly identify their performance requirements, and to assure that these requirements are met. A long-term goal is to provide building decision-makers with the information and tools needed to cost-effectively assure the desired performance of buildings, as specified by stakeholders, across the complete life cycle of a building project. A key element required in achieving this goal is a method for explicitly documenting the building performance objectives that are of importance to stakeholders. Such a method should clearly define each objective (e.g., cost, energy use, and comfort) and its desired level of performance. This information is intended to provide quantitative benchmarks useful in evaluating alternative design solutions, commissioning the newly constructed building, and tracking and maintaining the actual performance of the occupied building over time. These quantitative benchmarks are referred to as performance metrics, and they are a principal element of information captured in the Building Life-cycle Information System (BLISS). An initial implementation of BLISS is based on the International Alliance for Interoperability`s (IAI) Industry Foundation Classes (IFC), an evolving data model under development by a variety of architectural, engineering, and construction (AEC) industry firms and organizations. Within BLISS, the IFC data model has been extended to include performance metrics and a structure for archiving changing versions of the building information over time. This paper defines performance metrics, discusses the manner in which BLISS is envisioned to support a variety of activities related to assuring the desired performance of a building across its life cycle, and describes a performance metric tracking tool, called Metracker, that is based on BLISS.

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1998-08-01T23:59:59.000Z

288

Developing a next-generation community college curriculum for energy-efficient high-performance building operations  

E-Print Network (OSTI)

Energy and Buildings, 33, 309-317. Wiggins, G. and McTighe,of the broader energy and building performance issues. NorSolution Strategies for Building Energy System Simulation.

2004-01-01T23:59:59.000Z

289

Lessons learned when building a greenfield high performance computing ecosystem  

Science Conference Proceedings (OSTI)

Faced with a fragmented research computing environment and growing needs for high performance computing resources, Michigan State University established the High Performance Computing Center in 2005 to serve as a central high performance computing resource ...

Andrew R. Keen; William F. Punch; Greg Mason

2012-12-01T23:59:59.000Z

290

Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings  

SciTech Connect

The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

2006-08-01T23:59:59.000Z

291

APPLICATION OF DOE-2 TO RESIDENTIAL BUILDING ENERGY PERFORMANCE STANDARDS  

E-Print Network (OSTI)

2 and DO:C-2". ASHRAE- DOE Conference on Thermal PerformanceLeighton, G. ; Ross, H. (1979). "DOE~2: A New State-of-the-Performance Standards". ASHRAE-DOE Conference on Thermal

Lokmanhekim, M.

2013-01-01T23:59:59.000Z

292

Measured energy performance of a US-China demonstrationenergy-efficient office building  

SciTech Connect

In July 1998, the U.S. Department of Energy (USDOE) and China's Ministry of Science of Technology (MOST) signed a Statement of Work (SOW) to collaborate on the design and construction of an energy-efficient demonstration office building and design center to be located in Beijing. The proposed 13,000 m{sup 2} (140,000 ft{sup 2}) nine-story office building would use U.S. energy-efficient materials, space-conditioning systems, controls, and design principles that were judged to be widely replicable throughout China. The SOW stated that China would contribute the land and provide for the costs of the base building, while the U.S. would be responsible for the additional (or marginal) costs associated with the package of energy efficiency and renewable energy improvements to the building. The project was finished and the building occupied in 2004. Using DOE-2 to analyze the energy performance of the as-built building, the building obtained 44 out of 69 possible points according to the Leadership in Energy and Environmental Design (LEED) rating, including the full maximum of 10 points in the energy performance section. The building achieved a LEED Gold rating, the first such LEED-rated office building in China, and is 60% more efficient than ASHRAE 90.1-1999. The utility data from the first year's operation match well the analysis results, providing that adjustments are made for unexpected changes in occupancy and operations. Compared with similarly equipped office buildings in Beijing, this demonstration building uses 60% less energy per floor area. However, compared to conventional office buildings with less equipment and window air-conditioners, the building uses slightly more energy per floor area.

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-08-28T23:59:59.000Z

293

Measured energy performance of a US-China demonstrationenergy-efficient office building  

SciTech Connect

In July 1998, the U.S. Department of Energy (USDOE) and China's Ministry of Science of Technology (MOST) signed a Statement of Work (SOW) to collaborate on the design and construction of an energy-efficient demonstration office building and design center to be located in Beijing. The proposed 13,000 m{sup 2} (140,000 ft{sup 2}) nine-story office building would use U.S. energy-efficient materials, space-conditioning systems, controls, and design principles that were judged to be widely replicable throughout China. The SOW stated that China would contribute the land and provide for the costs of the base building, while the U.S. would be responsible for the additional (or marginal) costs associated with the package of energy efficiency and renewable energy improvements to the building. The project was finished and the building occupied in 2004. Using DOE-2 to analyze the energy performance of the as-built building, the building obtained 44 out of 69 possible points according to the Leadership in Energy and Environmental Design (LEED) rating, including the full maximum of 10 points in the energy performance section. The building achieved a LEED Gold rating, the first such LEED-rated office building in China, and is 60% more efficient than ASHRAE 90.1-1999. The utility data from the first year's operation match well the analysis results, providing that adjustments are made for unexpected changes in occupancy and operations. Compared with similarly equipped office buildings in Beijing, this demonstration building uses 60% less energy per floor area. However, compared to conventional office buildings with less equipment and window air-conditioners, the building uses slightly more energy per floor area.

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-08-28T23:59:59.000Z

294

Monthly average clear-sky broadband irradiance database for worldwide solar heat gain and building cooling load calculations  

Science Conference Proceedings (OSTI)

This paper establishes the formulation of a new clear-sky solar radiation model appropriate for algorithms calculating cooling loads in buildings. The aim is to replace the ASHRAE clear-sky model of 1967, whose limitations are well known and are reviewed. The new model is derived in two steps. The first step consists of obtaining a reference irradiance dataset from the REST2 model, which uses a high-performance, validated, two-band clear-sky algorithm. REST2 requires detailed inputs about atmospheric conditions such as aerosols, water vapor, ozone, and ground albedo. The development of global atmospheric datasets used as inputs to REST2 is reviewed. For the most part, these datasets are derived from space observations to guarantee universality and accuracy. In the case of aerosols, point-source terrestrial measurements were also used as ground truthing of the satellite data. The second step of the model consists of fits derived from a REST2-based reference irradiance dataset. These fits enable the derivation of compact, but relatively accurate expressions, for beam and diffuse clear-sky irradiance. The fitted expressions require the tabulation of only two pseudo-optical depths for each month of the year. The resulting model, and its tabulated data, are expected to be incorporated in the 2009 edition of the ASHRAE Handbook of Fundamentals. (author)

Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Thevenard, Didier [Numerical Logics Inc., 498 Edenvalley Cres., Waterloo, Ont. (Canada)

2009-11-15T23:59:59.000Z

295

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

296

The Magellan Project: Building High-Performance Clouds | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

our network interfaces were the limiting factor was excellent; that demonstrates the low overhead virtualization can have, while leaving room for improved node performance. Even...

297

Capacity Building for Energy Performance Contracting in European Union.  

E-Print Network (OSTI)

?? Energy Performance Contracting (EPC) is an important tool to disseminate energy efficiency measures. This study focuses on the main barriers and success factors for (more)

Basar, Ezgi

2013-01-01T23:59:59.000Z

298

Energy Performance and Comfort Level in High Rise and Highly Glazed Office Buildings  

E-Print Network (OSTI)

Thermal and visual comfort in buildings play a significant role on occupants' performance but on the other hand achieving energy savings and high comfort levels can be a quite difficult task especially in high rise buildings with highly glazed facades. Many studies suggest that the energy needed to keep the interior conditions at required comfort levels in buildings depends on several factors such as physical and optical properties of building elements, indoor and outdoor climate and behaviour of the occupants, etc. Moreover depending on the different orientation of building facade, the impact of these parameters might vary. The buildings are usually designed without paying much attention to this fact. The needs of each building zone might differ greatly and in order to achieve better indoor environment, different actions might be needed to taken considering the individual characteristics of each zone. In the proposed research the possibilities of evaluating building energy and comfort performance simultaneously taking into account the impact of facade orientation with use of whole building energy simulation tools are investigated through a case study.

Bayraktar, M.; Perino, M.; Yilmaz, A. Z.

2010-01-01T23:59:59.000Z

299

Building Technologies Office: Home Performance with ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance with ENERGY STAR® Performance with ENERGY STAR® Homeowners across the United States can find trusted contractors who follow a comprehensive approach, recommended by ENERGY STAR®, to save money on energy bills while improving home comfort. The Home Performance with ENERGY STAR (HPwES) program provides homeowners with resources to identify trusted contractors that can help them understand their home's energy use, as well as identify home improvements that increase energy performance and improve comfort. Participating contractors can recommend and perform energy improvements, such as air sealing, insulation that can fix drafty and uncomfortable rooms, and install high efficiency heating and cooling equipment. These improvements can lower utility bills. Contractors that participate in HPwES are qualified by local sponsors such as utilities, state energy offices, and other organizations to ensure that they can offer high-quality, comprehensive energy assessments (also known as "energy audits") using sophisticated equipment to diagnose a home's energy, health, and safety issues.

300

RSF Workshop Session II: Performance-Based Design-Build Process  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Performance-Based Design-Build II: Performance-Based Design-Build Process Moderator: Drew Detamore Panelists: Jeff Baker Karen Leitner Byron Haselden Achieving Superior Energy Performance at Competitive Cost RSF Workshop, Golden, Colorado July 27-28, 2011 Energy Efficiency & Renewable Energy *Moderator: *Drew Detamore Director, Infrastructure and Campus Development Office National Renewable Energy Laboratory *Panelists: *Karen Leitner Senior Supervisor, Contract and Business Services National Renewable Energy Laboratory *Byron J. Haselden President, Haselden Construction *Jeffrey M. Baker Director, Office of Laboratory Operations U.S. Department of Energy Golden Field Office * Performance based design-build process * Incentives * Shared Values * Owner's perspective * Design-Builder's perspective * Has anyone ever utilized one design-build team to

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Baltimore County- Property Tax Credit for High Performance Buildings and Homes  

Energy.gov (U.S. Department of Energy (DOE))

The state of Maryland permits local governments (Md Code: Property Tax 9-242) to offer property tax credits for high performance buildings if they choose to do so. Baltimore County exercised this...

302

Impact of ASHRAE standard 189.1-2009 on building energy efficiency and performance.  

E-Print Network (OSTI)

??The purpose of this report is to provide an introduction to the new ASHRAE Standard 189.1-2009, Standard for the Design of High-Performance Green Buildings. The (more)

Blush, Aaron

2010-01-01T23:59:59.000Z

303

Window performance and building energy use: Some technical options for increasing energy efficiency  

Science Conference Proceedings (OSTI)

Window system design and operation has a major impact on energy use in buildings as well as on occupants thermal and visual comfort. Window performance will be a function of optical and thermal properties

Stephen Selkowitz

1985-01-01T23:59:59.000Z

304

THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY  

E-Print Network (OSTI)

in predicting dynamic thermal performance by the admittancea lumped parameter thermal analog model for dynamic ther-5 Presented at the DOE/ASTM Thermal Insulation Conference,

Carroll, William L.

2011-01-01T23:59:59.000Z

305

Energy performance of evacuated glazings in residential buildings  

SciTech Connect

This paper presents the results of a study investigating the energy performance of evacuated glazings or glazings which maintain a vacuum between two panes of glass. Their performance is determined by comparing results to prototype highly insulated superwindows as well as a more conventional. insulating glass unit with a low-E coating and argon gas fill. We used the DOE2.1E energy analysis simulation program to analyze the annual and hourly heating energy use due to the windows of a prototypical single-story house located in Madison, Wisconsin. Cooling energy performance was also investigated. Our results show that for highly insulating windows, the solar heat gain coefficient is as important as the window`s U-factor in determining heating performance for window orientations facing west-south-east. For other orientations in which there is not much direct solar radiation, the window`s U-factor primarily governs performance. The vacuum glazings had lower heating requirements than the superwindows for most window orientations. The conventional low-E window outperformed the superwindows for southwest-south-southeast orientations These performance differences are directly related to the solar heat gain coefficients of the various windows analyzed. The cooling performance of the windows was inversely related to the heating performance. The lower solar heat gain coefficients of the superwindows resulted in the best cooling performance. However, we were able to mitigate the cooling differences of the windows by using an interior shading device that reduced the amount of solar gain at appropriate times.

Sullivan, R.; Beck, F.; arasteh, D.; Selkowitz, S.

1995-09-01T23:59:59.000Z

306

Energy performance of evacuated glazings in residential buildings  

SciTech Connect

This paper presents the results of a study investigating the energy performance of evacuated glazings or glazings which maintain a vacuum between two panes of glass. Their performance is determined by comparing results to prototype highly insulated superwindows as well as a more conventional insulating glass unit with a low-E coating and argon gas fill. The authors used the DOE-2.1E energy analysis simulation program to analyze the annual and hourly heating energy use due to the windows of a prototypical single-story house located in Madison, Wisconsin. Cooling energy performance was also investigated. The results show that for highly insulating windows, the solar heat gain coefficient is as important as the window`s U-factor in determining heating performance for window orientations facing west-south-east. For other orientations in which there is not much direct solar radiation, the window`s U-factor primarily governs performance. The vacuum glazings had lower heating requirements than the superwindows for most window orientations. The conventional low-E window outperformed the superwindows for southwest-south-southeast orientations. These performance differences are directly related to the solar heat gain coefficients of the various windows analyzed. The cooling performance of the windows was inversely related to the heating performance. The lower solar heat gain coefficients of the superwindows resulted in the best cooling performance. However, the authors were able to mitigate the cooling differences of the windows by using an interior shading device that reduced the amount of solar gain at appropriate times.

Sullivan, R.; Beck, F.; Arasteh, D.; Selkowitz, S.

1996-10-01T23:59:59.000Z

307

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

308

NREL: News - NREL Launches Initiative to Build Solar Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

from solar facilities across the country. As part of DOE's SunShot Initiative, the Open Solar Performance and Reliability Clearinghouse (O-SPaRC) will give the private market...

309

Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD)  

E-Print Network (OSTI)

The European Commission's Action Plan on Energy Efficiency (2000) indicated the need for specific measures in the building sector. In response, the European Commission (EC) published the proposed Directive on the Energy Performance of Buildings (EPBD) in May 2001. The European Parliament and Council accepted the text, and it was published in the EU Official Journal in January 2003, at which time the Directive became a European Law. The objective of the EPBD is to promote the improvement of the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements. The main objective is to achieve better indoor climate with less energy.

Magyar, Z.; Leitner, A.

2006-01-01T23:59:59.000Z

310

Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint  

Science Conference Proceedings (OSTI)

This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

Pless, S.; Torcellini, P.; Shelton, D.

2011-05-01T23:59:59.000Z

311

NREL: U.S. Life Cycle Inventory Database - About the LCI Database Project  

NLE Websites -- All DOE Office Websites (Extended Search)

About the LCI Database Project About the LCI Database Project The U.S. Life Cycle Inventory (LCI) Database is a publicly available database that allows users to objectively review and compare analysis results that are based on similar data collection and analysis methods. Finding consistent and transparent LCI data for life cycle assessments (LCAs) is difficult. NREL works with LCA experts to solve this problem by providing a central source of critically reviewed LCI data through its LCI Database Project. NREL's High-Performance Buildings research group is working closely with government stakeholders, and industry partners to develop and maintain the database. The 2009 U.S. Life Cycle Inventory (LCI) Data Stakeholder meeting was an important step in the ongoing improvement of the database. Prior to that event, NREL conducted a poll of current and

312

JCZS: An Intermolecular Potential Database for Performing Accurate Detonation and Expansion Calculations  

Science Conference Proceedings (OSTI)

Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3 Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.

Baer, M.R.; Hobbs, M.L.; McGee, B.C.

1998-11-03T23:59:59.000Z

313

Building Energy Software Tools Directory: PVcad  

NLE Websites -- All DOE Office Websites (Extended Search)

simple 3D visualisation of the building. Basic electrical data of the modules and the inverter (if not already in the database). Output Energy yield, performance ratio of PV...

314

The effect of simplifying the building description on the numerical modeling of its thermal performance  

SciTech Connect

A thermal building simulation program is a numerical model that calculates the response of the building envelopes to weather and human activity, simulates dynamic heating and cooling loads, and heating and cooling distribution systems, and models building equipment operation. The scope of the research is to supply the users of such programs with information about the dangers and benefits of simplifying the input to their models. The Introduction describes the advantages of modeling the heat transfer mechanisms in a building. The programs that perform this type of modeling have, however, limitations. The user is therefore often put in the situation of simplifying the floor plans of the building under study, but not being able to check the effects that this approximation introduces in the results of the simulation. Chapter 1 is a description of methods. It also introduces the floor plans for the office building under study and the ``reasonable`` floor plans simplifications. Chapter 2 presents DOE-2, the thermal building simulation program used in the sensitivity study. The evaluation of the accuracy of the DOE-2 program itself is also presented. Chapter 3 contains the sensitivity study. The complicated nature of the process of interpreting the temperature profile inside a space leads to the necessity of defining different building modes. The study compares the results from the model of the detailed building description with the results from the models of the same building having simplified floor plans. The conclusion is reached that a study of the effects of simplifying the floor plans of a building is important mainly for defining the cases in which this approximation is acceptable. Different results are obtained for different air conditioning/load regimes of the building. 9 refs., 24 figs.

Stetiu, C.

1993-07-01T23:59:59.000Z

315

Fuzzy Comprehensive Evaluation Model and Influence Factors Analysis on Comprehensive Performance of Green Buildings  

E-Print Network (OSTI)

A green building involves complex system engineering including energy efficiency and energy utilization, water-saving and water utilization, material-saving and material utilization, and land-saving and indoor environment quality and operation management. In order to solve problems of subjectivity, uncertainty and impossibility of quantitative analysis when evaluating green building, this study establishes a multi-level fuzzy evaluation model by means of fuzzy mathematics method to analyze the comprehensive performance of green building according to the index system of Evaluation Standard for Green Building. Combined with the technique scheme of the first China green building demonstration project, the result proves to be in accordance with the pre-evaluation of experts. It shows that the fuzzy comprehensive evaluation method is reasonable and feasible to evaluate the comprehensive performance of green building. The evaluation result is the same as the pre-evaluation result. Factors with high weights have larger effects on the results. This proves that the guideline should be the first reference mode in the future engineering practice so as to realize optimization of green building performance.

Sun, J.; Wu, Y.; Dai, Z.; Hao, Y.

2006-01-01T23:59:59.000Z

316

Model-based chiller energy tracking for performance assurance at a university building  

SciTech Connect

Buildings and their various subsystems often do not perform as well as intended at the design stage. Building energy performance suffers from insufficient documentation of design intent, inadequate building commissioning, and a lack of robust methods for short term and continuous performance tracking. This paper discusses how calibrated models can be used to track building systems and component performance from design, through commissioning, and into operations. Models of the chillers energy use and efficiency were developed and used to evaluate energy performance and control changes to minimize energy use. The example discussed is based on an actual university building. A detailed discussion of the extrapolation and associated uncertainty of using six months of data to develop annual energy use scenarios from various chiller models is included. An important lesson concerning the design is that there was significant oversizing of the chillers resulting in poor part load performance and over $3,000 year of annual energy cost increases. The oversizing is related to extremely high estimates of office equipment loads. The oversizing also causes frequent cycling of chillers, which shortens chiller life. Due to the lack of careful start-up procedures, it appears construction debris fouled one of the new chillers, resulting in about $5,200 year in energy increases. Additional comments on design and commissioning issues are included. The monitoring, modeling, and software development efforts were developed to demonstrate the value of collecting and organizing information regarding design, commissioning, and ongoing performance. This case study is part of a larger effort to examine methods and technologies to improve buildings performance and develop interoperable Building Life-Cycle Information Systems (BLISS).

Piette, M.A.; Carter, G.; Meyers, S.; Sezgen, O.; Selkowoitz, S.

1997-09-01T23:59:59.000Z

317

Consumer video understanding: a benchmark database and an evaluation of human and machine performance  

Science Conference Proceedings (OSTI)

Recognizing visual content in unconstrained videos has become a very important problem for many applications. Existing corpora for video analysis lack scale and/or content diversity, and thus limited the needed progress in this critical area. In this ... Keywords: consumer videos, database, human recognition accuracy, multi-modal features

Yu-Gang Jiang; Guangnan Ye; Shih-Fu Chang; Daniel Ellis; Alexander C. Loui

2011-04-01T23:59:59.000Z

318

The performance of UVGI Systems and its Limitation in Building Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

The performance of UVGI Systems and its Limitation in Building Applications The performance of UVGI Systems and its Limitation in Building Applications Speaker(s): Minki Sung Date: August 20, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: William Fisk One of the main concerns for healthcare building design is how to prevent the dispersion of airborne infectious diseases such as tuberculosis. Moreover, it is suspected that fungi and bacteria growing in air handling units (AHUs) can also cause respiratory diseases in building occupants. Ultraviolet germicidal irradiation (UVGI) systems have been known to have an apparent germicidal effect on infectious microbes and have been considered as a possible countermeasure. In this presentation, some results achieved from a series of laboratory and field experiments and numerical

319

Building America Best Practices Series, Volume 13 - Energy Performance Techniques and Technologies: Perserving Historic Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Energy Performance Techniques and Technologies: Preserving Historic Homes BUILDING AMERICA BEST PRACTICES SERIES VOLUME 13. PREPARED BY Pacific Northwest National Laboratory & Kaufman Heritage Conservation February 28, 2011 R February 28, 2011 * PNNL-20185 BUILDING AMERICA BEST PRACTICES SERIES Energy Performance Techniques and Technologies: Preserving Historic Homes PREPARED BY Pacific Northwest National Laboratory Michelle Britt, Michael C. Baechler, Theresa Gilbride, Marye Hefty, Erin Makela, and Elaine Schneider and Kaufman Heritage Conservation Ned Kaufman, Ph.D. February 28, 2011 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RLO 1830 PNNL-20185 This report was prepared as an account of work sponsored by an agency of the

320

Green Buildings and High Performance for Sustainability in the Urban Zones of Contemporary Arab City  

E-Print Network (OSTI)

We know that the urban development is a contemporary problem in the Arab cities in the 21th century by using advanced architecture and advanced technology in the urban buildings. The important here is the negative effect and the unbalanced urban development in the city. But if we take care with some important elements like equity in distributing and suitable for Housing and Services in the urban zones we could realize our liabilities for the urban progress. We means about the Green buildings its general purport in the Housing zones and how it realized the high-performance with contemporary constituent and urban sustainability. The research study the green buildings in the urban Arab cities and the aims we need from it. How we could set the control of the climate exchange and in the same time the high-performance of sustainability. The final study how we realize the sustainable urban development with the green buildings in the Arab cities.

Ahmed, K. A.; Bakier, Z. A.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Chinese cities and climate zones. To optimize each buildingare shown in the building climate zone map in Figure 1. Theon the following factors: Climate zones and building energy

Feng, Wei

2013-01-01T23:59:59.000Z

322

Building Energy Software Tools Directory: ISOVER Energi  

NLE Websites -- All DOE Office Websites (Extended Search)

ISOVER Energi ISOVER Energi ISOVER Energi logo Calculates: U-value, for constructions with and without thermal bridges; total heat loss for buildings; and energy demand for buildings. ISOVER Energi compares heat loss to the heat loss frame in the Danish Building Regulations. The energy demand is compared to the energy frame in the Danish Building Regulations. Furthermore ISOVER Energi calculates the profitability of activities e.g. retrofit, renewing of windows, to improve the energy performance of existing buildings. The profitability is compared to the criteria in the Danish Building Regulations. Access to databases with characteristics for common building materials and with linear heat losses for typical solutions for connections. The database facility is planned to be enlarged with databases for windows, boilers,

323

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Measured Performance of Building Integrated Photovoltaic Panels. Round 2. Measured Performance of Building Integrated Photovoltaic Panels. ...

324

Development of New Methodologies for Evaluating the Energy Performance of New Commercial Buildings  

E-Print Network (OSTI)

During the past decade, utility companies and others have offered new construction programs to promote energy savings based on energy-efficient design, which maximize design flexibility as well as energy savings. For such programs, the concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if it is compared to energy baselines such as similar buildings, energy codes, and design standards (IPMVP 2003; Torcellini et. 2004). Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. In addition, many important questions remain, for example: how to simulate and calibrate a simulation with measured data, how to develop energy baselines for comparison to the new building, and how to calculate energy savings compared to energy baselines. Therefore, this study developed and demonstrated several methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas, in terms of: 1) Whole-building energy metering with in-situ measurements, 2) Simulation and calibration methods applicable to new buildings, and 3) Building energy baselines and savings assessments. Consequently, three new M&V methods were developed in this study to enhance the generic M&V framework (IPMVP 2003) for new buildings, including: 1) The development of a procedure to synthesize weather-normalized cooling energy use (i.e., Btu cooling production) from a correlation of MCC electricity use when chilled water use is unavailable, 2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including an Eppley PSP and Li-Cor sensor, and 3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new methods were also developed and analyzed in the process of the as-built model simulation and calibration, including: 1) A new percentile analysis to the previous signature method (Wei et al. 1998) for use with a DOE-2 calibration, 2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and 3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation (Duffie and Beckman 1991) on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: 1) Energy Use Index (EUI) comparisons with sub-metered data, 2) New comparisons against Standards 90.1-1989 and 90.1-2001, and 3) A new evaluation of the performance of selected ECDMs. Finally, potential energy savings were also simulated from selected improvements, including minimum supply air flow, undocumented exhaust air, and daylighting. As a result, the calibrated models were determined to have an overall 20.38% CV(RMSE) and a 0.63% MBE for the 2001 model and an overall 23.82% CV(RMSE) and a 0.61% MBE for the 2004 model, which compares well with the previous research (Kreider and Haberl 1994; Bou-Saada 1994; ASHRAE 2002). It was found that the end-use EUIs, such as cooling, heating, and Motor Control Center (MCC) electricity use can begin to provide information about the buildings heating and cooling efficiencies compared to similar buildings in a control groups. It was also determined that the REJ building is 20.79% more efficient than the Standard 90.1-1989 and approximately equal to the Standard 90.1-2001. Using an ECDM-subtraction method, the REJ building was shown to use approximately 67% less energy than the base-case building wi

Song, Suwon

2007-09-25T23:59:59.000Z

325

Evaluating the energy performance of the first generation of LEED-certified commercial buildings  

Science Conference Proceedings (OSTI)

Over three hundred buildings have been certified under the Leadership in Energy and Environmental Design (LEED) rating system for sustainable commercial buildings as of January 2006. This paper explores the modeled and actual energy performance of a sample of 21 of these buildings that certified under LEED between December 2001 and August 2005, including how extensively the design teams pursued LEED energy-efficiency credits, the modeled design and baseline energy performance, and the actual energy use during the first few years of operation. We collected utility billing data from 2003-2005 and compared the billed energy consumption with the modeled energy use. We also calculated Energy Star ratings for the buildings and compared them to peer groups where possible. The mean savings modeled for the sample was 27% compared to their modeled baseline values. For the group of 18 buildings for which we have both modeled and billed energy use, the mean value for actual consumption was 1% lower than modeled energy use, with a wide variation around the mean. The mean Energy Star score was 71 out of a total of 100 points, higher than the average score of 50 but slightly below the Energy Star award threshold of 75 points. The paper discusses the limitations inherent to this type of analysis, such as the small sample size of disparate buildings, the uncertainties in actual floor area, and the discrepancies between metered sections of the buildings. Despite these limitations, the value of the work is that it presents an early view of the actual energy performance for a set of 21 LEED-certified buildings.

Diamond, Rick; Opitz, Mike; Hicks, Tom; Von Neida, Bill; Herrera, Shawn

2006-05-01T23:59:59.000Z

326

New Jersey SmartStart Buildings - Pay for Performance Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program New Jersey SmartStart Buildings - Pay for Performance Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Varies for each program milestone $1 M per utility account (gas and electric) per year $2 M per project $4 M per entity per year Program Info State New Jersey Program Type State Rebate Program Rebate Amount $/kWh, $/therm, and $/sq. ft. incentives, vary based on expected energy

327

Resources on Sustainable Buildings and Campuses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources on Resources on Sustainable Buildings and Campuses Resources on Sustainable Buildings and Campuses October 4, 2013 - 5:04pm Addthis Building Technology Office Resources The Building Technology Office offers useful resources to plan and implement energy-efficiency projects. Building Energy Software Tools Directory Buildings Performance Database Energy Modeling Software Better Buildings Alliance Webinars Hospital Energy Alliance Videos Solid-State Lighting Technology Fact Sheets Many helpful resources about sustainable buildings and campuses are available. Also see Case Studies and Contacts. Federal Requirements and Programs Buildings Technologies Program: A U.S. Department of Energy (DOE) program that leads a vast network of research and industry partners to continually

328

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

Commercial Building Energy Consumption Survey Surveytheir buildings energy consumption to that of similarfor evaluating building energy consumption and can lead to

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

329

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Fuel Utilization Annual Fuel Utilization Efficiency [AFUE] and Seasonal Energy Efficiency Ratio [SEER] and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter, and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

330

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

annual fuel utilization annual fuel utilization efficiency (AFUE) and seasonal energy efficiency ratio (SEER) and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

331

Use of whole building simulation in on-line performance assessment: Modeling and implementation issues  

SciTech Connect

The application of model-based performance assessment at the whole building level is explored. The information requirements for a simulation to predict the actual performance of a particular real building, as opposed to estimating the impact of design options, are addressed with particular attention to common sources of input error and important deficiencies in most simulation models. The role of calibrated simulations is discussed. The communication requirements for passive monitoring and active testing are identified and the possibilities for using control system communications protocols to link on-line simulation and energy management and control systems are discussed. The potential of simulation programs to act as ''plug-and-play'' components on building control networks is discussed.

Haves, Philip; Salsbury, Tim; Claridge, David; Liu, Mingsheng

2001-06-15T23:59:59.000Z

332

A method of optimizing solar control and daylighting performance in commercial office buildings  

SciTech Connect

We present a method for analyzing the annual cooling and lighting electricity use and peak demand associated with varying fenestration and lighting strategies in commercial office buildings. A prototypical office building module consisting of four perimeter zones and a central core zone was defined and a series of DOE-2 building energy simulations were completed to create a data base for varying fenestration and lighting system parameters. Using regression analysis procedures, we characterize energy and peak performance patterns as a function of solar aperture, defined as the product of shading coefficient and window-to-wall ratio, and effective daylighting aperture, defined as the product of visible transmittance and window-to-wall ratio. Optimum performance consists of defining the solar and effective daylighting aperture values that minimize annual energy consumption and peak demand, a process easily facilitated by the methods described herein.

Sullivan, R.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

333

Use of whole building simulation in on-line performance assessment: Modeling and implementation issues  

SciTech Connect

The application of model-based performance assessment at the whole building level is explored. The information requirements for a simulation to predict the actual performance of a particular real building, as opposed to estimating the impact of design options, are addressed with particular attention to common sources of input error and important deficiencies in most simulation models. The role of calibrated simulations is discussed. The communication requirements for passive monitoring and active testing are identified and the possibilities for using control system communications protocols to link on-line simulation and energy management and control systems are discussed. The potential of simulation programs to act as ''plug-and-play'' components on building control networks is discussed.

Haves, Philip; Salsbury, Tim; Claridge, David; Liu, Mingsheng

2001-06-15T23:59:59.000Z

334

Data-Based Performance Assessments for the DOE Hydropower Advancement Project  

SciTech Connect

The U. S. Department of Energy s Hydropower Advancement Project (HAP) was initiated to characterize and trend hydropower asset conditions across the U.S.A. s existing hydropower fleet and to identify and evaluate the upgrading opportunities. Although HAP includes both detailed performance assessments and condition assessments of existing hydropower plants, this paper focuses on the performance assessments. Plant performance assessments provide a set of statistics and indices that characterize the historical extent to which each plant has converted the potential energy at a site into electrical energy for the power system. The performance metrics enable benchmarking and trending of performance across many projects in a variety contexts (e.g., river systems, power systems, and water availability). During FY2011 and FY2012, assessments will be performed on ten plants, with an additional fifty plants scheduled for FY2013. This paper focuses on the performance assessments completed to date, details the performance assessment process, and describes results from the performance assessments.

March, Patrick [Hydro Performance Processes, Inc.; Wolff, Dr. Paul [WolffWare Ltd.; Smith, Brennan T [ORNL; Zhang, Qin Fen [ORNL; Dham, Rajesh [U.S. Department of Energy

2012-01-01T23:59:59.000Z

335

Commissioning twin houses for assessing the performance of energy conserving technologies," Performance of Exterior Envelopes of Whole Buildings VIII Integration of Building Envelopes  

E-Print Network (OSTI)

this paper is published in / Une version de ce document se trouve dans: Proceedings for Performance of Exterior Envelopes of Whole Buildings VIII: Integration of Building Envelopes, Dec. 2-7, 2001, Clearwater Beach, Florida, pp. 1-10 www.nrc.ca/irc/ircpubs NRCC-44995 assess the energy performance of new and innovative energy efficient materials and components for houses. The two research houses are identical energy efficient houses typical of tract-built models available on the local housing market. They also feature identical simulated occupancies based on home-automation technologies and are monitored for energy performance and thermal comfort. The simulated occupancy controls turn on and off major appliances, lighting and equipment. The houses were commissioned in the winter and spring of 1999, and benchmarked in the next heating season. This paper records the energy features of the houses and commissioning results. With the benefit of detailed monitoring of energy systems in both houses, many of the anomalies in component operation and controls were found and fixed. These anomalies could easily go undetected in regular houses

M. C. Moussa; H. March; Michael C. Swinton; Michael C. Swinton; Member Of Ashrae; Member Of Ashrae; Hussein Moussa; Hussein Moussa; Roger G. March; Roger G. March

2001-01-01T23:59:59.000Z

336

Thermal Performance of Building Envelope in Very Hot Dry Desert Region in Egypt (Toshky)  

E-Print Network (OSTI)

Toshky region is a desert region located in the south east of Egyptian western desert at the Tropical Cancer (23.5 N). The following features characterized this region during the summer season; aridity, high summer day time temperatures reaches to above 40 C for about 6 hours, large diurnal temperature variation, low relative humidity, and high solar radiation reaches to about 1100W/m2 on horizontal surfaces. In such climate thermal human comfort is crucial to provide the reasonable environment for the people. As the building envelop has a major role in saving comfort for people and improve the consumption of energy in building. So this study is interested in studying the thermal performance for some building constructed from different building materials as; Nobaa sandstone, hollow clay brick, light sand block, and hollow and insulated bazelt blocks. The external climatic conditions and the temperature distribution inside the wall construction and the indoor air temperature were measured. The result shows that using Nobaa sandstone alone in building is not adequate with the external climatic conditions of this region. But using building materials with specific thermal characteristics, and using thermal insulation led to reduce the heat flow through the walls and help the building to be suitable with its external environment conditions. The study also show that hollow clay brick and light sand block valid the lowest indoor air temperature, and the thermal performance of hollow bazelt blocks can be improved by using thermal insulation, Natural and forced night ventilation help the indoor environment to be within the thermal comfort.

Khalil, M. H.; Sheble, S. S.; Helal, M. A.; El-Demirdash, M.

2010-01-01T23:59:59.000Z

337

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

SciTech Connect

California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

2010-05-14T23:59:59.000Z

338

Integrated Hygrothermal Performance of Building Envelopes and Systems in Hot and Humid Climates  

E-Print Network (OSTI)

In hot and humid climates the interior and exterior environmental loads that building envelopes must respond to are larger than many other climatic conditions. Moisture-originated failures in low-rise residential buildings have put a significant pressure to change construction codes in North America. Solutions to moisture induced problems may be difficult when several interacting mechanisms of moisture transport are present. A new approach to building envelope durability assessment has been introduced in North America; a moisture engineering approach. This requires system information about the wall systems as constructed along with aging characteristics coupled with advanced modeling that 0 term allow the designer to predict the Iong-term performances of building envelope systems. This permits the comparison and ranking of individual building envelope systems with respect to total hygrothermal performance. Critical information can be obtained by investigating the one to one relationships of a building envelope to interior and exterior environments, however, the total behavior of the actual whole building is not accounted for. This paper goes one step further, by incorporating the individual hygrothermal performances of all walls, roof, floor and mechanical systems. The direct and indirect coupling of the building envelope and indoor environment with HVAC system are included in the analysis. The full house hygrothermal performance of an aerated concrete wall system are examined for a hot and humid climate. The hour by hour drying potential of each system was then numerically analyzed using weather conditions of Miami (hot and humid climate). The results clearly demonstrate the limited drying potential for the wall system in that climate. Furthermore, the selected exterior thermal insulation strategies and interior vapor control strategies in this study clearly show the critical behavior of the full house with respect to drying initial construction moisture. The results show the importance of the total hygrothermal behavior of the whole house to the coupling between the various envelope parts, interior and exterior environments and HVAC system. From these results moisture control strategies are identified for the whole house hygrothermal performance.

Karagiozis, A. N.; Desjarlais, A.; Salonvaara, M.

2000-01-01T23:59:59.000Z

339

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

EnergyPlus (DOE, 2011). The energy usage intensity is shownResidential Building Site Energy Usage Intensity in ChinaGas Residen>al Building Energy Usage Intensity Comparison

Feng, Wei

2013-01-01T23:59:59.000Z

340

Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems  

SciTech Connect

Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offering an accurate method of quantitatively assessing building performance.

Morrissey, Elmer; O' Donnell, James; Keane, Marcus; Bazjanac, Vladimir

2004-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Steel-framed buildings: Impacts of wall detail configurations on the whole wall thermal performance  

SciTech Connect

The main objective of this paper is the influence of architectural wall details on the whole wall thermal performance. Whole wall thermal performance analysis was performed for six light gage steel-framed wall systems (some with wood components). For each wall system, all wall details were simulated using calibrated 3-D finite difference computer modeling. The thermal performance of the six steel-framed wall systems included various system details and the whole wall system thermal performance for a typical single-story ranch house. Currently, predicted heat losses through building walls are typically based on measurements of the wall system clear wall area using test methods such as ASTM C 236 or are calculated by one of the procedures recommended in the ASHRAE Handbook of Fundamentals that often is carried out for the clear wall area exclusively. In this paper, clear wall area is defined as the part of the wall system that is free of thermal anomalies due to building envelope details or thermally unaffected by intersections with other surfaces of the building envelope. Clear wall experiments or calculations normally do not include the effects of building envelope details such as corners, window and door openings, and structural intersections with roofs, floors, ceilings, and other walls. In steel-framed wall systems, these details typically consist of much more structural components than the clear wall. For this situation, the thermal properties measured or calculated for the clear wall area do not adequately represent the total wall system thermal performance. Factors that would impact the ability of today`s standard practice to accurately predict the total wall system thermal performance are the accuracy of the calculation methods, the area of the total wall that is clear wall, and the quantity and thermal performance of the various wall system details.

Kosny, J.; Desjarlais, A.O.; Christian, J.E.

1998-06-01T23:59:59.000Z

342

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Usage Intensity Comparison City The retail prototype building is an internal load dominated model in which lighting,

Feng, Wei

2013-01-01T23:59:59.000Z

343

Development of new methodologies for evaluating the energy performance of new commercial buildings  

E-Print Network (OSTI)

The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: 1) The development of a method to synthesize weathernormalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, 2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and 3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: 1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, 2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and 3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: 1) Energy Use Index (EUI) comparisons with sub-metered data, 2) New comparisons against Standards 90.1-1989 and 90.1-2001, and 3) A new evaluation of the performance of selected Energy Conservation Design Measures (ECDMs). Finally, potential energy savings were also simulated from selected improvements, including: minimum supply air flow, undocumented exhaust air, and daylighting.

Song, Suwon

2006-08-01T23:59:59.000Z

344

Engine performance. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning performance of various type of engines. Topics include stirling, turbine, pulse-jet, 2-cycle, diesel, 4-cycle, turbo, and hydrogen engines. Methods for improving performance, including microprocessor controlled electronics, are referenced. Fuel injectors manufactured to specification are also referenced. Performance testing under high or low temperatures are studied. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-03-01T23:59:59.000Z

345

Engine performance. (Latest citations from the EI Compendex*plus database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning performance of various type of engines. Topics include stirling, turbine, pulse-jet, 2-cycle, diesel, 4-cycle, turbo, and hydrogen engines. Methods for improving performance, including microprocessor controlled electronics, are referenced. Fuel injectors manufactured to specification are also referenced. Performance testing under high or low temperatures are studied. (Contains a minimum of 166 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

346

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

347

Pushover, Response Spectrum and Time History Analyses of Safe Rooms in a Poor Performance Masonry Building  

Science Conference Proceedings (OSTI)

The idea of safe room has been developed for decreasing the earthquake casualties in masonry buildings. The information obtained from the previous ground motions occurring in seismic zones expresses the lack of enough safety of these buildings against earthquakes. For this reason, an attempt has been made to create some safe areas inside the existing masonry buildings, which are called safe rooms. The practical method for making these safe areas is to install some prefabricated steel frames in some parts of the existing structure. These frames do not carry any service loads before an earthquake. However, if a devastating earthquake happens and the load bearing walls of the building are destroyed, some parts of the floors, which are in the safe areas, will fall on the roof of the installed frames and the occupants who have sheltered there will survive. This paper presents the performance of these frames located in a destroying three storey masonry building with favorable conclusions. In fact, the experimental pushover diagram of the safe room located at the ground-floor level of this building is compared with the analytical results and it is concluded that pushover analysis is a good method for seismic performance evaluation of safe rooms. For time history analysis the 1940 El Centro, the 2003 Bam, and the 1990 Manjil earthquake records with the maximum peak accelerations of 0.35g were utilized. Also the design spectrum of Iranian Standard No. 2800-05 for the ground kind 2 is used for response spectrum analysis. The results of time history, response spectrum and pushover analyses show that the strength and displacement capacity of the steel frames are adequate to accommodate the distortions generated by seismic loads and aftershocks properly.

Mazloom, M. [Department of Civil Engineering, Shahid Rajaee University, P.O. Box 16785-163, Tehran (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

348

The role of carbon finance in enhancing building performance in developing countries  

E-Print Network (OSTI)

Buildings in developing countries (DCs) will play a significant role in global GHG emission mitigation in the next decades (IPCC, 2007; IEA,2008). According to the UN World Urbanization Prospects report (2005 revision), 60 percent (4.9 billion) of world population will live in cites by 2030, most of them in DCs. The unprecedented urbanization in these countries poses a huge challenge for environment since most of buildings are built quickly and cheaply to accommodate new immigrants and the energy performance is often considered second priority. Implementation of energy efficiency in buildings confronts both technical and institutional barriers. Enabling environmental sustainability buildings with economic benefits and welfare improvement is the major concerns on the policy agenda in DCs. Therefore how to articulate sustainable urban development and emissions reduction policies in DCs will be of considerable importance in the post-Kyoto climate regime negotiation. Considerable investment will be required to allow the uptake of climate-friendly technologies and capacity building, thus financial assistance and technology transfer from developed countries to DCs is likely to play increasingly important role.

Li, J.

2009-11-01T23:59:59.000Z

349

Can sick buildings be assessed by testing human performance in field experiments  

Science Conference Proceedings (OSTI)

The present paper is devoted to the Sick Building Syndrome and describes an experiment comparing a diagnosed sick' with a healthy' Swedish preschool. The indoor air quality of both buildings were nearly the same and the concentrations of total separated volatile organic compounds were low according to suggested guidelines for indoor air in nonindustrial buildings. Forty-eight previously unexposed subjects were exposed to each of the two buildings for one day, and the effect of the exposure was assessed with a battery of diverse psychological test. Despite a favorable experimental situation of utilizing a building with a record of producing the Syndrome, the results of psychological tests of mental and motor performance, and therefore the answer to the question raised by the title above, were in the negative. This failure raises questions both regarding the choice of subjects and experimental methods including the selection of tests, the duration of exposure, and the environmental setting. Several combinations of experimental method and subjects which must be considered in future research on indoor pollution are discussed.

Berglund, B. (Univ. of Stockholm (Sweden)); Berglund, U. (Royal Inst. of Tech., Stockholm (Sweden)); Engen, T. (Brown Univ., Providence, RI (United States))

1992-01-01T23:59:59.000Z

350

Assessing U.S. ESCO industry performance and market trends: Results from the NAESCO database project  

E-Print Network (OSTI)

industry and market trends in the energy-efficiency servicestrends, market activity and business practices of companies involved in energy-trend likely understates the shift away from performance-contracting arrangements in the energy efficiency services market

Osborn, Julie; Goldman, Chuck; Hopper, Nicole; Singer, Terry

2002-01-01T23:59:59.000Z

351

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

Defaults and Whole Building Energy Use Intensity andand Renewable Energy, Building Technologies Program of thesystems and equipment, and building energy consumption. The

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

352

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

with factors such as energy tariff and incentive policies.energy services requirements, usage patterns, tariffs, andelectricity tariff structure and the buildings energy load

Feng, Wei

2013-01-01T23:59:59.000Z

353

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Other data, for example solar radiation, electricity tariff,and building energy loads Solar radiation profiles for PVload profile, citys solar radiation data, electricity and

Feng, Wei

2013-01-01T23:59:59.000Z

354

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system  

E-Print Network (OSTI)

of innovative integrated HVAC systems in buildings, infor building envelope and HVAC systems simu- lation - WillIntegrated simulation for HVAC performance prediction: State

Trcka, Marija

2010-01-01T23:59:59.000Z

355

Developing a next-generation community college curriculum forenergy-efficient high-performance building operations  

Science Conference Proceedings (OSTI)

The challenges of increased technological demands in today's workplace require virtually all workers to develop higher-order cognitive skills including problem solving and systems thinking in order to be productive. Such ''habits of mind'' are viewed as particularly critical for success in the information-based workplace, which values reduced hierarchy, greater worker independence, teamwork, communications skills, non-routine problem solving, and understanding of complex systems. The need is particularly compelling in the buildings arena. To scope the problem, this paper presents the results of interviews and focus groups--conducted by Oakland California's Peralta Community College District and Lawrence Berkeley National Laboratory--in which approximately 50 industry stakeholders discussed contemporary needs for building operator education at the community college level. Numerous gaps were identified between the education today received by building operators and technicians and current workplace needs. The participants concurred that many of the problems seen today in achieving and maintaining energy savings in buildings can be traced to inadequacies in building operation and lack of awareness and knowledge about how existing systems are to be used, monitored, and maintained. Participants and others we interviewed affirmed that while these issues are addressed in various graduate-level and continuing education programs, they are virtually absent at the community college level. Based on that assessment of industry needs, we present a new curriculum and innovative simulation-based learning tool to provide technicians with skills necessary to commission and operate high-performance buildings, with particular emphasis on energy efficiency and indoor environmental quality in the context of HVAC&R equipment and control systems.

Crabtree, Peter; Kyriakopedi, Nick; Mills, Evan; Haves, Philip; Otto, Roland J.; Piette, Mary Ann; Xu, Peng; Diamond, Rick; Frost, Chuck; Deringer, Joe

2004-05-01T23:59:59.000Z

356

An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery  

Science Conference Proceedings (OSTI)

Modeling the energy performance of existing buildings enables quick identification and reporting of potential areas for building retrofit. However, current modeling practices of using energy simulation tools do not model the energy performance of buildings ... Keywords: 3D reconstruction, Building retrofit, Energy performance modeling, Structure-from-Motion, Thermography

Youngjib Ham, Mani Golparvar-Fard

2013-08-01T23:59:59.000Z

357

Practical Experiences with the Implementation of the Energy Performance Buildings Directive in Central Europe  

E-Print Network (OSTI)

European Parliament and the council announced on 16 December 2002, the Directive 2002/91/EC (Energy Performance Building Directive, EPBD). The European countries were asked to implement the EPBD within a time period of 3 years. If the needed experts are not available, a further transition period of two more years is allowed. According to this plan, all European countries should have the EPBD implemented by end of 2008 at the latest.

Therburg, I.

2008-10-01T23:59:59.000Z

358

Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings  

SciTech Connect

This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

Matson, Nance E.; Piette, Mary Ann

2005-09-05T23:59:59.000Z

359

Visualizing information to improve building performance: a study of expert users  

E-Print Network (OSTI)

benchmark between buildings, including normalized values and energybenchmark existing or design-phase buildings against a wide array of energy

Lehrer, David; Vasudev, Janani

2010-01-01T23:59:59.000Z

360

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Semi-empirical method for estimating the performance of direct gain passive solar heated buildings  

DOE Green Energy (OSTI)

The sunspot code for performance analysis of direct gain passive solar heated buildings is used to calculate the annual solar fraction for two representative designs in ten American cities. The two representative designs involve a single thermal storage mass configuration which is evaluated with and without night insulation. In both cases the solar aperture is double glazed. The results of the detailed thermal network calculations are then correlated using the monthly solar load ratio method which has already been successfully applied to the analysis of both active solar heated buildings and passive thermal storage wall systems. The method is based on a correlation between the monthly solar heating fraction and the monthly solar load ratio. The monthly solar load ratio is defined as the ratio of the monthly solar energy transmitted through the glazing aperture to the building's monthly thermal load. The procedure using the monthly method for any location is discussed in detail. In addition, a table of annual performance results for 84 cities is presented, enabling the designer to bypass the monthly method for these locations.

Wray, W.O.; Balcomb, J.D.; McFarland, R.D.

1979-01-01T23:59:59.000Z

362

The use of energy management and control systems to monitor the energy performance of commercial buildings  

SciTech Connect

Monitored data play a very important part in the implementation and evaluation of energy conservation technologies and programs. However, these data can be expensive to collect, so there is a need for lower-cost alternatives. In many situations, using the computerized Energy Management and Control Systems (EMCSs)--already installed in many buildings--to collect these commercial building performance data has advantages over more conventional methods. This method provides data without installing incremental hardware, and the large amounts of available operational data can be a very rich resource for understanding building performance. This dissertation addresses several of these issues. One specific objective is to describe a monitoring-project planning process that includes definition of objectives, constraints, resources and approaches for the monitoring. The choice of tools is an important part of this process. The dissertation goes on to demonstrate, through eight case studies, that EMCS monitoring is possible, and to identify and categorize the problems and issues that can be encountered. These issues lead to the creation, use, and testing of a set of methods for evaluation of EMCS monitoring, in the form of guidelines. Finally, EMCS monitoring is demonstrated and compared with conventional monitoring more methodically in a detailed case study.

Heinemeier, K.E. [Univ. of California, Berkeley, CA (United States). Dept. of Architecture]|[Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-12-01T23:59:59.000Z

363

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

to response to weather-varying solar amplitude is delayed 1-expansion for the weather-varying solar gain function; wea simple passive solar building to idealized weather. Such a

Goldstein, David Baird

2011-01-01T23:59:59.000Z

364

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

3E 3E Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings S. Kiliccote, M.A. Piette, J. Mathieu, K. Parrish Environmental Energy Technologies Division May 2010 Presented at the 2010 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August 15-20, 2010, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

365

Building America Top Innovations Hall of Fame Profile … Tankless Gas Water Heater Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incorporating tankless water heaters was one Incorporating tankless water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water heaters should save approximately 33% on hot water heating compared to a conventional storage water heater, actual energy savings vary significantly based on individual draw volume. Above 10 gallons per draw, the efficiency approaches the rated energy factor. The greatest savings occur at a daily use quantity of about 50 gallons. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.2 Energy Efficient Components Tankless Gas Water Heater Performance As improved thermal enclosures dramatically reduce heating and cooling loads,

366

A Stable Whole Building Performance Method for Standard 90.1  

SciTech Connect

Wouldnt it be great if a single energy model could be used to demonstrate minimum code compliance, green code compliance, establish a Leadership in Energy and Environmental Design (LEED) rating, and determine eligibility for federal tax and utility incentives? Even better, what if the basic rules for creating those models did not change every few years? This paper descibes a recently proposed addendum to ASHRAE/ANSI/IES Standard 90.1 aims to meet those goals. Addendum BM establishes the Performance Rating Method found in Appendix G of Standard 90.1 as a new method of compliance while maintaining its traditional use in gauging the efficiency of beyond code buildings. Furthermore, Addendum BM sets a common baseline building that does not change with each update to the standard.

Rosenberg, Michael I.; Eley, Charles

2013-05-01T23:59:59.000Z

367

The Analysis of Dynamic Thermal Performance of Insulated Wall and Building Cooling Energy Consumption in Guangzhou  

E-Print Network (OSTI)

The summer in Guangzhou, China, is hot and long. Heat proofing is very important for the energy efficiency of buildings and improvement of the indoor thermal environment. The residential buildings in the southern region are cooled by air conditioning mainly with the increase of the live level. This study investigates the influence of the thermal dynamic performance on the yearly cooling load and yearly maximum cooling demand in typical residential flats by employing KVALUE and DeST. The simulation predictions indicate that reductions in the cooling load and maximum cooling demand are obtained when the insulation is added in the wall, but the potential of energy saving is quite limited when the wall only is insulated.

Zhao, L.; Li, X.; Li, L.; Gao, Y.

2006-01-01T23:59:59.000Z

368

Energy Performance Evaluation and Development of Control Strategies for the Air-conditioning System of a Building at Construction Stage  

E-Print Network (OSTI)

Energy consumption of HVAC systems in commercial buildings takes a great part of the total building energy consumption. Energy performance evaluation plays an important role in building energy efficiency improvement for existing buildings and new buildings. It is also the basis for the retrofitting measure evaluation for existing buildings and the control improvement evaluation of new buildings for building energy performance contracts. In this study, the energy performance evaluation of a super high-rising commercial office building in construction is presented. Alternative control strategies are proposed to improve the energy efficiency based on the current measurements of the original design as well as additional metering instruments as requested. These control strategies mainly involve optimal chiller sequencing control, cooling tower sequencing control, optimal water pressure differential set-point control, AHU supply air static pressure reset control and DCV-based fresh air control, etc. To assess the economic feasibility, the benchmark electricity consumption and the optimal electricity consumption using alternative controls strategies are estimated using dynamic simulations. The results show that the electricity savings using the alternative control strategies can cover the costs of an additional metering system and related software and hardware in about one year.

Wang, S.; Xu, X.; Ma, Z.

2006-01-01T23:59:59.000Z

369

Monitoring of the performance of a solar-heated-and-cooled apartment building. Final report  

DOE Green Energy (OSTI)

A 12-unit student apartment building was retrofitted for solar heating and cooling and hot water. The retrofit of the all-electric building resulted in a system consisting of an array of 1280 square feet of concentrating tracking collectors, a 5000-gallon hot water storage vessel, a 500-gallon chilled water storage vesel, a 25-ton absorption chiller, and a two-pipe hydronic air conditioning system. The solar air conditioning equipment is installed in parallel with the existing conventional electric heating and cooling system, and the solar domestic water heating serves as preheat to the existing electric water heaters. The system was fully instrumented for temperature, flow rate, electrical power, and meteorological measurements. The data indicate that 11.2% of the cooling load was met by solar and 8.2% of the total load (cooling plus hot water) was met by solar. The performance of the collector array was determined to be approximately 60% of that suggested by the manufacturer. Steady-state chiller operation exhibited a C.O.P. very close to the manufacturer's specified performance values, but the time-averaged chiller C.O.P. is degraded due to cycling. The composite solar fraction (8.2%) is less than solar cooling only (11.2%) because there was no solar domestic hot water delivery during this monitoring period. The evaluation of system performance for the cooling season indicates a lower performance than expected. However, system performance in the cooling mode can be improved by better adjustment of the thermostats and controls. Continued data collection and analysis should be performed, to improve system operations, assess performance limits, and compare results with design projections.

Vliet, G.C.; Srubar, R.L.

1980-03-01T23:59:59.000Z

370

210 King Street: a dataset for integrated performance assessment  

Science Conference Proceedings (OSTI)

This paper presents a Building Information Modeling (BIM) re-creation of a designated heritage building located in Toronto, Canada. By taking advantage of BIM as a centralized database, which describes both geometric and semantic aspects of a building, ... Keywords: building information modeling, dataset, performance analysis, point cloud

Ramtin Attar; Venk Prabhu; Michael Glueck; Azam Khan

2010-04-01T23:59:59.000Z

371

"Building Energy Data Exchange Specification"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification" Building Energy Data Exchange Specification" "Version 2.3" "application/vnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships. " "BEDES is used for the DOE Building Performance Database (BPD) as well as the Standard Energy Efficiency Disclosure (SEED) platform, as shown below. Note that SEED includes additional fields that are outside BPD scope (e.g. property address and auditor contact information)."

372

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

373

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

374

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

other buildings and other available energy-use benchmarks.good benchmark energy consumption data for buildings, and (building energy consumption in Beijing, especially monthly separated data. A benchmark

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

375

Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings  

E-Print Network (OSTI)

Post- Tensioned Concrete Buildings, PEER Report 2011/104,RC shear walls in high-rise buildings, The Young ResearcherExtended 3D Analysis of Building Structures, Computers and

Tuna, Zeynep

2012-01-01T23:59:59.000Z

376

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

Energy Star Ratings Using Building Occupancy CharacteristicsDefaults and Whole Building Energy Use Intensity andCalifornia CEUS Office Buildings (n=109) C-6 % of Cal-Arch

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

377

A framework for simulation-based real-time whole building performance assessment  

E-Print Network (OSTI)

the building total electric power, is shown in Figure 9. Theon building total electric power and fuel consumption, suchi.e. the separate electric power measurements for lighting,

Pang, Xiufeng

2013-01-01T23:59:59.000Z

378

Energy performance of office buildings in different climate zones in China.  

E-Print Network (OSTI)

??Buildings, energy and the environment are key issues that the building professions and energy policy makers have to address, especially in the area of sustainable (more)

Tsang, Ching Luen (???)

2010-01-01T23:59:59.000Z

379

Investigation of energy efficient approaches for the energy performance improvement of commercial buildings.  

E-Print Network (OSTI)

??Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are (more)

Hasan, M. Mahmudul

2013-01-01T23:59:59.000Z

380

A framework for simulation-based real-time whole building performance assessment  

E-Print Network (OSTI)

DB. Simulation of Energy Management Systems in EnergyPlus.the same way as Energy Management System (EMS) actuators andin Building Energy Management Systems. Energy and Building

Pang, Xiufeng

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Performance and Modeling of Amorphous Silicon Photovoltaics for Building-Integrated Applications (Preprint prepared for Solar 99)  

Science Conference Proceedings (OSTI)

Amorphous silicon photovoltaic (PV) modules offer several advantages for building-integrated applications. The material can be deposited on glass or flexible substrates, which allows for products like roofing shingles and integrated PV/building glass. The material also has a uniform surface, which is ideal for many architectural applications. Amorphous silicon modules perform well in warm weather and have a small temperature coefficient for power. Depending on the building load, this may be beneficial when compared to crystalline systems. At the National Renewable Energy Laboratory, we are monitoring the performance of a triple-junction a-Si system. The system consists of 72 roofing shingles mounted directly to simulated roofing structures. This paper examines the performance of the building-integrated amorphous silicon PV system and applicability for covering residential loads. A simple model of system performance is also developed and is presented.

Kroposki, B.; Hansen, R.

1998-06-07T23:59:59.000Z

382

Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)  

SciTech Connect

This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

Cort, Katherine A.; Culp, Thomas D.

2013-09-01T23:59:59.000Z

383

Building America Top Innovations Hall of Fame Profile … High-Performance Home Cost Performance Trade-Offs Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects with production builders have demonstrated projects with production builders have demonstrated that high-performance homes experience significant cost trade-offs that offset other cost increases. This proved transformational, gaining builder traction with related market-based programs like ENERGY STAR for Homes and DOE Challenge Home. "Break points" or cost trade-offs that are identified during the engineering analysis of the residential construction process can yield two types of business savings: 1) reductions in costs of warranty and call-back service; and 2) offsets or "credits" attributed to reductions in other construction costs. The tables below show examples of cost and savings trade-offs experienced by Building America projects in hot-dry and cold climates. Energy-Efficiency

384

The cost and performance of utility commercial lighting programs. A report from the Database on Energy Efficiency Programs (DEEP) project  

SciTech Connect

The objective of the Database on Energy Efficiency Programs (DEEP) is to document the measured cost and performance of utility-sponsored, energy-efficiency, demand-side management (DSM) programs. Consistent documentation of DSM programs is a challenging goal because of problems with data consistency, evaluation methodologies, and data reporting formats that continue to limit the usefulness and comparability of individual program results. This first DEEP report investigates the results of 20 recent commercial lighting DSM programs. The report, unlike previous reports of its kind, compares the DSM definitions and methodologies that each utility uses to compute costs and energy savings and then makes adjustments to standardize reported program results. All 20 programs were judged cost-effective when compared to avoided costs in their local areas. At an average cost of 3.9{cents}/kWh, however, utility-sponsored energy efficiency programs are not ``too cheap to meter.`` While it is generally agreed upon that utilities must take active measures to minimize the costs and rate impacts of DSM programs, the authors believe that these activities will be facilitated by industry adoption of standard definitions and reporting formats, so that the best program designs can be readily identified and adopted.

Eto, J.; Vine, E.; Shown, L.; Sonnenblick, R.; Payne, C. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-05-01T23:59:59.000Z

385

Technology Performance Exchange | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Exchange Performance Exchange Technology Performance Exchange A collaboration between the U.S. Department of Energy's (DOE's) Federal Energy Management Program Office and the Building Technologies Office, the Technology Performance Exchange will establish a Web-based portal and accompanying database that allows technology suppliers to submit product performance data that private and public sector end users can use to make fact-based procurement decisions. Suppliers will populate the database with technologies that affect building activities, including construction, commissioning, maintenance, monitoring, equipment, and verification. This project will help the U.S. energy efficiency technology market by providing objective product performance data to building engineers and

386

Product and Process Modeling for Functional Performance Testing in Low-Energy Building Embedded Commissioning Cases  

E-Print Network (OSTI)

Our work deals with creating information assistance for commissioning (Cx) low-energy buildings throughout their life-cycle. We call this Embedded Commissioning in reference to the integration of persistent and reliable Cx information. We have developed digital models of the Cx process and products. Currently, we are testing system inspection and functional performance test (FPT) protocols developed by others to verify their applicability to individual facilities and compatibility with our product models, as well as standards, such as IFC and aecXML. To date we have tested a fin-tube radiant heat system FPT. Our findings include lessons learned in several areas: (1) adapting standard FPTs to specific facilities and their design intent, (2) common performance retarding system defects, and (3) implications for data representation in product/process models for FPT implementation.

Akcamete, A.; Garrett, J.; Akinci, B.; Akin, O.; Lee, K. J.

2007-01-01T23:59:59.000Z

387

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

388

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

389

Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis  

Science Conference Proceedings (OSTI)

Natural night ventilation is an interesting passive cooling method in moderate climates. Driven by wind and stack generated pressures, it cools down the exposed building structure at night, in which the heat of the previous day is accumulated. The performance of natural night ventilation highly depends on the external weather conditions and especially on the outdoor temperature. An increase of this outdoor temperature is noticed over the last century and the IPCC predicts an additional rise to the end of this century. A methodology is needed to evaluate the reliable operation of the indoor climate of buildings in case of warmer and uncertain summer conditions. The uncertainty on the climate and on other design data can be very important in the decision process of a building project. The aim of this research is to develop a methodology to predict the performance of natural night ventilation using building energy simulation taking into account the uncertainties in the input. The performance evaluation of natural night ventilation is based on uncertainty and sensitivity analysis. The results of the uncertainty analysis showed that thermal comfort in a single office cooled with single-sided night ventilation had the largest uncertainty. The uncertainties on thermal comfort in case of passive stack and cross ventilation were substantially smaller. However, since wind, as the main driving force for cross ventilation, is highly variable, the cross ventilation strategy required larger louvre areas than the stack ventilation strategy to achieve a similar performance. The differences in uncertainty between the orientations were small. Sensitivity analysis was used to determine the most dominant set of input parameters causing the uncertainty on thermal comfort. The internal heat gains, solar heat gain coefficient of the sunblinds, internal convective heat transfer coefficient, thermophysical properties related to thermal mass, set-point temperatures controlling the natural night ventilation, the discharge coefficient C{sub d} of the night ventilation opening and the wind pressure coefficients C{sub p} were identified to have the largest impact on the uncertainty of thermal comfort. The impact of the warming climate on the uncertainty of thermal comfort was determined. The uncertainty on thermal comfort appeared to increase significantly when a weather data set with recurrence time of 10 years (warm weather) was applied in the transient simulations in stead of a standard weather data set. Natural night ventilation, designed for normal weather conditions, was clearly not able to ensure a high probability of good thermal comfort in warm weather. To ensure a high probability of good thermal comfort and to reduce the performance uncertainty in a warming climate, natural night ventilation has to be combined with additional measures. Different measures were analysed, based on the results of the sensitivity analysis. All the measures were shown to significantly decrease the uncertainty of thermal comfort in warm weather. The study showed the importance to carry out simulations with a warm weather data set together with the analysis under typical conditions. This approach allows to gain a better understanding of the performance of a natural night ventilation design, and to optimize the design to a robust solution. (author)

Breesch, H. [Building Physics, Construction and Services, Department of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Sustainable Building Research Group, Department of Construction, Catholic University College Ghent, Gebroeders Desmetstraat 1, B-9000 Ghent (Belgium); Janssens, A. [Building Physics, Construction and Services, Department of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

2010-08-15T23:59:59.000Z

390

Lessons Learned from Case Studies of Six High-Performance Buildings  

SciTech Connect

Commercial buildings have a significant impact on energy use and the environment. They account for approximately 18% (17.9 quads) of the total primary energy consumption in the United States (DOE 2005). The energy used by the building sector continues to increase, primarily because new buildings are added to the national building stock faster than old buildings are retired. Energy consumption by commercial buildings will continue to increase until buildings can be designed to produce more energy than they consume. As a result, the U.S. Department of Energy's (DOE) Building Technologies Program has established a goal to create the technology and knowledge base for marketable zero-energy commercial buildings (ZEBs) by 2025.

Torcellini, P.; Pless, S.; Deru, M.; Griffith, B.; Long, N.; Judkoff, R.

2006-06-01T23:59:59.000Z

391

Lessons Learned from Case Studies of Six High-Performance Buildings  

SciTech Connect

Commercial buildings have a significant impact on energy use and the environment. They account for approximately 18% (17.9 quads) of the total primary energy consumption in the United States (DOE 2005). The energy used by the building sector continues to increase, primarily because new buildings are added to the national building stock faster than old buildings are retired. Energy consumption by commercial buildings will continue to increase until buildings can be designed to produce more energy than they consume. As a result, the U.S. Department of Energy's (DOE) Building Technologies Program has established a goal to create the technology and knowledge base for marketable zero-energy commercial buildings (ZEBs) by 2025.

Torcellini, P.; Pless, S.; Deru, M.; Griffith, B.; Long, N.; Judkoff, R.

2006-06-01T23:59:59.000Z

392

Energy Benchmarking Database  

E-Print Network (OSTI)

Building energy benchmarking is a useful starting point for commercial building owners and operators to target energy savings opportunities. There are a number of tools and methods for benchmarking energy use. Benchmarking based on regional data can provides more relevant information for California buildings than national tools such as Energy Star. This paper discusses issues related to benchmarking commercial building energy use and the development of Cal-Arch, a building energy benchmarking database for California. Currently Cal-Arch uses existing survey data from California's Commercial End Use Survey (CEUS), a largely underutilized wealth of information collected by California's major utilities. Doe's Commercial Building Energy Consumption Survey (CBECS) is used by a similar tool, Arch, and by a number of other benchmarking tools. Future versions of Arch/Cal-Arch will utilize additional

Satkartar Kinney; Mary Ann Piette; Satkartar Kinney; Mary Ann Piette; Ernest Orlando Lawrence Berkeley; Satkartar Kinney; Mary Ann Piette

2002-01-01T23:59:59.000Z

393

Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors  

DOE Green Energy (OSTI)

This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational profile of an integrated whole house performance contracting company and identify the most significant challenges facing a traditional HVAC contractor looking to transition to a whole house performance contractor. To facilitate the discussion, IBACOS divided the business operations profile of a typical integrated whole house performance contracting company (one that performs both HVAC and shell repair/upgrade work) into seven Operational Areas with more detailed Business Functions and Work Activities falling under each high-level Operational Area. The expert panel was asked to review the operational profile or 'map' of the Business Functions. The specific Work Activities within the Business Functions identified as potential transition barriers were rated by the group relative to the value in IBACOS creating guidance ensuring a successful transition and the relative difficulty in executing.

Burdick, A.

2011-10-01T23:59:59.000Z

394

Influence of glazing selection on commercial building energy performance in hot and humid climates  

SciTech Connect

This paper presents a comparative study in which commercial building perimeter zone electric energy (cooling, lighting, fan) and peak electric demand are analyzed as a function of window glazing type, with a particular emphasis on the use of glazings with wavelength-selective solar-optical properties. The DOE-2 energy analysis simulation program was used to generate a data base of the electric energy requirements of a prototypical office building module located in Singapore. Algebraic expressions derived by multiple regression techniques permitted a direct comparison of those parameters that characterize window performance in hot and humid climates: orientation, size, and solar-optical properties. Also investigated were the effects of exterior and interior shading devices, as well as interior illuminance level, power density, and lighting controls to permit the use of daylighting. These regression equations were used to compare the energy implications of conventional window designs and newer designs in which the type of coating and substrate were varied. The analysis shows the potential for substantial savings through combined solar load control and lighting energy use reduction with daylighting.

Sullivan, R.; Arasteh, D.; Sweitzer, G.; Johnson, R.; Selkowitz, S.

1988-04-01T23:59:59.000Z

395

Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings  

SciTech Connect

This document serves as the Topical Report documenting the first year of work completed by Washington State University (WSU) under US Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project is being conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser Company, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August, 2002 through October, 2003. WSU's primary experimental role is the design and implementation of a field testing protocol that will monitor long term changes in the hygrothermal response of wall systems. In the first year WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, and installed instrumentation in the test walls. By the end of the contract period described in this document, WSU was recording data from the test wall specimens. The experiment described in this report will continue through December, 2005. Each year a number of reports will be published documenting the hygrothermal response of the test wall systems. Public presentation of the results will be made available to the building industry by industry partners and the University cooperators.

Robert Tichy; Chuck Murray

2003-10-01T23:59:59.000Z

396

IFC BIM-Based Methodology for Semi-Automated Building Energy Performance Simulation  

SciTech Connect

Building energy performance (BEP) simulation is still rarely used in building design, commissioning and operations. The process is too costly and too labor intensive, and it takes too long to deliver results. Its quantitative results are not reproducible due to arbitrary decisions and assumptions made in simulation model definition, and can be trusted only under special circumstances. A methodology to semi-automate BEP simulation preparation and execution makes this process much more effective. It incorporates principles of information science and aims to eliminate inappropriate human intervention that results in subjective and arbitrary decisions. This is achieved by automating every part of the BEP modeling and simulation process that can be automated, by relying on data from original sources, and by making any necessary data transformation rule-based and automated. This paper describes the new methodology and its relationship to IFC-based BIM and software interoperability. It identifies five steps that are critical to its implementation, and shows what part of the methodology can be applied today. The paper concludes with a discussion of application to simulation with EnergyPlus, and describes data transformation rules embedded in the new Geometry Simplification Tool (GST).

Bazjanac, Vladimir

2008-07-01T23:59:59.000Z

397

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

398

Building Energy Software Tools Directory: SBEM  

NLE Websites -- All DOE Office Websites (Extended Search)

SBEM SBEM SBEM screen Simplified tool which provides an analysis of a building's energy consumption primarily for the purposes of assessing compliance with Part L (England & Wales), Section 6 (Scotland) and Part F (Northern Ireland) of Building Regulations and eventually for building performance certification EPBD in UK. SBEM (Simplified Building Energy Model) calculates monthly energy use and carbon dioxide emissions of a building given a description of the building’s geometry, construction, use, and HVAC and lighting equipment. It was originally based on the Dutch methodology NEN 2916:1998 (Energy Performance of Non-Residential Buildings) and has since been modified to comply with the emerging CEN Standards. SBEM makes use of standard sets of data for different activity areas and calls on databases

399

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

400

Monitoring of the performance of a solar heated and cooled apartment building. Final report  

SciTech Connect

An all-electric apartment building in Texas was retrofitted for solar heating and cooling and hot water. The system consists of an array of 1280 square feet of Northrup concentrating tracking collectors, a 5000-gallon hot water storage vessel, a 500-gallon chilled water storage vessel, a 25-ton Arkla Industries absorption chiller, and a two-pipe hydronic air conditioning system. The solar air conditioning equipment is installed in parallel with the existing conventional electric heating and cooling system, and the solar domestic water heating serves as preheat to the existing electric water heaters. The system was fully instrumented for monitoring. Detailed descriptions are given of the solar system, the performance monitoring system, and the data reduction processes. Results are presented and discussed. (WHK)

Vliet, G.C.; Srubar, R.L.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building America Top Innovations Hall of Fame Profile … Affordable High Performance in Production Homes: Artistic Homes, Albuquerque, NM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

help from Building America, Artistic help from Building America, Artistic Homes built affordable, high-performance homes in New Mexico and Colorado with HERS scores of 0 to 60. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Artistic Homes have had an extraordinary impact, demonstrating the mainstream builder's business case for adopting proven innovations such as efficient thermal enclosures and ducts inside the conditioned space, even in entry-level homes. The U.S. Department of Energy's Building America program has helped develop best practices for creating efficient thermal enclosures and locating HVAC ducts inside the conditioned space. These measures cost-effectively reduce heating and

402

Building America Top Innovations Hall of Fame Profile … Reduced Call-Backs with High-Performance Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When Grupe of Stockton, California, worked When Grupe of Stockton, California, worked with Building America to build 144 energy- efficient homes in its Carsten Crossings development, the site superintendent said he had the lowest call-back rate of any community he had worked on. He credited the third-party HERS inspections and testing for keeping the quality of work high and catching problems before move-in (Dakin et al. 2008). BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Reduced Call-Backs with High-Performance Production Builders It is essential to engage production builders to successfully transform the market to high-performance homes. Building America has effectively addressed this

403

Duct leakage impacts on VAV system performance in California large commercial buildings  

E-Print Network (OSTI)

GLOSSARY 34 REFERENCES. 34 APPENDIX I: BUILDING SCHEDULES.. 37 APPENDIX II: REGRESSION EQUATIONS AND COEFFICIENTS . 40 APPENDIX III: ENERGY

Wray, Craig P.; Matson, Nance E.

2003-01-01T23:59:59.000Z

404

NREL: Buildings Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

405

Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers  

Science Conference Proceedings (OSTI)

This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

Pless, S.; Torcellini, P.

2012-05-01T23:59:59.000Z

406

Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimizing Hydronic Optimizing Hydronic System Performance in Residential Applications Ithaca, New York PROJECT INFORMATION Project Name: Condensing Boiler Optimization Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, www.ithacanhs.org; Appropriate Designs, www.hydronicpros.com; HTP, www.htproducts.com; Peerless, www.peerlessboilers.com; Grundfos, us.grundfos.com; Bell & Gossett, www.bell-gossett.com; Emerson Swan, www.emersonswan.com. Consortium for Advanced Residential Buildings, www.carb-swa.com Building Component: Space heating, water heating Application: New; single and multifamily Year Tested: 2012-2013 Applicable Climate Zone(s): 4,5,6,7 PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $6,100-$8,200 Projected Energy Savings:

407

Simulation-assisted building energy performance improvement using sensible control decisions  

Science Conference Proceedings (OSTI)

The building sector contributes significantly to global energy consumption and emission of greenhouse gases. Thermal insulation along with installation of energy-efficient building systems can reduce energy needs while preserving or improving occupant ... Keywords: adaptive optimization, energy efficiency in buildings, large-scale systems, non-linear systems

M. F. Pichler; A. Drscher; H. Schranzhofer; G. D. Kontes; G. I. Giannakis; E. B. Kosmatopoulos; D. V. Rovas

2011-11-01T23:59:59.000Z

408

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

solar radiation, electricity tariff, technology costs, andfor PV assessment Electricity tariff Natural gas tariffPerformance Tariff Electricity tariff (summer season) and

Feng, Wei

2013-01-01T23:59:59.000Z

409

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

during construction. many passive houses have performed muchif it occurred, the optimwll passive house would likely havephotographs of a passive solar house at First Village in

Goldstein, David Baird

2011-01-01T23:59:59.000Z

410

Building Technologies Office: National Residential Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

at all levels. The data from the efficiency measures database is used in the Building Energy Optimization (BEopt) software. Benefits The National Retrofit Measures Database...

411

Commissioning of Building HVAC Systems for Improved Energy Performance: A Summary of Annex 40 Results  

E-Print Network (OSTI)

Annex 40 is an international research project which aims at developing, validating and documenting tools for commissioning of buildings and building services. A few months before the end of this 4 years project one presents here an overview of its main achievements. These achievements can be split in 4 categories: 1) tools to manage the commissioning process, 2) manual commissioning tools, 3) approaches to use building energy management system to assist in building commissioning, 4) approaches to use component as well as whole building models to improve commissioning.

Visier, J. C.

2004-01-01T23:59:59.000Z

412

Building America Best Practices Series Volume 13: Energy Performance Techniques and Technologies: Preserving Historic Homes  

SciTech Connect

This guide is a resource to help contractors renovate historic houses, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. The guide is available for download from the DOE Building America website www.buildingamerica.gov.

Britt, Michelle L.; Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Makela, Erin KB; Schneider, Elaine C.; Kaufman, Ned

2011-03-01T23:59:59.000Z

413

Author manuscript, published in "12th Conference of International Building Performance Simulation Association, Sydney: Australia (2011)" IMPACT OF THE CLIMATE ON THE DESIGN OF LOW-ENERGY BUILDINGS  

E-Print Network (OSTI)

The work presented in this paper aims to compare two different climates in Australia and Reunion Island and to identify the similarities in terms of bioclimatic design of low energy building. This approach is to perform a real evaluation of the sensation of thermal comfort in the workplace for different climates on the basis of the "bioclimatic chart " developed by Baruch Givoni. This article discusses the comparison of the thermal comfort levels obtained in the same building located in Australia and Reunion Island for different climatic zones. Both countries are influenced by the ocean and the altitude but are located at very different latitudes. Australia is a large area with several types of climate: temperate in south-eastern and south-west, desert or semi-arid in most parts of the territory, and tropical climate in the northern zone of the continent. Reunion has a tropical climate that can be affected by the altitude. Bioclimatic design strategies are different for wet and dry tropical climates, but in terms of targets at low energy, some basic principles can be identical and can be applied around the world. If a building is well designed and well adapted to its local climate, it is possible to apply the same design rules and standards for all buildings and two for these two different climates.

B. Malet-damour; F. Garde; M. David; D. Prasad

2012-01-01T23:59:59.000Z

414

Duct leakage impacts on VAV system performance in California large commercial buildings  

SciTech Connect

The purpose of this study is to evaluate the variability of duct leakage impacts on air distribution system performance for typical large commercial buildings in California. Specifically, a hybrid DOE-2/TRNSYS sequential simulation approach was used to model the energy use of a low-pressure terminal-reheat variable-air-volume (VAV) HVAC system with six duct leakage configurations (tight to leaky) in nine prototypical large office buildings (representing three construction eras in three California climates where these types of buildings are common). Combined fan power for the variable-speed-controlled supply and return fans at design conditions was assumed to be 0.8 W/cfm. Based on our analyses of the 54 simulation cases, the increase in annual fan energy is estimated to be 40 to 50% for a system with a total leakage of 19% at design conditions compared to a tight system with 5% leakage. Annual cooling plant energy also increases by about 7 to 10%, but reheat energy decreases (about 3 to 10%). In combination, the increase in total annual HVAC site energy is 2 to 14%. The total HVAC site energy use includes supply and return fan electricity consumption, chiller and cooling tower electricity consumption, boiler electricity consumption, and boiler natural gas consumption. Using year 2000 average commercial sector energy prices for California ($0.0986/kWh and $7.71/Million Btu), the energy increases result in 9 to 18% ($7,400 to $9,500) increases in HVAC system annual operating costs. Normalized by duct surface area, the increases in annual operating costs are 0.14 to 0.18 $/ft{sup 2}. Using a suggested one-time duct sealing cost of $0.20 per square foot of duct surface area, these results indicate that sealing leaky ducts in VAV systems has a simple payback period of about 1.3 years. Even with total leakage rates as low as 10%, duct sealing is still cost effective. This suggests that duct sealing should be considered at least for VAV systems with 10% or more total duct leakage. The VAV system that we simulated had perfectly insulated ducts, and maintained constant static pressure in the ducts upstream of the VAV boxes and a constant supply air temperature at the airhandler. Further evaluations of duct leakage impacts should be carried out in the future after methodologies are developed to deal with duct surface heat transfer effects, to deal with airflows entering VAV boxes from ceiling return plenums (e.g., to model parallel fan-powered VAV boxes), and to deal with static pressure reset and supply air temperature reset strategies.

Wray, Craig P.; Matson, Nance E.

2003-10-01T23:59:59.000Z

415

Performance analysis of dedicated heat-pump water heaters in an office building  

SciTech Connect

An evaluation is made of the performance of two generic dedicated heat pump water heaters (HPWHs) in supplying the domestic hot water (DHW) needs of a medium-sized office building in Colorado. Results are based on preliminary data measurements, and assumptions are made to compensate for a faulty flow meter. A stand-alone heat pump plumbed to a conventional tank obtains a coefficient of performance (COP) of 2.4 but only delivers load water temperatures of about 41/sup 0/C (105/sup 0/F) because of the 15,142 L/day (4000 gal/day) recirculating loop flow. An industrial-grade stand-alone HPWH will replace this unit. An integral heat pump/tank unit is being tested, but results are not available because of compressor starting problems. Recirculating loop losses account for 75% of the energy delivered by the HPWHs. These losses could be reduced by 75% if the recirculating loop were insulated, thus reducing the DHW fuel costs by 50%. The insulation expense could be paid in less than 3 years by savings in DHW fuel costs.

Morrison, L.

1981-05-01T23:59:59.000Z

416

48 the building is.  

U.S. Energy Information Administration (EIA)

48 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

417

59 the building is.  

U.S. Energy Information Administration (EIA)

59 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

418

83 the building is.  

U.S. Energy Information Administration (EIA)

83 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

419

Operational, aesthetic, and construction process performance for innovative passive and active solar building components for residential buildings  

E-Print Network (OSTI)

A system-based framework creates the ability to integrate operational, aesthetic, and construction process performance. The framework can be used to evaluate innovations within residential construction. By reducing the ...

Settlemyre, Kevin (Kevin Franklin), 1971-

2000-01-01T23:59:59.000Z

420

Instrumentation and performance analysis of the New Mexico Department of Agriculture solar heated and cooled building. Final report  

DOE Green Energy (OSTI)

An instrumentation system was designed and installed on the New Mexico Department of Agriculture (NMDA) building to evaluate the performance of the solar system. The NMDA building is the first specifically designed solar heated and cooled building constructed in the United States. The solar system utilizes the flat plate collectors with liquid as the thermal transfer fluid, hot and cold storage tanks, and an absorption chiller. Over two years of operating experience now exists in regard to the NMDA building. Operation of the NMDA building heating, ventilation and air conditioning (HVAC) system involves three modes. The full heating mode utilizes the collected solar thermal energy for space heating. The full cooling mode utilizes the energy input from the solar collectors in driving the absorption chiller to provide space cooling. The intermediate mode requires heating during the morning hours and cooling during the afternoon. Cooling for the intermediate mode utilizes the cooling tower due to the low ambient relative humidity. The requirement of auxiliary energy is met with a gas fired boiler within the building. The instrumentation system installed on the NMDA building monitored solar insolation, 45 temperatures, 15 flow rates, the rate of electrical energy consumption, local meterology and the relative humidity. The data was recorded on a 15 minute time interval during daylight and every hour during the night.

San Martin, R.L.; Fenton, D.L.

1978-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Federal Energy Management Program: Resources on Sustainable Buildings and  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Buildings and Campuses Sustainable Buildings and Campuses Building Technology Office Resources The Building Technology Office offers useful resources to plan and implement energy-efficiency projects. Building Energy Software Tools Directory Buildings Performance Database Energy Modeling Software Better Buildings Alliance Webinars Hospital Energy Alliance Videos Solid-State Lighting Technology Fact Sheets Many helpful resources about sustainable buildings and campuses are available. Also see Case Studies. Federal Requirements and Programs Buildings Technologies Program: A U.S. Department of Energy (DOE) program that leads a vast network of research and industry partners to continually develop innovative, cost-effective, energy-saving solutions for buildings. Crosswalk of Sustainability Goals and Targets: A document that features a table listing sustainability goals/targets under the requirement of Executive Order (E.O.) 13514 and E.O. 13423.

422

84 the building is.  

U.S. Energy Information Administration (EIA)

84 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA009449 Keywords:

423

87 the building is.  

U.S. Energy Information Administration (EIA)

87 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: STRO000469 Keywords:

424

80 the building is.  

U.S. Energy Information Administration (EIA)

80 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

425

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC400003 Keywords:

426

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

427

97 the building is.  

U.S. Energy Information Administration (EIA)

97 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

428

78 the building is.  

U.S. Energy Information Administration (EIA)

78 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC200470 Keywords:

429

Building America Top Innovations Hall of Fame Profile … High Performance Without Increased Cost: Urbane Homes, Louiseville KY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urbane's first Urbane's first home, built for $36 per ft 2 in 2008, incorporated both energy efficiency and strategies to reduce building costs. The home won two EnergyValue Housing Awards, and homebuyers began seeking out the builder for energy-efficient, high-quality homes. Building America field projects that demonstrated minimal or cost-neutral impacts for high-performance homes have significantly influenced the housing industry to apply advanced technologies and best practices. In 2006, the U.S. Department of Energy's Building America program set a goal of proving that cost-neutral energy savings of 40% over code were possible at a production scale for new home builders in every U.S. climate zone. Between 2005 and 2010, Building America research partners worked with 34 builders to

430

The Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Performance House: The Performance House: A Cold Climate Challenge Home Old Greenwich, Connecticut PROJECT INFORMATION Project Name: Performance House Location: Old Greenwich, CT Partners: Preferred Builders Inc. www.preferredbuilders.biz Consortium for Advanced Residential Buildings www.carb-swa.com Size: 2,700 ft 2 plus basement Year Completed: 2012 Climate Zone: Cold PERFORMANCE DATA Source Energy Savings: 30.9% HERS Index: 43 (20 with PV) Projected Annual Utility Costs: $2,508; $795 with PV Incremental Cost of Energy Efficiency Measures: $47,337 (excluding PV) Savings-to-Investment Ratio (over 15 years): * Solution Package (SP) = 0.29 * SP with Incentives = 0.34 * SP with Solar = 0.52 * SP with Solar & Incentives = 0.82 By working with builder partners on test homes, researchers from the U.S.

431

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Field Performance the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: Chicago, IL Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Natural Gas Furnaces Application: New and/or retrofit; Single and/or multifamily Year Tested: 2012/2013 Applicable Climate Zone(s): All or specify which ones PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $250 for adjustments Projected Energy Savings: 6.4% heating savings Projected Energy Cost Savings: $100/year climate-dependent Gas furnaces can successfully operate in the field for 20 years or longer with

432

Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings  

SciTech Connect

It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the major professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.

Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica; Haves, Philip; Mathew, Paul; Harris, Jeff

2008-06-16T23:59:59.000Z

433

MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION  

E-Print Network (OSTI)

to produce a low-energy building over a considerable rangeboth very low energy buildings and buildings operating abovereports. Contact the Buildings Energy Data Group at Lawrence

Piette, M.A.

2010-01-01T23:59:59.000Z

434

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

heating is provided by district heating. The building isis heated from a district heating system that provides hotconverts the heat from district heating system to the hot

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

435

An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

and Judkoff, R. 2002. IEA HVAC BESTEST volume 1, Technicaland Judkoff, R. 2004. IEA HVAC BESTEST volume 2, TechnicalOF INNOVATIVE INTEGRATED HVAC SYSTEMS IN BUILDINGS Marija

Trcka, Marija

2010-01-01T23:59:59.000Z

436

Duct leakage impacts on VAV system performance in California large commercial buildings  

E-Print Network (OSTI)

air leakage rate, then proposed buildings will be rewarded for sealingduct sealing even more cost-effective. Table 5. TRNSYS Air-

Wray, Craig P.; Matson, Nance E.

2003-01-01T23:59:59.000Z

437

Influence of two dynamic predictive clothing insulation models on building energy performance  

E-Print Network (OSTI)

Predictive Clothing Insulation Models on Building Energyunnecessarily higher clothing insulation and lower heatingthat the constant clothing insulation assumption lead to the

Lee, Kwang Ho; Schiavon, Stefano

2013-01-01T23:59:59.000Z

438

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

439

Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center  

DOE Data Explorer (OSTI)

This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

440

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

Note: This page contains sample records for the topic "buildings performance database" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sensitivity analysis of window characteristics and their interactions on thermal performance in residential buildings  

E-Print Network (OSTI)

This thesis studies the effects of different window characteristics such as area, conductance and shading on annual energy performance in residential buildings. A single parameter analysis is used to quantify the effect on annual energy due to a change in an individual parameter. However misconceptions about these effects (without regard to the values of the other parameters of the window) lead to predictions that overestimate or underestimate actual savings by neglecting interactions that exist between the parameters. The effect of interactions of two parameter changes is determined in this study using a two parameter analysis technique. This technique uses the difference between changes in annual energy of a parameter at different values of an associated parameter to determine the importance of the interaction effect between the parameters. This interaction effect is used as a measure to determine the important two parameter changes in different orientations for six different climates. The interactions were shown to have significant effects on predicted energy reductions in the six climates studied.

George, Julie N

1996-01-01T23:59:59.000Z

442

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

SciTech Connect

Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

2011-11-01T23:59:59.000Z

443

Performance of the Latest Generation Powerline Networking for Green Building Applications  

Science Conference Proceedings (OSTI)

Green building applications need to efficiently communicate fine-grained power consumption patterns of a wide variety of consumer-grade appliances for an effective adaptation and percolation of demand response models in the home environment. A key hurdle ... Keywords: Green Building, PLC, Powerline Communications, Smart Grid

Nirmalya Roy, David Kleinschmidt, Joseph Taylor, Behrooz Shirazi

2013-11-01T23:59:59.000Z

444

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

on the hot water pipes after the heat exchanger. Figure 8removing heat. The main disadvantage of a two-pipe fan-coilheat from district heating system to the hot water used in the buildings two-pipe

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

445

Crystallographic Databases  

Science Conference Proceedings (OSTI)

... By way of illustration, searching the ICSD database for yttrium-barium-copper- oxide, a common ... ICSD #63,483: Example of search results. ...

2013-03-13T23:59:59.000Z

446

Pathogen Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Databases Los Alamos scientists are working on developing the next-generation of biofuels. Get Expertise Rebecca McDonald Bioscience Email Jose A. Olivares Bioscience Email...

447

Structural Databases  

Science Conference Proceedings (OSTI)

... c) http://bioinfo.nist.gov/biofuels/ A resource for Biofuels. ... Biofuels database (c) is a structural resource for biofuels research. ...

2012-10-01T23:59:59.000Z

448

Databases - TMS  

Science Conference Proceedings (OSTI)

Principal Metals inventory database, 0, 734, Lynette Karabin, 2/9/2007 5:41 AM by Lynette Karabin. New Messages, Rating, WEB RESOURCE: Corrosion...

449

Simple empirical method for estimating the performance of a passive solar heated building of the thermal storage wall type  

DOE Green Energy (OSTI)

Two methods are presented for estimating the annual solar heating performance of a building utilizing a passive thermal storage wall of the Trombe wall or water wall type with or without night insulation and with or without a reflector. The method is accurate to +-3% as compared with hour-by-hour computer simulations.

Balcomb, J.D.; McFarland, R.D.

1978-01-01T23:59:59.000Z

450

Real-time Building Energy Simulation using EnergyPlus and the Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-time Building Energy Simulation using EnergyPlus and the Building Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Title Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Publication Type Conference Proceedings LBNL Report Number LBNL-5390E Year of Publication 2011 Authors Pang, Xiufeng, Prajesh Bhattacharya, Zheng O'Neill, Philip Haves, Michael Wetter, and Trevor Bailey Conference Name Proc. of the 12th IBPSA Conference Pagination p. 2890-2896 Date Published 11/2011 Conference Location Sydney, Australia Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

451

National Residential Efficiency Measures Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Efficiency Measures Database National Residential Efficiency Measures Database This photo shows a man in a white hazardous materials suit blowing insulation inside of an attic. He is wearing a headlamp on his head and the beam shines in the general direction of the insulation tube he is holding. Home improvement can be expensive. The good news is that many energy efficiency improvements quickly pay for themselves in energy savings. Having accurate and consistent performance and cost data for energy efficiency measures enables researchers and the building industry to determine the most cost-effective means of improving existing homes all across the nation. The National Residential Efficiency Measures Database is a centralized resource of residential building retrofit measures and associated estimated

452

Predicted versus monitored performance of energy-efficiency measures in new commercial buildings from energy edge  

SciTech Connect

Energy Edge is a research-oriented demonstration program involving 28 new commercial buildings in the Pacific Northwest. This paper discusses the energy savings and cost-effectiveness of energy-efficiency measures for the first 12 buildings evaluated using simulation models calibrated with measured end-use data. Average energy savings per building from the simulated code baseline building was 19%, less than the 30% target. The most important factor for the lower savings is that many of the installed measures differ from the measures specified in the design predictions. Only one of the first 12 buildings met the project objective of reducing energy use by more than 30% at a cost below the target of 56 mills/kWh (in 1991 dollars). Based on results from the first 12 calibrated simulation models, 29 of the 66 energy-efficiency measures, or 44%, met the levelized cost criterion. Despite the lower energy savings from individual m