Powered by Deep Web Technologies
Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material!  

E-Print Network [OSTI]

gas leak gas leak if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material! 1. If you discover a Gas Leak, shout and check that the nearest gas isolator switch is off. 4. Evacuate the building immediately, avoiding

Hickman, Mark

2

Better Buildings Alliance Equipment Performance Specifications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies Office's...

3

Technical Meeting: Physical Characterization of Connected Buildings Equipment  

Broader source: Energy.gov [DOE]

On January 28-29, 2015, BTO hosted a technical meeting on the Physical Characterization of Connected Buildings Equipment at the Chicago, IL Courtyard Downtown Hotel.

4

Data Network Equipment Energy Use and Savings Potential in Buildings  

SciTech Connect (OSTI)

Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

2010-06-09T23:59:59.000Z

5

Building Equipment Technologies | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmerica »ofEquipment SHARE

6

Better Buildings Alliance Equipment Performance Specifications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergyBeowawe7:for ConsumersBBA Equipment

7

Recovery Act: Training Program Development for Commercial Building Equipment Technicians  

SciTech Connect (OSTI)

The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.

Leah Glameyer

2012-07-12T23:59:59.000Z

8

Lighting Efficiency Case Study 5 Buildings at  

E-Print Network [OSTI]

Universities ­ DCU, UCD, Trinity College & DIT - "To reduce carbon emissions in our buildings by 10% by 2010Lighting Efficiency Case Study 5 Buildings at Dublin City University Glasnevin, Dublin 9 Works Carried out October ­ December 2009 Project Partially Funded by Sustainable Energy Ireland (SEI) ­ SEEEP

Humphrys, Mark

9

ResearchArticle BuildingThermal,Lighting,  

E-Print Network [OSTI]

ResearchArticle BuildingThermal,Lighting, andAcousticsModeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Dandan and partitions. This comparison study did not produce another test suite, but rather a methodology to design

10

Data Network Equipment Energy Use and Savings Potential in Buildings  

E-Print Network [OSTI]

Premises Equip. Total Energy Power (W) Port/Device Table 2.Premises Equip. Total Energy Power (W) Port/Device Figure 2:off individual ports and saving energy. Redesigning the

Lanzisera, Steven

2010-01-01T23:59:59.000Z

11

Review of Pre- and Post-1980 Buildings in CBECS - HVAC Equipment  

SciTech Connect (OSTI)

PNNL was tasked by DOE to look at HVAC systems and equipment for Benchmark buildings based on 2003 CBECS data. This white paper summarizes the results of PNNLs analysis of 2003 CBECS data and provides PNNLs recommendations for HVAC systems and equipment for use in the Benchmark buildings.

Winiarski, David W.; Jiang, Wei; Halverson, Mark A.

2006-12-01T23:59:59.000Z

12

"Designing equipment and buildings to more quickly respond to occupant  

E-Print Network [OSTI]

GRANTS · NSF ­ Occupant Oriented Heating and Cooling · NSF ­ Body Area Sensor Networks: A Holistic building technology to improve building efficiency by using information about occupant locations energy with only $25 in sensors. As an extension of this work, we propose installing servers into homes

Acton, Scott

13

Data Network Equipment Energy Use and Savings Potential in Buildings  

E-Print Network [OSTI]

the USA used 18 TWh, or about 1% of building electricity, inUSA energy use, we estimated the average per capita electricityelectricity and is growing at roughly 6% per year in the USA.

Lanzisera, Steven

2010-01-01T23:59:59.000Z

14

Safety equipment list for the light duty utility arm system  

SciTech Connect (OSTI)

The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

Barnes, G.A.

1998-03-02T23:59:59.000Z

15

How to Select Lighting Controls for Offices and Public Buildings  

Broader source: Energy.gov (indexed) [DOE]

can be used for demand limiting to allow building managers to reduce lighting loads when electricity demand costs are high. Some types of lighting are not well suited to certain...

16

1999 Commercial Buildings Characteristics--End-Use Equipment  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use Equipment Topics: Energy

17

Types of Lighting in Commercial Buildings - Lighting Characteristics  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are...

18

Lighting Controls in Commercial Buildings Alison Williams1*  

E-Print Network [OSTI]

buildings. Keywords--Energy, daylighting, occupancy sensors, controls, tuning. 1 INTRODUCTION Lighting buildings in the United States have daylighting sensors and only 1 percent have energy management, such as those by the National Research Council Canada and Florida Solar Energy Center, present results from lab

19

Building the World's Most Advanced Light Source  

SciTech Connect (OSTI)

View this time-lapse video showing construction of the National Synchrotron Light Source II at Brookhaven National Laboratory. Construction is shown from 2009-2012.

None

2012-08-03T23:59:59.000Z

20

Building Cellular Models with Light Microscopy  

E-Print Network [OSTI]

with Light What we now know about image analysis for adult fly brain imaging: * Can trace individual neurons. PNAS (2008) Released Sept. 2012 #12;Several Lines In "Atlas" Vaa3D: hanchuan.peng.googlepages.com16 #12

Mayberry, Marty

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Types of Lighting in Commercial Buildings - Lighting Types  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 QPDF LightingLighting

22

Attachment 2 UC Berkeley EI-LOTO "Equipment Specific" Procedure Equip. Name: _______________________________ Building: __________________________________ Location/Room Number: _____________________  

E-Print Network [OSTI]

of work here: Instructions: Follow the steps to create a written sequence for de-energizing, lockout / training for the equipment-specific lockout process. Discuss with workers how equipment energy isolation

Cohen, Ronald C.

23

Types of Lighting in Commercial Buildings - Lighting Characteristics  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 QPDF Lighting

24

July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances  

Broader source: Energy.gov [DOE]

These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

25

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

daylighting control for low energy buildings. Proceedings ofAIVC Conference on Building Low Energy Cooling and Advancedlow, federal energy conservation standards do not include lighting controls, and state and local building

Williams, Alison

2012-01-01T23:59:59.000Z

26

LBNL# 40102 Field Investigation of Duct System Performance in California Light Commercial Buildings 1 of 26  

E-Print Network [OSTI]

LBNL# 40102 Field Investigation of Duct System Performance in California Light Commercial Buildings 1 of 26 Field Investigation of Duct System Performance in California Light Commercial Buildings Wm performance in fifteen systems located in eight northern California buildings. Abstract Light commercial

27

Characterization of changes in commercial building structure, equipment, and occupants: End-Use Load and Consumer Assessment Program  

SciTech Connect (OSTI)

Changes in commercial building structure, equipment, and occupants result in changes in building energy use. The frequency and magnitude of those changes have substantial implications for conservation programs and resource planning. For example, changes may shorten the useful lifetime of a conservation measure as well as impact the savings from that measure. This report summarizes the frequency of changes in a commercial building sample that was end-use metered under the End-Use Load and Consumer Assessment Program (ELCAP). The sample includes offices, dry good retails, groceries, restaurants, warehouses, schools, and hotels. Two years of metered data, site visit records, and audit data were examined for evidence of building changes. The observed changes were then classified into 12 categories, which included business type, equipment, remodel, vacancy, and operating schedule. The analysis characterized changes in terms of frequency of types of change; relationship to building vintage and floor area; and variation by building type. The analysis also examined the energy impacts of various changes. The analysis determined that the rate of change in commercial buildings is high--50% of the buildings experienced one type of change during the 2 years for which monitoring data were examined. Equipment changes were found to be most frequent in offices and retail stores. Larger, older office buildings tend to experience a wider variety of changes more frequently than the smaller, newer buildings. Key findings and observations are presented in Section 2. Section 3 provides the underlying motivation and objectives. In Section 4, the methodology used is documented, including the commercial building sample and the data sources used. Included are the definitions of change events and the overall approach taken. Results are analyzed in Section 5, with additional technical details in Appendixes. 2 refs., 46 figs., 22 tabs. (JF)

Lucas, R.G.; Taylor, Z.T.; Miller, N.E.; Pratt, R.G.

1990-12-01T23:59:59.000Z

28

Buildings*","Lit Buildings","Lighting Equipment Types  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQProved Reserves,0050516,"AL",10610,"AlbertvilleReservesFeet)Product:6. Space4. Energy End3.

29

Buildings*","Lit Buildings","Lighting Equipment Types  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQProved Reserves,0050516,"AL",10610,"AlbertvilleReservesFeet)Product:6. Space4. Energy

30

Appliances, Lighting, Electronics, and Miscellaneous EquipmentElectricity Use in New Homes  

SciTech Connect (OSTI)

The "Other" end-uses (appliances, lighting, electronics, andmiscellaneous equipment) continue to grow. This is particularly true innew homes, where increasing floor area and amenities are leading tohigher saturation of these types of devices. This paper combines thefindings of several field studies to assess the current state ofknowledge about the "Other" end-uses in new homes. The field studiesinclude sub-metered measurements of occupied houses in Arizona, Florida,and Colorado, as well as device-level surveys and power measurements inunoccupied new homes. We find that appliances, lighting, electronics, andmiscellaneous equipment can consume from 46 percent to 88 percent ofwhole-house electricity use in current low-energy homes. Moreover, theannual consumption for the "Other" end-uses is not significantly lower innew homes (even those designed for low energy use) compared to existinghomes. The device-level surveys show that builder-installed equipment isa significant contributor to annual electricity consumption, and certaindevices that are becoming more common in new homes, such as structuredwiring systems, contribute significantly to this power consumption. Thesefindings suggest that energy consumption by these "Other" end uses isstill too large to allow cost-effective zero-energy homes.

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan,Gregory

2007-02-28T23:59:59.000Z

31

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

lighting in existing non-residential buildings: a comparisonComparison of control options in private offices in an advanced lightingLighting Energy Only Actual Installation Only Fig. 7. Comparison

Williams, Alison

2012-01-01T23:59:59.000Z

32

Extremely Low-Energy Design for Army Buildings: Tactical Equipment Maintenance Facility; Preprint  

SciTech Connect (OSTI)

This paper describes the integrated energy optimization process for buildings and building clusters and demonstrates this process for new construction projects and building retrofits. An explanation is given of how mission critical building loads affect possible site and source energy use reduction in Army buildings.

Langner, R.; Deru, M.; Zhivov, A.; Liesen, R.; Herron, D.

2012-03-01T23:59:59.000Z

33

Case Study on Enhancing Equipment Efficiency and Operational Practices of a Signature LEED Building  

E-Print Network [OSTI]

-assurance and control process of commissioning has focused on HVAC systems. However, mechanical engineers charged with the task of acting as the commissioning authority (CA) are faced with non-HVAC building systems with which they may not have the expertise... Improved building operation and maintenance Improved building and worker productivity Enhanced the market resale value for building owners Project Description Building Information The project is a 12 story mid-rise Class A office building...

Tseng, P.

2005-01-01T23:59:59.000Z

34

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network [OSTI]

62440 Appliances, Lighting, Electronics, and Miscellaneousof California. Appliances, Lighting, Electronics, anduses (appliances, lighting, electronics, and miscellaneous

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

35

COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS  

SciTech Connect (OSTI)

Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

2004-10-31T23:59:59.000Z

36

LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification  

Broader source: Energy.gov [DOE]

This March 26, 2009 webcast presented information about the Commercial Building Energy Alliances' (CBEA) efforts to explore the viability of LED site lighting in commercial parking lots. LED...

37

Interstate Power and Light (Alliant Energy)- Farm Equipment Energy Efficiency Incentives  

Broader source: Energy.gov [DOE]

Alliant Energy offers prescriptive rebates for a variety of energy efficient products for agricultural customers. These include irrigation equipment, dairy equipment, ventilation systems,...

38

Simulation Analyses in Support of DOEs Fossil Fuel Rule for Single Component Equipment and Lighting Replacements  

SciTech Connect (OSTI)

At the request of DOEs Federal Energy Management Program (FEMP), Pacific Northwest National Laboratory (PNNL) conducted a series of building energy simulations using a large office model to investigate the potential savings that could be accrued from a typical chiller, boiler, or lighting replacement in a Federal office building.

Halverson, Mark A.; Wang, Weimin

2013-10-16T23:59:59.000Z

39

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network [OSTI]

to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

Raustad, R.; Basarkar, M.; Vieira, R.

40

U. S. Building Equipment RD&D Strategy Approach and Technical Options  

SciTech Connect (OSTI)

The goals established by the US Department of Energy s Building Technologies (DOE/BT) Program for deep reductions in energy demand of buildings sector are summarized. Plans for future Research, Development, and Deployment/Demonstration (RD&D) activities to achieve the extremely challenging goals are discussed.

Bouza, Antonio [U.S. Department of Energy; Baxter, Van D [ORNL; Lapsa, Melissa Voss [ORNL; Vineyard, Edward Allan [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

In-Situ Study of Thermal Comfort Enhancement in a Building Equipped with Phase Change Material  

E-Print Network [OSTI]

-00683878,version1-9Jun2014 #12;ing, solar heat or internal loads. Using PCM material in such building walls in the walls storage process. The results show that the PCM wallboards enhance the thermal comfort of occupants buildings. Thermal energy storage can be accomplished either by using sensible heat storage or latent heat

42

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network [OSTI]

online: www.eia.doe.gov/cneaf/electricity/esr/esr_sum.html.Miscellaneous Equipment Electricity Use in New Homes RichardMiscellaneous Equipment Electricity Use in New Homes Richard

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

43

Using measured equipment load profiles to 'right-size' HVACsystems and reduce energy use in laboratory buildings (Pt. 2)  

SciTech Connect (OSTI)

There is a general paucity of measured equipment load datafor laboratories and other complex buildings and designers often useestimates based on nameplate rated data or design assumptions from priorprojects. Consequently, peak equipment loads are frequentlyoverestimated, and load variation across laboratory spaces within abuilding is typically underestimated. This results in two design flaws.Firstly, the overestimation of peak equipment loads results in over-sizedHVAC systems, increasing initial construction costs as well as energy usedue to inefficiencies at low part-load operation. Secondly, HVAC systemsthat are designed without accurately accounting for equipment loadvariation across zones can significantly increase simultaneous heatingand cooling, particularly for systems that use zone reheat fortemperature control. Thus, when designing a laboratory HVAC system, theuse of measured equipment load data from a comparable laboratory willsupport right-sizing HVAC systems and optimizing their configuration tominimize simultaneous heating and cooling, saving initial constructioncosts as well as life-cycle energy costs.In this paper, we present datafrom recent studies to support the above thesis. We first presentmeasured equipment load data from two sources: time-series measurementsin several laboratory modules in a university research laboratorybuilding; and peak load data for several facilities recorded in anational energy benchmarking database. We then contrast this measureddata with estimated values that are typically used for sizing the HVACsystems in these facilities, highlighting the over-sizing problem. Next,we examine the load variation in the time series measurements and analyzethe impact of this variation on energy use, via parametric energysimulations. We then briefly discuss HVAC design solutions that minimizesimultaneous heating and cooling energy use.

Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

2005-06-29T23:59:59.000Z

44

2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances  

Broader source: Energy.gov [DOE]

These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

45

Commercial Building Energy Alliance Exterior Lighting Scoping Study  

SciTech Connect (OSTI)

This report is a scoping study about challenges and energy saving potential regarding exterior lighting.

Myer, Michael

2011-10-07T23:59:59.000Z

46

Energymaster Desiccant System Application to Light Commercial Buildings  

E-Print Network [OSTI]

Desiccant cooling systems offer unique advantages over conventional equipment in certain applications. AskCorp's Energymaster unit has been applied in several commercial situations where these advantages are most significant. The magnitude...

Blanpied, M. C.; Coellner, J. A.; Macintosh, D. S.

1987-01-01T23:59:59.000Z

47

Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)  

SciTech Connect (OSTI)

Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

2011-09-01T23:59:59.000Z

48

Shaping the Next - Buildings and Energy: Advanced Lighting  

SciTech Connect (OSTI)

short bit on advanced lighting for the future relating specifically to controls and new tech such as LEDs

Richman, Eric E.

2014-01-01T23:59:59.000Z

49

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

E-Print Network [OSTI]

commercial-package air-conditioning and heating equipment, packaged terminal air condi- tioners and heat pumps, warm-air furnaces, packaged boilers, storage water heaters,

McMahon, James E.; Wiel, Stephen

2001-01-01T23:59:59.000Z

50

Energy Engineering Analysis Program (EEAP), Fort Bliss headquarters building, lighting retrofit, Fort Bliss, El Paso, Texas  

SciTech Connect (OSTI)

The purpose of this study is to analyze the use of high efficiency fluorescent lighting with energy efficient lamps and electronic ballast for the Headquarters Building (Bldg. number 2) at Fort Bliss.

NONE

1993-02-01T23:59:59.000Z

51

Simplified building models extraction from Ultra-light UAV Imagery  

E-Print Network [OSTI]

facades and the cameras' position in an editing software such as Pointools3 or Google Sketchup: Colorized dense cloud of points Figure 4: Refined extracted building models in Sketchup #12;

Fua, Pascal

52

TRNSYS MODELING OF A HYBRID LIGHTING SYSTEM: BUILDING ENERGY LOADS AND CHROMATICITY ANALYSIS  

E-Print Network [OSTI]

beam normal radiation that is later divided into visible and infrared components. The visible radiation is piped to luminaires inside the building using optical fibers, while the infrared radiation is focused annual building energy loads (lighting, cooling, and heating) and illumination chromaticity values

Wisconsin at Madison, University of

53

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478

54

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4784

55

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building47845

56

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478456

57

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4784562

58

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building47845623

59

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478456234

60

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4784562345

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building47845623456

62

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478456234567

63

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4784562345678

64

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building47845623456789

65

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

SciTech Connect (OSTI)

Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and the United Nations Foundation (UNF) recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This guidebook was prepared over the course of the past year with significant contribution from the authors and reviewers mentioned previously. Their diligent participation has made this the international guidance tool it was intended to be. The lead authors would also like to thank the following individuals for their support in the development, production, and distribution of the guidebook: Marcy Beck, Elisa Derby, Diana Dhunke, Ted Gartner, and Julie Osborn of Lawrence Berkeley National Laboratory as well as Anthony Ma of Bevilacqua-Knight, Inc. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards-setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsors to distribute copies of this book worldwide at no charge for the general public benefit. The guidebook is also available on the web at www.CLASPonline.org and can be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

McMahon, James E.; Wiel, Stephen

2001-02-16T23:59:59.000Z

66

Peak Power Reduction Strategies for the Lighting Systems in Government Buildings  

E-Print Network [OSTI]

PEAK POWER REDUCTION STRATEGIES FOT THE LIGHTING SYSTEMS IN GOVERNMENT BUILDINGS Dina AlNakib CLEP, Dr. Ahmad Al-Mulla CEM, Gopal Maheshwari Department of Building and Energy Technologies Environment and Urban Development Division Kuwait... begins at 7:30 h and ends between 14:00 and 15:30 h. Lighting systems in MC building comprise mostly of T12 fluorescent tubes with magnetic ballasts, compact fluorescent lamps (CFLs) and incandescent lamps with a total connected load of 2,900 k...

Al-Nakib, D.; Al-Mulla, A. A.; Maheshwari, G. P.

2010-01-01T23:59:59.000Z

67

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478 Typical

68

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478 Typical0

69

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478 Typical01

70

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building478 Typical012

71

Monitored lighting energy savings from dimmable lighting controls in The New York Times Headquarters Building  

E-Print Network [OSTI]

A. , DHerdt, P. , 2008, Lighting energy savings in officesLux Europa, 11 th European Lighting Conference, Istanbul,evaluation of the dimmable lighting, automated shading, and

Fernandes, Luis L.

2014-01-01T23:59:59.000Z

72

WEBINAR: LED LIGHTING IN A PERFORMING ARTS BUILDING  

Broader source: Energy.gov [DOE]

Can LEDs render skin tones and makeup accurately in a dressing room? Can they provide the vertical footcandles in a studio to make dancers' bodies visible, or deliver acting studio lighting to...

73

Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites  

SciTech Connect (OSTI)

This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

Richman, Eric E.

2012-10-31T23:59:59.000Z

74

Standard Measurement & Verification Plan for Lighting Equipment Retrofit or Replacement Projects  

SciTech Connect (OSTI)

This document provides a framework for a standard Measurement and Verification (M&V) plan for lighting projects. It was developed to support cost-effective retrofits (partial and complete replacements) of lighting systems and is intended to provide a foundation for an M&V plan for a lighting retrofit utilizing a "best practice" approach, and to provide guidance to site owners, contractors, and other involved organizations on what is essential for a robust M&V plan for lighting projects. This document provides examples of appropriate elements of an M&V plan, including the calculation of expected energy savings. The standard M&V plan, as provided, also allows for consistent comparison with other similar lighting projects. Although intended for lighting retrofit applications, M&V plans developed per this framework document may also be used for other non-lighting technology retrofits and new installations.

Richman, Eric E.

2009-11-04T23:59:59.000Z

75

Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project  

SciTech Connect (OSTI)

This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

Reynolds, T. D.; Easterling, S. D.

2010-10-01T23:59:59.000Z

76

Analysis of Alternatives for Dismantling of the Equipment in Building 117/1 at Ignalina NPP - 13278  

SciTech Connect (OSTI)

Ignalina NPP was operating two RBMK-1500 reactors which are under decommissioning now. In this paper dismantling alternatives of the equipment in Building 117/1 are analyzed. After situation analysis and collection of the primary information related to components' physical and radiological characteristics, location and other data, two different alternatives for dismantling of the equipment are formulated - the first (A1), when major components (vessels and pipes of Emergency Core Cooling System - ECCS) are segmented/halved in situ using flame cutting (oxy-acetylene) and the second one (A2), when these components are segmented/halved at the workshop using CAMC (Contact Arc Metal Cutting) technique. To select the preferable alternative MCDA method - AHP (Analytic Hierarchy Process) is applied. Hierarchical list of decision criteria, necessary for assessment of alternatives performance, are formulated. Quantitative decision criteria values for these alternatives are calculated using software DECRAD, which was developed by Lithuanian Energy Institute Nuclear engineering laboratory. While qualitative decision criteria are evaluated using expert judgment. Analysis results show that alternative A1 is better than alternative A2. (authors)

Poskas, Povilas; Simonis, Audrius [Lithuanian Energy Institute, Kaunas (Lithuania)] [Lithuanian Energy Institute, Kaunas (Lithuania); Poskas, Gintautas [Lithuanian Energy Institute, Kaunas (Lithuania) [Lithuanian Energy Institute, Kaunas (Lithuania); Kaunas University of Technology, Kaunas (Lithuania)

2013-07-01T23:59:59.000Z

77

Recovery Act: Training Curriculum Development for Building Equipment Technicians, Operators, and Commissioning Agents/Auditors  

SciTech Connect (OSTI)

This US DOE funded project produced ten advanced energy engineering technology courses where students learn about the latest technologies and practices in the energy industry to reduce energy use in residential, commercial and industrial settings, accounting for over 50% of the worlds energy use. A geothermal and a solar thermal system were installed and commissioned as part of this project, an MATCs cost share. An innovative intelligent lighting lab was installed, complete with course content as well as innovative academic pathway construction, laddering students from the 2-year technical college to the 4-year engineering school.

Jacobsen, Joseph; Yu, David

2012-08-04T23:59:59.000Z

78

Do it yourself lighting power survey: lighting power audit for use with the Massachusetts type watts per square foot method of calculating a building's lighting power budget  

SciTech Connect (OSTI)

Advantages of the self-audit approach to energy conservation are presented. These are that it is cheaper to do it yourself; the employees become part of the corporate conservation effect; and no one knows the building and its needs better than the occupant. Steps described in the lighting survey procedure are: (1) divide the building into categories; (2) determine the total square footage for each category; (3) assign a power allowance for each category; (4) multiply the total square footage for each category by the respective power allowances; (5) add the budget sub-totals for each category to determine total building budget; and (6) walk through the building room-by-room and calculate the connected lighting load fixture-by-fixture. Some worksheets are provided. (MCW)

Not Available

1980-06-01T23:59:59.000Z

79

To build with light : an exploration into the relationship between light, space, and built form  

E-Print Network [OSTI]

The purpose of this thesis is to look at how light works with form to generate space. The thesis attempts to deal with the physical reality that light, space and form exist in a symbiotic relationship. The thesis deals ...

Heffron, Michael Thomas

1989-01-01T23:59:59.000Z

80

Types of Lighting in Commercial Buildings - Full Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 QPDF Lighting in

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lighting in Commercial Buildings (1986 data) -- Executive Summary  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After8986 Lighting in

82

Lighting in Residential and Commercial Buildings (1993 and 1995 Data)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After8986 Lighting

83

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After8986 LightingLit

84

NREL: News Feature - Light Inspires Energy Efficient Building Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearch Staff MaterialsPrintableHP SupercomputerLight

85

Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification webcast.

86

Measurements and Comparisons of Sunlighted and North-Lighted Atriums on Two Office Buildings in Dallas, Texas  

E-Print Network [OSTI]

The use of natural light (daylighting) in the atriums of office buildings is often done to supplement or eliminate the artificial lighting otherwise required. To the extent that the daylight can be effectively admitted and then distributed...

Molinelli, J. F.; Kim, K.

1986-01-01T23:59:59.000Z

87

Smart Operations of Air-Conditioning and Lighting Systems in Government Buildings for Peak Power Reduction  

E-Print Network [OSTI]

During the summer 2007 smart operation strategies for air-conditioning (A/C) and lighting systems were developed and tested in a number of governmental buildings in Kuwait as one of the solutions to reduce the national peak demand for electrical...

Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

88

Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)  

Broader source: Energy.gov [DOE]

Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

89

Commercial Lighting and LED Lighting Incentives  

Broader source: Energy.gov [DOE]

Incentives for energy efficient commercial lighting equipment as well as commercial LED lighting equipment are available to businesses under the Efficiency Vermont Lighting and LED Lighting...

90

Characterization of commercial building appliances. Final report  

SciTech Connect (OSTI)

This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

1993-08-01T23:59:59.000Z

91

A Guide to Building Commissioning  

SciTech Connect (OSTI)

Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

Baechler, Michael C.

2011-09-01T23:59:59.000Z

92

Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings  

SciTech Connect (OSTI)

The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. This project studied the potential of pre-cooling and demand limiting in a heavy mass and a light mass building in the Bay Area of California. The conclusion of the work to date is that pre-cooling has the potential to improve the demand responsiveness of commercial buildings while maintaining acceptable comfort conditions. Results indicate that pre-cooling increases the depth (kW) and duration (kWh) of the shed capacity of a given building, all other factors being equal. Due to the time necessary for pre-cooling, it is only applicable to day-ahead demand response programs. Pre-cooling can be very effective if the building mass is relatively heavy. The effectiveness of night pre-cooling under hot weather conditions has not been tested. Further work is required to quantify and demonstrate the effectiveness of pre-cooling in different climates. Research is also needed to develop screening tools that can be used to select suitable buildings and customers, identify the most appropriate pre-cooling strategies, and estimate the benefits to the customer and the utility.

Xu, Peng; Zagreus, Leah

2009-05-01T23:59:59.000Z

93

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

94

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

95

April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances  

Broader source: Energy.gov [DOE]

These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

96

An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report  

SciTech Connect (OSTI)

An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

Not Available

1993-08-01T23:59:59.000Z

97

An experimental setup to evaluate the daylighting performance of an advanced optical light pipe for deep-plan office buildings  

E-Print Network [OSTI]

This research focuses on an advanced optical light pipe daylighting system as a means to deliver natural light at the back of deep-plan office buildings (15ft to 30ft), using optimized geometry and high reflective materials. The light pipe...

Martins Mogo de Nadal, Betina Gisela

2005-11-01T23:59:59.000Z

98

Smart Operations of Air-Conditioning and Lighting Systems in a Government Buildings for Peak Power Reduction  

E-Print Network [OSTI]

This paper presents the achievements of implementing smart operations strategies for air-conditioning (A/C) and lighting systems in Justice Palace Complex (JPC), Kuwait during the summer 2007. The peak load of this building was 3700 k...

Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

2010-01-01T23:59:59.000Z

99

Origins of Analysis Methods Used to Design High Performance Commercial Buildings: Part III, Lighting and Daylighting Simulation  

E-Print Network [OSTI]

Origins of analysis methods used to design high performance commercial buildings: Part III, Lighting and daylighting simulation Sukjoon Oh Jeff S. Haberl Student Member ASHRAE Fellow ASHRAE This study is the third part of the review... methods used in lighting and daylighting simulation programs are described. In companion papers, the origins of the analysis methods of whole-building energy and solar energy analysis programs are reviewed(Oh and Haberl 2014a, 2014b). Introduction...

Oh, S.; Haberl, J.S.

100

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Williams, Alison

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Williams, Alison

2013-01-01T23:59:59.000Z

102

Texas State Building Energy Code: Analysis of Potential Benefits and Costs of Commercial Lighting Requirements  

SciTech Connect (OSTI)

The State Energy Conservation Office of Texas has asked the U.S. Department of Energy to analyze the potential energy effect and cost-effectiveness of the lighting requirements in the 2003 IECC as they consider adoption of this energy code. The new provisions of interest in the lighting section of IECC 2003 include new lighting power densities (LPD) and requirements for automatic lighting shutoff controls. The potential effect of the new LPD values is analyzed as a comparison with previous values in the nationally available IECC codes and ASHRAE/IESNA 90.1. The basis for the analysis is a set of lighting models developed as part of the ASHRAE/IES code process, which is the basis for IECC 2003 LPD values. The use of the models allows for an effective comparison of values for various building types of interest to Texas state. Potential effects from control requirements are discussed, and available case study analysis results are provided but no comprehensive numerical evaluation is provided in this limited analysis effort.

Richman, Eric E.; Belzer, David B.; Winiarski, David W.

2005-09-15T23:59:59.000Z

103

TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION TO END-USE FORECASTING WITH COMMEND 4.0  

E-Print Network [OSTI]

LBL-34243 UC - 1600 TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION Technologies, and the Office of Environmental Analysis, Office of Policy, Planning, and Analysis of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. #12;Technology Data Characterizing Lighting

104

Technology data characterizing lighting in commercial buildings: Application to end-use forecasting with commend 4.0  

SciTech Connect (OSTI)

End-use forecasting models typically utilize technology tradeoff curves to represent technology options available to consumers. A tradeoff curve, in general terms, is a functional form which relates efficiency to capital cost. Each end-use is modeled by a single tradeoff curve. This type of representation is satisfactory in the analysis of many policy options. On the other hand, for policies addressing individual technology options or groups of technology options, because individual technology options are accessible to the analyst, representation in such reduced form is not satisfactory. To address this and other analysis needs, the Electric Power Research Institute (EPRI) has enhanced its Commercial End-Use Planning System (COMMEND) to allow modeling of specific lighting and space conditioning (HVAC) technology options. This report characterizes the present commercial floorstock in terms of lighting technologies and develops cost-efficiency data for these lighting technologies. This report also characterizes the interactions between the lighting and space conditioning end uses in commercial buildings in the US In general, lighting energy reductions increase the heating and decrease the cooling requirements. The net change in a building`s energy requirements, however, depends on the building characteristics, operating conditions, and the climate. Lighting/HVAC interactions data were generated through computer simulations using the DOE-2 building energy analysis program.

Sezgen, A.O.; Huang, Y.J.; Atkinson, B.A.; Eto, J.H.; Koomey, J.G.

1994-05-01T23:59:59.000Z

105

Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters  

SciTech Connect (OSTI)

In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

Freeman, S.L.

1997-01-01T23:59:59.000Z

106

CAN POLARIZED LIGHTING PANELS REDUCE ENERGY CONSUPTION AND IMPROVE VISIBILITY IN BUILDING INTERIORS?  

E-Print Network [OSTI]

lighting). In comparison general lighting systems usuallywhen used in comparisons of different lighting systems takesand lighting system studied produces a different comparison,

Berman, S.

2011-01-01T23:59:59.000Z

107

Energy-Efficiency Labels and Standards: A Guidebook forAppliances, Equipment, and Lighting - 2nd Edition  

SciTech Connect (OSTI)

Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and several other organizations identified on the cover of this guidebook recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This second edition of the guidebook was prepared over the course of the past year, four years after the preparation of the first edition, with a significant contribution from the authors and reviewers mentioned previously. Their diligent participation helps maintain this book as the international guidance tool it has become. The lead authors would like to thank the members of the Communications Office of the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory for their support in the development, production, and distribution of the guidebook. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsor to distribute copies of this book worldwide, at no charge, for the general public benefit. The guidebook is also available on the web at www.clasponline.org and may be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

Wiel, Stephen; McMahon, James E.

2005-04-28T23:59:59.000Z

108

An Investigation of Window and Lighting Systems using Life Cycle Cost Analysis for the Purpose of Energy Conservation in Langford Building A at Texas A&M University  

E-Print Network [OSTI]

Langford Building A forms part of the Langford Architectural Complex at Texas A & M University. Inefficient lighting fixtures and single pane windows in Langford Building A contribute to a considerable portion of the total cost of energy...

Hwang, Hea Yeon

2012-07-16T23:59:59.000Z

109

Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings  

DOE Patents [OSTI]

A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

Frank, Alan M. (Livermore, CA); Edwards, William R. (Modesto, CA)

1983-01-01T23:59:59.000Z

110

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect (OSTI)

Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

1997-05-01T23:59:59.000Z

111

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings 3:309-322.Summer Study on Energy Efficiency in Buildings 4:311-319.Summer Study on Energy Efficiency in Buildings 8:69-78.

Williams, Alison

2012-01-01T23:59:59.000Z

112

Estimation the Performance of Solar Fiber Optic Lighting System after Repairing the Glass Fiber Cables in a South Korean Residential Building  

E-Print Network [OSTI]

The solar fiber optic lighting system consists of the solar ray concentrating apparatus, the tracking control, lighting transmission and emission parts. This system was installed on a 20-storey apartment building in South Korea. Many residents had...

Cha, K. S.; Kim, T. K.; Park, M. S.

113

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

2000: 131-142. California Lighting Technology Center. Hybrid2011 01 July. California Lighting Technology Center.2007. Lighting research program project 4.1 hotel and

Williams, Alison

2012-01-01T23:59:59.000Z

114

CAN POLARIZED LIGHTING PANELS REDUCE ENERGY CONSUPTION AND IMPROVE VISIBILITY IN BUILDING INTERIORS?  

E-Print Network [OSTI]

65: 504. Effectiveness of Lighting Systems. 12. Blackwell,Factors to Practical Lighting Design and Appl. 4 (5): 45-53.communication with Bill Jones, Lighting Research Laboratory,

Berman, S.

2011-01-01T23:59:59.000Z

115

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

Performance of Occupancy-Based Lighting Control Systems: AReview. Lighting Residential Technology 42:415-431. Itron,Information Template Indoor Lighting Controls. Pacific Gas

Williams, Alison

2013-01-01T23:59:59.000Z

116

The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings  

E-Print Network [OSTI]

of Highly Controlled Lighting for Offices and Commercialefficient, customized lighting for open-office cubicles.s ambient and task lighting components, 2) occupancy

Rubinstein, Francis

2010-01-01T23:59:59.000Z

117

Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings  

DOE Patents [OSTI]

A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.

Frank, A.M.; Edwards, W.R.

1983-10-11T23:59:59.000Z

118

Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings  

DOE Patents [OSTI]

A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

Frank, A.M.; Edwards, W.R.

1982-03-23T23:59:59.000Z

119

Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings  

E-Print Network [OSTI]

as a Demand Response (DR) strategy for commercial buildings.demand response program because the added demand reduction from different buildingsdemand response, thermal mass INTRODUCTION The structural mass within existing commercial buildings

Xu, Peng

2010-01-01T23:59:59.000Z

120

Using Fourier Series to Model Hourly Energy Use in Commercial Buildings  

E-Print Network [OSTI]

Fourier series analysis is eminently suitable for modeling strongly periodic data. Weather independent energy use such as lighting and equipment load in commercial buildings is strongly periodic and is thus appropriate for Fourier series treatment...

Dhar, A.; Reddy, T. A.; Claridge, D. E.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cost Savings and Energy Reduction: Bi-Level Lighting Retrofits in Multifamily Buildings  

E-Print Network [OSTI]

Community Environmental Center implements Bi- Level Lighting fixtures as a component of cost-effective multifamily retrofits. These systems achieve substantial energy savings by automatically reducing lighting levels when common areas are unoccupied...

Ackley, J.

2010-01-01T23:59:59.000Z

122

A Model for Evaluation of Life-Cycle Energy Savings of Occupancy Sensors for Control of Lighting and Ventilation in Office Buildings  

E-Print Network [OSTI]

Lighting and ventilation represent the majority of the air conditioning loads in office buildings in hot humid climates. Use of motion sensors is one way to minimize the energy used for these loads. This paper describes the methods used...

Degelman, L. O.

2000-01-01T23:59:59.000Z

123

Cape Light Compact- Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Through a multi-member partnership, Cape Light Compact (CLC) and Masssave offer a variety of financial incentives for commercial, industrial, and municipal facilities. Custom rebate options are...

124

Enhanced Operation Strategies for Air-Conditioning and Lighting Systems Toward Peak Power Reduction for an Office Building in Kuwait  

E-Print Network [OSTI]

Enhanced?Operation?Strategies?for?Air? Conditioning?and?Lighting? Systems?Toward?Peak?Power?Reduction? for?an?Office?Building?in?Kuwait F. Alghimlas A. Al-Mulla G.P. Maheshwari D. Al-Nakib Building and Energy Technologies Department...?Increase?in?Power?and?Energy? 6160 6450 6750 7250 7480 7750 8400 8900 9070 9710 27.0 27.5 29.3 31.1 33.1 35.6 37.9 41.6 42.6 45.2 25 30 35 40 45 50 5500 6500 7500 8500 9500 10500 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Y e a r l y E...

Alghimlas, F.; Al-Mulla, A.; Maheshwari, G.P.; Al-Nakib, D.

2012-01-01T23:59:59.000Z

125

Commercial Lighting  

Broader source: Energy.gov [DOE]

Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

126

The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings  

SciTech Connect (OSTI)

The paper presents results from pilot studies of new 'workstation-specific' luminaires that are designed to provide highly, efficient, customized lighting for open-office cubicles. Workstation specific luminaires have the following characteristics: (1) they provide separate, dimming control of the cubicle's 'ambient' and 'task' lighting components, (2) occupancy sensors and control photosensors are integrated into the fixture's design and operation, (3) luminaires can be networked using physical cabling, microcontrollers and a PC running control software. The energy savings, demand response capabilities and quality of light from the two WS luminaires were evaluated and compared to the performance of a static, low-ambient lighting system that is uncontrolled. Initial results from weeks of operation provide strong indication that WS luminaires can largely eliminate the unnecessary lighting of unoccupied cubicles while providing IESNA-required light levels when the cubicles are occupied. Because each cubicle's lighting is under occupant sensor control, the WS luminaires can capitalize on the fact cubicles are often unoccupied during normal working hours and reduce their energy use accordingly.

Rubinstein, Francis; Bolotov, Dmitriy; Levi, Mark; Powell, Kevin; Schwartz, Peter

2008-08-17T23:59:59.000Z

127

Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)  

SciTech Connect (OSTI)

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

Not Available

2013-04-01T23:59:59.000Z

128

Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)  

SciTech Connect (OSTI)

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

Not Available

2013-04-01T23:59:59.000Z

129

The USDOE Forrestal Building Lighting Retrofit: Preliminary Analysis of Electricity Savings  

E-Print Network [OSTI]

In September of 1993 a 36,832 fixture lighting retrofit was completed at the United States Department of Energy Forrestal complex in Washington, D.C. This retrofit represents DOE's largest project to date that utilizes a Shared Energy Savings (SES...

Haberl, J. S.; Bou-Saada, T. E.; Vajda, E. J.; Shincovich, M.; D'Angelo III, L.; Harris, L.

1994-01-01T23:59:59.000Z

130

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

HVAC consumes more electricity in September, the daily trendsHVAC Equipment Figure 44 Building 2 typical weekday electricity consumption trendHVAC Equipment Figure 45 Building 2 typical weekend electricity consumption trend

Hong, Tianzhen

2014-01-01T23:59:59.000Z

131

LED Lighting in a Performing Arts Building at the University of Florida  

SciTech Connect (OSTI)

The U.S. DOE GATEWAY Demonstration Program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with the in-the-field applications of this advanced lighting technology. This report describes the process and results of the 2013 - 2014 GATEWAY demonstration of SSL technology in the Nadine McGuire Theatre and Dance Pavilion at the University of Florida, Gainesville, FL. The LED solutions combined with dimming controls utilized in four interior spaces - the Acting Studio, Dance Studio, Scene Shop, and Dressing Room - received high marks from instructors, students/performers, and reduced energy use in all cases. The report discusses in depth and detail of each project area including specifications, energy savings, and user observations. The report concludes with lessons learned during the demonstration.

Miller, Naomi J.; Kaye, Stan; Coleman, Patricia; Wilkerson, Andrea M.; Perrin, Tess E.; Sullivan, Gregory P.

2014-07-01T23:59:59.000Z

132

Demand Responsive Lighting: A Scoping Study  

SciTech Connect (OSTI)

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

133

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

commercial and residential buildings, appliances and equipment, and the vali- dation of computational tools for estimating energy usage.

Wall, L.W.

2009-01-01T23:59:59.000Z

134

A study of the characteristics of natural light in selected buildings designed by Le Corbusier, Louis I. Kahn and Tadao Ando  

E-Print Network [OSTI]

.................................................................. 6 2.1 Historical Perspectives on Natural Light Inside the Buildings ... 6 2.1.1 Pre-Industrial Architecture........................................... 8 2.1.1.1 Egypt ............................................................. 9... type during the Early Christian architecture was one of the prominent forms that came to be associated with a particular building type, religious in this case. It was an attempt at improvisation with the timber trusses replacing the roman concrete...

Gill, Sukhtej Singh

2009-06-02T23:59:59.000Z

135

Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting.  

SciTech Connect (OSTI)

This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.

Copeland, Robert Guild; Mitchell, Christine Charlotte; Follstaedt, David Martin; Lee, Stephen Roger; Shul, Randy John; Fischer, Arthur Joseph; Chow, Weng Wah Dr.; Myers, Samuel Maxwell, Jr.; Thoma, Steven George; Gee, James Martin; Coltrin, Michael Elliott; Burdick, Brent A.; Salamone, Angelo, L., Jr.; Hadley, G. Ronald; Elliott, Russell D.; Campbell, Jonathan M.; Abrams, Billie Lynn; Wendt, Joel Robert; Pawlowski, Roger Patrick; Simpson, Regina Lynn; Kurtz, Steven Ross; Cole, Phillip James; Fullmer, Kristine Wanta; Seager, Carleton Hoover; Bogart, Katherine Huderle Andersen; Biefeld, Robert Malcolm; Kerley, Thomas M.; Norman, Adam K.; Tallant, David Robert; Woessner, Stephen Matthew; Figiel, Jeffrey James; Moffat, Harry K.; Provencio, Paula Polyak; Emerson, John Allen; Kaplar, Robert James; Wilcoxon, Jess Patrick; Waldrip, Karen Elizabeth; Rohwer, Lauren Elizabeth Shea; Cross, Karen Charlene; Wright, Alan Francis; Gonzales, Rene Marie; Salinger, Andrew Gerhard; Crawford, Mary Hagerott; Garcia, Marie L.; Allen, Mark S.; Southwell, Edwin T. (Perspectives, Sedona, AZ); Bauer, Tom M.; Monson, Mary Ann; Tsao, Jeffrey Yeenien; Creighton, James Randall; Allerman, Andrew Alan; Simmons, Jerry A.; Boyack, Kevin W.; Jones, Eric Daniel; Moran, Michael P.; Pinzon, Marcia J. (Perspectives, Sedona, AZ); Pinson, Ariane O. (Perspectives, Sedona, AZ); Miksovic, Ann E. (Perspectives, Sedona, AZ); Wang, George T.; Ashby, Carol Iris Hill; Missert, Nancy A.; Koleske, Daniel David; Rahal, Nabeel M.

2004-06-01T23:59:59.000Z

136

Inclusion of Building Envelope Thermal Lag Effects in Linear Regression Models of Daily Basis Building Energy Use Data  

E-Print Network [OSTI]

Inclusion?of?Building?Envelope?Thermal?Lag? Effects?in?Linear?Regression?Models?of?Daily? Basis?Building?Energy?Use?Data The?12th International?Conference?for?Enhanced?Building?Operations October?22nd?26th,?2012 Manchester,?UK Hiroko...?for?simple?energy?performance?analysis ? 24?hour?cycle?variations?are?averaged?out?in?daily?data. ? The?dominant?driving?terms?of?most?buildings?follow?a?24?h?cycle.?(Rabl,?1992)? solar?irradiance,?OA?temperature,?ventilation,?occupancy?level,?lights?and?equipment?loads,? delayed?loads?due?to?thermal...

Masuda, H.; Claridge, D. E.

2012-01-01T23:59:59.000Z

137

Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocks

138

Lighting Renovations  

Broader source: Energy.gov [DOE]

When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

139

A SIMULATION ASSESSMENT OF THE HEIGHT OF LIGHT SHELVES TO ENHANCE DAYLIGHTING QUALITY IN TROPICAL OFFICE BUILDINGS UNDER OVERCAST SKY CONDITIONS IN DHAKA, BANGLADESH  

E-Print Network [OSTI]

The objective of this paper is to highlight the effectiveness of light shelves in tropical office buildings to enhance interior daylighting quality. Daylight simulation was performed for custom light shelves for a typical office floor of Dhaka City in Bangladesh, to determine the best possible location under overcast sky conditions. Six alternative models of a 3m high study space were created with varying heights of light shelves. The 3D models were first generated in the Ecotect to study the distribution and uniformity of daylight in the interior space with splitflux method. These models were then exported to a physically-based backward raytracer, Radiance Synthetic Imaging software to generate realistic lighting levels for validating and crosschecking the Ecotect results. The results showed that for achieving light levels closest to specified standards, light shelves at a height of 2m above floor level perform better among the seven alternatives studied including the alternative where no light shelves are present. Finally, the decisions were verified with DAYSIM simulation program to ensure the compliance of the decisions with dynamic annual climate-based daylight performance metrics.

Md. Ashikur; Rahman Joarder; Zebun Nasreen Ahmed; Andrew Price; Monjur Mourshed

140

BuildSmart NY Innovators Summit Offers Sneak Peek at Better Buildings...  

Broader source: Energy.gov (indexed) [DOE]

prisons, mental health hospitals, office buildings, and facilities that house its trains, buses, and equipment. The New York Power Authority's BuildSmart NY program is...

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Jefferson Lab Tech Associate Invents Lockout Device for Equipment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tech Associate Invents Lockout Device for Equipment with Removable Power Cords April 22, 2002 It was the early 1990s and building Jefferson Lab's Continuous Electron Beam...

142

Analysis and Evaluation For Equipment Performance by Surface Measurement  

E-Print Network [OSTI]

Many building owners and facility managers are deeply interested in both operation and maintenance costs related to a building's life cycle. Optimizing energy consumption and obtaining long equipment activity requires sophisticated management...

Ishizuka, K.; Aizawa, N.; Shibata, K.; Yonezawa, H.; Yamada, S.

2006-01-01T23:59:59.000Z

143

Commercial Building Codes and Standards  

Broader source: Energy.gov [DOE]

Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building...

144

Energy Conservation in Public Buildings  

Broader source: Energy.gov [DOE]

The Florida Energy Conservation and Sustainable Buildings Act requires the use of energy-efficient equipment and design, and solar energy devices for heating and cooling state buildings where life...

145

METRIC CHARACTERIZATIONS OF SPHERICAL AND EUCLIDEAN BUILDINGS  

E-Print Network [OSTI]

BUILDINGS Ruth Charney and Alexander Lytchak 0 of spaces satisfying CAT-inequalities are spherical and Euclidean buildings which come equipped with a natural piecewise spherical or Euclidean metric. Buildings also satisfy other nice metric properties

Charney, Ruth

146

Assessing and Reducing Plug and Process Loads in Office Buildings (Brochure)  

SciTech Connect (OSTI)

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

Not Available

2011-06-01T23:59:59.000Z

147

Assessing and Reducing Plug and Process Loads in Retail Buildings (Brochure)  

SciTech Connect (OSTI)

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

Not Available

2011-06-01T23:59:59.000Z

148

Synthesis of perylene-porphyrin building blocks and polymers thereof for the production of light-harvesting arrays  

DOE Patents [OSTI]

The present invention provides methods, compounds, and compositions for the synthesis of light harvesting arrays, such arrays comprising: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to said first electrode, each of said light harvesting rods comprising a polymer of Formula I: wherein m is at least 1; X.sup.1 is a charge separation group, and X.sup.2 through X.sup.m+1 are chromophores. At least one of X.sup.2 through X.sup.m+1 has at least one perylene group coupled thereto.

Loewe, Robert S.; Tomizaki, Kin-ya; Lindsey, Jonathan S.

2005-07-12T23:59:59.000Z

149

Physical Characterization of Connected Buildings Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of over 100 million and 75 trillion Btus of natural gas. Solar Achieve grid parity with PV and other solar technologies by 2015 through advanced R&D over the entire supply chain....

150

Office Buildings - End-Use Equipment  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0Year Jan Feb Mar Apr

151

Microgrid Equipment Selection and Control in Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologiesfrom Biodegradable Materials

152

Physical Characterization of Connected Buildings Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe MirrorSystem

153

Physical Characterization of Connected Buildings Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe MirrorSystemDOE-BTO Summary

154

Physical Characterization of Connected Buildings Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe MirrorSystemDOE-BTO Summary8-29,

155

Smart Buildings Equipment Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S. DepartmentCommitmentGovernment

156

Seismic analyses of equipment in 2736-Z complex. Revision 1  

SciTech Connect (OSTI)

This report documents the structural qualification for the existing equipment when subjected to seismic loading in the Plutonium Storage Complex. It replaces in entirety Revision 0 and reconciles the U.S. Department of Energy (DOE) comments on Revision 0. The Complex consists of 2736-Z Building (plutonium storage vault), 2736-ZA Building (vault ventilation equipment building), and 2736-ZB Building (shipping/receiving, repackaging activities). The existing equipment structurally qualified in this report are the metal storage racks for 7 inch and lard cans in room 2 of Building 2736-Z; the cubicles, can holders and pedestals in rooms 1, 3, and 4 of Building 2736-Z; the ventilation duct including exhaust fans/motors, emergency diesel generator, and HEPA filter housing in Building 2736-ZA; the repackaging glovebox in Building 2736-ZB; and the interface duct between Buildings 2736-Z and 2736-ZA.

Ocoma, E.C.

1995-04-01T23:59:59.000Z

157

Management and monitoring of public buildings through ICT based systems: control rules for energy saving of lighting , J. Virgone2  

E-Print Network [OSTI]

infrastructure to manage appliances so as to effortlessly optimize energy efficiency usage (without compromising comfort for occupants) and to offer to decision makers dedicated tools to plan and manage energy savingTitle Management and monitoring of public buildings through ICT based systems: control rules

Paris-Sud XI, Universit de

158

Joseph Vance Building, The  

High Performance Buildings Database

Seattle, WA In 2006, the Rose Smart Growth Investment Fund acquired the historic Joseph Vance Building with the purpose of transforming it into "the leading green and historic class B" building in the marketplace. The terra cotta Vance Building was constructed in 1929 and has 14 floors - 13 floors of offices over ground-floor retail with a basement for mechanical equipment and storage. In 2009 the U.S. Green Building Council (USGBC) awarded the Vance Building LEED for Existing Buildings (EB) Gold certification.

159

Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)  

SciTech Connect (OSTI)

The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoring of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.

Pratt, R.G.; Williamson, M.A.; Richman, E.E.; Miller, N.E.

1990-07-01T23:59:59.000Z

160

A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building  

E-Print Network [OSTI]

with a sound, integrated building design, and then to paydesign, efficient technology and properly integrated buildingintegrated whole building systems Achieving a high level of building performance is the result of careful, informed design and execution so that building

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment  

SciTech Connect (OSTI)

This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

2004-01-22T23:59:59.000Z

162

Lighting market sourcebook for the US  

SciTech Connect (OSTI)

Throughout the United States, in every sector and building type, lighting is a significant electrical end-use. Based on the many and varied studies of lighting technologies, and experience with programs that promote lighting energy-efficiency, there is a significant amount of cost-effective energy savings to be achieved in the lighting end use. Because of such potential savings, and because consumers most often do not adopt cost-effective lighting technologies on their own, programs and policies are needed to promote their adoption. Characteristics of lighting energy use, as well as the attributes of the lighting marketplace, can significantly affect the national pattern of lighting equipment choice and ownership. Consequently, policy makers who wish to promote energy-efficient lighting technologies and practices must understand the lighting technologies that people use, the ways in which they use them, and marketplace characteristics such as key actors, product mix and availability, price spectrum, and product distribution channels. The purpose of this report is to provide policy-makers with a sourcebook that addresses patterns of lighting energy use as well as data characterizing the marketplace in which lighting technologies are distributed, promoted, and sold.

Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

1997-12-01T23:59:59.000Z

163

"Recovery Act: Training Program Development for Commercial Building...  

Broader source: Energy.gov (indexed) [DOE]

"Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning AgentsAuditors" "Recovery Act: Training...

164

Duquesne Light Company- Residential Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Duquesne Light provides rebates to its residential customers for purchasing and installing energy-saving equipment. Eligible equipment includes dehumidifiers, freezers, refrigerators, air...

165

Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment  

Broader source: Energy.gov (indexed) [DOE]

pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifications Grid connection Hardwired Connector type J1772 Test...

166

Condensing Heating and Water Heating Equipment Workshop Location...  

Energy Savers [EERE]

Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

167

Puget Sound Energy- Commercial Energy Efficient Equipment Rebate Programs  

Broader source: Energy.gov [DOE]

Puget Sound Energy's (PSE) Energy Efficient Equipment Rebate Programs offer a variety of incentives to non-residential customers. Eligible technologies include lighting measures, air conditioners,...

168

Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors  

SciTech Connect (OSTI)

A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

1989-10-01T23:59:59.000Z

169

Applicability of daylighting computer modeling in real case studies: Comparison between measured and simulated daylight availability and lighting consumption. Building and Environment  

E-Print Network [OSTI]

this paper is published in / Une version de ce document se trouve dans : IEA (International Energy Agency) Task 21 / Annex 29: Daylight in Buildings, November 1998, 68 pp. www.nrc.ca/irc/ircpubs NRCC-42862 Subtask C: Daylighting Design Tools T21/C1-21/CAN/98-11 Applicability of Daylighting Computer Modeling in Real Case Studies: Comparison between Measured and Simulated Daylight Availability and Lighting Consumption A report of IEA SHC Task 21 / IEA ECBCS Annex 29 Daylight in Buildings Subtask C: Daylighting Design Tools Report T21/C1-21/CAN/98-11 Applicability of Daylighting Computer Modeling in Real Case Studies: Comparison between Measured and Simulated Daylight Availability and Lighting Consumption by Anca D. Galasiu * Morad R. Atif * A report of IEA SHC Task 21 / IEA ECBCS Annex 29 * National Research Council Canada, Institute for Research in Construction, Indoor Environment Research Program Subtask C: Daylighting Design Tools Report T21/C1-21/CAN/98-11 IEA Solar Heating and Cooling Programme (IEA SHC) The International Energy Agency (IEA) was established in 1974 as an autonomous agency within the framework of the Economic Cooperation and Development (OECD) to carry out a comprehensive program of energy cooperation among its 24 member countries and the Commission of the European Communities. An important part of the Agency's program involves collaboration in the research, development and demonstration of new energy technologies to reduce excessive reliance on imported oil, increase long-term energy security and reduce greenhouse gas emissions. The IEA's R&D activities are headed by the Committee on Energy Research and Technology (CERT) and supported by a small Secretariat staff, headquartered in Paris. In addition, three Working Parties are charged with monitorin...

A. D. Atif

170

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

171

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

172

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

173

A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building  

E-Print Network [OSTI]

15 4.1. LightingEvaluation of the Dimmable Lighting, Automated Shading, andcomparison EUI, kBtu/Gsf Lighting Heating Cooling Pumps/C

2013-01-01T23:59:59.000Z

174

Energy Audit Equipment  

E-Print Network [OSTI]

The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple...

Phillips, J.

2012-01-01T23:59:59.000Z

175

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

176

Integrated Building Management System (IBMS)  

SciTech Connect (OSTI)

This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

Anita Lewis

2012-07-01T23:59:59.000Z

177

Augmented reality building operations tool  

DOE Patents [OSTI]

A method (700) for providing an augmented reality operations tool to a mobile client (642) positioned in a building (604). The method (700) includes, with a server (660), receiving (720) from the client (642) an augmented reality request for building system equipment (612) managed by an energy management system (EMS) (620). The method (700) includes transmitting (740) a data request for the equipment (612) to the EMS (620) and receiving (750) building management data (634) for the equipment (612). The method (700) includes generating (760) an overlay (656) with an object created based on the building management data (634), which may be sensor data, diagnostic procedures, or the like. The overlay (656) is configured for concurrent display on a display screen (652) of the client (642) with a real-time image of the building equipment (612). The method (700) includes transmitting (770) the overlay (656) to the client (642).

Brackney, Larry J.

2014-09-09T23:59:59.000Z

178

Quantifying National Energy Savings Potential of Lighting Controls in  

E-Print Network [OSTI]

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings Alison of Lighting Controls in Commercial Buildings Alison Williams, Barbara Atkinson, Karina Garbesi and Francis savings. Researchers have been quantifying energy savings from lighting controls in commercial buildings

179

Integral Design to Enhance Climate Equipment Performance: Flexergy  

E-Print Network [OSTI]

, within a building and between buildings, is presented. This enables the design of new renewable energy concepts aimed on combining and exchanging different energy flows for HVAC, lighting and power demand. This methodology leads to more flexibility...

Zeiler, W.; Boxem, G.; Van Houten, M. A.; Savanovic, P.; Wortel, W.; Van Der Velden, J. A. J.; De Haan, J. F.; Kamphuis, R.; Hommelberg, M.; Broekhuizen, H.

180

CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)  

SciTech Connect (OSTI)

This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

2007-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

sMAP: Simple Measurement and Actuation for Open Buildings"  

E-Print Network [OSTI]

, pumps, etc), Schedules" · 2291 meters/sensors" ­ Power (building, floor, lights, chiller, pumps, etc

California at Berkeley, University of

182

Strategy Guideline: HVAC Equipment Sizing  

SciTech Connect (OSTI)

The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

Burdick, A.

2012-02-01T23:59:59.000Z

183

Hot conditioning equipment conceptual design report  

SciTech Connect (OSTI)

This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

Bradshaw, F.W., Westinghouse Hanford

1996-08-06T23:59:59.000Z

184

A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building  

E-Print Network [OSTI]

energy use comparison EUI, kBtu/Gsf Lighting Heating Coolinguse comparison Annual EUI, kBtu/sf-yr Lighting Heating

2013-01-01T23:59:59.000Z

185

Renewable Energy Equipment Exemption  

Broader source: Energy.gov [DOE]

Iowa allow a sales tax exemption for solar, wind, and hydroelectricity equipment. As of May 2013, the Iowa sales tax rate is 6%.

186

Lakeview Light and Power- Commercial Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

187

PERFORMANCE MODELING OF DAYLIGHT INTEGRATED PHOTOSENSOR- CONTROLLED LIGHTING SYSTEMS  

E-Print Network [OSTI]

Some building energy codes now require the incorporation of daylight into buildings and automatic photosensor-controlled switching or dimming of the electric lighting system in areas that receive daylight. This paper describes enhancements to the open-source Daysim daylight analysis software that permit users to model a photosensor control system as it will perform in a real space, considering the directional sensitivity of the photosensor, its mounting position, the space and daylight aperture geometry, window shading configuration; the electric lighting equipment and control zones; exterior obstructions; and site weather conditions. System output includes assessment of the daylight distribution in a space throughout the year, the photosensors ability to properly track the daylight and modify electric lighting system output, and the energy savings provided by the modeled control system. The application of daylight coefficients permits annual simulations to be conducted efficiently using hourly or finer weather data time increments. 1

S. Jain; R. R. Creasey; J. Himmelspach; K. P. White; M. Fu; Richard G. Mistrick

188

Strengthening Building Retrofit Markets  

SciTech Connect (OSTI)

The Business Energy Financing (BEF) program offered commercial businesses in Michigan affordable financing options and other incentives designed to support energy efficiency improvements. We worked through partnerships with Michigan utilities, lenders, building contractors, trade associations, and other community organizations to offer competitive interest rates and flexible financing terms to support energy efficiency projects that otherwise would not have happened. The BEF program targeted the retail food market, including restaurants, grocery stores, convenience stores, and wholesale food vendors, with the goal of achieving energy efficiency retrofits for 2 percent of the target market. We offered low interest rates, flexible payments, easy applications and approval processes, and access to other incentives and rebates. Through these efforts, we sought to help customers strive for energy savings retrofits that would save 20 percent or more on their energy use. This program helped Michigan businesses reduce costs by financing energy efficient lighting, heating and cooling systems, insulation, refrigeration, equipment upgrades, and more. Businesses completed the upgrades with the help of our authorized contractors, and, through our lending partners, we provided affordable financing options.

Templeton, Mary [Michigan Saves; Jackson, Robert [Michigan Energy Office

2014-04-15T23:59:59.000Z

189

Lighting in Commercial Buildings, 1986  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.34.3226

190

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

9: Lighting Energy Usage for Commercial Building Lighting incommercial buildings. 4.2. Energy The California Energy Commission has analyzed lighting energy usageCommercial Sector on 2003 Peak Day [Source: CEC 2003 Data] Figure 9: Lighting Energy Usage for Commercial Building

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

191

AIRPORT LIGHTING Session Highlights  

E-Print Network [OSTI]

AIRPORT LIGHTING Session Highlights In May 2002, the Airport Technical Assistance Program, also known as AirTAP, sponsored three airport-lighting training sessions at different locations in Minnesota information on airport lighting and navigational aid equipment selection, funding, maintenance, and operation

Minnesota, University of

192

Detroit Public Lighting Department- Commercial and Industrial Energy Wise Program  

Broader source: Energy.gov [DOE]

The Detroit Public Lighting Department (PLD) offers commercial and industrial customers rebates for energy efficient equipment. Specific rebate amounts, equipment requirements, and applications are...

193

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network [OSTI]

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

194

Energy efficiency buildings program, FY 1980  

SciTech Connect (OSTI)

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

Not Available

1981-05-01T23:59:59.000Z

195

2014-09-30 Issuance: Buildings-to-Grid Integration and Related...  

Broader source: Energy.gov (indexed) [DOE]

Commercial and Residential Buildings End-Use Equipment and Appliances May 2, 2014 Technical Meeting: Reference Guide for a Transaction-Based Building Controls Framework...

196

Solar Equipment Certification  

Broader source: Energy.gov [DOE]

Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their...

197

Building Stones  

E-Print Network [OSTI]

3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

2012-01-01T23:59:59.000Z

198

Laboratory Equipment Donation Program - Equipment Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering&Dynamos ProfessorContact

199

Laboratory Equipment Donation Program - Equipment List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering&Dynamos

200

Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat  

E-Print Network [OSTI]

Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

Levens, Kurt Antony, 1961-

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Commercial Building Partnerships | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

lighting Daylighting Variable speed rooftop supply fans Variable speed hydronic systems Energy recovery Plug-load controls and efficient office equipment Outdoor air optimization...

202

National Ignition Facility subsystem design requirements laser {ampersand} target area building (LTAB) SSDR 1.2.2.1  

SciTech Connect (OSTI)

This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS).

Kempel, P.; Hands, J.

1996-08-19T23:59:59.000Z

203

Using Dimmable Lighting for Regulation Capacity and Non-Spinning Reserves in the Ancillary Services Market. A Feasibility Study.  

SciTech Connect (OSTI)

The objective of this Feasibility Study was to identify the potential of dimmable lighting for providing regulation capacity and contingency reserves if massively-deployed throughout the State. We found that one half of the total electric lighting load in the California commercial sector is bottled up in larger buildings that are greater an 50,000 square feet. Retrofitting large California buildings with dimmable lighting to enable fast DR lighting would require an investment of about $1.8 billion and a"fleet" of about 56 million dimming ballasts. By upgrading the existing installed base of lighting and controls (primarily in large commercial facilities) a substantial amount of ancillary services could be provided. Though not widely deployed, today's state-of-the art lighting systems, control systems and communication networks could be used for this application. The same lighting control equipment that is appropriate for fast DR is also appropriate for achieving energy efficiency with lighting on a daily basis. Thus fast DR can leverage the capabilities that are provided by a conventional dimming lighting control system. If dimmable lighting were massively deployed throughout large California buildings (because mandated by law, for example) dimmable lighting could realistically supply 380 MW of non-spinning reserve, 47percent of the total non-spinning reserves needed in 2007.

Rubinstein, Francis; Xiaolei, Li; Watson, David S.

2010-12-03T23:59:59.000Z

204

Simulation for Pre-Visualizing and Tuning Lighting Controller Behavior  

E-Print Network [OSTI]

daylighting and lighting control algorithms for a given space. Keywords: smart buildings, smart lighting, glazing, and shading devices have been decided. This prevents the early exploration of lighting

Radke, Rich

205

RESPONSE TO OXYGEN DEFICIENCY SENSING EQUIPMENT IN LABORATORIES  

E-Print Network [OSTI]

/or lights to warn both the room occupants and those outside the room of the hazard within. 2. Equipment: Vacuum flask that holds liquid air or helium for scientific experiments. Hazardous Atmosphere. Type and location of oxygen deficiency monitoring equipment. When New York Fire Department (FDNY

Jia, Songtao

206

Equipment Operational Requirements  

SciTech Connect (OSTI)

The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

2009-06-11T23:59:59.000Z

207

Using Bulls-Eye Commissioning to Save Energy in Commercial Buildings  

E-Print Network [OSTI]

facility survey of system loads (kW). Information gathered included the nominal power ratings of equipment such as: exterior lights, interior lights, HVAC (fans, pumps, compressors, cooling towers), hot water, and plug loads (computers, copiers, fax....0 10.0 20.0 30.0 40.0 50.0 60.0 ?F Compressor cooling begins at 2:00. OSA 58 degrees at 2:00 If the economizer high limit was set higher (e.g. 65 degrees) mechanical cooling may have been avoided. In this building the set point was 55...

Price, W.; Hart, R.

2002-01-01T23:59:59.000Z

208

Solar Equipment Certification  

Broader source: Energy.gov [DOE]

Minnesota law requires that all active solar space-heating and water-heating systems, sold, offered for sale, or installed on residential and commercial buildings in the state meet Solar Rating and...

209

FORESTRY BUILDING: BUILDING EMERGENCY PLAN  

E-Print Network [OSTI]

FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

210

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

211

Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...  

Office of Environmental Management (EM)

in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant...

212

Winterizing Equipment Mulching Strawberries  

E-Print Network [OSTI]

equipment. Drain all water from lines, and follow manufacturer's recommen- dations on winterizing pumps. Mulching Strawberries: If you haven't already done so you should make arrangements for you mulch supply now weed or wheat seeds. Any straw is suitable as long as it is heavy enough to resist blowing off

Ginzel, Matthew

213

Emergency Facilities and Equipment  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

214

Indianapolis Power and Light- Business Energy Incentives Program  

Broader source: Energy.gov [DOE]

The Indiana Power and Light Business (IPL) Energy Incentives Program assists commercial and industrial customers with reducing energy consumption through three common types of equipment: lighting,...

215

A Look at Food Service Buildings - Index Page  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) FOOD SERVICE BUILDINGS There...

216

Indoor Pollutants Emitted by Electronic Office Equipment  

SciTech Connect (OSTI)

The last few decades have seen major changes in how people collect and process information at work and in their homes. More people are spending significant amounts of time in close proximity to computers, video display units, printers, fax machines and photocopiers. At the same time, efforts to improve energy efficiency in buildings by reducing leaks in building envelopes are resulting in tighter (i.e., less ventilated) indoor environments. Therefore, it is critical to understand pollutant emission rates for office equipment because even low emissions in areas that are under-ventilated or where individuals are in close proximity to the pollutant source can result in important indoor exposures. We reviewed existing literature reports on pollutant emission by office equipment, and measured emission factors of equipment with significant market share in California. We determined emission factors for a range of chemical classes including volatile and semivolatile organic compounds (VOCs and SVOCs), ozone and particulates. The measured SVOCs include phthalate esters, brominated and organophosphate flame retardants and polycyclic aromatic hydrocarbons. Measurements were carried out in large and small exposure chambers for several different categories of office equipment. Screening experiments using specific duty cycles in a large test chamber ({approx}20 m{sup 3}) allowed for the assessment of emissions for a range of pollutants. Results from the screening experiments identified pollutants and conditions that were relevant for each category of office equipment. In the second phase of the study, we used a smaller test chamber ({approx}1 m{sup 3}) to measure pollutant specific emission factors for individual devices and explored the influence of a range of environmental and operational factors on emission rates. The measured emission factors provide a data set for estimating indoor pollutant concentrations and for exploring the importance of user proximity when estimating exposure concentrations.

Maddalena, Randy L.; Destaillats, Hugo; Russell, Marion L.; Hodgson, Alfred T.; McKone, Thomas E.

2008-07-01T23:59:59.000Z

217

Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving  

SciTech Connect (OSTI)

we developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource Uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace??s northern section (IWn). The advanced control program was then installed in the IWn control system; the performance were measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and the building operator. Lifecycle cost analyses of the advanced building control were performed, and a Building Control System Guide was prepared and published to inform owners, architects, and engineers dealing with new construction or renovation of buildings.

Dr. Zhen Song, Prof. Vivian Loftness, Dr. Kun Ji, Dr. Sam Zheng, Mr. Bertrand Lasternas, Ms. Flore Marion, Mr. Yuebin Yu

2012-10-15T23:59:59.000Z

218

OFFICE OF STUDENT FINANCIAL AID 0102 Lee Building  

E-Print Network [OSTI]

11SASSET OFFICE OF STUDENT FINANCIAL AID 0102 Lee Building College Park, Maryland 20742-5145 TEL and Investment Farm. Include the market value of land, buildings, machinery, equipment, inventory, etc. Do

Milchberg, Howard

219

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect (OSTI)

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

220

After-hours power status of office equipment and energy use of miscellaneous plug-load equipment  

SciTech Connect (OSTI)

This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small business offices (< 50 employees each). Two buildings are in the San Francisco Bay are a of California, nine (including the five small businesses) are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

2004-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

222

Approach for the Improvement of Energy Performance of a Stock of Buildings  

E-Print Network [OSTI]

This paper summarizes the work performed by CSTB, ADEME and the Ministry of equipment in France to improve the energy performance of the ministry stock of buildings: 7 millions square meters, 10 000 buildings, wide range of different buildings...

Vaezi-Nejad, H.; Bouillon, J.; Crozier, L.; Guyot, G.

2003-01-01T23:59:59.000Z

223

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

224

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

of Task 21 / Annex 29, Daylight in Buildings. October, 1997.Energy performance of daylight-linked automatic lightingField Commissioning of a daylight-dimming lighting system.

Konis, Kyle Stas

2012-01-01T23:59:59.000Z

225

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

of Task 21 / Annex 29, Daylight in Buildings. October, 1997.Energy performance of daylight-linked automatic lightingBegemann, G. et al. (1997). Daylight, artificial light and

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

226

Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning  

E-Print Network [OSTI]

demand reduction, demand responsive lighting systems, building systems integration, and feedback for demand-side management.

Price, Phillip N.

2012-01-01T23:59:59.000Z

227

Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocks and the climateLife a Light

228

Light' Darkness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocks and the climateLifeLight to

229

Office Lighting: Title 24 & Technology Update  

E-Print Network [OSTI]

Office Lighting: Title 24 & Technology Update Kelly Cunningham Outreach Director kcunning@ucdavis.edu California Lighting Technology Center, UC Davis RESEARCH . INNOVATION . PARTNERSHIP Supporting compliance apply the Title 24 Building Energy Efficiency Standards code requirements specific to lighting

California at Davis, University of

230

Beyond the Replacement Paradigm: Smart Lighting  

E-Print Network [OSTI]

Switches Smart Building & Grid Interfaces Efficient full spectrum LEDs without droop Versatile, low - Visible Light Communications Integration of smart fixtures, networked sensors and control systemsBeyond the Replacement Paradigm: Smart Lighting Robert F. Karlicek, Jr. Director, Smart Lighting

Salama, Khaled

231

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network [OSTI]

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

232

Ameren Illinois- Lighting Rebates for Businesses  

Broader source: Energy.gov [DOE]

Ameren Illinois offers their non-residential Illinois customers a wide range of incentives for the installation of lighting improvements. Customers must review all equipment requirements to ensure...

233

Building Technologies Office: 179D DOE Calculator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or 0.60ft for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify...

234

Early Equipment Management  

E-Print Network [OSTI]

starting with the ones that could cause the most human harm. This is also an excellent time to discuss all the lockout/tagout points on the machine, determine how much safety training is necessary and if there are enough warning stickers. The idea... needed. One-point lessons should be completed on all inspection, lubrication, and lockout/tagout points. Equipment labels should be created at this time including lockout/tagout and predetermined set-points. The key to a successful EEM program...

Schlie, Michelle

2007-05-18T23:59:59.000Z

235

Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr1stEquipmentPool

236

Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr1stEquipmentPoolPhilips

237

Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps  

SciTech Connect (OSTI)

In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

2014-01-01T23:59:59.000Z

238

The Value of Advanced Technologies in the U.S. Buildings Sector in Climate Change Mitigation  

SciTech Connect (OSTI)

There is a wide body of research focused on the potential of advanced technologies to reduce energy consumption in buildings. How such improvements relate to global climate change, however, is less clear, due to the complexity of the climate change issue, and the implications for the energy system as a whole that need to be considered. This study uses MiniCAM, an integrated assessment model, to examine the contributions of several suites of advanced buildings technologies in meeting national carbon emissions reduction targets, as part of a global policy to mitigate climate change by stabilizing atmospheric CO2 concentrations at 450 ppmv. Focal technology areas include building shells, heat pumps for HVAC and water heating applications, solid-state lighting, and miscellaneous electric equipment. We find that advanced heat pumps and energy-efficient miscellaneous electric equipment show the greatest potential to reduce aggregate building sector future energy consumption and policy costs, but that all focal areas are important for reducing energy consumption. Because of assumed availability of low-cost, emissions-reduced electricity generation technologies in these scenarios, heat pumps are especially important for facilitating fuel-switching towards electricity. Buildings sector energy consumption is reduced by 28% and policy costs are reduced by 17% in a scenario with advanced technologies in all focal areas.

Kyle, G. Page; Clarke, Leon E.; Smith, Steven J.

2008-05-01T23:59:59.000Z

239

Wave Impact Study on a Residential Building Wave Impact Study on a Residential Building  

E-Print Network [OSTI]

Wave Impact Study on a Residential Building Paper: Wave Impact Study on a Residential Building John residential light- frame wood buildings and wave and surge loading be- cause often little is left residential structures and wave loading. To do this, one-sixth scale residen- tial building models typical

Cox, Dan

240

Directional drilling and equipment for hot granite wells  

SciTech Connect (OSTI)

The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Windows and lighting program  

SciTech Connect (OSTI)

More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

Not Available

1990-06-01T23:59:59.000Z

242

Field Labeling to Ensure the Electrical Safety of Production Equipment  

E-Print Network [OSTI]

not including equipment that is designed for use in hazardous locations. This publication provides compressive information on how to apply electrical components, wiring and control systems to both ensure safety of personnel and aid in the delivery..., by delivering safe products at a reasonable price a company will not be eliminated as a potential equipment supplier by being viewed in a negative light as a result of a poor safety evaluation. OSHA posts information on their website detailing the number...

Mills, Todd

2012-05-11T23:59:59.000Z

243

Making the Market Right for Environmentally Sound Energy-Efficient Technologies: U.S. Buildings Sector Successes that Might Work in Developing Countries and Eastern Europe  

E-Print Network [OSTI]

Energy Standards for Appliances, Equipment, and Buildings Golden Carrots: Motivating New Products that Beat the Standards Revenue-Neutral "Feebates" for Whole Buildings,

Gadgil, A.J.

2008-01-01T23:59:59.000Z

244

Making America's Buildings Better (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

Not Available

2012-03-01T23:59:59.000Z

245

Electricity Used by Office Equipment and Network Equipment in the U.S. Kaoru Kawamoto, Jonathan G. Koomey, Bruce Nordman,  

E-Print Network [OSTI]

on Energy Efficiency in Buildings, Asilomar, CA. http://enduse.lbl.gov/Projects/InfoTech.html August 2000 consumption for residential, commercial and industrial use by combining estimates of stock, power requirements than 70% of this energy use is dedicated to office equipment for commercial use. We also found

246

Electrical Equipment Inventory and Inspection Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Equipment Inventory and Inspection Information APS Non-NRTL Electrical Equipment Inventory Spreadsheet ANL Recognized Reputable Electrical Equipment Manufacturer List as...

247

Data Network Equipment Energy Use and Savings Potential in Buildings  

E-Print Network [OSTI]

and interviews with network administrators and serviceinterviews with network administrators, home network owners,selected by the network administrator. Switches and routers

Lanzisera, Steven

2010-01-01T23:59:59.000Z

248

Use of Volttron Platform for Advanced Control of Building Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

prices feeds - Rich Site Summary (RSS) * Data logging systems - Collecting data from sensor networks - On-line diagnostic systems Simnet screenshot From Bruce Sterling's "War...

249

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM with EDAX (For3WebinarUpdateUpdateMay

250

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM with EDAX

251

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Monthly DownloadPotential8.Updated

252

Better Buildings Alliance Equipment Performance Specifications - 2013 BTO  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseFieldBeowaweProgramBest

253

Meeting on Physical Characterization of Connected Buildings Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | DepartmentADVISORYFinal Report on

254

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version) Themonthly4 Oil(EIA)

255

Building America  

SciTech Connect (OSTI)

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

256

Occupant satisfaction with indoor environmental quality in green buildings  

E-Print Network [OSTI]

of lighting complaints in the two main comparison groups.the lighting control profiles in the two comparison groups.lighting and acoustic quality in green buildings do not show a significant improvement in comparison

Abbaszadeh, S.; Zagreus, Leah; Lehrer, D.; Huizenga, C

2006-01-01T23:59:59.000Z

257

Plant design: Integrating Plant and Equipment Models  

SciTech Connect (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process EngineeringOpen), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

258

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

259

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

260

Evaluating Equipment Performance Using SCADA/PMS Data for Thermal Utility Plants - Case Studies  

E-Print Network [OSTI]

The equipment in cogeneration plants and thermal energy plants such as gas tubing generators, boilers, steam turbine generators, chillers and cooling towers are often critical to satisfying building needs. Their actual energy performance is very...

Deng, X.; Chen, Q.; Xu, C.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Florida Power and Light- Business Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Florida Power and Light (FPL) offers incentives for its business customers to upgrade the HVAC system, building envelope, water heating, refrigeration and lighting systems. The individual rebates...

262

Beardmore Building  

High Performance Buildings Database

Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

263

SMART LIGHTING SYSTEMS ULTIMATE LIGHTING The Smart Lighting  

E-Print Network [OSTI]

Integration (Holistic Integrated Design) · Sensors as important as LEDs · Interconnected systems (human, building, grid) · Artistic Design Freedom · Lighting is Health, Entertainment, Information and Illumination Cost at any brightness · Chip level integrated electronics THE ERC RESEARCH COVERS THE ENTIRE SUPPLY

Linhardt, Robert J.

264

INL '@work' heavy equipment mechanic  

ScienceCinema (OSTI)

INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

Christensen, Cad

2013-05-28T23:59:59.000Z

265

Information technology equipment cooling system  

SciTech Connect (OSTI)

According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

Schultz, Mark D.

2014-06-10T23:59:59.000Z

266

Building technolgies program. 1994 annual report  

SciTech Connect (OSTI)

The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effective solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.

Selkowitz, S.E.

1995-04-01T23:59:59.000Z

267

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

268

Lighting Overview Page 6-1 2008 Residential Compliance Manual August 2009  

E-Print Network [OSTI]

Lighting ­ Overview Page 6-1 2008 Residential Compliance Manual August 2009 6 Lighting 6.1 Overview, or lighting designer can get the information they need about residential lighting in low-rise buildings and in the dwelling units of high-rise buildings. For residential buildings, all of the lighting requirements

269

Acquisition of Scientific Equipment  

SciTech Connect (OSTI)

Whitworth University constructed a 63,00 sq. ft. biology and chemistry building which opened in the Fall of 2011. This project provided for new state-of-the-art science instrumentation enabling Whitworth students to develop skills and knowledge that are directly transferable to practical applications thus enhancing Whitworth student's ability to compete and perform in the scientific workforce. Additionally, STEM faculty undertake outreach programs in the area schools, bringing students to our campus to engage in activities with our science students. The ability to work with insturmentation that is current helps to make science exciting for middle school and high school students and gets them thinking about careers in science. 14 items were purchased following the university's purchasing policy, that benefit instruction and research in the departments of biology, chemistry, and health sciences. They are: Cadaver Dissection Tables with Exhaust Chamber and accessories, Research Microscope with DF DIC, Phase and Fluorescence illumination with DP72 Camera, Microscope with Fluorescence, Microcomputer controlled ultracentrifuge, Ultracentrifuge rotor, Variable Temperature steam pressure sterilizer, Alliance APLC System, DNA Speedvac, Gel Cocumentation System, BioPac MP150, Glovebox personal workstation,Lyophilizer, Nano Drop 2000/2000c Spectrophotometer, C02 Incubator.

Noland, Lynn [Director, Sponsored Programs] [Director, Sponsored Programs

2014-05-16T23:59:59.000Z

270

A Meta-Analysis of Energy Savings from Lighting Controls  

E-Print Network [OSTI]

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings Alison Williams;ABSTRACT Researchers have been quantifying energy savings from lighting controls in commercial buildings and Garbesi 2011). Lighting represents approximately one-third of electricity use in commercial buildings

271

Building technologies program. 1995 annual report  

SciTech Connect (OSTI)

The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

Selkowitz, S.E.

1996-05-01T23:59:59.000Z

272

Building Stones  

E-Print Network [OSTI]

was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

2012-01-01T23:59:59.000Z

273

TAP Webinar: High Performance Outdoor Lighting Accelerator  

Broader source: Energy.gov [DOE]

Hosted by the Technical Assistance Program (TAP), this webinar will cover the recently announced expansion of the Better Buildings platform the High Performance Outdoor Lighting Accelerator (HPOLA).

274

Geology and Geophysics: Building Partnerships Forging New Links and Strengthening Old Ones Builds a Stronger Department  

E-Print Network [OSTI]

, course-work tracks that equip students for roles in industry, geological engineering, oil and mineralGeology and Geophysics: Building Partnerships Forging New Links and Strengthening Old Ones Builds. The Geology and Geophysics Department at the University of Utah has a long history of successful partnerships

Johnson, Cari

275

EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type  

E-Print Network [OSTI]

EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type Size Category (Btu/h) Size.ahridirectory.org/ceedirectory/pages/ac/cee/defaultSearch.aspx 12,000 Btu/h = 1 ton Less than 65,000 Btu/h Air Conditioners, Air Cooled Air Conditioners, Water completed by the California Energy Commission at a rate of 12,000 Btu/h per ton of air conditioning Source

276

TRANSPORT AND EMPLACEMENT EQUIPMENT DESCRIPTIONS  

SciTech Connect (OSTI)

The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) Transport and Emplacement in the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. The Transport and Emplacement equipment described in this document consists of the following: (1) WP Transporter; (2) Reusable Rail Car; (3) Emplacement Gantry; (4) Gantry Carrier; and (5) Transport Locomotive.

NA

1997-09-29T23:59:59.000Z

277

Exciting White Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exciting White Lighting Exciting White Lighting April 23, 2010 - 10:27am Addthis Joshua DeLung In the future, your office building's windows might be replaced with windows that...

278

Power System Equipment Module Test Project  

SciTech Connect (OSTI)

The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

Schilling, J.R.

1980-12-01T23:59:59.000Z

279

Dimming every light cheaply  

SciTech Connect (OSTI)

This paper discusses the successful development and testing of the first ballast/IBECS network interface that will allow commercially-available controllable ballasts to be operated from the Internet via IBECS (Integrated Building Environmental Communications System). The interface, which is expected to cost original equipment manufacturers (OEMs) only about $1-2/unit, has been hardened so that it is impervious to electronic noise generated by most 0-10 VDC controllable ballasts.

Rubinstein, Francis; Pettler, Peter; Jennings, Judith

2002-03-27T23:59:59.000Z

280

Commonwealth's Master Equipment Leasing Program  

Broader source: Energy.gov [DOE]

The [http://www.trs.virginia.gov/debt/MELP%20Guides.aspx Master Equipment Leasing Program] (MELP) ensures that all Commonwealth agencies, authorities and institutions obtain consistent and...

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wind Measurement Equipment: Registration (Nebraska)  

Broader source: Energy.gov [DOE]

All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be registered with the Department of Aeronautics if the...

282

Air Conditioner User Behavior in a Master-Metered Apartment Building  

E-Print Network [OSTI]

Air conditioner operation was studied in order to understand how energy consumption and peak power are determined by user behavior, equipment operation and building characteristics. In a multi-family building, thirteen room air conditioners were...

Kempton, W.; Feuermann, D.; McGarity, A. E.

1987-01-01T23:59:59.000Z

283

VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents  

E-Print Network [OSTI]

of a license/permit for each piece of equipment, an Operator Equipment Qualification Record (DA Form 348EM 385-1-1 XX Sep 13 i Section 18 VEHICLES, MACHINERY AND EQUIPMENT Table Of Contents Section: Page...................................................................18-16 18.G Machinery And Mechanized Equipment.........................18-16 18.H Drilling Equipment

US Army Corps of Engineers

284

Seminar on building codes and standards  

SciTech Connect (OSTI)

A seminar was conducted for state building code officials and state energy officials to discuss the following: status of the states regulatory activities for energy conservation standards for buildings; the development, administration, and enforcement processes for energy conservation standards affecting new construction; lighting and thermal standards for existing buildings; status of the development and implementation of the Title III Program, Building Energy Performance Standards (BEPS); and current status of the State Energy Conservation Program. The welcoming address was given by John Wenning and the keynote address was delivered by John Millhone. Four papers presented were: Building Energy Performance Standards Development, James Binkley; Lighting Standards in Existing Buildings, Dorothy Cronheim; Implementation of BEPS, Archie Twitchell; Sanctions for Building Energy Performance Standards, Sue Sicherman.

Not Available

1980-01-01T23:59:59.000Z

285

Green Office Certificate Program (GOCP) Glossary Autoclave: Device to sterilize equipment and supplies by subjecting them to high  

E-Print Network [OSTI]

: The Green Guide for Health Care is a best practices guide for healthy and sustainable building design construction in sustainable buildings LEED-H: LEED for Homes. One of the six LEED Green Building Rating Systems, and multifamily residential buildings with up to three stories, developed on a single lot Light Emitting Diodes

Yamamoto, Keith

286

Agricultural Lighting and Equipment Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective Plan UpdateofSavings Category

287

Types of Lighting in Commercial Buildings - Building Size and Year  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6Constructed

288

Types of Lighting in Commercial Buildings - Principal Building Activity  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 QPDF

289

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

290

Building America Expert Meeting: Transforming Existing Buildings...  

Energy Savers [EERE]

Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

291

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

292

Solid-State Lighting Manufacturing Research and Development ...  

Broader source: Energy.gov (indexed) [DOE]

to achieve cost reduction of solid-state lighting (SSL) for general illumination through improvements in manufacturing equipment, processes, or techniques. It is anticipated that...

293

Cape Light Compact- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Cape Light Compact (CLC) offers a variety of financial incentives to customers for purchasing energy efficient residential equipment. Residential customers can take advantage of incentives on...

294

Building Stones  

E-Print Network [OSTI]

1992 Are the pyramids of Egypt built of poured concreteel-Anbaut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

2012-01-01T23:59:59.000Z

295

Building Science  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures??

296

Building debris  

E-Print Network [OSTI]

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

297

Healthy buildings  

SciTech Connect (OSTI)

This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

Not Available

1991-01-01T23:59:59.000Z

298

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

299

Healthy buildings  

SciTech Connect (OSTI)

This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

1991-01-01T23:59:59.000Z

300

Building Scale DC Microgrids Chris Marnay, Steven Lanzisera, Michael Stadler, and Judy Lai  

E-Print Network [OSTI]

of building loads are either native DC, such as electronics and compact fluorescent and light emitting diode

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Tabletop Computed Lighting for Practical Digital Photography  

E-Print Network [OSTI]

Tabletop Computed Lighting for Practical Digital Photography Ankit Mohan, Reynold Bailey, Jonathan Abstract--We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects

302

Measuring and Understanding the Energy Use Signatures of a Bank Building  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory measured and analyzed the energy end-use patterns in a bank building located in the north-eastern United States. This work was performed in collaboration with PNC Financial Service Group under the US DOEs Commercial Building Partnerships Program. This paper presents the metering study and the results of the metered data analysis. It provides a benchmark for the energy use of different bank-related equipments. The paper also reveals the importance of metering in fully understanding building loads and indentifying opportunities for energy efficiency improvements that will have impacts across PNCs portfolio of buildings and were crucial to reducing receptacle loads in the design of a net-zero bank branches. PNNL worked with PNC to meter a 4,000 ft2 bank branch in the state of Pennsylvania. 71 electrical circuits were monitored and 25 stand-alone watt-hour meters were installed at the bank. These meters monitored the consumption of all interior and exterior lighting, receptacle loads, service water heating, and the HVAC rooftop unit at a 5-minute sampling interval from November 2009 to November 2010. A total of over 8 million data records were generated, which were then analyzed to produce the end-use patterns, daily usage profiles, rooftop unit usage cycles, and inputs for calibrating the energy model of the building.

Xie, YuLong; Liu, Bing; Athalye, Rahul A.; Baechler, Michael C.; Sullivan, Greg

2012-08-12T23:59:59.000Z

303

Best Management Practice #11: Commercial Kitchen Equipment  

Broader source: Energy.gov [DOE]

Commercial kitchen equipment represents a large set of water users in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high volume...

304

Materials Selection Considerations for Thermal Process Equipment...  

Broader source: Energy.gov (indexed) [DOE]

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

305

Summary of Construction Equipment Tests and Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Construction Equipment Tests and Activities Bruce Glagola - Sept 2013 Construction Equipment Tests A series of tests were conducted by the APS Construction Vibration...

306

Benchmarking and Equipment and Controls Assessment for a 'Big Box' Retail Chain  

SciTech Connect (OSTI)

The paper describes work to enable improved energy performance of existing and new retail stores belonging to a national chain and thereby also identify measures and tools that would improve the performance of 'big box' stores generally. A detailed energy simulation model of a standard store design was developed and used to: (1) demonstrate the benefits of benchmarking the energy performance of retail stores of relatively standard design using baselines derived from simulation, (2) identify cost-effective improvements in the efficiency of components to be incorporated in the next design cycle, and (3) use simulation to identify potential control strategy improvements that could be adopted in all stores, improving operational efficiency. The core enabling task of the project was to develop an energy model of the current standard design using the EnergyPlus simulation program. For the purpose of verification of the model against actual utility bills, the model was reconfigured to represent twelve existing stores (seven relatively new stores and five older stores) in different US climates and simulations were performed using weather data obtained from the National Weather Service. The results of this exercise, which showed generally good agreement between predicted and measured total energy use, suggest that dynamic benchmarking based on energy simulation would be an effective tool for identifying operational problems that affect whole building energy use. The models of the seven newer stores were then configured with manufacturers performance data for the equipment specified in the current design and used to assess the energy and cost benefits of increasing the efficiency of selected HVAC, lighting and envelope components. The greatest potential for cost-effective energy savings appears to be a substantial increase in the efficiency of the blowers in the roof top units and improvements in the efficiency of the lighting. The energy benefits of economizers on the roof-top units were analyzed and found to be very sensitive to the operation of the exhaust fans used to control building pressurization.

Haves, Philip; Coffey, Brian; Williams, Scott

2008-06-11T23:59:59.000Z

307

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

308

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

309

Country Report on Building Energy Codes in India  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

2009-04-07T23:59:59.000Z

310

Country Report on Building Energy Codes in Canada  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

Shui, Bin; Evans, Meredydd

2009-04-06T23:59:59.000Z

311

Country Report on Building Energy Codes in Australia  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

2009-04-02T23:59:59.000Z

312

Country Report on Building Energy Codes in Japan  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

Evans, Meredydd; Shui, Bin; Takagi, T.

2009-04-15T23:59:59.000Z

313

Country Report on Building Energy Codes in Korea  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

2009-04-17T23:59:59.000Z

314

Country Report on Building Energy Codes in the United States  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

Halverson, Mark A.; Shui, Bin; Evans, Meredydd

2009-04-30T23:59:59.000Z

315

Building America Webinar: Ventilation in Multifamily Buildings...  

Energy Savers [EERE]

Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design,...

316

The Unbearable Lightness of Being Department of  

E-Print Network [OSTI]

& momentum W p e n n n Z "Neutral current": the neutrino survives, but some energy and momentum Chapter 1: What's a neutrino? #12;Scott Oser The Unbearable Lightness of Being (A Neutrino) 4 The Building Lightness of Being (A Neutrino) 5 The Building Blocks of Matter Electrons orbit atoms, flow through wires

Karczmarek, Joanna

317

Singapore's Zero-Energy Building's daylight monitoring system  

E-Print Network [OSTI]

A and Mardaljevic J, Useful daylight illuminance: a newparadigm for assessing daylight in buildings, LightingJ and Rogers Z, Dynamic daylight performance metrics for

Grobe, Lars

2010-01-01T23:59:59.000Z

318

Research & Development Needs for Building-Integrated Solar Technologie...  

Energy Savers [EERE]

photovoltaic-thermal systems (PVT), active solar lighting, and building-integrated photovoltaics (BIPV). View the full report Report: Research & Development Needs for...

319

Energy Information Handbook: Applications for Energy-Efficient Building Operations  

E-Print Network [OSTI]

relating to the scheduling and control of major buildingImproved scheduling and occupant controls should beLighting controls include scheduling and some photocontrols.

Granderson, Jessica

2013-01-01T23:59:59.000Z

320

Building a Road from Light to Energy  

SciTech Connect (OSTI)

Representing the Center for Solar and Thermal Energy Conversion (CSTEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of the Center for Solar and Thermal Energy Conversion (CSTEC) is to design and to synthesize new materials for high efficiency photovoltaic (PV) and thermoelectric (TE) devices, predicated on new fundamental insights into equilibrium and non-equilibrium processes, including quantum phenomena, that occur in materials over various spatial and temporal scales.

Li, Anton; Bilby, David; Barito, Adam; Vyletel, Brenda

2013-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Types of Lighting in Commercial Buildings - Changes  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q

322

Types of Lighting in Commercial Buildings - Introduction  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore Shale ProvedCountry:Data FilesTypes

323

Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr1st

324

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

325

Better Buildings Alliance  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

326

Better Buildings Neighborhood Program: BetterBuildings Lowell Final Report  

SciTech Connect (OSTI)

The City of Lowell set four goals at the beginning of the Better Buildings Neighborhood Program: 1. Improve the Downtown Historic Park Districts Carbon Footprint 2. Develop a sustainable and replicable model for energy efficiency in historic buildings 3. Create and retain jobs 4. Promote multi?stakeholder partnerships The City of Lowell, MA was awarded $5 million in May 2010 to conduct energy efficiency retrofits within the downtown National Historical Park (NHP). The Citys target was to complete retrofits in 200,000 square feet of commercial space and create 280 jobs, while adhering to the strict historical preservation regulations that govern the NHP. The development of a model for energy efficiency in historic buildings was successfully accomplished. BetterBuildings Lowells success in energy efficiency in historic buildings was due to the simplicity of the program. We relied strongly on the replacement of antiquated HVAC systems and air sealing and a handful of talented energy auditors and contractors. BetterBuildings Lowell was unique for the Better Buildings Neighborhood Program because it was the only program that focused solely on commercial properties. BetterBuildings Lowell did target multi?family properties, which were reported as commercial, but the majority of the building types and uses were commercial. Property types targeted were restaurants, office buildings, museums, sections of larger buildings, mixed use buildings, and multifamily buildings. This unique fabric of building type and use allows for a deeper understanding to how different properties use energy. Because of the National Historical Park designation of downtown Lowell, being able to implement energy efficiency projects within a highly regulated historical district also provided valuable research and precedent proving energy efficiency projects can be successfully completed in historical districts and historical buildings. Our program was very successful in working with the local Historic Board, which has jurisdiction in the NHP. The Historic Board was cooperative with any exterior renovations as long as they were not changing the existing aesthetics of the property. If we were replacing a rooftop condenser it needed to be placed where the existing rooftop condenser was located. Receiving proper approval from the Historic Board for any external energy conservation measures was known by all the participating contractors. One area of the retrofits that was contentious regarded venting of the new HVAC equipment. Installing external stacks was not allowed so the contractors had to negotiate with the Historic Board regarding the proper way to vent the equipment that met the needs mechanically and aesthetically. Overall BetterBuildings Lowell was successful at implementing energy and cost saving measures into 31 commercial properties located within the NHP. The 31 retrofits had 1,554,768 square feet of commercial and multifamily housing and a total predicted energy savings exceeding 22,869 a year. Overall the City of Lowell achieved its target goals and is satisfied with the accomplishments of the BetterBuildings program. The City will continue to pursue energy efficient programs and projects.

Heslin, Thomas

2014-01-31T23:59:59.000Z

327

Heating and Cooling Equipment Selection  

SciTech Connect (OSTI)

This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

Not Available

2002-01-01T23:59:59.000Z

328

Covered Product Category: Imaging Equipment  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including imaging equipment, which is covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

329

COLD STORAGE DESIGN REFRIGERATION EQUIPMENT  

E-Print Network [OSTI]

COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I (Section 1), and F. Bruce Sanford (Section 1) Table of Contents Pages Section 1 - Cold Storage Design to be Considered in the Freezing and Cold Storage of Fishery Products - Preparing, Freezing, and Cold Storage

330

Modern refining and petrochemical equipment  

SciTech Connect (OSTI)

Petroleum refining and petroleum chemistry are characterized by a whole set of manufacturing processes and methods, whose application depends on the initial raw material and the final products. Therefore, refining and petrochemical equipment has many different operational principles, design solutions, and materials. The activities of the Russian Petroleum Industry are discussed.

Pugach, V.V.

1995-07-01T23:59:59.000Z

331

The Advantages of Highly Controlled Lighting for Offices and Commercial  

E-Print Network [OSTI]

LBNL-2514E The Advantages of Highly Controlled Lighting for Offices and Commercial Buildings F for Offices and Commercial Buildings Francis Rubinstein and Dmitriy Bolotov, Lawrence Berkeley National 25% of the electrical energy used in US commercial buildings (DOE 2007). Advanced lighting controls

332

Overview of the Westinghouse Small Modular Reactor building layout  

SciTech Connect (OSTI)

The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of the plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)

Cronje, J. M. [Westinghouse Electric Company LLC, Centurion (South Africa); Van Wyk, J. J.; Memmott, M. J. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

2012-07-01T23:59:59.000Z

333

1999 Commercial Buildings Characteristics  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports Building7.p e uData

334

Psychophysical evaluations of modulated color rendering for energy performance of LED-based architectural lighting  

E-Print Network [OSTI]

This thesis is focused on the visual perception evaluation of colors within an environment of a highly automated lighting control strategy. Digitally controlled lighting systems equipped with light emitting diodes, LEDs, ...

Thompson, Maria do Rosrio

2007-01-01T23:59:59.000Z

335

An Analysis of the DER Adoption Climate in Japan Using Optimization Results for Prototype Buildings with U.S. Comparisons  

E-Print Network [OSTI]

Generation with Combined Heat and Power Applications, LBNL-show that DER with combined heat and power equipment is aenergy resources, combined heat and power, building energy

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2006-01-01T23:59:59.000Z

336

Energy Savings Potential of Solid-State Lighting in General Illuminati...  

Broader source: Energy.gov (indexed) [DOE]

PROGRAM Energy Savings Potential of Solid-State Lighting in General Illumination Applications January 2012 Prepared for: Solid-State Lighting Program Building Technologies Program...

337

Building commissioning: The key to quality assurance  

SciTech Connect (OSTI)

This Guide is written to aid building owners and retrofit project managers currently participating in the Rebuild America program. The Guide provides information on implementing building commissioning projects that will optimize the results of existing building equipment improvements and retrofits projects. It should be used in coordination with Rebuild America`s Community Partnership Handbook. The Handbook describes, in detail, eight important steps necessary for planning and carrying out a community-wide energy-efficiency program. In step number 7 of the Handbook, commissioning is shown to be an integral aspect of implementing a building retrofit. The commissioning process ensures that a facility is safe, efficient, comfortable, and conducive to the presumed activities for which it was constructed. Rebuild America strongly encourages its partners to incorporate commissioning into their retrofit projects. By verifying the correct installation, functioning, operation, and maintenance of equipment, the commissioning process ensures that efficiency measures will continue to deliver benefits over the long term. Although commissioning can take place after the equipment has been installed, it is more effective when it takes place over the entire equipment installation process.

NONE

1998-05-01T23:59:59.000Z

338

Los Alamos National Laboratory Building Cost Index  

SciTech Connect (OSTI)

The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratores. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractural rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor draft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

Orr, H.D.; Lemon, G.D.

1983-01-01T23:59:59.000Z

339

Los Alamos National Laboratory building cost index  

SciTech Connect (OSTI)

The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratories. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractual rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor craft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

Orr, H.D.; Lemon, G.D.

1982-10-01T23:59:59.000Z

340

Alternative Refrigerants for Building Air Conditioning  

E-Print Network [OSTI]

The majority of building air conditioning has traditionally been achieved with vapor compression technology using CFC-I I or HCFC-22 as refrigerant fluids. CFC-11 is being successfully replaced by HCFC-123 (retrofit or new equipment) or by HFC- 134a...

Bivens, D. B.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sub-metering to Electricity Use in Large-scale Commercial Buildings  

E-Print Network [OSTI]

;?#0;? Practice??Project example #0;?#0;? Use of data??Analysis Software Sub-metering and statistics to electricity use in commercial buildings 8 Method of sub-metering Whole electric power consumption of a building Hvac system Heating Circulating pump Oter... systems and equipments Equipments on Socket Special function room Electrically driven heating equipment Chiller Fan of cooling tower Chilled pump cooling pump Air hand unit Fresh air hand unit Fan coil unit Air conditioner Heating water system drinking...

Yuan, W.

2006-01-01T23:59:59.000Z

342

Lighting Research Group FinalReportOctober1999  

E-Print Network [OSTI]

Lighting Research Group FinalReportOctober1999 Lighting Recommendations for the Social Security Administration Frank Hagel Federal Building in Richmond CA #12;Final Report Lighting Recommendations to improve the lighting quality and energy efficiency of the lighting system at the Social Security

343

JAPAN'S TAKUMA BUILDING BEIJING WTE PLANT TOKYO, Nov 11  

E-Print Network [OSTI]

JAPAN'S TAKUMA BUILDING BEIJING WTE PLANT TOKYO, Nov 11 Environmental plant firm Takuma Co. (TSE:6013) has won a 4 billion yen ($36 million) order from a public-private partnership in China to build by a combination of operational features and air pollution control equipment. In addition to MSW incineration

Columbia University

344

Optimizing HVAC Control to Improve Building Comfort and Energy Performance  

E-Print Network [OSTI]

This paper demonstrates the benefits of optimal control in well-designed and operated buildings using a case study. The case study building was built in 2001. The HVAC and control systems have been installed with state-of-the-art equipment which...

Song, L.; Joo, I.; Dong, D.; Liu, M.; Wang, J.; Hansen, K.; Quiroz, L.; Swiatek, A.

2003-01-01T23:59:59.000Z

345

TTUS FP&C Design & Building Standards Division 15 Mechanical  

E-Print Network [OSTI]

to turning on units. Equipment layout including but not limited to AHU's, pumps, piping, water heaters campus, the majority of all buildings are cooled using chilled water from Central Heating and Cooling at a chilled water T of 16 degrees Fahrenheit. Chilled water is distributed to the buildings in a network

Gelfond, Michael

346

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

347

Light Pollution and the City of "It is indeed a feeble light that reaches us from the starry  

E-Print Network [OSTI]

. Poor lighting, however, gives rise to light pollution. This costs money by wasting energy; it creates. Consider light waste. Lights are usually intended to illumi- nate specific premises (a square, a building etc.). Improperly in- stalled or shielded lights emit a large portion of their energy away from

348

Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit: Annapolis, Maryland. Building America Case Study: Whole-House Solutions for Existing Homes (Fact Sheet)  

SciTech Connect (OSTI)

Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

Not Available

2013-10-01T23:59:59.000Z

349

Integrated Energy Systems (IES) for Buildings: A Market Assessment  

SciTech Connect (OSTI)

Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.

LeMar, P.

2002-10-29T23:59:59.000Z

350

Procedure to Measure Indoor Lighting Energy Performance  

SciTech Connect (OSTI)

This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

Deru, M.; Blair, N.; Torcellini, P.

2005-10-01T23:59:59.000Z

351

Energy Conservation Utilizing Wireless Dimmable Lighting Control  

E-Print Network [OSTI]

results & discussion Future research #12;2 Background & Motivation Energy Usage & Potential Savings Lighting accounts for 25-30% of energy usage in building electrical systems Energy savings can be generated Energy Efficiency with Personal Lighting Preferences Light level tuning · Generates energy savings

Agogino, Alice M.

352

Advanced Lighting Program Development (BG9702800) Final Report  

SciTech Connect (OSTI)

The report presents a long-range plan for a broad-based, coordinated research, development and market transformation program for reducing the lighting energy intensities in commercial and residential buildings in California without compromising lighting quality. An effective program to advance lighting energy efficiency in California must be based on an understanding that lighting is a mature field and the lighting industry has developed many specialized products that meet a wide variety of light needs for different building types. Above all else, the lighting field is diverse and there are applications for a wide range of lighting products, systems, and strategies. Given the range of existing lighting solutions, an effective energy efficient lighting research portfolio must be broad-based and diverse to match the diversity of the lighting market itself. The belief that there is one solution--a magic bullet, such as a better lamp, for example--that will propel lighting efficiency across all uses to new heights is, in the authors' opinion, an illusion. A multi-path program is the only effective means to raising lighting efficiency across all lighting applications in all building types. This report presents a list of 27 lighting technologies and concepts (key activities) that could form the basis of a coordinated research and market transformation plan for significantly reducing lighting energy intensities in California buildings. The total 27 key activities into seven broad classes as follows: Light sources; Ballasts; Luminaires; Lighting Controls; Lighting Systems in Buildings; Human Factors and Education. Each of the above technology classes is discussed in terms of background, key activities, and the energy savings potential for the state. The report concludes that there are many possibilities for targeted research, development, and market transformation activities across all sectors of the building lighting industry. A concerted investment by the state to foster efficiency improvements in lighting systems in commercial and residential buildings would have a major positive impact on energy use and environmental quality in California.

Rubinstein, Francis; Johnson, Steve

1998-02-01T23:59:59.000Z

353

Adaptive Lighting  

Energy Savers [EERE]

* ...based on environmental conditions... - Occupancy Vacancy - Daylight Availability - Demand Response Signals - ... * ...to optimize space & building performance - Maximize...

354

Equipment Inventory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr1stEquipment Inventory

355

Equipment Listing | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr1stEquipment Inventory

356

Equipment Loans | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr1stEquipment

357

Equipment Pool | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr1stEquipmentPool What

358

Operations and Maintenance for Major Equipment Types  

Broader source: Energy.gov [DOE]

Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly across the Federal sector in age, size, type, model, condition, etc.

359

Machinery and Equipment Expensing Deduction (Kansas)  

Broader source: Energy.gov [DOE]

Machinery and Equipment Expensing Deduction allows Kansas taxpayers to claim an expense deduction for business machinery and equipment, placed in service in Kansas during the tax year. The one-time...

360

Strategy Guideline: High Performance Residential Lighting  

SciTech Connect (OSTI)

The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

Holton, J.

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference  

SciTech Connect (OSTI)

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2002-06-01T23:59:59.000Z

362

Proceedings: Substation Equipment Diagnostics Conference IX  

SciTech Connect (OSTI)

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2001-09-01T23:59:59.000Z

363

Building Retrofits: Energy Conservation and Employee Retention Considerations in Medium-Size Commercial Buildings  

E-Print Network [OSTI]

of Environmental Economics and Management, Lighting Design and Application, Academy of Management Executive, Artificial Intelligence Review, Indoor Built Environment, Journal of Corporate Real Estate, Science, Indoor Air, and Healthy Buildings, Journal of Real..., Science, Indoor Air, Healthy Buildings, Journal of Real Estate Research, Journal of Property Investment and Finance, Journal of Sustainable Real Estate. Reputable Organizations Rocky Mountain Institute, Environmental Protection Agency (EPA), Energy...

Freeman, Janice

2013-04-29T23:59:59.000Z

364

ADVANCED COATINGS LAB EQUIPMENT & TESTING  

E-Print Network [OSTI]

Unit · Light Booth · Microscope · Liquid Color Standards · Rheology · Rheometer · Viscosity Cups Application System · Fluidics 3K Mix System · Conveyor System · Automated Panel Sprayer · Gravity Feed Spray Guns ­ HVLP, Compliant · Pressure Feed Spray Guns ­ HVLP, Compliant · Pressure Pots · Electrostatic

365

assessing light scattering: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

430 Brookhaven National Laboratory LIGHT SOURCES DIRECTORATE Subject: Building 725 Fire Hazard AnalysisFire Hazard Assessment Physics Websites Summary: Brookhaven National...

366

Seattle City Light- Built Smart Program for Builders and Architects  

Broader source: Energy.gov [DOE]

Seattle City Light provides incentives for builders, developers, and architects who construct energy efficient multi-family buildings. The program is designed to encourage the construction of...

367

ENVIRONMENTAL ASSESSMENT NATIONAL SYNCHROTRON LIGHT SOURCE-II  

E-Print Network [OSTI]

ENVIRONMENTAL ASSESSMENT FOR NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II) BROOKHAVEN NATIONAL..............................................................................................11 4.1.1 Building Site Location ............................................................................20 5.9 Natural Hazards

Ohta, Shigemi

368

PipelinePipelineJuly 2011 Volume 3, Issue 4 The Donhowe Building, located at the  

E-Print Network [OSTI]

to the building's mechanical and electrical systems' performance, including installing a heat pump equipped water on washing machines and water heaters, the EPA also administers a scoring system for buildings. This tool heater and optimizing the building's heating and cooling air flow rates. Energy Management intends

Webb, Peter

369

3Building a Business Building a Business  

E-Print Network [OSTI]

15 3Building a Business Building a Business This section provides direction on the kinds. If you contemplate building a "garage- based" company to sell a product into a niche market, you should-ups conjure up images of future wealth, of building the next Amgen or Microsoft, of launching what will become

Arnold, Jonathan

370

Recent development in green buildings  

SciTech Connect (OSTI)

Because of the environmental concerns about some materials used in buildings, particularly chlorofluorocarbon (CFC) fluids used as the blowing agent for insulation materials and as refrigerants used in the air conditioning systems have led to a search for environmentally safe alternatives. For insulation materials, new non-CFC blowing agents are still under development. However, the old insulation materials in the buildings will stay because they do not pose any further environmental damage. It is a different story for refrigerants used in air conditioning systems. This study reports that the change-over from CFC to non-CFC refrigerants in the existing and future air conditioning equipment could be a chance not only to take care of the environmental concerns, but to save energy as well. Alternative air conditioning technologies, such as the desiccant dehumidification and absorption systems, and the potential of some natural substances, such as carbon dioxide, as the future refrigerants are also discussed.

Mei, V.C.

1996-12-31T23:59:59.000Z

371

A Systems Integration Approach To Lighting Control Systems  

E-Print Network [OSTI]

and office placement with control tools to harvest natural light. Other technologies under development seek to achieve the seamless integration of lighting controls with other building systems. Here, the rewards can be rich, with increased energy savings...

Lynch, S.; Renner, R. A.

2000-01-01T23:59:59.000Z

372

Image Recognition System for Automated Lighting Retrofit Assessment  

E-Print Network [OSTI]

, and K. Baugh, ?Spectral Identification of Lighting Type and Character,? Sensors, vol. 10, pp. 3961-3988, 2010. (3) L. Halonen, E. Tetri, and P. Bhusal, ?Guidebook on Energy Efficient Electric Lighting for Buildings,? Espoo, Finland: Dept. Elect. Eng...

Venable, K.; Bhatia, D.; Coverick, R.; Gutierrez, C.; Knight, J.; McGarry, D.; McGee, K.; Smith, Z.; Terrill, T. J.; Vanderford, B.; Weiser, R.; Wightman, K.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

373

Building America Building Science Translator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy ForBryanR BUILDING AMERICA

374

Changing nature of equipment and parts qualification  

SciTech Connect (OSTI)

Ideally, the original supplier of a piece of nuclear safety-related equipment has performed a qualification program and will continue to support that equipment throughout the lifetime of the nuclear power plants in which in equipment is installed. The supplier's nuclear quality assurance program will be maintained and he will continue to offer all necessary replacement parts. These parts will be identical to the original parts, certified to the original purchase order requirements, and the parts will be offered at competitive prices. Due to the changing nature of the nuclear plant equipment market, however, one or more of those ideal features are frequently unavailable when safety-related replacement equipment or parts are required. Thus, the process of equipment and parts qualification has had to adjust in order to ensure obtaining qualified replacements when needed. This paper presents some new directions taken in the qualification of replacement equipment and parts to meet changes in the marketplace.

Bucci, R.M.

1988-01-01T23:59:59.000Z

375

Building and Buildings, Scotland: Draft Building Standards (Scotland) Regulations, 1961  

E-Print Network [OSTI]

These regulations, made under the Building (Scotland) Act, 1959, prescribe standards for buildings for the purposes of Part II of that Act. The matters in relation to which standards have been prescribed are described in ...

Her Majesty's Stationary Office

1961-01-01T23:59:59.000Z

376

Energy Savings Potential and RD&D Opportunities for Commercial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment...

377

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

SciTech Connect (OSTI)

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

378

ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980  

SciTech Connect (OSTI)

The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

Authors, Various

1981-05-01T23:59:59.000Z

379

Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE  

E-Print Network [OSTI]

Area Lead PIER Buildings End-Use Energy Efficiency Virginia Lew Office Manager ENERGY IN RESIDENTIAL FANS PIERFINALPROJECTREPORT Prepared For: California Energy Commission Public Interest Energy Research Program Managed By: Architectural Energy Corporation Prepared By: California Lighting Technology

380

Seattle City Light- New Construction Incentive Program  

Broader source: Energy.gov [DOE]

Seattle City Light (SCL) works with design teams of their commercial and industrial customers to create high performance buildings with low long-term operating costs. The utility provides financial...

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sandia National Laboratories: Earth Science: Facilities and Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ManagementEarth ScienceEarth Science: Facilities and Equipment Earth Science: Facilities and Equipment Geoscience Facilities and Equipment High-pressure thermalmechanical...

382

Lights, Conformational Change... Action!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocksHomesLighting the

383

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

SciTech Connect (OSTI)

Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

2011-11-01T23:59:59.000Z

384

BUILDING EFFECTIVENESS COMMUNICATION RATIOS FOR IMPROVED BUILDING LIFE CYCLE MANAGEMENT  

E-Print Network [OSTI]

BUILDING EFFECTIVENESS COMMUNICATION RATIOS FOR IMPROVED BUILDING LIFE CYCLE MANAGEMENT Elmer building energy performance assessment frameworks, quantifying and categorising buildings post occupancy a performance-based strategy utilising building effectiveness communication ratios stored in Building

385

Methodological Framework for Analysis of Buildings-Related Programs with BEAMS, 2008  

SciTech Connect (OSTI)

The U.S. Department of Energys (DOEs) Office of Energy Efficiency and Renewable Energy (EERE) develops official benefits estimates for each of its major programs using its Planning, Analysis, and Evaluation (PAE) Team. PAE conducts an annual integrated modeling and analysis effort to produce estimates of the energy, environmental, and financial benefits expected from EEREs budget request. These estimates are part of EEREs budget request and are also used in the formulation of EEREs performance measures. Two of EEREs major programs are the Building Technologies Program (BT) and the Weatherization and Intergovernmental Program (WIP). Pacific Northwest National Laboratory (PNNL) supports PAE by developing the program characterizations and other market information necessary to provide input to the EERE integrated modeling analysis as part of PAEs Portfolio Decision Support (PDS) effort. Additionally, PNNL also supports BT by providing line-item estimates for the Programs internal use. PNNL uses three modeling approaches to perform these analyses. This report documents the approach and methodology used to estimate future energy, environmental, and financial benefits using one of those methods: the Building Energy Analysis and Modeling System (BEAMS). BEAMS is a PC-based accounting model that was built in Visual Basic by PNNL specifically for estimating the benefits of buildings-related projects. It allows various types of projects to be characterized including whole-building, envelope, lighting, and equipment projects. This document contains an overview section that describes the estimation process and the models used to estimate energy savings. The body of the document describes the algorithms used within the BEAMS software. This document serves both as stand-alone documentation for BEAMS, and also as a supplemental update of a previous document, Methodological Framework for Analysis of Buildings-Related Programs: The GPRA Metrics Effort, (Elliott et al. 2004b). The areas most changed since the publication of that previous document are those discussing the calculation of lighting and HVAC interactive effects (for both lighting and envelope/whole-building projects). This report does not attempt to convey inputs to BEAMS or the methodology of their derivation.

Elliott, Douglas B.; Dirks, James A.; Hostick, Donna J.

2008-09-30T23:59:59.000Z

386

Academic Buildings Student & Admin.  

E-Print Network [OSTI]

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

387

and Pollutant Safeguarding Buildings  

E-Print Network [OSTI]

commercial buildings, these flows are driven primarily by the building's ventilation system, but natural2004 Airflow and Pollutant Transport Group Safeguarding Buildings Against Chemical and Biological research since 1998 to protect buildings and building occupants from threats posed by airborne chemical

388

Russias R&D for Low Energy Buildings: Insights for Cooperation with Russia  

SciTech Connect (OSTI)

Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

Schaaf, Rebecca E.; Evans, Meredydd

2010-05-01T23:59:59.000Z

389

Green Buildings  

SciTech Connect (OSTI)

This award was split into five tasks, HVAC replacement, lighting retrofitting, daylight harvesting, data center virtualization, and traffic signal retrofitting. The first three tasks were combined into an Energy Performance Contract on seven City facilities. This allowed for the total cost of the project to be offset by guaranteed savings over a 14 year period. The other two projects where done by separate vendors and successfully completed. The combination of these five tasks will result in a significant reduction in our energy consumption city wide, and will also translate to savings for the taxpayer on utility costs. There were also additional financial savings to the taxpayer not related to energy reduction that added value to these projects which will be discussed below.

Ruppert, Benjamin; Elliot, Phillip

2012-08-15T23:59:59.000Z

390

Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Programs (Minnesota)  

Broader source: Energy.gov [DOE]

Alliant Energy - Interstate Power and Light (IPL) offers rebates for high efficiency equipment for commercial customers. Rebates are available for windows/sashes, programmable thermostats, water...

391

McMinnville Water and Light- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

McMinnville Water and Light (MWL) offers rebates on energy efficient homes, appliances and equipment to their residential customers. Rebates are valid on refrigerators, freezers, clothes washer,...

392

Integration of Real-Time Data Into Building Automation Systems  

SciTech Connect (OSTI)

The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

2003-04-16T23:59:59.000Z

393

Spectrally Enhanced Lighting Program Implementation for Energy Savings: Field Evaluation  

SciTech Connect (OSTI)

This report provides results from an evaluation PNNL conducted of a spectrally enhanced lighting demonstration project. PNNL performed field measurements and occupant surveys at three office buildings in California before and after lighting retrofits were made in August and December 2005. PNNL measured the following Overhead lighting electricity demand and consumption, Light levels in the workspace, Task lighting use, and Occupant ratings of satisfaction with the lighting. Existing lighting, which varied in each building, was replaced with lamps with correlated color temperature (CCT) of 5000 Kelvin, color rendering index (CRI) of 85, of varying wattages, and lower ballast factor electronic ballasts. The demonstrations were designed to decrease lighting power loads in the three buildings by 22-50 percent, depending on the existing installed lamps and ballasts. The project designers hypothesized that this reduction in electrical loads could be achieved by the change to higher CCT lamps without decreasing occupant satisfaction with the lighting.

Gordon, Kelly L.; Sullivan, Gregory P.; Armstrong, Peter R.; Richman, Eric E.; Matzke, Brett D.

2006-08-22T23:59:59.000Z

394

Building Science-Based Climate Maps - Building America Top Innovation...  

Energy Savers [EERE]

Building Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on...

395

Building America Top Innovations Hall of Fame Profile - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top...

396

Building America Webinar: Building America Research Tools | Department...  

Energy Savers [EERE]

Building America Research Tools Building America Webinar: Building America Research Tools This webinar was held on March 18, 2015, and reviewed Building America research tools,...

397

Building America  

SciTech Connect (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

398

Designing criteria for building power systems supplying distributed non-linear loads  

SciTech Connect (OSTI)

In commercial and institutional buildings, the wider use of power electronics equipment, such as computer switch-mode power supplies and compact fluorescent lights with electronic ballasts, can create many problems. These loads are generally single-phase with a 3rd harmonic current that can be equal or more than 60%. The aim of this paper is that of analyzing several specific aspects of power system design, such as: sizing of circuits; and the selection of circuits, by correlating them with this specific problem of distributed nonlinear load supply. The proposed criteria can be utilized both in a short-term action for resolution of specific problems, and in medium-term action for development of new optimization procedures of power system design.

Grasselli, U.; Parise, G. [Univ. of Rome La Sapienza (Italy). Electrical Engineering Dept.

1995-12-31T23:59:59.000Z

399

Pollution Control Equipment Tax Deduction (Alabama)  

Broader source: Energy.gov [DOE]

The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

400

Process Equipment Cost Estimation, Final Report  

SciTech Connect (OSTI)

This report presents generic cost curves for several equipment types generated using ICARUS Process Evaluator. The curves give Purchased Equipment Cost as a function of a capacity variable. This work was performed to assist NETL engineers and scientists in performing rapid, order of magnitude level cost estimates or as an aid in evaluating the reasonableness of cost estimates submitted with proposed systems studies or proposals for new processes. The specific equipment types contained in this report were selected to represent a relatively comprehensive set of conventional chemical process equipment types.

H.P. Loh; Jennifer Lyons; Charles W. White, III

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

G129 S129 Equipment List Windbreaker  

E-Print Network [OSTI]

(optional) Water shoes (tevas or old tennis shoes) Gaitors (optional) COURSE EQUIPMENT*: Pocket or wrist operated) Bug Spray Deck of cards, musical instrument, Frisbee, etc (optional) * Textbooks should

Polly, David

402

Building Performance Simulation  

E-Print Network [OSTI]

afuturewith verylowenergybuildingsresultinginveryconsumption of low energy buildings, with site EUIdesignandoperationoflowenergybuildingsthroughbetter

Hong, Tianzhen

2014-01-01T23:59:59.000Z

403

Thick Buildings [Standards  

E-Print Network [OSTI]

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

404

Bright prospects for lighting retrofits  

SciTech Connect (OSTI)

Great potential for energy savings can be found in the alleys, hallways and stairwells of multifamily buildings, but this potential is not always easy to realize. This article discusses the solution to common problems, retrofitting mistakes, retrofitting for savings, replacements for incandescent bulbs, better exit lights. 1 fig., 1 tab.

Hasterok, L. [Wisconsin Energy Conservation Corp., Madison, WI (United States)

1995-09-01T23:59:59.000Z

405

High Performance Outdoor Lighting Accelerator  

Broader source: Energy.gov [DOE]

Hosted by the U.S. Department of Energy (DOE)s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

406

BUILDING PROCTOR rev. April 2014  

E-Print Network [OSTI]

BUILDING PROCTOR MANUAL rev. April 2014 #12;Building Proctor Manual rev. April 2014 2 TABLE.........................................................................................................................................5 Role of a Building Proctor ..............................................................................................................5 Authority of Building Proctor

407

Building a Molecule Building Structures in Moe  

E-Print Network [OSTI]

14 Chapter 3 Building a Molecule #12;15 Building Structures in Moe Dorzolamide Exercise 1 #12;16 Open the Molecule Builder · Open the Molecule Builder panel using MOE | Edit | Build | Molecule, the chiral center will be either R or S, and one of the two will be highlighted in green. The green

Fischer, Wolfgang

408

Smart Lighting Controller!! Smart lighting!  

E-Print Network [OSTI]

1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

Anderson, Betty Lise

409

Bulk materials handling equipment roundup  

SciTech Connect (OSTI)

The article reports recent product developments in belt conveyors. Flexco Steel Lancing Co. (Flexco) has a range of light, portable maintenance tools and offers training modules on procedures for belt conveyor maintenance on its website www.flexcosafe.com. Siemens recently fitted a 19 km long conveyor belt drive system at a Texan aluminium plant with five 556-kW Simovent Masterdrive VC drives. Voith recently launched the TPKL-T turbo coupling for users who want an alignment-free drive solution. Belt cleaners newly on the market include the RemaClean SGB brush and ASGCO Manufacturing's Razor-Back with Spray bar. Continental Conveyor has introduced a new line of dead-shaft pulleys offering increased bearing protection. 6 photos.

Fiscor, S.

2007-07-15T23:59:59.000Z

410

assemblies equipment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capital equipment manufacturing plant : component level and assembly level inventory management MIT - DSpace Summary: Semiconductor capital equipment is manufactured in...

411

Variable area light reflecting assembly  

DOE Patents [OSTI]

Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

Howard, Thomas C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

412

Variable area light reflecting assembly  

DOE Patents [OSTI]

Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

Howard, T.C.

1986-12-23T23:59:59.000Z

413

Building Scale DC Microgrids  

E-Print Network [OSTI]

Folsom CA, Integration of Renewable Resources: OperationalOffice of Energy Efficiency and Renewable Energy, BuildingOffice of Energy Efficiency and Renewable Energy, Building

Marnay, Chris

2013-01-01T23:59:59.000Z

414

Office Buildings - Full Report  

Gasoline and Diesel Fuel Update (EIA)

1). Table 1. Totals and means of of floorspace, number of workers, and hours of operation for office buildings, 2003 Buildings (thousand) Total Floorspace (million sq. ft.)...

415

Economic Energy Savings Potential in Federal Buildings  

SciTech Connect (OSTI)

The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

2000-09-04T23:59:59.000Z

416

Confortable Performance: Retro-Commissioning Building Operations  

E-Print Network [OSTI]

troubleshooting ? New controls strategies ? Equipment schedule optimization ? Comfort improvements 7 ESL-IC-13-10-07 Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013 Tools ? Actuator... Operations, Montreal, Quebec, October 8-11, 2013 Example 1 ? Problem ? Monday morning ?too cold? complaints ? Solution ? Heating system start-up on Sunday at 2:00pm ? RCx Investigation ? Tenant MAU running 24x7 with no heat (space temperature...

Botan, L.

2013-01-01T23:59:59.000Z

417

Building 211 cyclotron characterization survey report  

SciTech Connect (OSTI)

The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

NONE

1998-03-30T23:59:59.000Z

418

Optimal Demand Response Capacity of Automatic Lighting Control  

E-Print Network [OSTI]

. To remedy this problem, different demand side management programs have been proposed to shape the energy prior studies have extensively studied the capacity of offering demand response in buildings and office buildings. Keywords: Demand response, automatic lighting control, commercial and office buildings

Mohsenian-Rad, Hamed

419

Electrical Equipment Inspection Program Electrical Safety  

E-Print Network [OSTI]

Electrical Equipment Inspection Program Electrical Safety SLAC-I-730-0A11A-001-R003 23 March 2005 Document Title: Electrical Equipment Inspection Program Original Publication Date: 19 January 2005 Revised Publication Date: 23 March 2005 (updated 29 November 2010) Department: Electrical Safety Document Number: SLAC

Wechsler, Risa H.

420

General Restaurant Equipment: Order (2013-CE-5344)  

Broader source: Energy.gov [DOE]

DOE ordered General Restaurant Equipment Co. to pay a $8,000 civil penalty after finding General Restaurant Equipment had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technology transfer equipment qualification methodology for shelf life determination  

SciTech Connect (OSTI)

Discussions with a number of Nuclear Utilities revealed that equipment qualified for 10 to 40 years in the harsh environment of the plant was being assigned shelf lives of only 5 to 10 years in the benign environment of the warehouse, and then the materials were being trashed. One safety-related equipment supplier was assigning a 10-year qualified life, from date of shipment, with no recognition of the difference in the aging rate in the plant vs. that in the warehouse. Many suppliers assign shelf lives based on product warranty considerations rather than actual product degradation. An EPRI program was initiated to evaluate the methods used to assign shelf lives and to adapt the Arrhenius methodology, used in equipment qualification, to assign technically justifiable shelf lives. Temperature is the main factor controlling shelf life; however, atmospheric pressure, humidity, ultraviolet light, ozone and other atmospheric contaminants were also considered. A list of 70 representative materials was addressed in the program. All of these were found to have shelf lives of 14 years to greater than 60 years, except for 19 items. For 18 of these items, there was no data available except for the manufacturer`s recommendation.

Anderson, J.W. [Wyle Labs., Huntsville, AL (United States)] [Wyle Labs., Huntsville, AL (United States)

1995-08-01T23:59:59.000Z

422

Automatic monitoring of vibration welding equipment  

DOE Patents [OSTI]

A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

2014-10-14T23:59:59.000Z

423

Universal null DTE (data terminal equipment)  

DOE Patents [OSTI]

A communication device in the form of data terminal equipment permits two data communication equipments, each having its own master clock and operating at substantially the same nominal clock rate, to communicate with each other in a multi-segment circuit configuration of a general communication network even when phase or frequency errors exist between the two clocks. Data transmitted between communication equipments of two segments of the communication network is buffered. A variable buffer fill circuit is provided to fill the buffer to a selectable extent prior to initiation of data output clocking. Selection switches are provided to select the degree of buffer preload. A dynamic buffer fill circuit may be incorporated for automatically selecting the buffer fill level as a function of the difference in clock frequencies of the two equipments. Controllable alarm circuitry is provided for selectively generating an underflow or an overflow alarm to one or both of the communicating equipments. 5 figs.

George, M.; Pierson, L.G.; Wilkins, M.E.

1987-11-09T23:59:59.000Z

424

Nondestructive assay (NDA) of fissile material in gloveboxes and equipment at Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

At Rocky Flats Environmental Technology Site (RFETS), a glovebox and equipment holdup measurement program called Untoward Areas was performed in FY92. These measurements were completed in selected areas of one building. After completing this task, measurements in two other buildings had been completed to assist in characterizing their entire inventory. This information was used as part of evaluating safeguards and security requirements. However, a large percent of the gloveboxes and equipment in process buildings have not been measured. Before FY97, holdup measurements were being performed prior to decommissioning and deactivation activities. To accelerate the quantification of holdup a list of areas suspected to have high amounts of holdup was compiled and funding was requested and recently received. Glovebox and equipment locations were selected by use of several selection criteria. The following steps were taken in the selection process: (1) attribute scan results (FY95) were examined and high scan result locations were selected, (2) knowledgeable personnel within and outside the organization were consulted, and (3) video characterization of the Building 707 chainveyor system was examined. Only a few of the high scan result areas from the attribute scan list had not been identified by the use of process knowledge. The primary driver for holdup measurements is Department of energy (DOE) Order 5633.3B, Section II-3, Physical Inventories.

Dreher, D.J.; Lamb, F.W.

1997-10-01T23:59:59.000Z

425

Cooling Strategies Based on Indicators of Thermal Storage in Commercial Building Mass  

E-Print Network [OSTI]

Building thermal mass and multi-day regimes of hot weather are important, yet poorly understood, contributors to cooling energy requirements. This paper develops load-shifting sub-cooling and precooling equipment operating strategies to address a...

Eto, J. H.

1985-01-01T23:59:59.000Z

426

Innovative accessible sunken floor systems for multi-story steel buildings  

E-Print Network [OSTI]

With the demands of telecommunications and computer equipment, building owners and designers are facing an increasingly difficult problem for wire management in today's electronic workplace. This thesis is to investigate ...

Kwan, Henry K

1987-01-01T23:59:59.000Z

427

Jackson Park Hospital Green Building Medical Center  

SciTech Connect (OSTI)

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

428

Cerenkov Light  

ScienceCinema (OSTI)

The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

Slifer, Karl

2014-05-22T23:59:59.000Z

429

Cerenkov Light  

SciTech Connect (OSTI)

The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

Slifer, Karl

2013-06-13T23:59:59.000Z

430

SIMULATION-ASSISTED DAYLIGHT PERFORMANCE ANALYSISIN A HIGH-RISE OFFICE BUILDING IN SINGAPORE  

E-Print Network [OSTI]

Flodberg, K. (2013). Daylight utilisation in perimeterJ. , (2005a). Useful Daylight Illuminance: A NewParadigm to Access Daylight in Buildings. Lighting

CHIEN, Szu Cheng; TSENG, King Jet

2013-01-01T23:59:59.000Z

431

ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977  

E-Print Network [OSTI]

and A. H. Rosenfeld Energy Efficient Windows Program S.Verderber, and J. Klems Energy Efficient Lighting Program S.1978 A. K. OPPENHEIM Energy Efficient Buildings INTRODUCTION

Authors, Various

2010-01-01T23:59:59.000Z

432

Better Buildings Neighborhood Program  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

433

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

deYoung, Brad

434

Community Development Building Division  

E-Print Network [OSTI]

California Energy Commission 1516 Ninth Street Sacramento, Ca 95814-5514 Re: Green Building Ordinance of Los Altos Energy Efficiency Ordinance, Green Building Regulations under the 2005 California Building by the Board on that date. The Green Building Regulation, Chapter 12.66 of the City Municipal code, will ensure

435

Building Technology MSc Programme  

E-Print Network [OSTI]

of this programme is on the design of innovative and sustainable building components and their integration

Langendoen, Koen

436

NIST Preliminary Reconnaissance, Building  

E-Print Network [OSTI]

NIST Preliminary Reconnaissance, Building Performance and Emergency Communications, Joplin)): Support R&D to improve building codes and standards and practices for design and construction of buildings of and data collection on the impact of severe wind on buildings, structures, and infrastructure ­ Section 204

Magee, Joseph W.

437

RESEARCH BUILDING AT NORTHWESTERN  

E-Print Network [OSTI]

BIOMEDICAL RESEARCH BUILDING AT NORTHWESTERN MEDICINE #12;"Our new Biomedical Research Building-intensive medical schools. Perkins+Will has designed a building that will be superbly functional and have great a magnificent 12-story Biomedical Research Building to address this priority. The new 600,000 square foot

Engman, David M.

438

BUILDING MANAGEMENT & RESTRICTED ACCESS  

E-Print Network [OSTI]

BUILDING MANAGEMENT & RESTRICTED ACCESS Plan Annex 2014 VIII #12;#12;#12;The University of Texas at Austiniv #12;Building Management & Restricted Access Plan Annex v CONTENTS RECORD OF CHANGES .......................................................................................................15 J. BUILDING SECURITY OPERATIONS RESTRICTED ACCESS PROCEDURES FOR BUILDINGS ON ELECTRONIC ACCESS

Johnston, Daniel

439

Metering and Calibration in LoanSTAR Buildings  

E-Print Network [OSTI]

or many stories away from each other. Power measurements across multiple panels can increase costs dramatically. Buildings often have multiple electrical feeds or feed additional buildings. Asbestos is found in many chilled and hot water piping... installed before 1970. Installation of thermal metering requires asbestos abatement. The cost to remove the asbestos may be too high to justify the thermal metering. (6) Timely installation of equipment requires an intensive coordination effort during...

O'Neal, D. L.; Bryant, J. A.; Turner, W. D.; Glass, M. G.

1990-01-01T23:59:59.000Z

440

Duquesne Light Company- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Duquesne Light provides rebates on energy-saving equipment to commercial and industrial customers in the eligible service territory. There are 2 types of rebate programs available to all C&I...

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Inventory of LWR spent nuclear fuel in the 324 Building  

SciTech Connect (OSTI)

This document contains the results of calculations to estimate the decay heat, neutron source term, photon source term, and radioactive inventory of light-water-reactor spent nuclear fuel in the 324 Building at Pacific Northwest National Laboratory.

Jenquin, U.P.

1996-09-01T23:59:59.000Z

442

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network [OSTI]

Window-Related Energy Consumption in the US Residential andU.S. Lighting Market Characterization Volume I: National Lighting Inventory and Energy ConsumptionBuilding Energy Consumption Survey. EnergyPlus (2008). U.S.

Hong, T.

2011-01-01T23:59:59.000Z

443

Autotune E+ Building Energy Models  

SciTech Connect (OSTI)

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

444

Light-RITE California The Lighting Retrofit Information, Training and Education program  

E-Print Network [OSTI]

to implementing best practices in California's public buildings Professor Michael Siminovitch (co-author with UC, CSC, CCC, CIEE, DGS) UC Davis Rosenfeld Chair in Energy Efficiency The Consortium of Public Building makers on the implementation of best practices for lighting retrofits. We need to quickly develop

California at Davis, University of

445

Incidents of chemical reactions in cell equipment  

SciTech Connect (OSTI)

Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

446

Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes  

SciTech Connect (OSTI)

This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

Gordon, Kelly L.; Gilbride, Theresa L.

2008-05-22T23:59:59.000Z

447

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

integrated, and green design 11 Figure 2.1 Environmental control functions performed by the buildingbuilding as a model of high performance, integrated, and green design.Design and Evaluation of integrated envelope and lighting control strategies for commercial buildings.

Konis, Kyle Stas

2012-01-01T23:59:59.000Z

448

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

integrated, and green design 11 Figure 2.1 Environmental control functions performed by the buildingbuilding as a model of high performance, integrated, and green design.Design and Evaluation of integrated envelope and lighting control strategies for commercial buildings.

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

449

Covered Product Category: Light Commercial Heating and Cooling  

Broader source: Energy.gov [DOE]

Federal purchases of light commercial heating and cooling equipment must be ENERGY STARqualified. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. This product overview explains how to meet energy-efficiency requirements for Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives.

450

ASEAN--USAID Buildings Energy Conservation Project final report. Volume 2, Technology  

SciTech Connect (OSTI)

This volume reports on research in the area of energy conservation technology applied to commercial buildings in the Association of Southeast Asian Nations (ASEAN) region. Unlike Volume I of this series, this volume is a compilation of original technical papers prepared by different authors in the project. In this regard, this volume is much like a technical journal. The papers that follow report on research conducted by both US and ASEAN researchers. The authors representing Indonesia, Malaysia, Philippines, and Thailand, come from a range of positions in the energy arena, including government energy agencies, electric utilities, and universities. As such, they account for a wide range of perspectives on energy problems and the role that technology can play in solving them. This volume is about using energy more intelligently. In some cases, the effort is towards the use of more advanced technologies, such as low-emittance coatings on window glass, thermal energy storage, or cogeneration. In others, the emphasis is towards reclaiming traditional techniques for rendering energy services, but in new contexts such as lighting office buildings with natural light, or cooling buildings of all types with natural ventilation. Used in its broadest sense, the term ``technology`` encompasses all of the topics addressed in this volume. Along with the more customary associations of technology, such as advanced materials and equipment and the analysis of their performance, this volume treats design concepts and techniques, analysis of ``secondary`` impacts from applying technologies (i.e., unintended impacts, or impacts on parties not directly involved in the purchase and use of the technology), and the collection of primary data used for conducting technical analyses.

Levine, M.D.; Busch, J.F. [eds.

1992-06-01T23:59:59.000Z

451

buildings in Continued on p. 5  

E-Print Network [OSTI]

for the waste heat recovery system using exhaust from the light-duty diesel engine Exhaust from diesel vehicles Laboratory No. 1 2011 ORNL is participating in two of three recently announced joint U.S.-China Clean Energy Research Centers (CERCs). ORNL was chosen because of its renowned expertise in building energy efficiency

Pennycook, Steve

452

Building Green in Greensburg: City Hall Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

453

Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment  

SciTech Connect (OSTI)

Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

Becker, D.L.

1998-09-02T23:59:59.000Z

454

An Approach to Evaluating Equipment Efficiency Policies  

E-Print Network [OSTI]

The National Energy Conservation Policy Act of 1978 authorized studies of several types of industrial equipment to evaluate the technical and economic feasibility of labeling rules and minimum energy efficiency standards. An approach...

Newsom, D. E.; Evans, A. R.

1980-01-01T23:59:59.000Z

455

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

456

Safety Topic: Rota/ng Equipment  

E-Print Network [OSTI]

Safety Topic: Rota/ng Equipment Jus/n Kleingartner #12;Safety protocols 2 #12;Safety protocols for opera/ng a lathe · Don'ts: ­ Do not wear gloves

Cohen, Robert E.

457

Renewable Energy Equipment Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Massachusetts law exempts from the state's sales tax "equipment directly relating to any solar, windpowered; or heat pump system, which is being utilized as a primary or auxiliary power system for...

458

Clark Public Utilities- Solar Energy Equipment Loan  

Broader source: Energy.gov [DOE]

Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and...

459

Solar and Wind Energy Equipment Exemption  

Broader source: Energy.gov [DOE]

In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. A solar-energy system is defined as "equipment which directly converts and then...

460

Heavy Mobile Equipment Mechanic (One Mechanic Shop)  

Broader source: Energy.gov [DOE]

The position is a Heavy Mobile Equipment Mechanic (One Mechanic Shop) located in Kent, Washington, and will be responsible for the safe and efficient operation of a field garage performing...

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biomass Equipment and Materials Compensating Tax Deduction  

Broader source: Energy.gov [DOE]

In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

462

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect (OSTI)

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

463

Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings  

SciTech Connect (OSTI)

This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among

Patrick O'Neill

2009-06-30T23:59:59.000Z

464

Seismic equipment qualification at Rocky Flats Plant: Lessons learned  

SciTech Connect (OSTI)

Seismic equipment qualification is being evaluated as a part of the Systematic Evaluation Program (SEP) at Rocky Flats Plant (RFP). Initially it was believed that the experience database developed by the Seismic Qualification Utility Group (SQUG) for commercial nuclear power plants, as outlined in their Generic Implementation Procedure (GIP), would provide a substantial benefit for the seismic adequacy verification of equipment at RFP. However, further review of the simplified guidelines contained in the GIP with respect to the specific RFP structures and components revealed substantial differences from the GIP criteria. Therefore, the number of ``outliers`` from the experience database defined in the GIP is greater than was initially anticipated. This paper presents details of the differences found between the RFP structures and components and those represented in the GIP, and the challenges presented for their evaluation at RFP. Approaches necessary to develop seismic verification data are also discussed. The discussions focus on experience with one of the nuclear facilities at RFP, Building 707. However, the conclusions are generally applicable to other similar facilities that typically comprise the RFP nuclear facilities.

Peregoy, W.; Herring, K.

1993-08-01T23:59:59.000Z

465

Dairy Manure Handling Systems and Equipment.  

E-Print Network [OSTI]

The Texas A&M University System ? Texas Agricultural Extension Service Zerle L. Carpenter, Director College Station 8?1446 DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT John M. Sweeten, Ph....D., P.E.* A manure management system for a modern dairy should be capable of controlling solid or liquid manure and wastewater from the open corrals (manure and rainfall runoff), free stall barn , feeding barn , holding lot or holding shed , milking...

Sweeten, John M.

1983-01-01T23:59:59.000Z

466

Experience gained from equipment qualification inspections  

SciTech Connect (OSTI)

This paper describes issues which have been identified during equipment qualification inspections. Generic qualification information is discussed first, such as qualification bases, utility/supplier interfaces, file auditability, and generic environmental qualification. Next, technical strategies with specific examples are discussed. Issues covered include functional performance requirements, post accident qualification, similarity, installation and interfaces, maintenance, aging, and testing. Finally, additions and deletions to equipment qualification master lists and environmental enveloping are discussed.

Jacobus, M.J.

1986-01-01T23:59:59.000Z

467

Feasibility of gas-phase decontamination of gaseous diffusion equipment  

SciTech Connect (OSTI)

The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

Munday, E.B.; Simmons, D.W.

1993-02-01T23:59:59.000Z

468

1999 CBECS Principal Building Activities  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports Building7.p e u

469

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

SciTech Connect (OSTI)

Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

2013-06-06T23:59:59.000Z

470

Equipment standards technology activities at Battelle (1992-1994). Final report, November 1992-May 1994  

SciTech Connect (OSTI)

The objective of the research project was to evaluate the potential impact of building equipment energy codes and standards on gas equipment choice and consumption. Technical support for proposed revisions to the Council of American Building Officials (CABO) Model Energy Code (MEC) was provided in conjunction with the National Association of Home Builders (NAHB). Existing vent termination requirements in state and model codes were characterized and evaluated, and uniform criteria for vent termination of gas were developed to provide combustion and ventilation air guidelines for gas appliances. The impact of reduced thermostat setpoints for residential storage water heaters was evaluated and a revised sizing table based on a 135 F setpoints was produced. The primary finding from the revised sizing table is that there is approximately a two-tank size difference between a gas and an electric water heater with setpoints of 135 F.

Rutz, A.L.; Landstrom, D.K.; Holderbaum, G.S.; Ide, B.E.; Philips, D.B.

1994-07-01T23:59:59.000Z

471

Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings  

SciTech Connect (OSTI)

Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

2012-06-01T23:59:59.000Z

472

Energy Signal Tool for Decision Support in Building Energy Systems  

SciTech Connect (OSTI)

A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

2014-12-01T23:59:59.000Z

473

Reimagining Building Sensing and Control (Presentation)  

SciTech Connect (OSTI)

Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that open the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.

Polese, L.

2014-06-01T23:59:59.000Z

474

Quantifying Pollutant Emissions from Office Equipment Phase I Report  

E-Print Network [OSTI]

on Energy-efficient Healthy Buildings 2003, Singapure.on Energy-efficient Healthy Buildings 2003, Singapure.on Energy-efficient Healthy Buildings 2003, Singapure. Page

Maddalena, R.L.; Destaillats, H.; Hodgson, A.T.; McKone, T.E.; Perino, C.

2006-01-01T23:59:59.000Z

475

Trends in Commercial Buildings--Buildings and Floorspace  

Gasoline and Diesel Fuel Update (EIA)

Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings TrendDetail Commercial Floorspace TrendDetail Background: Adjustment to...

476

Building Green in Greensburg: Business Incubator Building | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Business Incubator Building Building Green in Greensburg: Business Incubator Building This poster highlights energy efficiency, renewable energy, and sustainable features of the...

477

Building operating systems services: An architecture for programmable buildings.  

E-Print Network [OSTI]

7.3.2 Building Performance Analysis . . . . . . 7.4 RelatedWork 2.1 Building Physical Design . . . . . . . . . .3.2.6 Building Applications . . . . . . . . . . .

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

478

Building America Top Innovations Hall of Fame Profile - Building...  

Energy Savers [EERE]

Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top Innovations Hall of Fame...

479

Lighting Basics | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocksHomes & Buildings »

480

Renewable Energy Requirements for Future Building Codes: Options for Compliance  

SciTech Connect (OSTI)

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "buildings lighting equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices  

E-Print Network [OSTI]

LBNL-45917 Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report..............................................................................................46 #12;#12;1 Electricity Used by Office Equipment and Network Equipment in the U.S. Kaoru Kawamoto and network equipment, there has been no recent study that estimates in detail how much electricity

482

DECISION ANALYSIS SCIENCE MODELING FOR APPLICATION AND FIELDING SELECTION APPLIED TO EQUIPMENT DISMANTLEMENT TECHNOLOGIES  

SciTech Connect (OSTI)

The dismantlement of radioactively contaminated process equipment is a major concern during the D&D process. There are an estimated 1,200 buildings in the DOE-EM complex that will require the dismantlement of equipment and various metal structures. As buildings undergo the D&D process, this metallic equipment contaminated with radionuclides such as uranium and plutonium must be size-reduced before final disposal. A single information source comparing dismantlement technologies in the areas of safety, cost, and performance is needed by DOE managers and is not currently available. The selection of the appropriate technologies to meet the dismantlement objectives for a given site is a difficult process in the absence of comprehensive and comparable data. Choosing the wrong technology could result in increased exposure of personnel to contaminants and an increase in D&D project costs. The purpose of this investigation was to evaluate commercially available and innovative technologies for equipment dismantlement and provide a comprehensive source of information to the D&D community in the areas of technology performance, cost, and health and safety.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

483

Revision Date: 8/29/11 ETME 425 -Building Systems Fall 2011  

E-Print Network [OSTI]

system integration. Incorporate the elements (pumps, fans, compressors, heat exchangers, heaters. HVAC Equipment 10. Sanitary Venting and Draining 3. Heat Loss and Heat Gain 7. Building Water Supply in modern buildings - including system selection, heating and cooling load calculations, component selection

Dyer, Bill

484

1982 analyses and reports: equipment availability report; component cause code report; and equipment availability report  

SciTech Connect (OSTI)

This equipment availability report (1973 to 1982, 1982) presents statistical information on the performance of the major types of generating units and their major component groups. (DLC)

Not Available

1982-01-01T23:59:59.000Z

485

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics See also: Equipment |...

486

Lighting system combining daylight concentrators and an artificial source  

DOE Patents [OSTI]

A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

Bornstein, Jonathan G. (Miami, FL); Friedman, Peter S. (Toledo, OH)

1985-01-01T23:59:59.000Z

487

Building Energy Code  

Broader source: Energy.gov [DOE]

Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

488

Building Energy Code  

Broader source: Energy.gov [DOE]

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

489

Financing green buildings  

E-Print Network [OSTI]

An emerging trend in real estate is the development of sustainable buildings, partially due to the huge environmental impact of the design, construction and operation of commercial buildings. This thesis provides a brief ...

Pierce, Christopher John, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

490

Building condition monitoring  

E-Print Network [OSTI]

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

491

Building Energy Standards  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

492

Special Building Renovations  

Broader source: Energy.gov [DOE]

A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

493

Building, landscape and section  

E-Print Network [OSTI]

All buildings have in their section a relationship to the landscape on which they are sited. Therefore we as inhabitants of these buildings may or may not have a relationship with the landscape. It is the supposition of ...

Johnson, Daniel B. (Daniel Bryant)

1992-01-01T23:59:59.000Z

494

Change in historic buildings  

E-Print Network [OSTI]

Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

Yin, Chien-Ni

1992-01-01T23:59:59.000Z

495

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

496

Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

497

Green Building Requirement  

Broader source: Energy.gov [DOE]

The District of Columbia City Council enacted [http://dcclims1.dccouncil.us/images/00001/20061218152322.pdf B16-515] on December 5, 2006, establishing green building standards for public buildings...

498

Characterization of the Three Mile Island Unit-2 reactor building atmosphere prior to the reactor building purge  

SciTech Connect (OSTI)

The Three Mile Island Unit-2 reactor building atmosphere was sampled prior to the reactor building purge. Samples of the containment atmosphere were obtained using specialized sampling equipment installed through penetration R-626 at the 358-foot (109-meter) level of the TMI-2 reactor building. The samples were subsequently analyzed for radionuclide concentration and for gaseous molecular components (O/sub 2/, N/sub 2/, etc.) by two independent laboratories at the Idaho National Engineering Laboratory (INEL). The sampling procedures, analysis methods, and results are summarized.

Hartwell, J.K.; Mandler, J.W.; Duce, S.W.; Motes, B.G.

1981-05-01T23:59:59.000Z

499

michael smith ornlradioactive beams: equipment & techniques recoil separators  

E-Print Network [OSTI]

michael smith ornlradioactive beams: equipment & techniques recoil separators approach! · directly Smith, Rolfs, Barnes NIMA306 (1991) 233 #12;michael smith ornlradioactive beams: equipment & techniques;michael smith ornlradioactive beams: equipment & techniques recoil separators proof of concept with 12C

500

Kiowa County Commons Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.