Powered by Deep Web Technologies
Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

2

Better Buildings Neighborhood Program: Residents Learn to Open...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residents Learn to Open Their Doors to Energy Efficiency in Michigan to someone by E-mail Share Better Buildings Neighborhood Program: Residents Learn to Open Their Doors to Energy...

3

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the countrys greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

4

Tallahassee Program Encourages Residents to Build Green | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tallahassee Program Encourages Residents to Build Green Tallahassee Program Encourages Residents to Build Green Tallahassee Program Encourages Residents to Build Green June 16, 2010 - 12:56pm Addthis The city of Tallahassee recently launched a Residential Green Building Program that city officials predict will help reduce the city's carbon footprint and stimulate the local economy. Cynthia Barber, executive director of Tallahassee's office of Environmental Policy and Energy Resources, says an increase in green construction will provide employment opportunities for trade specialists. "Workers, who specialize in green services, such as homebuilders and evaluators, will get more opportunities to construct green homes and carry out certifications," says Barber. "They will benefit as a result of having

5

Industrial Buildings Tools and Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rolf Butters Rolf Butters Industrial Technologies Program Industrial Buildings Tools and Resources Webinar - June 11, 2009 Michael MacDonald Agenda  Introduction to Industrial Buildings Opportunity and Tools  EERE Funding, Opportunities, and Resources  Next Steps 6/11/2009 2 Facilities Energy  ITP has been working for a couple years now to develop tools to address facilities energy use, present in most plants, and about 8% of total sector energy use  First tool is a Score Card, implemented both as a stand- alone Excel file and for QuickPEP - Score Card has to be simple, so is approximate - But it can be a very important tool for scoping facilities energy use at a plant  Second tool is an adaptation of the BCHP Screening Tool, originally developed by the Distributed Energy program but

6

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

7

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

8

Sustainability Evaluation of Resident Building in Bosnia and Herzegovina  

E-Print Network (OSTI)

The energy system of resident building requires to be seen as the complex system with defined respective indicators including: economic, environmental and social indicators with respective sub-indicators. In our analysis, we will assumed that the energy system is a complex system which may interact with its surrounding by utilizing resources, exchange conversion system products, utilize economic benefits from conversion process and absorb the social consequences of conversion process. This evaluation will be based on the selection of a number of resident buildings as the potential options appropriate for the geographic, climate and cultural region. With multi-criteria method based on the selected number of indicators the sustainability index will be determined. In this evaluation attention is focused on the following resident buildings: Bosnian family house, Modern architecture dwelling, Traditional family house, Best choice of local family house. The finale result of this study will be presented in Sustainability Index rating for the options under consideration. It can be noticed that the quality of the selected objects is defined in relation to the Sustainability Index.

Zlomusica, E.; Afgan, N.

2010-01-01T23:59:59.000Z

9

Cape Light Compact - Commercial, Industrial and Municipal Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial and Municipal Buildings Energy Efficiency Rebate Program Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program...

10

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7a Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

11

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 5c Glossary U.S. Residential Housing Site Page Last Revised: July 2009

12

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

13

Maryland-National Capital Building Industry Association Regulatory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) Maryland-National Capital Building Industry Association Regulatory...

14

Building America Industrialized Housing Partnership (BAIHP II)  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted by the Building America Industrialized Housing Partnership (BAIHP - www.baihp.org) during the final budget period (BP5) of our contract, January 1, 2010 to November 30, 2010. Highlights from the four previous budget periods are included for context. BAIHP is led by the Florida Solar Energy Center (FSEC) of the University of Central Florida. With over 50 Industry Partners including factory and site builders, work in BP5 was performed in six tasks areas: Building America System Research Management, Documentation and Technical Support; System Performance Evaluations; Prototype House Evaluations; Initial Community Scale Evaluations; Project Closeout, Final Review of BA Communities; and Other Research Activities.

Abernethy, Bob; Chandra, Subrato; Baden, Steven; Cummings, Jim; Cummings, Jamie; Beal, David; Chasar, David; Colon, Carlos; Dutton, Wanda; Fairey, Philip; Fonorow, Ken; Gil, Camilo; Gordon, Andrew; Hoak, David; Kerr, Ryan; Peeks, Brady; Kosar, Douglas; Hewes, Tom; Kalaghchy, Safvat; Lubliner, Mike; Martin, Eric; McIlvaine, Janet; Moyer, Neil; Liguori, Sabrina; Parker, Danny; Sherwin, John; Stroer, Dennis; Thomas-Rees, Stephanie; Daniel, Danielle; McIlvaine, Janet

2010-11-30T23:59:59.000Z

15

DOE Solar Decathlon: 2007 Building Industry Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. Universidad de Puerto Rico student Wilfredo Rodriguez explains the team's gray-water pool to visitors at the 2007 Solar Decathlon. The pool is used to filter wash water for reuse. Solar Decathlon 2007 Building Industry Workshops Below are descriptions of the workshops offered at the 2007 Solar Decathlon on Building Industry Day, Thursday, October 18, 2007. Solar Applications for Homes Revised Title: Translating Sustainability to Affordable Housing 9:00 a.m. Presenter: ASHRAE and John Quale, Assistant Professor, University of Virginia School of Architecture The focus of the workshop is translating sustainability to affordable

16

Solar America Initiative--In Focus: The Building Industry  

DOE Green Energy (OSTI)

Fact sheet introduces the building industry to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how the building industry can benefit from and contribute to the SAI.

Not Available

2007-01-01T23:59:59.000Z

17

Solar America Initiative--In Focus: The Building Industry  

SciTech Connect

Fact sheet introduces the building industry to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how the building industry can benefit from and contribute to the SAI.

2007-01-01T23:59:59.000Z

18

Residential Building Industry Consulting Services | Open Energy Information  

Open Energy Info (EERE)

Residential Building Industry Consulting Services Residential Building Industry Consulting Services Jump to: navigation, search Name Residential Building Industry Consulting Services Place New York, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Residential Building Industry Consulting Services is a company located in New York, NY. References Retrieved from "http://en.openei.org/w/index.php?title=Residential_Building_Industry_Consulting_Services&oldid=381757" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages

19

ConSol (Building Industry Research Alliance) | Open Energy Information  

Open Energy Info (EERE)

ConSol (Building Industry Research Alliance) ConSol (Building Industry Research Alliance) Jump to: navigation, search Name ConSol (Building Industry Research Alliance) Place Stockton, CA Website http://www.consol.com References ConSol (Building Industry Research Alliance)[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration Partnership Year 2004 Link to project description http://www.nrel.gov/news/press/2004/382.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! ConSol (Building Industry Research Alliance) is a company located in Stockton, CA. References ↑ "ConSol (Building Industry Research Alliance)" Retrieved from "http://en.openei.org/w/index.php?title=ConSol_(Building_Industry_Research_Alliance)&oldid=379316

20

Brochure: ENERGY STAR for Commercial Buildings and Industrial Plants |  

NLE Websites -- All DOE Office Websites (Extended Search)

Brochure: ENERGY STAR for Commercial Buildings and Industrial Brochure: ENERGY STAR for Commercial Buildings and Industrial Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Building America Industrialized Housing Partnership (BAIHP)  

DOE Green Energy (OSTI)

This final report summarizes the work conducted by the Building America Industrialized Housing Partnership (www.baihp.org) for the period 9/1/99-6/30/06. BAIHP is led by the Florida Solar Energy Center of the University of Central Florida and focuses on factory built housing. In partnership with over 50 factory and site builders, work was performed in two main areas--research and technical assistance. In the research area--through site visits in over 75 problem homes, we discovered the prime causes of moisture problems in some manufactured homes and our industry partners adopted our solutions to nearly eliminate this vexing problem. Through testing conducted in over two dozen housing factories of six factory builders we documented the value of leak free duct design and construction which was embraced by our industry partners and implemented in all the thousands of homes they built. Through laboratory test facilities and measurements in real homes we documented the merits of 'cool roof' technologies and developed an innovative night sky radiative cooling concept currently being tested. We patented an energy efficient condenser fan design, documented energy efficient home retrofit strategies after hurricane damage, developed improved specifications for federal procurement for future temporary housing, compared the Building America benchmark to HERS Index and IECC 2006, developed a toolkit for improving the accuracy and speed of benchmark calculations, monitored the field performance of over a dozen prototype homes and initiated research on the effectiveness of occupancy feedback in reducing household energy use. In the technical assistance area we provided systems engineering analysis, conducted training, testing and commissioning that have resulted in over 128,000 factory built and over 5,000 site built homes which are saving their owners over $17,000,000 annually in energy bills. These include homes built by Palm Harbor Homes, Fleetwood, Southern Energy Homes, Cavalier and the manufacturers participating in the Northwest Energy Efficient Manufactured Home program. We worked with over two dozen Habitat for Humanity affiliates and helped them build over 700 Energy Star or near Energy Star homes. We have provided technical assistance to several show homes constructed for the International builders show in Orlando, FL and assisted with other prototype homes in cold climates that save 40% over the benchmark reference. In the Gainesville Fl area we have several builders that are consistently producing 15 to 30 homes per month in several subdivisions that meet the 30% benchmark savings goal. We have contributed to the 2006 DOE Joule goals by providing two community case studies meeting the 30% benchmark goal in marine climates.

McIlvaine, Janet; Chandra, Subrato; Barkaszi, Stephen; Beal, David; Chasar, David; Colon, Carlos; Fonorow, Ken; Gordon, Andrew; Hoak, David; Hutchinson, Stephanie; Lubliner, Mike; Martin, Eric; McCluney, Ross; McGinley, Mark; McSorley, Mike; Moyer, Neil; Mullens, Mike; Parker, Danny; Sherwin, John; Vieira, Rob; Wichers, Susan

2006-06-30T23:59:59.000Z

22

ENERGY STAR industrial partnership | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR industrial partnership ENERGY STAR industrial partnership Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership New ENERGY STAR industrial partners Energy guides Energy efficiency and air regulation

23

MILP approach in analysis of low energy building elements influence on energy savings in residences  

Science Conference Proceedings (OSTI)

Mixed Integer Linear Programming (MILP) is used for optimization of global energy system of two-family residence, located in Kragujevac, Serbia and energy, equipment and building element prices valid at Serbian and German market in year 2000. The mathematical ... Keywords: LCC, MILP, energy savings, optimization, present value

Katarina K. Pantovic

2007-08-01T23:59:59.000Z

24

The Building America Industrialized Housing Partnership (BAIHP)  

E-Print Network (OSTI)

The Building America Industrialized Housing Partnership (BAIHP) is one of five competitively selected U.S. DOE Building America teams and began work on 9/1/99. BAIHP focuses on improving the energy efficiency, durability and indoor air quality in manufactured homes. Team members, Cavalier Homes, Fleetwood Homes, Palm Harbor Homes, Southern Energy Homes, and manufacturers in the Super Good Cents/Natural Choice program produce over 100,000 manufactured homes/yr currently. In addition, the BAIHP team provides technical assistance to about 30 site builders and modular home manufacturers including Habitat for Humanity affiliates throughout the nation. BAIHP is also charged with enhancing the energy efficiency and learning environment in portable classrooms in the northwestern states of WA, OR and ID. This paper summarizes the multifaceted work being performed by BAIHP and provides specific data on 310 homes constructed in the Gainesville FL area with technical assistance from Florida Home Energy and Resources Organization. The paper also summarizes typical causes and cures for moisture problems in manufactured homes.

Chandra, S.; McCloud, M.; Moyer, N.; Beal, D.; Chasar, D.; McIlvaine, J.; Parker, D.; Sherwin, J.; Martin, E.; Fonorow, K.; Mullens, M.; Lubliner, M.; McSorley, M.

2002-01-01T23:59:59.000Z

25

Tools for Assessing Building Energy Use in Industrial Plants  

E-Print Network (OSTI)

This presentation will cover a brief history of building energy measures savings potential for industrial plants and briefly characterize building energy measures and their savings identified over approximately the past 15 years in energy audits. The nature and extent of building energy assessment tools will then be profiled, and the beneficial use of an appropriate subset of these tools for assessing energy savings in buildings at industrial plants will be described. Possible future tools that may be useful will also be mentioned.

Martin, M.; MacDonald, M.

2007-01-01T23:59:59.000Z

26

Brochure: ENERGY STAR for Commercial Buildings and Industrial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brochure: ENERGY STAR for Commercial Buildings and Industrial Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing...

27

DOE Solar Decathlon: News Blog Blog Archive Building Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

(far left), Rob Minnick, and members of their company's green team attended Building Industry Day. (Credit: Alexis PowersU.S. Department of Energy Solar Decathlon) Consumer...

28

About ENERGY STAR for commercial and industrial buildings | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR for commercial and industrial buildings ENERGY STAR for commercial and industrial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings

29

Industrial/manufacturing resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial/manufacturing resources Industrial/manufacturing resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

30

Industrial energy management information center | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

energy management information center energy management information center Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

31

Media FAQs about ENERGY STAR for commercial and industrial buildings |  

NLE Websites -- All DOE Office Websites (Extended Search)

Media FAQs about ENERGY STAR for commercial and industrial Media FAQs about ENERGY STAR for commercial and industrial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section News and announcements ENERGY STAR in the news Media FAQs Photos and graphics Media FAQs about ENERGY STAR for commercial and industrial buildings Tip: To search by keyword, hit Ctrl+F (Windows) or Cmd+F (Mac). To browse

32

Industries in focus | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants ENERGY STAR Energy Performance Indicators for plants » Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance

33

Workshop proceeding of the industrial building energy use  

SciTech Connect

California has a large number of small and medium sized industries which have a major impact on the demand growth of California utilities. Energy use in building services (lighting, HVAC, office equipment, computers, etc.). These industries constitute an important but largely neglected fraction of the total site energy use. The ratio of energy use in building service to the total site energy use is a function of the industrial activity, its size, and the climate at the site of the facility. Also, energy use in building services is more responsive to weather and occupant schedules than the traditional base-load'' industrial process energy. Industrial energy use is considered as a base-load'' by utility companies because it helps to increase the utilities' load factor. To increase this further, utilities often market energy at lower rates to industrial facilities. Presently, the energy use in the building services of the industrial sector is often clubbed together with industrial process load. Data on non-process industrial energy use are not readily available in the literature. In cases where the major portion of the energy is used in the building services (with daily and seasonal load profiles that in fact peak at the same time as systemwide load peaks), the utility may be selling below cost at peak power times. These cases frequently happen with electric utilities. 30 figs., 6 tabs.

Akbari, H.; Gadgil, A. (eds.)

1988-01-01T23:59:59.000Z

34

Maryland-National Capital Building Industry Association Regulatory Burden  

NLE Websites -- All DOE Office Websites (Extended Search)

Maryland-National Capital Building Industry Association Regulatory Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) On behalf of the Maryland-National Capital Building Industry Association, I am providing the following comments and information in response to DOE's request. The Association represents residential builders, developers and associated professionals and service firms. Final Letter to DOE Regulatory Burden 9_7_2012.pdf More Documents & Publications National Association of Home Builders (NAHB) Ex Parte Memorandum Energy Storage Activities in the United States Electricity Grid. May 2011 Frederick County (Maryland) Department of Permits and Inspections (FCDPI

35

The building materials industry in China: An overview  

SciTech Connect

The present study of China`s building materials industry is a collaborative work between the Energy Research Institute (ERI) of the State Planning Commission of China and Lawrence Berkeley Laboratory (LBL) of the US Department of Energy (USDOE).

Liu, Feng [Lawrence Berkeley Lab., CA (United States); Wang, Shumao [State Planning Commission, People`s Republic of China, (China). Energy Research Institute

1994-12-01T23:59:59.000Z

36

A normative approach to the evaluation of industrialized building systems  

E-Print Network (OSTI)

The rapid development of the building industry within the last 10-15 years involved the adaptation of a more. specialized and advanced system of construction and management. And, with the expanding alternatives of ...

Alhasani, Nadia Mehdi

1984-01-01T23:59:59.000Z

37

Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cape Light Compact - Commercial, Industrial and Municipal Buildings Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Commercial Weatherization Water Heating Maximum Rebate Retrofit: 50% of cost of upgraded equipment, or an amount that buys down the cost of the project to a 1.5 year simple payback. New Construction: 70% of incremental cost of higher efficiency equipment, or an amount that buys down the incremental investment to a 1.5 year simple

38

Building the Next Generation of Automotive Industry Leaders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders December 7, 2010 - 4:23pm Addthis Zach Heir , a recent hire in the electric vehicle field Zach Heir , a recent hire in the electric vehicle field Dennis A. Smith Director, National Clean Cities It's no secret that when it comes to advanced vehicle technologies, the Department of Energy is kicking into high gear. We're investing more than $12 billion in grants and loans for research, development and deployment of advanced technology vehicles. These investments are helping to create a clean energy workforce. If we want to continue a leadership role in the global automotive industry, it is crucial that we take the long view and invest heavily in the next generation of innovators and critical thinkers

39

Building a More Efficient Industrial Supply Chain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Efficient Industrial Supply Chain More Efficient Industrial Supply Chain Building a More Efficient Industrial Supply Chain November 7, 2011 - 3:06pm Addthis This infographic highlights some of the ways businesses can save money at each step of the energy supply chain. Many companies can identify low-cost ways to reduce energy costs in electricity generation, electricity transmission, industrial processes, product delivery, and retail sales. This infographic highlights some of the ways businesses can save money at each step of the energy supply chain. Many companies can identify low-cost ways to reduce energy costs in electricity generation, electricity transmission, industrial processes, product delivery, and retail sales. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs

40

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building America Industrialized Housing Partnership II Expert Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GTI PROJECT NUMBER 20970 GTI PROJECT NUMBER 20970 Building America Industrialized Housing Partnership II Subtask 1.8: Building America Expert Meeting Report Issued: December 20, 2010 Prepared For: Philip Fairey Deputy Director Florida Solar Energy Center 1679 Clearlake Road Cocoa, FL 32922-5703 (321) 638-1434 pfairey@fsec.ucf.edu GTI Technical Contacts: Ryan Kerr Douglas Kosar R&D Market Analyst Institute Engineer 847-768-0941 847-768-0725 ryan.kerr@gastechnology.org douglas.kosar@gastechnology.org Gas Technology Institute 1700 S. Mount Prospect Rd. Des Plaines, Illinois 60018 www.gastechnology.org FINAL EXPERT MEETING REPORT Building America Expert Meeting Final Report Page i Legal Notice This information was prepared by Gas Technology Institute ("GTI") for the Florida Solar

42

Better Buildings, Better Plants: How You Can Benefit, plus New Executive Order on Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT ADVANCED MANUFACTURING OFFICE Better Buildings, Better Plants: How You Can Benefit, plus New Executive Order on Industrial Energy Efficiency Advanced Manufacturing Office October 9, 2012 Andre de Fontaine Katrina Pielli 2 Today * Better Buildings, Better Plants Overview - Better Buildings, Better Plants Program - Better Buildings, Better Plants Challenge * Looking Ahead to 2013 - In-Plant Trainings - Enhanced energy intensity baselining and tracking tool - New communication materials * Executive Order on Industrial Energy Efficiency and Combined Heat and Power - DOE Activities in Support of Executive Order * Regional Industrial Energy Efficiency & Combined Heat and Power Dialogue Meetings * Better Buildings, Better Plants * "CHP as a Clean Energy Resource" new report

43

Pages that link to "ConSol (Building Industry Research Alliance...  

Open Energy Info (EERE)

| 500) Retrieved from "http:en.openei.orgwikiSpecial:WhatLinksHereConSol(BuildingIndustryResearchAlliance)" Special pages About us Disclaimers Energy blogs Developer...

44

Building America Top Innovations Hall of Fame Profile … Building Americas Top Innovations Propel the Home Building Industry toward Higher Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sponsored by the U.S. Department of Energy's (DOE's) sponsored by the U.S. Department of Energy's (DOE's) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. The U.S. home building industry represents a significant opportunity for energy savings, accounting for nearly one-fourth of U.S. energy consumption, but the industry as a whole has been slow to adopt new energy-saving technologies. This is largely due to the industry's unique disaggregation, with thousands of small business owners lacking adequate resources and capabilities to invest in research and development. DOE established the Building America program in 1995 to address both the huge energy-saving opportunity and the critical research gap

45

[Your Industrial Plant] Earns the ENERGY STAR | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant] Earns the ENERGY STAR Industrial Plant] Earns the ENERGY STAR Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

46

SPP sales flyer for manufacturing and industry | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing and industry manufacturing and industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

47

Building America Industrialized Housing Partnership II Expert Meeting  

Energy.gov (U.S. Department of Energy (DOE))

This is the summary report for the Building America expert meeting held on November 16, 2010, in Chicago, Illinois.

48

Analysis of energy use in building services of the industrial sector in California: Two case studies  

SciTech Connect

Energy-use patterns in many of California's fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

Akbari, H.; Sezgen, O.

1991-09-01T23:59:59.000Z

49

Workshop Proceedings of the Industrial Building Energy Use  

E-Print Network (OSTI)

Industrial Data Base? PURCHASED, SITE, IDENTIFIED ENERGY END USES PG&EEUA DATABASE ELECTRICITY LIGHTING AIR CONDITIONING REFRIGERATION

Akbari, H.

2008-01-01T23:59:59.000Z

50

Cape Light Compact - Commercial, Industrial and Municipal Buildings...  

Open Energy Info (EERE)

Central Air conditioners, Chillers, Compressed air, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Furnaces, Heat pumps, Lighting, Lighting Controls...

51

Changes related to "ConSol (Building Industry Research Alliance...  

Open Energy Info (EERE)

Login | Sign Up Wiki Browse Latinoamrica Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy...

52

Moving energy-conserving design into the mainstream of the US buildings industry  

DOE Green Energy (OSTI)

Two programs discussed that are greatly accelerating the rate at which the US buildings industry is moving towards mass production of energy conserving solar buildings are: the Passive Solar Manufactured Buildings Program and the Solar Home Builders Program in the Denver metropolitan area. These programs provide a useful model for other efforts in accelerating private industry's rate of change. The concepts discussed on which this model is based include: industry participation in planning; incremental change; builders and architects; technical assistance (not money); large volume builders; competitive selection; simplified contractual procedures; public exposure; sensitive, concerned management. Progress of the programs are discussed. (MCW)

Baccei, B. C.

1981-04-01T23:59:59.000Z

53

Buildings Energy Data Book: 2.7 Industrialized Housing (IH)  

Buildings Energy Data Book (EERE)

5 2004 Number of Industrialized Housing Manufacturers Versus Production (Stick-Builders) Companies Type Panelized Modular (1) HUD-Code Production Builders Component Manufacturers...

54

2013 Summer Study on Energy Efficiency in Industry | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Development Adoption Compliance Regulations Resource Center 2013 Summer Study on Energy Efficiency in Industry American Council for an Energy-Efficient Economy (ACEEE)...

55

Workshop Proceedings of the Industrial Building Energy Use  

E-Print Network (OSTI)

Edison Co. Customer Energy Services P.O. Box 800 Rosemead,up in the building energy services. The Hagler-Bailey reportIn addition, our energy- service representatives contacted

Akbari, H.

2008-01-01T23:59:59.000Z

56

BUILDING SUSTAINABLY CHALLENGES IN THE HOME RENOVATION INDUSTRY  

E-Print Network (OSTI)

.......................................................................................26 Kitchen and Bath Designer/Appliance and Material Selection ................28 NJ Clean Energy .......................................................................................12 Incentives in the Residential Building Market.............................................13 ..................................................................................................14 International Energy Conservation Code Committee ................15 International Green

Rainforth, Emma C.

57

Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World July 11, 2012 - 1:34pm Addthis Mfix is open-source, virtual modeling software that makes coal gasification processes more efficient than was ever possible through lab tests. Modeling reduces the cost and time of testing and building actual systems and ultimately results in lower costs, improved power plant efficiency, and new energy systems that meet or even exceed current or proposed environmental regulations. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is the future of MFiX? Ultimately, we see MFiX being used to solve industrial-scale

58

DAMAGE TO COMMERCIAL AND INDUSTRIAL BUILDINGS EXPOSED TO NUCLEAR EFFECTS  

SciTech Connect

One equipment control building designed to be blast resistant and two each of three standardized types of metal warehouse or utility buildings were exposed to the effects of a nuclear device detonation. One of the utility buildings was frameless, with deeply corrugated wall and roof sections; a second was very largely frameless, utilizing interlocking channel sections; and in the third the aluininum-panel wall and roof covering was supported by girts and purlins, which in turn were supported by steel frames. Because of atmospheric conditions at the time of an earlier detonation in the test series, one of each of the three types of utility buildings was exposed to approximately 0.7 psi overpressure before the planned test. In the planned test one of each of the three types was exposed to approximately 3.0 psi overpressure and one to 1.3 psi, with the intention of bracketing their overpressure survival range and obtaining data for possible economic redesign for improved blast resistance. The equipment control building utilized continuous-welded steel frames and reinforced-gypsum curtain-wall construction. The control building was exposed to approximately 4.1 psi, in the anticipated fringe zone of major structural damage, to determine its protective capabilities. The blast-resistant equipment control building was nat structurally damaged by the blast, thus exceeding the expectations of the design. Each of the three utility buildings received severe damage at the near range, one being completely destroyed, whereas at the far range the damage in every case was repairable. The test results are discussed, and recommendations for improved designs are made. Damage records during the unexpected test and at the far range in the planned test are correlated by means of dynamic analyses with pressuretime data and studies of structural resintance. Pressure-time information is appended. (auth)

Johnston, B.G.

1956-02-01T23:59:59.000Z

59

Buildings Energy Data Book: 2.7 Industrialized Housing (IH)  

Buildings Energy Data Book (EERE)

4 4 2004 Top Five Manufacturers of Factory-Fabricated Components (1) Company Carpenter Contractors 175.0 1,130 Automated Building Company 102.5 702 Landmark Truss 45.0 425 Southern Building Products 25.9 180 Dolan Lumber & Truss 25.1 260 Note(s): Source(s): Automated Builder Magazine, Sept. 2005, p. 40-41. 26% 15% 7% 4% 4% 1) Factory-fabricated components include trusses, wall panels, and doors. Data based on mail-in surveys from manufacturers, which may not be entirely complete. 2) Market shares based on total gross sales volume of producers of only components included in the list of the top 26 IH producers responding to the survey. In 2004, surveyed component sales was estimated at $665.1 million. 3) The top 26 companies employ over 4,970 people at their plants. Gross Sales

60

Application of solar thermal energy to buildings and industry  

DOE Green Energy (OSTI)

Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

Kutscher, C. F.

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Politics, jobs and workforce development : the role of workforce intermediaries in building career pathways within Boston's health care industry  

E-Print Network (OSTI)

This research study examines the role that workforce intermediaries within Boston play in creating career pathways for economically disadvantaged, under-skilled residents in the local health care industry. Using a case ...

Hutson, Malo

2006-01-01T23:59:59.000Z

62

Approximating the Seismic Amplification Effects Experienced by Solar Towers Mounted on the Rooftops of Low-Rise Industrial Buildings.  

E-Print Network (OSTI)

?? This thesis investigates the acceleration amplification experienced by solar towers mounted on the rooftops of low-rise industrial buildings during a seismic event. Specifically, this (more)

Balla, Peter Luiz

2013-01-01T23:59:59.000Z

63

Exploring project collaboration systems in the building industry  

E-Print Network (OSTI)

The use of Web-Based-Collaboration-Systems (WBCS) continues to grow as part of information technology development in the Architecture-Engineering-Construction (AEC) industry. WBCS provide different media channels to support collaboration across geographical distributed teams. However, many companies are still hesitant to integrate WBCS. This research provides an understanding of how WBCS are used in practice. Most distinctively, it obtained practice data from several major US architecture firms and examined about 30,000 transactions produced during actual design and planning projects as practicing architects, engineers and consultants used WBCS. The study investigated what information was used and exchanged among participants during the different design stages. This was related to the different media channels of WBCS. The raw project data has been coded and transformed into secondary data through computer-supported content analysis. Based upon categories from previous literature, such as communication, coordination and design theories, the data has been analyzed for sender, receiver, channel and content of information transmitted. The content has been characterized into work tasks, information handling behavior and design activities. Additional interviews with industry professionals produced information that had not been documented through WBCS and that corroborated the analytical findings. The combination of theory, quantitative, and qualitative analysis has been synthesized into a portrait of WBCS usage that was validated through triangulation. The analysis of digital records of design communication from practice through content analysis is a new research methodology in AEC. The evidence supporting design methods theory shows the changes in tasks and information handling in regards to the project phases. It indicates that the most frequent loops of design activity are Evaluation- Analysis-Synthesis and Evaluation-Synthesis-Evaluation. It documents the actual usage of WBCS based on descriptive statistics and Markov models. WBCS was used primarily as a document repository and calendaring tool. The remote team members used it more frequently than centrally located participants. The study shows the limitations of WBCS: none of the verbal communication was captured. More significant, the entire email exchange took place outside the WBCS. WBCS was used very extensively, if the implementation of the system supported the organizational structure and vice versa.

Laepple, Eberhard Sebastian

2005-08-01T23:59:59.000Z

64

Making Green Building Units By Using Some Wastes of Ceramic Industry  

E-Print Network (OSTI)

The ceramic tiles industry produces a lot of wastes such as ceramic sludge, broken under quality tiles and the ceramic dust. The accumulated wastes comprise a great pollution problem on the surrounded environment. The ceramic properties of Egyptian clays show that they are highly plastic and very sensitive upon drying. Accordingly, they are continuously in need to some additives for adjusting such properties. The environmental impact of this work is producing a green building unit has a zero waste energy. The recycling of ceramic solid waste industry in building operations contributes with minimizing the energy consumption and the cost of building to achieve building sustainability. In this work each of 15, 25 and 50% ceramic sludge solid waste were mixed with a chosen clayey raw material for making green building bricks. The mix contains 15% sludge and 85% clay shows a lower plasticity coefficient and an insensitive behaviour upon drying in addition to suitable physico-mechanical properties for the fired clay articles. This suggested mix was applied within a common brick fabric in Egypt for studying the possibility of its industrial application.

Abd El-Ghafour, N.G.

2010-01-01T23:59:59.000Z

65

The relationship between the bone mineral density and urinary cadmium concentration of residents in an industrial complex  

SciTech Connect

Background: An association between cadmium exposure and bone mineral density (BMD) has been demonstrated in elderly women, but has not been well studied in youths and men. Some studies report either no or a weak association between cadmium exposure and bone damage. Objectives: This study was designed to investigate the relationship between the urinary cadmium (U-Cd) levels and BMD of females and males of all ages. Methods: A total of 804 residents near an industrial complex were surveyed in 2007. U-Cd and BMD on the heel (non-dominant calcaneus) were analyzed with AAS-GTA and Dual-Energy X-ray absorptiometry, respectively. Demographic characteristics were collected by structured questionnaires. Osteoporosis and osteopenia were defined by BMD cut-off values and T-scores set by the WHO; T score>-1, normal; -2.5=}1.0 {mu}g/g creatinine) in females (OR=2.92; 95% CI, 1.51-5.64) and in males (OR=3.37; 95% CI, 1.09-10.38). With the multiple linear regression model, the BMD of the adult group was negatively associated with U-Cd (<0.05), gender (female, p<0.001) and age (p<0.001). The BMD of participants who were {<=}19 years of age was negatively associated with gender (female, p<0.01), whereas it was positively associated with age and BMI (p<0.001). BMD was not associated with exercise, smoking habits, alcohol consumption, job or parental education. Conclusion: Results suggested that U-Cd might be associated with osteopenia as well as osteoporosis in both male and female adults. Age and female gender were negatively associated with BMD in the adult group, whereas age was positively associated with BMD in the youth group. Cadmium exposure may be a potential risk factor for lower-BMD and osteopenia symptoms as well as for osteoporosis symptoms. - Research Highlights: {yields} The relationship between the urinary cadmium levels and BMD was investigated. {yields} U-Cd was associated with osteopenia and osteoporosis in adults. {yields} Cadmium exposure may be a potential risk factor for lower-BMD and osteopenia.

Shin, Minah; Paek, Domyung [Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University, Gwanak-599, Gwanak-gu, Seoul 151-742 (Korea, Republic of)] [Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University, Gwanak-599, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Yoon, Chungsik, E-mail: csyoon@snu.ac.kr [Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University, Gwanak-599, Gwanak-gu, Seoul 151-742 (Korea, Republic of)] [Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University, Gwanak-599, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

2011-01-15T23:59:59.000Z

66

Analysis of energy use in building services of the industrial sector in California: Two case studies. Final report  

SciTech Connect

Energy-use patterns in many of California`s fastest-growing industries are not typical of the existing mix of industries in the US. Many California firms operate small- and medium-sized facilities housed in buildings used simultaneously or interchangeably over time for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services (providing occupant comfort and necessities like lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. Electricity for building services is sometimes priced as if it were base loaded like process uses; in reality this load varies significantly according to occupancy schedules and cooling and heating loads, much as in any commercial building. Using informal field surveys, simulation studies, and detailed analyses of existing data (including utility commercial/industrial audit files), we studied the energy use of this industrial subsector through a multi-step procedure: (1) characterizing non-process building energy and power use in California industries, (2) identifying conservation and load-shaping opportunities in industrial building services, and (3) investigating industrial buildings and system design methodologies. In an earlier report, we addressed these issues by performing an extensive survey of the existing publicly available data, characterizing and comparing the building energy use in this sector. In this report, we address the above objectives by examining and analyzing energy use in two industrial case-study facilities in California. Based on the information for the case studies, we discuss the design consideration for these industrial buildings, characterize their energy use, and review their conservation and load-shaping potentials. In addition, we identify and discuss some research ideas for further investigation.

Akbari, H.; Sezgen, O.

1991-09-01T23:59:59.000Z

67

Expanding the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce  

E-Print Network (OSTI)

Energy efficiency provides an unequaled opportunity for manufacturing companies to reduce operating costs. Energy efficiency improvements not only lead to reduced energy costs, they can lead to even greater improved productivity and decreased waste. However, many cost-effective projects are not being implemented. Manufacturing companies have indicated that this is often due not to a lack of funds but rather to a lack of access to technical information and trained workforce. One of the most successful programs for achieving energy efficiency savings in the manufacturing sector is the US Department of Energy (DOE)'s Industrial Assessment Center (IAC) program. In addition to significant energy savings, the IAC program produces a steady stream of energy engineers who are in high demand as plant energy managers, energy efficiency consultants, and energy efficient design engineers. This paper proposes a strategy for expanding the IAC program in both size and scope to better meet the workforce and energy assessment needs of US manufacturers. The expansion would be accomplished by establishing Centers of Excellence at current IAC locations, and then partnering with other universities, community colleges, and trade schools to create satellite centers to educate students at all technical levels. This would provide additional assistance to industrial customers over larger regions than is currently possible. Further partnerships with other organizations that already service manufacturing facilities would take advantage of existing infrastructure to enable the most efficient distribution of energy efficiency services.

Trombley, D.; Elliott, R. N.; Chittum, A.

2009-05-01T23:59:59.000Z

68

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

industrial facilities use boilers and/or furnaces that burnare: 1) space heat, 2) hot water, 3) boiler for building-heat, 4) boiler for process 5) direct process heat, 6)

Akbari, H.

2008-01-01T23:59:59.000Z

69

Research utilization in the building industry: decision model and preliminary assessment  

Science Conference Proceedings (OSTI)

The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

1985-10-01T23:59:59.000Z

70

FIERAsystem: A Fire Risk Assessment Model for Light Industrial Building Fire Safety Evaluation  

E-Print Network (OSTI)

this report. The current report describes the framework for the new model, individual submodels used for calculations, and the information that the model provides to the design engineer or building official. The framework that FIERAsystem uses to conduct a hazard analysis and the process used to perform a risk analysis are also discussed in the report. 2. FRAMEWORK OF FIERAsystemMODEL The FIERAsystem model allows the user to perform a number of fire protection engineering calculations in order to evaluate fire protection systems in industrial buildings. At start-up, FIERAsystem provides several calculation options, which allow the user to: use standard engineering correlations, run individual submodels, conduct a hazard analysis, or conduct a risk analysis

N. Kashef; A. Torvi; G. Reid; Noureddine Benichou; Ahmed Kashef; David Torvi; George Hadjisophocleous; Irene Reid

2002-01-01T23:59:59.000Z

71

Sequestering carbon dioxide in industrial polymers: Building materials for the 21st century  

SciTech Connect

This study was undertaken to determine the possibility of developing beneficial uses for carbon dioxide as a key component for a large-volume building product. Such a use may provide an alternative to storing the gas in oceanic sinks or clathrates as a way to slow the rate of global warming. The authors investigated the concept that carbon dioxide might be used with other chemicals to make carbon-dioxide-based polymers which would be lightweight, strong, and economical alternatives to some types of wood and silica-based building materials. As a construction-grade material, carbon dioxide would be fixed in a solid, useful form where it would not contribute to global warming. With the probable imposition of a fuel carbon tax in industrialized countries, this alternative would allow beneficial use of the carbon dioxide and could remove it from the tax basis if legislation were structured appropriately. Hence, there would be an economic driver towards the use of carbon-dioxide-based polymers which would enhance their future applications. Information was obtained through literature searches and personal contacts on carbon dioxide polymers which showed that the concept (1) is technically feasible, (2) is economically defensible, and (3) has an existing industrial infrastructure which could logically develop it. The technology exists for production of building materials which are strong enough for use by industry and which contain up to 90% by weight of carbon dioxide, both chemically and physically bound. A significant side-benefit of using this material would be that it is self-extinguishing in case of fire. This report is the first stage in the investigation. Further work being proposed will provide details on costs, specific applications and volumes, and potential impacts of this technology.

Molton, P.M.; Nelson, D.A.

1993-06-01T23:59:59.000Z

72

Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry  

SciTech Connect

The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

1999-10-01T23:59:59.000Z

73

Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry  

DOE Green Energy (OSTI)

The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

NONE

1999-10-01T23:59:59.000Z

74

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network (OSTI)

in Operation. Energy and Buildings. 43(11): 3106-3111.and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program. Key

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

75

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network (OSTI)

Doing Good? Green Office Buildings. American Economic ReviewEnergy Effriciency in Commercial Buildings in Operation.Energy and Buildings. 43(11): 3106-3111. Ezovski, Derek.

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

76

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most  

E-Print Network (OSTI)

A new database of residential building measures and estimated costs helps the U.S. building at the National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures with using various measures to improve the efficiency of residential buildings. This database offers

77

SIMULATED BUILDING ENERGY PERFORMANCE OF SINGLE-FAMILY DETACHED RESIDENCES DESIGNED FOR OFF-GRID, OFF-PIPE OPERATION  

SciTech Connect

This paper presents the analysis of energy performance of single-family detached homes in three U.S. climates, in order to determine energy-efficiency measures for minimizing the loads and sizing requirements of renewable energy systems that are essential for its offgrid, off-pipe (i.e., utility-independent) operation. The analysis used a DOE-2.1e simulation model of a 2000/2001 IECC (International Energy Conservation Code) standard house as a base case in three climate locations: Minneapolis, MN, Atlanta, GA, and Phoenix, AZ. This selection of measures and determination of loads for renewable energy systems were accomplished by analyzing the energy use using DOE-2.1e simulations and heating/cooling load components using the Manual J Average Load Procedure. The analysis showed several aspects of building energy performance during different times of the year in terms of available energy resources that are critical for the sizing, utilization, and cost effectiveness of renewable energy systems.

Malhotra, Mini [ORNL; Haberl, Dr. Jeff S. [Texas A& M University

2010-01-01T23:59:59.000Z

78

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

E-Print Network (OSTI)

and Industrial Facilities to Dynamic Electricity Pricesand Industrial Facilities to Dynamic Electricity Prices

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

79

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

Science Conference Proceedings (OSTI)

Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

2011-08-16T23:59:59.000Z

80

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry  

Science Conference Proceedings (OSTI)

The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

NONE

1999-02-01T23:59:59.000Z

82

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network (OSTI)

the larger diffusion of green and energy efficient buildingsowners, the costs of green and energy efficient buildings,market. Demand for Green and Energy Efficient Buildings The

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

83

Breaking new ground in building green : the role of city policy and regulation in a building industry market transformation  

E-Print Network (OSTI)

With a growing awareness of the need for a widespread reduction in the use of natural resources, including energy and water, buildings have been identified as a key component of America's, and the world's, drain on these ...

Prakash, Shiva R

2010-01-01T23:59:59.000Z

84

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

85

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

86

NREL: Technology Deployment - Building Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

87

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

Science Conference Proceedings (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

88

National program plan for research and development in solar heating and cooling for building, agricultural, and industrial applications  

DOE Green Energy (OSTI)

The main feature of the directed program is the focus on specific approaches, called paths, to the application of solar energy. A path is the linking of a method of energy collection or rejection with a particular application. Eleven such paths are identified for building applications and eleven for agricultural and industrial process applications. Here, an overview is given of the program plan. The 11 paths to the solar heating and cooling of buildings and the 11 paths for agricultural and industrial process applications are described. Brief descriptions of these tasks and of the non-engineering tasks are included. The importance of each non-engineering task to the overall R and D program is indicated. (MHR)

Not Available

1978-08-01T23:59:59.000Z

89

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

90

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

91

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

92

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network (OSTI)

Doing Well by Doing Good? Green Office Buildings. AmericanWhy Do Companies Rent Green? Real Property and Corporatepaper? ] Kahn, Matthew. 2006. Green Cities, Urban Grown and

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

93

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

E-Print Network (OSTI)

modeling, Journal of Solar Energy Engineering, vol. 120,buildings, Journal of Solar Energy Engineering, vol. 120,t savings, Journal of Solar Energy Engineering, vol. 120,

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

94

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

95

Improving the environmental performance of a small-scale industrial building project  

Science Conference Proceedings (OSTI)

An investor-owned utility built three line crew centers to meet the requirements of its environmentally oriented new construction DSM program. The new locations are distributed around a region to replace a large central facility. Each facility includes an office building, a garage area, a warehouse, covered parking, and a fueling station. The office buildings were designed to use 43% less energy than if constructed according to Oregon code minimum. The facility as a whole uses resource-efficient building products. A quality indoor environment is achieved through the use of low toxicity building materials. Environmental responsibility was demonstrated by using water-efficient fixtures, recycling of construction materials and creating a bioswale, or retention pond, to receive runoff water. One site also includes 2.8 acres of wetland creation and enhancement where habitat was created for the northern red-legged frog, which has been designated as a species of concern.

Peterson, J.C.; Good, N.L.; Parr, R.W.; Nicolay, R.D.; Millican, R.

1999-07-01T23:59:59.000Z

96

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

97

Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)  

DOE Green Energy (OSTI)

The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

Not Available

2011-08-01T23:59:59.000Z

98

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

99

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

100

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Department of Energy Quadrennial Technology Review Building ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building & Industrial Efficiency Workshop Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop Public release of the documents and...

102

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

103

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

104

Number of U.S. Commercial Buildings  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 2

105

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 5b

106

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 5a

107

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 7a

108

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table7c

109

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 7b

110

Energy Market Profiles: Volume 3: 1998 Industrial Buildings, Equipment, and Energy Use  

Science Conference Proceedings (OSTI)

Energy use and equipment profiles at the region, segment, and end-use levels provide key information required to lay the groundwork for major marketing decisions. These decisions include how desirable a market is for utility entry, how quickly to enter a market, and how best to narrow the research focus. This study provides utility managers and decision makers with industrial market profiles for 10 regions of the United States. This report is available only to funders of Program 101A or 101.001. Funders ...

1999-12-03T23:59:59.000Z

111

Energy-Efficient Residence Hall  

E-Print Network (OSTI)

Recently, there has been an increase in the number of energy efficient buildings in the U.S. We want to encourage this green movement by providing people with a simple and systematic Stairwell Closable vents leading from the floor to the stairwell along with windows in the stairwell leading outside act as a thermal chimney which gets rid of excess heat. approach for green building construction. Our project focuses on creating a guideline for an energy-efficient residence hall. We have looked into energy-efficient and eco-friendly lighting, heating, insulation, and other aspects that integrate into a green building. Our guideline, as a result, will aid colleges in the Worcester community to design and construct green residence halls.

Giselle Chen; Nathaniel Eames; Andrew Holmes; Grant Wong; Advisor David Spanagel (humanities; Arts Department

2009-01-01T23:59:59.000Z

112

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

113

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

114

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

1972. In the food industry, electricity for lights and HVACof the Electronics Industry electricity. Motors require fromand Meat Packing Industries, electricity use intensity for

Akbari, H.

2008-01-01T23:59:59.000Z

115

Buildings Energy Data Book: 9.1 ENERGY STAR  

Buildings Energy Data Book (EERE)

3 3 ENERGY STAR Commercial and Institutional Buildings and Industrial Plants (1) Building Type 1999 Office 2000 K-12 School 2001 Retail 2002 Hospital (General and Surgical) 2003 Supermarket/Grocery 2004 Hotel 2005 Bank/Financial Institution 2006 Warehouse (Unrefrigerated) 2007 Courthouse 2008 Medical Office 2009 Residence Hall/Dormitory 2010 Senior Care Facility 2011 Data Center Total (2) Warehouse (Refrigerated) House of Worship Industrial Plants Total Note(s): Source(s): 1) Data as of February 13, 2012. Additional buildings may qualify after applications are reviewed. 2) Totals are less than sum of individual years since some buildings have multiple years listed. Totals include buildings qualified in 2012. EPA, Database of ENERGY STAR Labeled Buildings and Plants, accessed February 13, 2012

116

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

117

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

achievable energy savings from building systems integrationnon-process energy consumption. System integration,

Akbari, H.

2008-01-01T23:59:59.000Z

118

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

119

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... will build an instrument that will provide the building industry with better measurement capabilities to judge the effectiveness of thermal insulation ...

120

BetterBuildings for Michigan  

Energy.gov (U.S. Department of Energy (DOE))

The BetterBuildings for Michigan program offers incentives and loans to residents of certain communities to implement energy efficiency improvements in their homes. Homeowners in the following...

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Total Floorspace of Commercial Buildings - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities >Table 4

122

A study of building procurement process as a potential tool to enhance safety practice in the construction industry.  

E-Print Network (OSTI)

??Building procurement involves many different parties and resources. It is very common that requires project participants involved to work within budget, on time and according (more)

Sulaiman, K

2008-01-01T23:59:59.000Z

123

Better Buildings Neighborhood Program: Northern Virginia Residents...  

NLE Websites -- All DOE Office Websites (Extended Search)

Makeover Contest logo. The Local Energy Alliance Program (LEAP) awarded energy efficiency funding to three households as part of the program's Northern Virginia Home Energy...

124

Humidity Control in Residences  

E-Print Network (OSTI)

Maintaining relative humidity below 60% for residential houses in humid climates promotes a healthy indoor environment. Yet, for such homes, these lower humidity levels are difficult to maintain with conventional recirculation air conditioning units. By introducing a separate vapor compression unit to pre-condition outside air, indoor relative humidity can be controlled. This new air conditioning system combines a ventilation unit with a conventional recirculation air conditioning unit. Although successful in maintaining indoor humidity levels below 60%, the new air conditioning system will require more electric energy to provide the additional dehumidification. However, this penalty is shown to be offset by reductions in sensible load during a summer week, which should result in lower energy consumption and peak electric demand during that period. The performance of this new air conditioning system is demonstrated using FSEC 3.0, a building energy simulation program developed by the Florida Solar Energy Center, to simulate the heat and moisture transport occurring within a prototypical residence located in Austin, Texas.

Trowbridge, J.; Peterson, J.

1994-01-01T23:59:59.000Z

125

Better Buildings | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over 400 billion. These buildings...

126

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

Report submitted to California Energy Commission, AprilDepartment of Energy, the California Energy Commission, andFuel Source Figure 9. California Energy Use in Industrial

Akbari, H.

2008-01-01T23:59:59.000Z

127

ALS Doctoral Fellowship in Residence  

NLE Websites -- All DOE Office Websites (Extended Search)

Doctoral Fellowship in Residence Print Doctoral Fellowship in Residence Print The Advanced Light Source (ALS), a division of Lawrence Berkeley National Laboratory, is a national user facility that generates intense x-ray radiation for scientific and technological research. As the world's first third-generation synchrotron radiation source, the ALS offers outstanding performance in the VUV-soft x-ray energy range and excellent performance into the hard x-ray region. The facility welcomes researchers from universities, industries, and government laboratories around the world. It is funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Applications to Shape the Future of Synchrotron Radiation Science Synchrotron radiation is now an established tool in many areas of physical and biological science. The ALS Doctoral Fellowships will allow beginning researchers to work at the frontier of synchrotron radiation research and to help advance state-of-the-art applications.

128

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

use for building energy services. Another way of statingHtg. L3 L3 % Total Service Energy '-J m I % of Non-Process7 shows the percent of service energy which is electricity

Akbari, H.

2008-01-01T23:59:59.000Z

129

Building Technologies Office: Workforce Guidance Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Building Technologies Office: Workforce Guidance Development: By Industry, For Industry to someone by E-mail Share Building Technologies Office: Workforce...

130

Humidity fluctuations in solar greenhouse-residences  

SciTech Connect

The thermal performance of solar greenhouse-residences is well-documented. Data concerning temperature fluctuations and horticultural yield are obtainable and provide a clear picture of greenhouse-residence temperature extremes. However, both human comfort and plant growing environment are not dependent upon temperature alone. Air movement, radiation, and humidity are other criteria that can influence thermal comfort and growing conditions. The effect a vegetable peoducing greenhouse has on thermal comfort of an adjoining residence is illustrated in terms of temperature and humidity. An analysis of dewpoint conditions will further indicate the effect of moisture within the individual components. A solar greenhouse-residence with an integrated heating collection and distribution system exhibited higher internal humidities than conventional housing. The greenhouse exhibited greater diurnal swings than the adjoining residence. Transfer of moisture occurred from greenhouse to residence and caused infrequent dewpoint levels in the house. An analysis of two such buildings indicated a higher average relative humidity in the solar greenhouse-residence over conventional housing in the southeast.

Davis, M.A. (Clemson Univ., SC); Harrison, R.E.; Godbey, L.C.

1981-01-01T23:59:59.000Z

131

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

E-Print Network (OSTI)

Energy Intensity in the Iron and Steel Industry: A Comparison of Physical and Economic Indicators,energy and carbon intensity are evaluated. We show that macro-economic indicators,

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-01-01T23:59:59.000Z

132

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

Reports of Energy Utilization Audit (EUA) from PG&E, madeincluded in PG&E's Energy Utilization Audits (EUA), 67% ofWORK WITH THE PG&E ENERGY UTILIZATION AUDIT (EUA) INDUSTRIAL

Akbari, H.

2008-01-01T23:59:59.000Z

133

Modeling of Plume Downwash and Enhanced Diffusion near Buildings: Comparison to Wind Tunnel Observations for in Arctic Industrial Site  

Science Conference Proceedings (OSTI)

The ability of a modified Industrial Source Complex model to simulate concentration distributions resulting from high wind speeds (neutral conditions) has been evaluated by comparison to data from a wind tunnel study of a Prudhoe Bay, AK oil-...

Alex Guenther; Brian Lamb; Ronald Petersen

1989-05-01T23:59:59.000Z

134

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

135

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

136

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

137

Cities - Residents | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Residents Cities Data Apps Challenges Policies Cities You are here Data.gov Communities Cities Residents Looking for cool ways to explore your city, services, and...

138

Table 1a. U.S. Commercial Buildings Site Energy Consumption b  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 1a

139

U.S. Residential Buildings Weather-Adjusted Primary Consumption  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8c Glossary U.S. Residential Buildings ...

140

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

142

Building Energy Software Tools Directory: SolArch  

NLE Websites -- All DOE Office Websites (Extended Search)

industry building designers, government agencies, technical press and media, public utilities energy supply industry, professional and trade associations, consultants,...

143

Better Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over $400 billion. These buildings and operations can be made much more efficient using a variety of cost effective efficiency improvements while creating jobs and building a stronger economy. We have similar opportunities in our homes. In February 2011, President Obama, building upon the investments of the American Recovery and Reinvestment Act, announced the Better Buildings Initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years and accelerate private sector investment in energy efficiency. Better Buildings strategies include: Last year, commercial and industrial buildings used roughly 50% of the

144

Build an energy management program | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Advance your energy program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

145

Building technology roadmaps  

SciTech Connect

DOE's Office of Building Technology, State and Community Programs (BTS) is facilitating an industry-led initiative to develop a series of technology roadmaps that identify key goals and strategies for different areas of the building and equipment industry. This roadmapping initiative is a fundamental component of the BTS strategic plan and will help to align government resources with the high-priority needs identified by industry.

1999-01-27T23:59:59.000Z

146

Measuring Miscellaneous Electrical Loads in Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

leading the effort to decipher MELs impacts on buildings Understanding and reducing the energy use of MELs is a significant problem. The buildings industry is working towards...

147

Build an energy program | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

148

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

149

Climate change and buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate change and buildings Climate change and buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings Climate change and buildings

150

The construction industry is comprised of a wide range of businesses involved in engineering standards, building design, and the construction of various types of materials and  

E-Print Network (OSTI)

thermal characteristics of buildings for insulation purposes, and to determine heating, cooling in engineering standards, building design, and the construction of various types of materials and structures-related impacts, such as high winds and flooding, influence the choice of site construction, building techniques

151

Earthquake Risk Reduction in Buildings and Infrastructure ...  

Science Conference Proceedings (OSTI)

... building and fire safety industries in ways ... supported by the fragmented US construction industry. ... Seismic Design of Steel Special Moment Frames ...

2013-01-09T23:59:59.000Z

152

1999 CBECS Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey, or CBECS, covers a wide variety of building types—office buildings, shopping malls, hospitals, churches, and fire stations, to name just a few. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial. For an overview of definitions and examples of the CBECS building types, see Description of Building Types. Compare Activities by... Number of Buildings Building size Employees Building Age Energy Conservation Number of Computers Electricity Generation Capability

153

Building a Successful Biodiesel Business  

Science Conference Proceedings (OSTI)

This second edition of Building a Successful Biodiesel Business includes three completely new chapters, and comes at an exciting time for everyone in the biodiesel industry Building a Successful Biodiesel Business Biofuels and Bioproducts and Biodiesel B

154

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

155

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

156

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... representing a variety of industries ... Following the suspension of the 2011 Commercial Buildings Energy Consumption ...

157

A Look at Principal Building Activities in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial Buildings Home> Special Topics > 1995 Principal Home > Commercial Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public Assembly Public Order and Safety Warehouse and Storage Vacant Other Summary Comparison Table (All Activities) More information on the: Commercial Buildings Energy Consumption Survey A Look at ... Principal Building Activities in the Commercial Buildings Energy Consumption Survey (CBECS) When you look at a city skyline, most of the buildings you see are commercial buildings. In the CBECS, commercial buildings include office buildings, shopping malls, hospitals, churches, and many other types of buildings. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial.

158

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

159

Events | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

participants to share insights, ideas, and updates about energy efficiency in commercial buildings. Webinars and team conference calls feature experts from industry as well...

160

Arizona Map for Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Documents%20and%20SettingsLPJEMEUstyleseiasitewideF.css" rel"stylesheet" type"textcss" > Home > Households, Buildings & Industry > Background Information on CBECS > 2003...

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Technologies Office: Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

titles: Industry Review: Low-Cost Cold Climate Solar Water Heating Roadmap Saving Energy in Multifamily Buildings An Introduction to the EnergyValue Housing Awards (EVHA) -...

162

Building Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Equipment Building Technologies Deployment System/Building Integration Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy consumption of the nation's buildings and resulting carbon emissions is essential to achieving a sustainable clean energy future. To address the enormous challenge, Oak Ridge National Laboratory is focused on helping develop new building technologies, whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations in all of these areas.

163

Buildings Energy Data Book: 5.1 Building Materials/Insulation  

Buildings Energy Data Book (EERE)

2 Industry Use Shares of Mineral Fiber (GlassWool) Insulation (1) 1997 1999 2001 2003 2004 2005 Insulating Buildings (2) Industrial, Equipment, and Appliance Insulation Unknown...

164

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Deployment Building Technologies Deployment SHARE Building Technologies Deployment benchmarking commercial buildings Once building technologies emerge and become commercially available, only in exceptional cases does robust market uptake automatically follow. Additional efforts remain to ensure that emerging and under-utilized technologies are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use in residential, commercial, and industrial sectors through applications research, technical assistance, and a variety of deployment strategies. The team's comprehensive knowledge of buildings and energy use spans multi-building sites, whole-buildings, systems, components, and multi-level

165

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

166

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

167

Performance Metrics for Commercial Buildings  

SciTech Connect

Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

2010-09-30T23:59:59.000Z

168

The systems approach to building : a study of systems building development  

E-Print Network (OSTI)

The new demand for building and the problems generated by this demand confronting the building industry have become more complex as a result of increasing social change, evolution of industrialization and inadequacy of ...

Sittipunt, Preechaya

1984-01-01T23:59:59.000Z

169

Local Option - Industrial Facilities and Development Bonds |...  

Open Energy Info (EERE)

Sector Commercial, Industrial, Institutional, Local Government Eligible Technologies Boilers, Building Insulation, CaulkingWeather-stripping, Central Air conditioners, Chillers,...

170

Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

171

Design commercial buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Why you should design to earn the ENERGY STAR Follow EPA's step-by-step process ENERGY STAR Challenge for Architects Design commercial buildings Photo of several people congregated around a building design plan. The climate is changing. Commercial buildings in the United States consume 17 percent of the

172

ENERGY STAR certification for your building | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

certification for your building certification for your building Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Find financing Earn recognition 20-percent recognition ENERGY STAR certification How to apply for ENERGY STAR certification Tips for low-cost verifications Submit a profile of your building

173

Building Upgrade Manual | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Upgrade Manual Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

174

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

175

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

176

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

177

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

178

Building America: Bringing Building Innovations to Market | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America: Bringing Building America: Bringing Building Innovations to Market Building America: Bringing Building Innovations to Market INNOVATIONS Advanced technologies and whole-house solutions for saving energy and costs. Read more SOLUTION CENTER Solutions for improving the energy performance and quality of new and existing homes. Read more RESEARCH TOOLS Tools to ensure consistent research results for new and existing homes. Read more MARKET PARTNERSHIPS Resources and partnering opportunities for the U.S. building industry. Read more Learn about how this world-class research program can help the U.S. building industry promote and construct homes that are better for business, homeowners, and the nation. Building America logo The U.S. Department of Energy's (DOE) Building America program has been a

179

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

180

City of San Antonio - Green Building Requirement | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Antonio - Green Building Requirement City of San Antonio - Green Building Requirement Eligibility Commercial Industrial Multi-Family Residential Residential Savings For Heating...

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building the Intelligent City - Integrating Mobility and Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems...

182

LBNL Building 90 Monitoring: Status Update and New Energy Information...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings...

183

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

184

What are the lighting requirements for residences? | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

lamps (2009 IECC, Section 404.1). The 2012 IECC has increased the minimum percentage from 50% to 75%, along with an exception for low-voltage lighting (2012 IECC,...

185

Operation Redwing. Project 3. 1. Effect of length of positive phase of blast on drag-type and semidrag-time industrial buildings  

SciTech Connect

The primary objective of the project was to obtain information regarding the effect of the length of the positive phase of blast on the response of drag and semidrag structures. A total of six steel-frame buildings were tested during this operation. The structure of each type nearest ground zero was located such that if the yield of the weapon was near the lower limit of its predicted range, it would probably undergo considerable inelastic deformation. Conversely, those structures farthest from ground zero were located such that if the yield of the nuclear device was near the upper limit of its predicted range, they would be substantially deformed, but would not collapse. The third building of each type was located at an intermediate point between these two extremes. Instrumentation was provided to obtain records of the transient structural deflections, strains, and accelerations, as well as of overpressure and dynamic pressure versus time at the sites of the various test structures.

Sinnamon, G.K.; Haltiwanger, J.D.; Newmark, N.M.

1985-09-01T23:59:59.000Z

186

Simulation of the ghost ranch greenhouse-residence  

DOE Green Energy (OSTI)

The greenhouse-residence unit of the Sundwellings Demonstration Center at Ghost Ranch, Abiguice, New Mexico, has been studied by computer modeling and simulation techniques. A thermal network model of the building has been developed in the framework of PASOLE, the Los Alamos passive solar energy simulation program. Simulation studied based on hourly weather data recorded during the 1977--78 heating season leave been done. Model validation was done by hourly comparisons of simulation predicted temperatures in the building with measured values of corresponding temperatures. The building model was used to predict a 12-month performance with the 1976--77 Los Alamos weather data. A solar fraction, the ratio of the solar portion of the residence heat input to the total heating load, was computed to be 60%. Other performance and design questions studies with 12-month Los Alamos simulation runs include the importance of the thermocirculation vents, the effect of external insulation on the residence walls, and the effect of nighttime insulation on the greenhouse glazing.

Jones, R.W.; McFarland, R.D.

1979-01-01T23:59:59.000Z

187

Building Technologies Office | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Building Technologies Office Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. About the Building Technologies Office The Energy Department's Building Technologies Office leads a network of research and industry partners to continually develop innovative, cost-effective energy-saving solutions for homes and buildings. Learn more about the Building Technologies Office. How We Help Homes & Buildings Save Energy Value-Driven Applications Advanced energy efficiency technologies like lighting, HVAC, windows, appliances, and commercial equipment. Practical Standards

188

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

189

ENERGY STAR Building Upgrade Manual | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Building Upgrade Manual ENERGY STAR Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach

190

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The City of Atlanta has committed 16 million square feet of public and private space to substantive upgrades as part of the Better Buildings Challenge. Credit: iStockphoto The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts.

191

Building Energy Modeling Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

192

Comparison of residence time models for cascading rotary dryers  

SciTech Connect

The predictions of the models of Matchett and Baker (1988), Saeman and Mitchell (1954) and Friedman and Marshall (1949) for the solids residence time in rotary dryers have been compared with both pilot-scale and industrial-scale data. A countercurrent pilot-scale dryer of 0.2m diameter and 2m long has been used with air velocities up to 1.5 m to measure the residence times of sorghum grain. The average discrepancy for the solids residence time between the predictions and the experiments that were carried out in the pilot-scale rotary dryer is {minus}10.4%. Compared with the models of Friedman and Marshall (1949) and Saeman and Mitchell (1954) for the pilot-scale data obtained here, the Matchett and Baker model is more satisfactory for predicting the solids residence time in this pilot-scale dryer. It has also been found that the model of Matchett and Baker describes the industrial data of Saeman and Mitchell (1954) than the correlation of Friedman and Marshall (1949).

Cao, W.F.; Langrish, T.A.G. [Univ. of Sydney, New South Wales (Australia). Dept. of Chemical Engineering

1999-04-01T23:59:59.000Z

193

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

194

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

195

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

196

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

197

ENERGY STAR Commercial Buildings College Course: Week 4 Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program...

198

ENERGY STAR Commercial Buildings College Course | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program...

199

ENERGY STAR Commercial Buildings College Course: About the Course...  

NLE Websites -- All DOE Office Websites (Extended Search)

and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program...

200

ENERGY STAR Commercial Buildings College Course: Week 3 Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program...

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Tips for effective energy analysis of commercial building designs...  

NLE Websites -- All DOE Office Websites (Extended Search)

owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

202

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

203

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

204

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

205

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

206

Strategic Energy Management Through Optimizing the Energy Performance of Buildings  

E-Print Network (OSTI)

1/12/2007 Strategic Energy Management Through Optimizing the Energy Performance of Buildings Oak ambitious federal energy goals and achieve energy independence. The energy engineers, building equipment Buildings and Industrial Energy Efficiency areas has engendered a unique, comprehensive capability

207

Virtual building environments (VBE) - Applying information modeling to buildings  

SciTech Connect

A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative and the benefits from a couple of early VBE projects.

Bazjanac, Vladimir

2004-06-21T23:59:59.000Z

208

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Partnerships Market Partnerships This photo shows two men silhouetted against a sky shaking hands, with the frame of a building under construction in the background. The U.S. Department of Energy (DOE) offers partnership opportunities, educational curricula, meetings, and webinars that help industry professionals bring research results to the market. DOE Challenge Home Through the DOE Challenge Home, the Building Technologies Office offers recognition to leading edge builders meeting extraordinary levels of excellence. Builders taking the challenge gain competitive advantage in the marketplace by providing their customers with unparalleled energy savings, quality, comfort, health, durability, and much more. Learn more about the DOE Challenge Home. ENERGY STAR for Homes Version 3

209

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

210

Building Technologies Office: Technology Research, Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings in a cost-effective manner. By working with teams of researchers, industry, and organizations, DOE has developed innovative solutions to helping the United...

211

Building Energy Efficiency Success Stories - Energy Innovation ...  

Building Energy Efficiency Success Stories These success stories highlight some of the effective licensing and partnership activity between laboratories and industry ...

212

Snapshot (Spring 2013) | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snapshot (Spring 2013) Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

213

NREL: Energy Analysis - Building Technologies Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency, working closely with the building industry and manufacturers; promotes energy and money-saving opportunities to builders and consumers; and works with state and...

214

Building Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Building Science Residential Buildings » Building America » Building Science Education Building Science Education The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to: Increase awareness of high performance home benefits Build a solid infrastructure for delivering building science

215

The Relation between Lean Construction and Performance in the Korean Construction Industry  

E-Print Network (OSTI)

Report 234-11, Construction Industry Institute, UniversityDepartment of Trade and Industry, London, UK. Retrieved MayBuilding a world class industry: Motivators and Enabler.

Cho, Seongkyun

2011-01-01T23:59:59.000Z

216

Building Energy Codes ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ENFORCEMENT TOOLKIT ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES i Building Energy Codes ENFORCEMENT TOOLKIT Prepared by: Building Energy Codes Program The U.S. Department of Energy's Building Energy Codes Program is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90467 LEARNING SERIES OVERVIEW Building Energy Codes ACE

217

Building Energy Codes COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPLIANCE TOOLKIT COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES III Building Energy Codes COMPLIANCE TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90466 LEARNING SERIES OVERVIEW Building Energy Codes

218

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top Innovations Advance High Performance Homes America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently awarded by selecting a category or award recipient below.

219

Building Energy Codes ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ADOPTION TOOLKIT ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES I Building Energy Codes ADOPTION TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-89963 LEARNING SERIES OVERVIEW Building Energy Codes

220

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Commercial Building Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Activities Building Activities Commercial Building Activities The Building Technologies Office commercial buildings effort researches and deploys advanced technologies and systems to reduce energy consumption in commercial buildings. Industry partners and national laboratories help identify market needs and solutions to accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's key projects. 179d Tax Calculator The 179d Calculator can help determine whether improvements qualify for a Federal tax deduction, and allows owners and managers to estimate energy cost savings of efficiency improvements. Advanced Energy Design Guides These recommendations can help designers achieve between 30% and 50% energy savings in a new commercial building.

222

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

223

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

224

Semantic Building Blocks for 21st Century Building Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Semantic Building Blocks for 21st Century Building Engineering Semantic Building Blocks for 21st Century Building Engineering Speaker(s): Mark Palmer Date: October 2, 2009 - 12:00pm Location: 90-3122 The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) works to advance innovation and competitiveness of the U.S. building and fire safety industries. This presentation will introduce some of the work at BFRL to improve the design, construction and operation of the built environment and to advance the semantic infrastructure for integrated project design and delivery. With this context established, the presentation will examine research challenges and next steps for developing reference information models, industry data dictionaries and rule libraries for multidisciplinary collaboration to

225

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

SciTech Connect

Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

2011-05-01T23:59:59.000Z

226

Find ENERGY STAR certified buildings and plants | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

» Buildings & Plants » Buildings & Plants » About us » Find ENERGY STAR certified buildings and plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants Registry of ENERGY STAR certified buildings and plants

227

Improve energy use in commercial buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve energy use in commercial buildings Improve energy use in commercial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing Develop programs and policies

228

Better Buildings Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Better Buildings Challenge Commercial Buildings » Better Buildings Challenge Better Buildings Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts. The Better Buildings Challenge supports commercial and industrial building

229

Industrial Demand Module (IDM) - 2002 EIA Models Directory  

U.S. Energy Information Administration (EIA)

The Industrial Demand Module incorporates three components: buildings; process and assembly; and boiler, steam, and cogeneration. Last Model Update:

230

Energy efficient residence: research results  

Science Conference Proceedings (OSTI)

This report on the design, construction, and monitoring of an energy efficient residence and a conventional comparison home by the National Association of Home Builders Research Foundation, Inc. The report describes the two homes in considerable detail, summarizes the results of the energy and other measurements, and evaluates many of the energy conservation techniques used. Finally, these results are synthesized with the foundation's other energy conservation experience into two lists of energy saving design tips for homes in both colder and warmer climates. Most of the design tips are accompanied by brief comments intended to aid in their interpretation and use.

Johnson, R.J.

1980-12-01T23:59:59.000Z

231

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

232

Building Energy Use Benchmarking Guidance | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Use Benchmarking Guidance Use Benchmarking Guidance Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

233

A survey of dermatology residency program directors' views on mentorship  

E-Print Network (OSTI)

directors of residency training programs have an importantgiven residency training program. This study was undertakenacademic residency training programs in the United States.

Donovan, Jeff

2009-01-01T23:59:59.000Z

234

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

235

Improving the Energy Efficiency of Commercial Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Commercial Buildings Improving the Energy Efficiency of Commercial Buildings Engaging Industry Leaders to Deploy Energy Saving Tools, Technologies and Best Practices Learn More Engaging Industry Leaders to Deploy Energy Saving Tools, Technologies and Best Practices Learn More The Building Technologies Office (BTO) works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in both existing and new commercial buildings. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the commercial building sector by at least 1,600 TBtu. Key Tools and Resources Use the guides, case studies, and other tools developed by the DOE

236

Industrial service and product providers | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

237

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

238

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

239

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

240

Better Buildings Neighborhood Program: Community Partners reEnergize  

NLE Websites -- All DOE Office Websites (Extended Search)

Community Community Partners reEnergize Industry in Nebraska to someone by E-mail Share Better Buildings Neighborhood Program: Community Partners reEnergize Industry in Nebraska on Facebook Tweet about Better Buildings Neighborhood Program: Community Partners reEnergize Industry in Nebraska on Twitter Bookmark Better Buildings Neighborhood Program: Community Partners reEnergize Industry in Nebraska on Google Bookmark Better Buildings Neighborhood Program: Community Partners reEnergize Industry in Nebraska on Delicious Rank Better Buildings Neighborhood Program: Community Partners reEnergize Industry in Nebraska on Digg Find More places to share Better Buildings Neighborhood Program: Community Partners reEnergize Industry in Nebraska on AddThis.com... Better Buildings Residential Network

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

242

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

243

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

244

Eagle County - Eagle County Efficient Building Code (ECO-Green Build) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eagle County - Eagle County Efficient Building Code (ECO-Green Eagle County - Eagle County Efficient Building Code (ECO-Green Build) Eagle County - Eagle County Efficient Building Code (ECO-Green Build) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Colorado Program Type Building Energy Code Provider Eagle County In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction and renovations/additions over 50% of the existing floor area of single-family and multifamily residences, and commercial buildings.

245

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards Photo of two inspectors looking at a clipboard on a commercial building site with the steel frame of a commercial building in the background. Local code officials enforce building energy codes. Credit: iStockphoto Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building Technologies Office (BTO) provides support to states and local governments as they adopt and monitor commercial building code as well as builders working to meet and exceed code. BTO also develops test procedures and minimum efficiency standards for commercial equipment. Building Energy Codes DOE encourages using new technologies and better building practices to improve energy efficiency. Mandating building energy efficiency by including it in state and local codes is an effective strategy for achieving that goal. The Building Energy Codes Program works with the International Code Council (ICC), American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Illuminating Engineering Society of North America (IESNA), American Institute of Architects (AIA), the building industry, and state and local officials to develop and promote more stringent and easy-to-understand building energy codes and to assess potential code barriers to new energy-efficient technologies.

246

Building Technology and Urban Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior and infrared thermograph Office building exterior and infrared thermograph Building Technology and Urban Systems Building Technology and Urban Systems application/pdf icon btus-org-chart-03-2013.pdf In the areas of Building Technology and Urban Systems, EETD researchers conduct R&D and develop physical and information technologies to make buildings and urban areas more energy- and resource-efficient. These technologies create jobs and products for the marketplace in clean technology industries. They improve quality of life, and reduce the emissions of pollutants, including climate-altering greenhouse gases. BTUSD's goal is to provide the technologies needed to operate buildings at 50 to 70 percent less energy use than average today. BTUS develops, demonstrates and deploys: Information technologies for the real-time monitoring and control of

247

Building Technologies Program Planning Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Program Planning Summary Building Technologies Program Planning Summary Introduction The U.S. Department of Energy's (DOE) Building Technologies Program (BTP) works in partnership with industry, state, municipal, and other federal organizations to achieve the goals of marketable net-zero energy buildings. Such buildings are extremely energy efficient, ideally producing as much energy as they use over the course of a year. BTP also works with stakeholders and federal partners to meet any remaining energy needs for their buildings through on-site renewable energy systems. Drivers Population growth and economic expansion, along with an accompanying increase in energy demand, are expected to drive energy consumption in buildings to more than 50 quadrillion Btu (quads)

248

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

249

U.S. Department of Energy Commercial Reference Building Models of the National Building Stock  

SciTech Connect

The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

2011-02-01T23:59:59.000Z

250

BuildingPI: A future tool for building life cycle analysis  

SciTech Connect

Traditionally building simulation models are used at the design phase of a building project. These models are used to optimize various design alternatives, reduce energy consumption and cost. Building performance assessment for the operational phase of a buildings life cycle is sporadic, typically working from historical metered data and focusing on bulk energy assessment. Building Management Systems (BMS) do not explicitly incorporate feedback to the design phase or account for any changes, which have been made to building layout or fabric during construction. This paper discusses a proposal to develop an Industry Foundation Classes (IFC) compliant data visualization tool Building Performance Indicator (BuildingPI) for performance metric and performance effectiveness ratio evaluation.

O' Donnell, James; Morrissey, Elmer; Keane, Marcus; Bazjanac,Vladimir

2004-03-29T23:59:59.000Z

251

Advancing Building Energy Codes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Advancing Building Energy Codes Advancing Building Energy Codes 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. Energy Codes Ensure Efficiency in Buildings

252

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

253

Variable residence time vortex combustor  

DOE Patents (OSTI)

A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

Melconian, Jerry O. (76 Beaver Rd., Reading, MA 01867)

1987-01-01T23:59:59.000Z

254

Energy guides | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

guides guides Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial service and product providers

255

Creative graphics | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

How can we help you? How can we help you? » Communicate and educate » ENERGY STAR communications toolkit » Motivate with a competition » ENERGY STAR National Building Competition » Competitor resources » Creative graphics Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance

256

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

257

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

258

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

259

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

260

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

262

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

263

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

264

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

265

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

266

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

267

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

268

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

269

Building Energy Software Tools Directory: Building Energy Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Analyzer Building Energy Analyzer Building Energy Analyzer logo. Provides quick economic analysis for commercial and industrial buildings. Building Energy Analyzer (BEA) estimates annual and monthly loads and costs associated with air-conditioning, heating, on-site power generation, thermal storage, and heat recovery systems for a given building and location. The user can compare the performance of standard and high efficiency electric chillers, variable speed electric chillers, absorption chillers, engine chillers, thermal storage, on-site generators, heat recovery, or desiccant systems. The user can also prepare side-by-side economic comparisons of different energy options and equipment life cycle cost analysis. The BEA is a system screening tool. It is a tool that is

270

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

271

Assessing the Potential of Developing a Tool for Residential Facility Management Using Building Information Modeling Software  

E-Print Network (OSTI)

Building Information Modeling (BIM) has changed the ways buildings are designed and constructed. Along with design and construction, operation and maintenance of the built facility is also gaining importance in the Architecture-Engineering-Construction industry. Facility management (FM) is widely adopted by industrial, healthcare and other types of commercial facilities for better maintenance and management of assets. BIM is being adopted in the field of Facility management and has become one of the most important tools for better application of operation and maintenance. Facility management is performed by professionals with training and experience in the related fields of building operation, maintenance, upgrade and repair. BIM is a professional tool which requires intense training and knowledge. This tool cannot be used and is hard to understand for non-professionals and people who do not have training to use it. Management of residences is as important as management of commercial, industrial and healthcare facilities for the life and smooth running of such facilities. Residential facilities are properties with one or more residential units or buildings. These buildings could be low rise, high rise or individual units. This thesis will help in analyzing the scope of using BIM and Application Programming Interface (API) for management of maintenance in residences by the owner who are not professionally trained. The research analyzes a single, basic function of a BIM tool to determine the potential for such a tool to help non-expert, first time user to be able to understand their residential facilities maintenance requirements. It is an attempt to propose a system which provides alerts to the owners regarding required maintenance and which shows the location of the work in a 3D model. The system was designed and tested in Microsoft Windows 7 operating system by using Autodesk Revit building information software to make the 3D model, a Revit API plug-in to craft the alerts and show the location of work and Open Database Connectivity (ODBC) to export the model to a web browser. The system worked through Revit program, but the concept of applying the system to work through web browser failed.

Madhani, Himanshu 1986-

2012-12-01T23:59:59.000Z

272

Better Buildings Summit  

NLE Websites -- All DOE Office Websites (Extended Search)

EERE Home | Programs & Offices | Consumer Information EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Summit Recognition photo with Kristen Taddonio and Kathleen Hogan Recognition photo with Kristen Taddonio and Kathleen Hogan Recognition photo with Kristen Taddonio and Kathleen Hogan Save the Date! DOE Better Buildings Summit May 7-May 9, 2014 Washington, D.C. The U.S. Department of Energy (DOE) is holding a national Summit to catalyze investment in energy efficiency across the public, private, commercial, industrial, and multifamily sectors. We look forward to recognizing leaders and highlighting innovative market solutions and best practices. Registration will be opening in February 2014. See what attendees had to say about last year's event: "I was very impressed with the amount of practical information that was

273

DOE Solar Decathlon: 2009 Building Industry Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

workshop addresses an array of energy-efficient lighting options, focusing on light-emitting diode (LED) lamps and compact fluorescent lamps. (PDF 3.7 MB) LEED for Homes: Green...

274

Comparison of National Programs for Industrial Energy Efficiency: Industry Brief  

Science Conference Proceedings (OSTI)

This report looks at the Better Buildings, Better Plants program from the Department of Energy; E3, an initiative of five U.S. federal agencies; ENERGY STAR for Industry from the Environmental Protection Agency; and Superior Energy Performance, a product of the U.S. Council for Energy-Efficient Manufacturing. By comparing the goals of several energy-efficiency programs that have been established to support industry, this report hopes to help industrial facilities find the right fit for their own ...

2013-02-25T23:59:59.000Z

275

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

276

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

277

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

278

Better Buildings Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge Better Buildings Challenge Better Buildings Challenge Better Buildings Challenge: Leadership, Transparency and Results Read more Partners Recognized at Industrial Energy Technology Conference Read more Jones Lang LaSalle's Showcase Project: Moscone Convention Center Read more Portland Public Schools' Showcase Project: Benson Polytechnic High School Read more Delaware's Showcase Project: Carvel State Office Building Read more Challenge Partners & Allies Represent 2 Billion Square Feet Committed $2 Billion in Financing through Allies 300+ Manufacturing Facilities Highlights Program Expansion: Multifamily Residential Better Buildings Challenge: Progress Update - Spring 2013 Partner Solutions: Implementation Models Partner Progress Against Energy Performance Goals Demonstrating Results: Showcase Projects

279

Handbook of energy use for building construction  

Science Conference Proceedings (OSTI)

The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

1980-03-01T23:59:59.000Z

280

Manage energy use in manufacturing | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve building and plant performance Improve building and plant performance » Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Commercial Building Partnership Opportunities with the Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Partnership Opportunities with the Department Building Partnership Opportunities with the Department of Energy Commercial Building Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Better Buildings Challenge Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020.

282

Resources on Sustainable Buildings and Campuses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources on Resources on Sustainable Buildings and Campuses Resources on Sustainable Buildings and Campuses October 4, 2013 - 5:04pm Addthis Building Technology Office Resources The Building Technology Office offers useful resources to plan and implement energy-efficiency projects. Building Energy Software Tools Directory Buildings Performance Database Energy Modeling Software Better Buildings Alliance Webinars Hospital Energy Alliance Videos Solid-State Lighting Technology Fact Sheets Many helpful resources about sustainable buildings and campuses are available. Also see Case Studies and Contacts. Federal Requirements and Programs Buildings Technologies Program: A U.S. Department of Energy (DOE) program that leads a vast network of research and industry partners to continually

283

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

284

Build Your Business with ENERGY STAR | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Build Your Business with ENERGY STAR Build Your Business with ENERGY STAR Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

285

DataTrends: Energy Use in Office Buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Buildings Office Buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

286

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

287

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

288

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

289

Building Technologies Office: Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter Newsletter Sign up for the BTO Newsletter Sign up for the BTO Newsletter Around the Building Technologies Office - May Connect with the Building Technologies Office (BTO) information that interests you-program events and news, financial opportunities, and industry events. Upcoming BTO Webinars: Whole-Building Energy Modeling: Reducing Modeling Time with the OpenStudio 0.8 User Interface and the Building Component Library When: Thursday, June 28, 2012, 12:00-1:30 p.m. ET View the webinar materials. Description: The webinar will outline recent improvements to NREL and DOE's free open-platform energy modeling software, OpenStudio. This webinar will preview OpenStudio version 0.8, which features integration with the Building Component Library, an on-line repository of reusable components for rapid and consistent energy modeling. The presenters will demonstrate a complete and easy-to-use modeling workflow using the OpenStudio SketchUp Plug-in and the stand-alone OpenStudio application.

290

Berkeley Lab to Help Build Straw Bale Building  

DOE Green Energy (OSTI)

The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

Worsham, S.A.; Van Mechelen, G.

1998-12-01T23:59:59.000Z

291

Building America Research Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tools Tools Building America Research Tools Building America provides technical tools to support researchers and building industry professionals in ensuring consistent research results for new and existing homes. The following resources can be used to evaluate optimal building designs, access performance and cost data, execute field tests, and track research progress. Image is a rendering of a two-story residential building with an entrance on the front. To the right of this building is another large building shaded in gray, and to the left is a smaller structure shaded in gray. Building Energy Optimization Software (BEopt): This software provides capabilities to evaluate residential building designs and identify cost-optimal efficiency packages at various levels of whole-house energy

292

Trends in Commercial Buildings--Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial > Commercial Buildings Home > Special Home > Commercial > Commercial Buildings Home > Special Reports > Trends in Commercial Buildings Trends: Buildings and Floorspace Energy Consumption and Energy Sources Overview: The Commercial Buildings Energy Consumption Survey (CBECS) Trends in the Commercial Buildings Sector Since 1978, the Energy Information Administration has collected basic statistical information from three of the major end-use sectors— residential, and industrial— periodic energy consumption surveys. Each survey is a snapshot of how energy is used in the year of the survey; the series of surveys in each sector reveals the trends in energy use for the sector. Introduction The Commercial Buildings Energy Consumption Survey (CBECS) collects data from a sample of buildings representative of the commercial buildings

293

High Performance Buildings Database  

DOE Data Explorer (OSTI)

The High Performance Buildings Database is a shared resource for the building industry. The Database, developed by the U.S. Department of Energy and the National Renewable Energy Laboratory (NREL), is a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The Database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses.

The Database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site. Early partners using the database include:

  • The Federal Energy Management Program
  • The U.S. Green Building Council
  • The American Institute of Architects' Committee on the Environment
  • The Massachusetts Technology Collaborative
  • Efficiency Vermont
    • Copied (then edited) from http://eere.buildinggreen.com/partnering.cfm

294

Lincoln County- LEED-Certified Building Incentive Program (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

Lincoln county is providing an incentive for the construction of certified green buildings in the commercial and industrial sector. Only newly constructed buildings are eligible, and they must have...

295

Buildings News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independence Avenue, SW Washington, DC 20585 en New Energy Dept., Berkeley Lab Report on Energy Service Company Industry Growth http:energy.govarticlesnew-energy-dept-berkeley...

296

Building Technologies Office: Building America Research for the American  

NLE Websites -- All DOE Office Websites (Extended Search)

for the American Home for the American Home The U.S. Department of Energy's (DOE) Building America program is helping to engineer American homes for better energy performance, durability, quality, affordability, and comfort. Loading the player ... Watch the video to learn more about how DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient. View the text version of the audio. Building America is a cost-shared industry partnership research program working with national laboratories and building science research teams to accelerate the development and adoption of advanced building energy technologies and practices in new and existing homes. The program works closely with industry partners to develop innovative, real-world solutions that achieve significant energy and cost savings for homeowners, builders, and contractors. Research is conducted on individual measures and systems, test houses, and community-scale housing in order to validate the reliability, cost-effectiveness, and marketability of technologies in new construction and home improvement projects. Find expert building science information based on Building America research in the Solution Center.

297

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Former User Group Chair Enthusiastic About Relevance of Neutron Scattering Former User Group Chair Enthusiastic About Relevance of Neutron Scattering to Industrial Research Former User Group Chair Mike Crawford Mike Crawford, DuPont Research and Development. The drive is intensifying to encourage research partnerships between Neutron Sciences and private industry. Such partnerships, a long-term strategic goal set by the DOE's Basic Energy Sciences Advisory Committee, will deliver industry and its technological problems to SNS and HFIR, where joint laboratory-industry teams can use the unparalleled resources available here to resolve them. "SNS is a tremendous facility. It has the potential to have a couple of thousand user visits a year and, if they build another target station in the future, you're probably talking about 4000 user visits a year,"

298

Low-energy Passive Solar Residence in Austin, Texas  

E-Print Network (OSTI)

From the various studies, it can be concluded that the excessive summer heating and the humidity are one of the major problems of the hot, humid climatic region. The literature review for this study shows that natural ventilation alone cannot meet year long optimum indoor comfort in buildings. This research, through a design exercise, intends to verify whether a naturally ventilated house, in hot humid region of Austin, TX, can enhance its passive cooling potential through double?walled wind catcher and solar chimney. In this research, a passive solar residence has been designed. Two designs have been explored on the chosen site: a basecase design without the wind catcher and solar chimney and another design with wind catcher and solar chimney. In the designcase, the placement of the wind catcher and the solar chimney has been designed so that a thermal siphon of airflow inside the building can be created. The design might show that there will be a natural airflow during the time of the year when natural wind does not flow. Moreover, the double walled wind catcher will resist the cool winter wind due to its shape and orientation. In the design, the placement of the wind catcher and the solar chimney has been done so that a thermal siphon inside the building can be created. Therefore, inside the home, there will be a natural airflow during the time of the year when natural wind does not flow. The double walled wind catcher has been designed and placed according to the orientation of the building in order to achieve the optimum wind flow throughout the year. The solar chimney has been placed in a certain part of the building where it can get maximum solar exposure. By comparing two cases, it can be clearly said that there will some kind of changed indoor comfort level. Since the potential of the design has been judged through perception, a computational fluid dynamics simulation analysis for a year is to be done.

Sau, Arunabha

2010-08-01T23:59:59.000Z

299

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

300

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

302

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

303

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

304

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

305

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

306

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

307

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

308

Advantages of a Three-Year Residency  

E-Print Network (OSTI)

resident is still in a training program. On balance, givenyear to three-year training programs, there is no data toIn most four-year training programs, the supervision of

Langdorf, Mark; Lotfipour, Shahram

2004-01-01T23:59:59.000Z

309

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Energy Management in Industry. Centre for the Analysis andEnergy Efficiency. Canadian Industry Program for Energyefficiency lighting in Industry and Commercial Buildings.

Neelis, Maarten

2008-01-01T23:59:59.000Z

310

Building Technologies Office: Notice of Public Meeting on Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Notice of Public Notice of Public Meeting on Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment to someone by E-mail Share Building Technologies Office: Notice of Public Meeting on Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment on Facebook Tweet about Building Technologies Office: Notice of Public Meeting on Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment on Twitter Bookmark Building Technologies Office: Notice of Public Meeting on Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment on Google Bookmark Building Technologies Office: Notice of Public Meeting on Energy Conservation Program for Consumer Products and Commercial and

311

Building Technologies Office: Critical Guidance for Peak Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Effective, Low-Cost, Whole-Building Ventilation for Existing Homes Combustion Safety in Tight Houses An Overview of Gas Industry Research on Combustion Safety Model-based...

312

ENERGY STAR Score for Warehouses | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product...

313

Partner with ENERGY STAR | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product...

314

ENERGY STAR Score for Worship Facilities | ENERGY STAR Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product...

315

ENERGY STAR Score for Hotels | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product...

316

ENERGY STAR Score for Senior Care Communities | ENERGY STAR Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product...

317

ENERGY STAR Score for K-12 Schools | ENERGY STAR Buildings &...  

NLE Websites -- All DOE Office Websites (Extended Search)

Schools Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy...

318

Building Energy Software Tools Directory: ModEn  

NLE Websites -- All DOE Office Websites (Extended Search)

hierarchy, starting from heat-moisture transfer processes in building envelopes up to HVAC systems of large enterprises, residential and industrial zones. ModEn simulation...

319

Augmented Reality Building Operations Tool - Energy Innovation Portal  

In the United States, residential and commercial buildings together use more energy and emit more carbon dioxide than either the industrial or transportation section.

320

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)  

SciTech Connect

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

Not Available

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ENERGY STAR Building Upgrade Manual Chapter 3: Investment Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: Investment Analysis Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

322

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)  

SciTech Connect

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

2012-09-01T23:59:59.000Z

323

City of Asheville - Building Permit Fee Waiver | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Asheville - Building Permit Fee Waiver City of Asheville - Building Permit Fee Waiver City of Asheville - Building Permit Fee Waiver < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Program Info Start Date 7/01/2009 State North Carolina Program Type Green Building Incentive Provider Building Safety Department The City of Asheville waives fees for building permits and plan reviews for certain renewable energy technologies and green building certifications for homes and mixed-use commercial buildings. Waivers for building permit fees may apply to residences with the following designations (the regular fee is in parentheses): * HealthyBuilt Home Certification* ($100) * Energy Star Rating ($100) * Geothermal heat pumps ($50)

324

Improving the Energy Efficiency of Residential Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Improving the Energy Efficiency of Residential Buildings Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development Conduct research that focuses on engineering solutions to design, test, and

325

San Bernardino County - Green Building Requirement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bernardino County - Green Building Requirement Bernardino County - Green Building Requirement San Bernardino County - Green Building Requirement < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Energy Standards for Public Buildings In August 2007, the San Bernardino County Board of Supervisors approved a policy requiring that all new county buildings and major renovations be built to LEED Silver standards. The decision was part of the Green County San Bernardino project, which also includes incentives to encourage residents, builders, and businesses to adopt more sustainable practices. Source http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CA73R

326

Variability in Ultrasound Education among Emergency Medicine Residencies  

E-Print Network (OSTI)

the responding programs offer training in 13 applications.of residency training; however, only 15 programs respondedemergency ultrasound training or how residency programs have

Ahern, Matthew; Mallin, Michael P; Weitzel, Scott; Madsen, Troy; Hunt, Pat

2010-01-01T23:59:59.000Z

327

Management Training for Pathology Residents: A Regional Approach  

E-Print Network (OSTI)

Most residency training programs do not have faculty membersdidactic management training program for the residents fromdue burden on any single training program. Methods. Faculty

Wagar, E A

2004-01-01T23:59:59.000Z

328

Does the Air-Conditioning Engineering Rubric Work in Residences...  

NLE Websites -- All DOE Office Websites (Extended Search)

Does the Air-Conditioning Engineering Rubric Work in Residences? Title Does the Air-Conditioning Engineering Rubric Work in Residences? Publication Type Conference Paper LBNL...

329

Management Training for Pathology Residents: A Regional Approach  

E-Print Network (OSTI)

Mentor based management training. Am J Clin Pathol. 1997:WH, Healy JC. Informatics training in pathology residencyJanuary 2004 Management Training for Pathology Residents

Wagar, E A

2004-01-01T23:59:59.000Z

330

A Survey of Graduating Emergency Medicine Residents Experience with Cricothyrotomy  

E-Print Network (OSTI)

Residency Review Committee (RRC) for EM stipulates that aFor this reason, the RRC for EM requires each resident to

Makowski, Andrew L.

2013-01-01T23:59:59.000Z

331

Building design guidance and resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

4: Design to be energy efficient 4: Design to be energy efficient » Building design guidance and resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Why you should design to earn the ENERGY STAR Follow EPA's step-by-step process Step 1: Assemble a team Step 2: Set an energy performance target Step 3: Evaluate your target using ENERGY STAR tools Step 4: Design to be energy efficient

332

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Technical Update Meeting 2013 Technical Update Meeting The U.S. Department of Energy (DOE) Building America program held its fourth annual Technical Update meeting on April 29-30, 2013, in Denver, Colorado. This meeting showcased world-class building science expertise for high performance homes in a dynamic format that addressed eight key critical questions facing the building industry today. This Technical Update Meeting combined expert presentations, panel discussions, and audience participation to update the industry on the latest technologies and practices. View the meeting presentations below, which are available as Adobe Acrobat PDFs. The meeting summary report will be available soon. You can also view the complete webinar recordings for Day 1 (WMV 102 MB) and Day 2 (WMV 93 MB).

333

Building America Update - May 9, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 9, 2013 May 9, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. View Sessions from Building America 2013 Technical Update Meeting The Building America program held its 4 th annual Technical Update meeting on April 29-30, 2013, in Denver, Colorado. The meeting showcased Building America's world-class building science expertise for high performance homes, and focused on eight critical questions facing the building industry today, such as: * How Do We Retrofit the Tough Buildings? * What are the Best Off-the-Shelf HVAC Solutions for Low-Load, High-Performance Homes and Apartments?

334

Sustainable Building Case Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Studies Case Studies Sustainable Building Case Studies October 4, 2013 - 4:58pm Addthis These case studies feature examples of sustainably designed buildings and facilities from Federal agencies and industry. High Performance Federal Buildings Database The High Performance Federal Buildings database presents a sampling of sustainable buildings projects in the Federal Government. This database taps into the existing U.S. Department of Energy High Performance Buildings database, showcasing only Federal case study examples. Third-Party Certification ENERGY STAR for Federal Agencies: A site that provides access to the ENERGY STAR Portfolio Manager, the Federal High Performance Sustainable Buildings Checklist, and ENERGY STAR qualified products, and much more. Green Globes: A Web-based program from the Green Building Initiative for

335

Sustainable Building Case Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Studies Case Studies Sustainable Building Case Studies October 4, 2013 - 4:58pm Addthis These case studies feature examples of sustainably designed buildings and facilities from Federal agencies and industry. High Performance Federal Buildings Database The High Performance Federal Buildings database presents a sampling of sustainable buildings projects in the Federal Government. This database taps into the existing U.S. Department of Energy High Performance Buildings database, showcasing only Federal case study examples. Third-Party Certification ENERGY STAR for Federal Agencies: A site that provides access to the ENERGY STAR Portfolio Manager, the Federal High Performance Sustainable Buildings Checklist, and ENERGY STAR qualified products, and much more. Green Globes: A Web-based program from the Green Building Initiative for

336

Building Envelope Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Envelope Research Building Envelope Research Building Envelope Research The Emerging Technology team conducts research into technologies and processes related to the building envelope. The goal of these efforts is to help reduce the amount of energy used in the building envelope by 20% compared to 2010 levels. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst in developing new materials, coatings, and systems designed to improve energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building that's under construction. Building foundation insulation systems can help improve energy efficiency, but are affected by variables that can be hard to detect, such moisture.

337

Home | Buildings Technology & Urban Systems Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Buildings & Urban Systems Buildings Lab Buildings & Urban Systems Buildings Technology & Urban Systems Department Search Search Home About Us Groups Tools & Guides Facilities Publications News Links Contact Us Staff The Building Technology and Urban Systems Department (BTUS) works closely with industry to develop technologies for buildings that increase energy efficiency, and improve the comfort, health, and safety of building occupants. Berkeley Lab Hosts 5 Emerging Leaders During TechWomen 2013 As part of TechWomen 2013, emerging leaders from around the world toured a number of scientific facilities in the Bay Area, including the Advanced Light Source at Berkeley Lab. Pho Read More The Retrocommissioning Sensor Suitcase Brings Energy Efficiency to Small Commercial Buildings The data module communicates wirelessly with the smart pad, which launches

338

Buildings and Climate Change | Open Energy Information  

Open Energy Info (EERE)

Buildings and Climate Change Buildings and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Buildings and Climate Change Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policies/deployment programs, Pathways analysis Resource Type: Publications, Lessons learned/best practices Website: www.unep.org/sbci/pdfs/SBCI-BCCSummary.pdf Buildings and Climate Change Screenshot References: Buildings and Climate Change[1] "This report - Buildings & Climate Change: A Summary for Decision-makers draws together the findings of three years of research by UNEP's Sustainable Buildings & Climate Initiative (SBCI) and it's partners. It sets out priority actions that can be taken by policy makers and industry

339

Building technologies program. 1995 annual report  

SciTech Connect

The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

Selkowitz, S.E.

1996-05-01T23:59:59.000Z

340

Photovoltaics for Buildings: Key Issues in Pursuit of Market Readiness  

SciTech Connect

The photovoltaic (PV) industry is rapidly beginning to recognize the market potential of the buildings sector. New PV-for-buildings products have recently become commercially available, and numerous products that are under development will be introduced within the next 5 years. To ensure that these new products will be adopted and used in common building practices, the PV industry should recognize and address important buildings industry issues. These issues include building codes and standards, after-market servicing, education, and warranties and insurance policies. Photovoltaic systems are also still very expensive. The simplest method for increasing their value for a building is to decrease the building's electrical loads through energy efficiency and conservation. Meeting these goals can only be accomplished through partnerships with the U.S. Department of Energy (DOE), private industry, and public institutions.

Hayter, S. J.

1998-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Photovoltaics for Buildings: Key Issues in Pursuit of Market Readiness  

DOE Green Energy (OSTI)

The photovoltaic (PV) industry is rapidly beginning to recognize the market potential of the buildings sector. New PV-for-buildings products have recently become commercially available, and numerous products that are under development will be introduced within the next 5 years. To ensure that these new products will be adopted and used in common building practices, the PV industry should recognize and address important buildings industry issues. These issues include building codes and standards, after-market servicing, education, and warranties and insurance policies. Photovoltaic systems are also still very expensive. The simplest method for increasing their value for a building is to decrease the building's electrical loads through energy efficiency and conservation. Meeting these goals can only be accomplished through partnerships with the U.S. Department of Energy (DOE), private industry, and public institutions.

Hayter, S. J.

1998-10-31T23:59:59.000Z

342

Industrial Applications  

Science Conference Proceedings (OSTI)

Table 2   Frequently used rubber linings in other industries...Application Lining Power industry Scrubber towers Blended chlorobutyl Limestone slurry tanks Blended chlorobutyl Slurry piping Blended chlorobutyl 60 Shore A hardness natural rubber Seawater cooling water

343

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Measured Performance of Building Integrated Photovoltaic Panels. Round 2. Measured Performance of Building Integrated Photovoltaic Panels. ...

344

Industries Affected  

Science Conference Proceedings (OSTI)

Table 2   Industries affected by microbiologically influenced corrosion...generation: nuclear, hydro, fossil fuel,

345

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Fan Efficiency Residential Fan Efficiency 2012 IECC Over the past several code cycles, mechanical ventilation requirements have been added to ensure adequate outside air is provided for ventilation whenever residences are occupied. These ventilation requirements can be found in the International Residential Code for homes and the International Mechanical Code for dwelling units in multifamily buildings. As a result of the new ventilation requirements, fans designated for whole-house ventilation will have many more operating hours than bathroom or kitchen exhaust fans that are temporarily operated to remove local humidity or odors. Earlier ventilation practices relied on infiltration or operable windows as the primary source of ventilation air. Homes and

346

Results of the 2005-2008 Association of Residents in Radiation Oncology Survey of Chief Residents in the United States: Clinical Training and Resident Working Conditions  

Science Conference Proceedings (OSTI)

Purpose: To document clinical training and resident working conditions reported by chief residents during their residency. Methods and Materials: During the academic years 2005 to 2006, 2006 to 2007, and 2007 to 2008, the Association of Residents in Radiation Oncology conducted a nationwide survey of all radiation oncology chief residents in the United States. Chi-square statistics were used to assess changes in clinical training and resident working conditions over time. Results: Surveys were completed by representatives from 55 programs (response rate, 71.4%) in 2005 to 2006, 60 programs (75.9%) in 2006 to 2007, and 74 programs (93.7%) in 2007 to 2008. Nearly all chief residents reported receiving adequate clinical experience in commonly treated disease sites, such as breast and genitourinary malignancies; and commonly performed procedures, such as three-dimensional conformal radiotherapy and intensity-modulated radiotherapy. Clinical experience in extracranial stereotactic radiotherapy increased over time (p capital costs, such as particle beam therapy and intraoperative radiotherapy, and infrequent clinical use, such as head and neck brachytherapy, were limited to a minority of institutions. Most residency programs associated with at least one satellite facility have incorporated resident rotations into their clinical training, and the majority of residents at these programs find them valuable experiences. The majority of residents reported working 60 or fewer hours per week on required clinical duties. Conclusions: Trends in clinical training and resident working conditions over 3 years are documented to allow residents and program directors to assess their residency training.

Gondi, Vinai, E-mail: gondi@humonc.wisc.edu [Department of Radiation Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, Wisconsin (United States); Bernard, Johnny Ray [Mayo Clinic Jacksonville, Jacksonville, Florida (United States); Jabbari, Siavash [University of California San Francisco, San Francisco, California (United States); Keam, Jennifer [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Amorim Bernstein, Karen L. de [Albert Einstein College of Medicine, Bronx, New York (United States); Dad, Luqman K. [SUNY Roswell Park Cancer Institute, Buffalo, New York (United States); Li, Linna [Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Poppe, Matthew M. [University of Utah Huntsman Cancer Hospital (United States); Strauss, Jonathan B. [Northwestern University Feinberg School of Medicine, Chicago, Illinois (United States); Chollet, Casey T. [Loyola University Medical Center, Maywood, Illinois (United States)

2011-11-15T23:59:59.000Z

347

Model interoperability in building information modelling  

Science Conference Proceedings (OSTI)

The exchange of design models in the design and construction industry is evolving away from 2-dimensional computer-aided design (CAD) and paper towards semantically-rich 3-dimensional digital models. This approach, known as Building Information Modelling ... Keywords: Building Information Modelling, Interoperability

Jim Steel; Robin Drogemuller; Bianca Toth

2012-02-01T23:59:59.000Z

348

Standard Interfaces for Smart Building Integration  

Science Conference Proceedings (OSTI)

Electricity systems in the United States are changing to accommodate increasing levels of distributed energy resources and demand responsive loads. Commercial buildings are positioned to play a central role in this change. With advances in energy generation and storage technologies, process management, and controls, commercial buildings are increasingly able to provide a range of grid supportive functions. This trend builds upon decades of experience in which the utility industry has provided ...

2012-12-17T23:59:59.000Z

349

Commercial Building Partners Catalyze High Performance Buildings Across the Nation  

SciTech Connect

In 2008 the US Department of Energy (DOE) launched the Commercial Buildings Partnership (CBP) project to accelerate market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The CBP represents a unique collaboration between industry leaders and DOE to develop high performance buildings as a model for future construction and renovation. CBP was implemented in two stages. This paper focuses on lessons learned at Pacific Northwest National Laboratory (PNNL) in the first stage and discusses some partner insights from the second stage. In the first stage, PNNL and the National Renewable Energy Laboratory recruited CBP partners that own large portfolios of buildings. The labs provide assistance to the partners' design teams and make a business case for energy investments.

Baechler, Michael C.; Dillon, Heather E.; Bartlett, Rosemarie

2012-08-01T23:59:59.000Z

350

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

351

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

352

Establishing a Residence for a Relocation Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 4, 2010 MEMORANDUM FOR HUMAN RESOURCES DIRECTORS c:::::::;...-~ l-- -- FROM: SARAH J. ILLA, DIRECTOR OFFICE OF MAN CAPITAL MANAGEMENT OFFICE OF THE CHIEF HUMAN CAPITAL OFFICER SUBJECT: POLICY GUIDANCE MEMORANDUM #14: ESTABLISHING A RESIDENCE FOR A RELOCATION INCENTIVE An employee who is relocating to a new commuting area must establish a temporary or permanent residence before s/he is eligible for a payment of a relocation incentive. Neither OPM's regulations or guidance nor GSA's Federal Travel Regulation address this issue. DOE guidance is as follows. This guidance will be incorporated in the DOE Handbook on Recruitment and Retention Incentives as an appendix during the next update. Temporary Residence. a. For a temporary change of station (TeS) of at least 6 months, but not more than 30

353

ENERGY STAR Challenge for Industry: Participant Handbook | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Participant Handbook Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

354

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

building solar panels and wind turbines; constructing fuel-that the fortunes of wind turbine manufacturers are relatedThe wind industry value chain Wind turbine manufacturing and

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

355

Snohomish County PUD No 1 - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Custom incentives are paid based on the amount of electricity saved. Commercial, industrial, school, non-profit, or governmental buildings in Snohomish County can be...

356

Philadelphia Gas Works - Commercial and Industrial EnergySense...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

incentives of up to 75,000 to commercial and industrial rate customers who make energy efficiency improvements to existing buildings. Incentives are awarded to projects...

357

President Obama Announces Major Initiative to Spur Biofuels Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

everyone." "By building a national biofuels industry, we are creating construction jobs, refinery jobs and economic opportunity in rural communities throughout the country," said...

358

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Glossary The following is a compilation of building energy-code related terms and acronyms used on the Building Energy Codes website and throughout the building construction industry. Select a letter to navigate through the glossary: Filter A (25) B (22) C (41) D (27) E (27) F (15) G (12) H (21) I (20) K (5) L (11) M (16) N (15) O (11) P (21) R (22) S (37) T (14) U (12) V (11) W (10) Z (1) AAMA Architectural Aluminum Manufacturers Association. Above-Grade Wall A wall that is not a below-grade wall. Above-Grade Walls Those walls (Section 802.2.1) on the exterior of the building and

359

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

360

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

362

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

363

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

364

Portfolio Manager | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools and resources Tools and resources » Portfolio Manager Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

365

Recognition | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Recognition Recognition Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

366

Financial resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools and resources Tools and resources » Financial resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

367

Retail resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Retail resources Retail resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

368

Technical documentation | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical documentation Technical documentation Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

369

Success stories | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Success stories Success stories Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

370

Communications resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools and resources Tools and resources » Communications resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

371

Training | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Training Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training Facility owners and managers Service providers Energy efficiency program administrators Tools and resources Training Training EPA offers training on a range of energy efficiency topics - from the ins and outs of Portfolio Manager to guidance on improving the energy performance of your buildings and plants. And that's all with no travel,

372

Portfolio Manager | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Manager Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

373

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

374

Energy use in office buildings  

SciTech Connect

This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

None

1980-10-01T23:59:59.000Z

375

Benchmarking Buildings to Prioritize Sites for Emissions Analysis |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis October 7, 2013 - 10:54am Addthis YOU ARE HERE Step 2 When actual energy use by building type is known, benchmarking the performance of those buildings to industry averages can help establish those with greatest opportunities for GHG reduction. Energy intensity can be used as a basis for benchmarking by building type and can be calculated using actual energy use, representative buildings, or available average estimates from agency energy records. Energy intensity should be compared to industry averages, such as the Commercial Buildings Energy Consumption Survey (CBECS) or an agency specific metered sample by location. When a program has access to metered data or representative building data,

376

Building information modeling: the Web3D application for AEC  

Science Conference Proceedings (OSTI)

There is currently a dramatic shift in the Architecture, Engineering, and Construction (AEC) industry to embrace Building Information Modeling (BIM) as a tool that can assist in integrating the fragmented industry by eliminating inefficiencies and redundancies, ... Keywords: BIM, IFC, Web3D, X3D, architecture, building information modeling, construction, engineering, visualization

Dace A. Campbell

2007-04-01T23:59:59.000Z

377

2009 Canadian Radiation Oncology Resident Survey  

SciTech Connect

Purpose: Statistics from the Canadian post-MD education registry show that numbers of Canadian radiation oncology (RO) trainees have risen from 62 in 1999 to approximately 150 per year between 2003 and 2009, contributing to the current perceived downturn in employment opportunities for radiation oncologists in Canada. When last surveyed in 2003, Canadian RO residents identified job availability as their main concern. Our objective was to survey current Canadian RO residents on their training and career plans. Methods and Materials: Trainees from the 13 Canadian residency programs using the national matching service were sought. Potential respondents were identified through individual program directors or chief resident and were e-mailed a secure link to an online survey. Descriptive statistics were used to report responses. Results: The eligible response rate was 53% (83/156). Similar to the 2003 survey, respondents generally expressed high satisfaction with their programs and specialty. The most frequently expressed perceived weakness in their training differed from 2003, with 46.5% of current respondents feeling unprepared to enter the job market. 72% plan on pursuing a postresidency fellowship. Most respondents intend to practice in Canada. Fewer than 20% of respondents believe that there is a strong demand for radiation oncologists in Canada. Conclusions: Respondents to the current survey expressed significant satisfaction with their career choice and training program. However, differences exist compared with the 2003 survey, including the current perceived lack of demand for radiation oncologists in Canada.

Debenham, Brock, E-mail: debenham@ualberta.net [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada); Banerjee, Robyn [Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Fairchild, Alysa; Dundas, George [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada); Trotter, Theresa [Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Yee, Don [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada)

2012-03-15T23:59:59.000Z

378

High Tech and Industrial Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Tech and Industrial Systems Group High Tech and Industrial Systems Group Some of the largest energy users in today's economy are high tech buildings and industrial systems. They operate up to 24 hours per day with energy intensities much greater than typical commercial or residential buildings, and they are essential to the national economy. High-tech buildings, such as laboratories, cleanrooms, data centers, and hospitals, are characterized by large base-loads, continuous operation, and high energy-use intensities. These buildings crosscut many industries and institutions. Group activities and products include: benchmarking surveys and metrics, case study reports, technology development, technology demonstrations, assessment and profiling tools, best practice guides, workshops, training guides, and development of other strategies.

379

Building America Meetings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meetings Meetings Building America Meetings Photo of people watching a presentation on a screen the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 Building America 2012 Technical Update Meeting: July 2012

380

Building Efficiency Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Efficiency Report Building Efficiency Report Building Efficiency Report Buildings use 40% of total energy in the United States - more than either the industrial or transportation sectors. Technical improvements and cost reductions (see Appendix 3) in building materials, components and energy management systems are enabling progress in reducing the nation's energy consumption and consequent greenhouse gas emissions with payback periods as low as 24 months. With responsibility and funding for the nation's largest set of building energy-related research, development and deployment programs, the Department of Energy (DOE) should lead efforts to ensure building energy efficiency is a national priority. One of the most important things DOE can do to reduce the country's energy use and dependence on fossil fuels is to actively lead the national

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Efficiency Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Efficiency Report Building Efficiency Report Building Efficiency Report Buildings use 40% of total energy in the United States - more than either the industrial or transportation sectors. Technical improvements and cost reductions (see Appendix 3) in building materials, components and energy management systems are enabling progress in reducing the nation's energy consumption and consequent greenhouse gas emissions with payback periods as low as 24 months. With responsibility and funding for the nation's largest set of building energy-related research, development and deployment programs, the Department of Energy (DOE) should lead efforts to ensure building energy efficiency is a national priority. One of the most important things DOE can do to reduce the country's energy use and dependence on fossil fuels is to actively lead the national

382

Commercial Building Performance Monitoring and Evaluation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Projects » Commercial Building Research Projects » Commercial Building Performance Monitoring and Evaluation Commercial Building Performance Monitoring and Evaluation The Building Technologies Office (BTO) uses performance metrics to standardize the measurement and characterization of energy performance in commercial buildings. These metrics help inform the effectiveness of energy efficiency measures in existing buildings and highlight opportunities to improve performance. Various tiers of metrics are available for different users. Performance Metrics Objectives Performance metrics deal with building energy consumption and on-site energy production. To be useful, industry must agree on standard definitions for these metrics and share consistent procedures for collecting and reporting data as well as ensuring data quality.

383

Industry @ ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

384

Upgrade energy building standards and develop rating system for existing low-income housing  

SciTech Connect

The city of Memphis Division of Housing and Community Development (HCD) receives grant funding each year from the U.S. Department of Housing and Urban Development (HUD) to provide local housing assistance to low-income residents. Through the years, HCD has found that many of the program recipients have had difficulty in managing their households, particularly in meeting monthly financial obligations. One of the major operating costs to low-income households is the utility bill. Furthermore, HCD`s experience has revealed that many low-income residents are simply unaware of ways to reduce their utility bill. Most of the HCD funds are distributed to low-income persons as grants or no/low interest loans for the construction or rehabilitation of single-family dwellings. With these funds, HCD builds 80 to 100 new houses and renovates about 500 homes each year. Houses constructed or renovated by HCD must meet HUD`s minimum energy efficiency standards. While these minimum standards are more than adequate to meet local building codes, they are not as aggressive as the energy efficiency standards being promoted by the national utility organizations and the home building industry. Memphis Light, Gas and Water (MLGW), a city-owned utility, has developed an award-winning program named Comfort Plus which promotes energy efficiency{open_quote} in new residential construction. Under Comfort Plus, MLGW models house plans on computer for a fee and recommends cost-effective alterations which improve the energy efficiency of the house. If the builder agrees to include these recommendations, MLGW will certify the house and guarantee a maximum annual heating/cooling bill for two years. While the Comfort Plus program has received recognition in the new construction market, it does not address the existing housing stock.

Muller, D.; Norville, C. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

1993-07-01T23:59:59.000Z

385

Commercial Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and...

386

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

387

48 the building is.  

U.S. Energy Information Administration (EIA)

48 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

388

59 the building is.  

U.S. Energy Information Administration (EIA)

59 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

389

83 the building is.  

U.S. Energy Information Administration (EIA)

83 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

390

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

391

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Events on Twitter Bookmark Building Technologies Office: Events on Google Bookmark Building Technologies Office: Events on Delicious Rank Building Technologies...

392

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

393

MORNINGSIDE An informational newsletter for residents  

E-Print Network (OSTI)

residential buildings on the Morningside campus to using natural gas as the primary fuel source for heat delivery trucks--will cut the University's greenhouse gas emissions and result in a more efficient heating of these buildings the boilers will be converted or replaced so that they can operate on natu- ral gas; the gas

Qian, Ning

394

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

395

Better Buildings Neighborhood Program: Better Buildings Partners...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Partners Gather to Plan for the Future to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners Gather to Plan for the Future...

396

Building technolgies program. 1994 annual report  

SciTech Connect

The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effective solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.

Selkowitz, S.E.

1995-04-01T23:59:59.000Z

397

Building Technologies Office: Residential Energy Efficiency Stakeholder  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Stakeholder Meeting - Spring 2012 Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming technical challenges and delivering Building America research results to the market. Learn more about the STCs and the research planning process.

398

Building Green in Greensburg: Prairie Pointe Townhomes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prairie Pointe Townhomes Prairie Pointe Townhomes After a tornado destroyed most of Greensburg, Kansas, in 2007, the residents needed affordable housing. Prairie Pointe Townhomes is a low-income rental development that was completed in July 2008. Eight of the 16 units in this townhome complex were awarded the first residential U.S. Green Building Council Leadership in Energy and Environmental Design (LEED ® ) Platinum rating in Kansas and are estimated to use about 50% less energy than similar buildings built to existing building codes. ENERGY EFFICIENCY FEATURES * Well-insulated 2 x 6 walls use blown-in cellulose insulation with an R-Value of 22.5 to prevent heat loss and save energy * Well-insulated roof with an R-value of R-38 prevents heat loss through the roof and helps keep building cool in summer

399

Re-Building Greensburg | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Re-Building Greensburg Re-Building Greensburg Re-Building Greensburg Addthis Description Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Speakers Steve Hewitt, Daniel Wallach, Stephanie Peterson, Stacy Barnes Duration 4:09 Topic Energy Sources Consumption Energy Economy Emergency Response & Procedures Credit Energy Department Video STEVE HEWITT: In 2007 we had this massive tornado that came through Greensburg. STACY BARNES: Words can't even begin to describe what it was like to

400

Improving the feasibility of building deconstruction and adaptability  

E-Print Network (OSTI)

Design for Adaptability and Deconstruction (DfAD) is an emerging trend in the construction industry that focuses on the end-of-life aspect of buildings. It is based on the concept that the life of a building or building ...

Quinn, Karen E. (Karen Elizabeth)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building America Research Benchmark Definition: Updated December 19, 2008  

SciTech Connect

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams.

Hendron, R.

2008-12-01T23:59:59.000Z

402

Communicate energy efficiency | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Communicate energy efficiency Communicate energy efficiency Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

403

Building Energy Performance Analysis of an Academic Building Using IFC BIM-Based Methodology  

E-Print Network (OSTI)

This paper discusses the potential to use an Industry Foundation Classes (IFC)/Building Information Modelling (BIM) based method to undertake Building Energy Performance analysis of an academic building. BIM/IFC based methodology provides a mechanism for providing quick and cost-effective feedback to building users. The paper discusses the need for IFC and BIM-based analysis of existing buildings. A case study of Building Energy Performance Analysis of an academic building is presented with a detailed discussion on various interventions undertaken to calibrate the model. The paper concludes that BIM/IFC based approaches provide a feasible alternative to conduct energy analysis of existing buildings provided various correlations are built into the model.

Aziz, Z.; Arayici, Y.; Shivachev, D.

2012-01-01T23:59:59.000Z

404

U.S. Department of Energy Buildings Technologies Program: Better Buildings, Brighter Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

new technologies and practices, energy-efficient new technologies and practices, energy-efficient buildings will be the new standard for residents in all U.S. climate zones. DOE and its partners are pursuing a portfolio of research to make it happen. Better Buildings, Brighter Future Innovative Building Technologies and Practices Save Energy and Money Buildings use more energy than any other sector of the U.S. economy, consuming more than 70 percent of electricity and over 50 percent of natural gas. Investing in energy-efficient buildings yields: * Cost savings for American homeowners and businesses; * Reductions in peak demand, providing the energy needed for a strong economy with fewer new power plants; and * Expeditious and sustained reductions in carbon dioxide emissions-with fast paybacks

405

Miami-Dade County - Expedited Green Buildings Process | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miami-Dade County - Expedited Green Buildings Process Miami-Dade County - Expedited Green Buildings Process Miami-Dade County - Expedited Green Buildings Process < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State Florida Program Type Green Building Incentive Provider Miami-Dade Permitting and Inspection Center In an effort to promote environmentally sensitive design and construction, the Miami-Dade County Commissioners passed an ordinance in June 2005 to expedite the permitting process for "green" buildings certified by a recognized environmental rating agency. Commercial, industrial, and

406

Siemens Building Technologies and Thompson School District: SPP Success  

NLE Websites -- All DOE Office Websites (Extended Search)

Siemens Building Technologies and Thompson School District: SPP Siemens Building Technologies and Thompson School District: SPP Success Story Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

407

Empowering the Market: How Building Energy Performance Rating and  

NLE Websites -- All DOE Office Websites (Extended Search)

Empowering the Market: How Building Energy Performance Rating and Empowering the Market: How Building Energy Performance Rating and Disclosure Policies Encourage U.S. Energy Efficiency Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition

408

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

409

Building Technologies Office: Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by...

410

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

for technical information on building products, materials, new technologies, business management, and housing systems. DOE's Residential Building Energy Codes - Resource for...

411

Building Technologies Office: Commercial Building Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

412

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Technologies Office Search Search Help Building Technologies Office HOME...

413

Building Technologies Office: Building Energy Software Tools...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Links This directory provides information on 404 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools...

414

Building Technologies Office: Building America Research Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

415

Building Technologies Office: Building Envelope Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building...

416

Building Technologies Office: Contact the Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

417

Application of solar technologies in buildings  

DOE Green Energy (OSTI)

The objective of the buildings energy research carried out at SERI is to provide the buildings industry with technological innovations in materials, components, and systems that enable them to reduce the usage and cost of energy. The scope of research includes eight technology areas, including advanced windows, storage material composites, advanced insulation, desiccant cooling, air management, building performance monitoring, building design guidelines, and active water heating. This paper outlines the benefits, the results to date, and the current research activities associated with these eight technology options. 16 refs., 6 figs.

Flowers, L.T.; Groff, G.C. (Solar Energy Research Inst., Golden, CO (USA); Marquardt Switches, Inc., Cazenovia, NY (USA))

1989-01-01T23:59:59.000Z

418

Better Buildings Challenge - Lend Lease Commitment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Challenge Buildings Challenge Lend Lease Commitment Krista Sprenger, VP-Director Sustainability, Americas Duncan Prahl, Research Architect, IBACOS March, 2012 Goals of the Better Buildings Challenge Make buildings 20% more efficient by 2020; save $40 billion annually for US organizations; create American jobs  Overcoming market barriers/persistent obstacles with replicable, marketplace solutions  Market leaders stepping forward to share data and real solutions  Demonstrating leadership  Showcasing real solutions  Connecting the market  Partnering with industry leaders to better understand policy and technical opportunities 3 More Than 50 Years' Property Experience *Areas of operation highlighted in green Lend Lease  Creating innovative property and infrastructure

419

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

420

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ... structures; thermal response; flameproofing; radiative ...

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

84 the building is.  

U.S. Energy Information Administration (EIA)

84 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA009449 Keywords:

422

87 the building is.  

U.S. Energy Information Administration (EIA)

87 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: STRO000469 Keywords:

423

80 the building is.  

U.S. Energy Information Administration (EIA)

80 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

424

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC400003 Keywords:

425

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

426

97 the building is.  

U.S. Energy Information Administration (EIA)

97 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

427

78 the building is.  

U.S. Energy Information Administration (EIA)

78 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC200470 Keywords:

428

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Emergency Response Operations ... Safety Investigation of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ...

429

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... rise buildings; building collapse; disasters; fire safety ... structural analysis; structural damage; structural response ...

430

Safety of Building Occupants  

Science Conference Proceedings (OSTI)

... systems have evolved in response to specific ... behavior, needs of emergency responders, or ... behavior during building emergencies, the Building ...

2013-07-17T23:59:59.000Z

431

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... systems; surface temperature; deflection; insulation; thermometers; structural ... effects of fires in buildings, for use ... the analysis of building response to ...

432

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building materials; thermal conductivity; databases; insulation; building technology; density; fibrous glass; guarded hot plate; heat flow; insulation ...

433

Smart Buildings: Business Case and Action Plan  

SciTech Connect

General Services Administration (GSA) has been a pioneer in using Smart Building technologies but it has yet to achieve the full benefits of an integrated, enterprise-wide Smart Building strategy. In July 2008, GSA developed an initial briefing memorandum that identified five actions for a Smart Buildings feasibility study: (1) Identify and cluster the major building systems under consideration for a Smart Buildings initiative; (2) Identify GSA priorities for these clusters; (3) Plan for future adoption of Smart Building strategies by identifying compatible hardware; (4) Develop a framework for implementing and testing Smart Building strategies and converged networks; and (5) Document relevant GSA and industry initiatives in this arena. Based on this briefing memorandum, PBS and FAS retained consultants from Lawrence Berkeley National Laboratory, Noblis, and the Building Intelligence Group to evaluate the potential for Smart Buildings within GSA, and to develop this report. The project has included extensive interviews with GSA staff (See Appendix A), a review of existing GSA standards and documents, and an examination of relevant GSA and industry initiatives. Based on interviews with GSA staff and a review of GSA standards and documents, the project team focused on four goals for evaluating how Smart Building technology can benefit GSA: (1) Achieve Energy Efficiency Mandates--Use Smart Building technology as a tool to meet EISA 2007 and EO 13423 goals for energy efficiency. (2) Enhance Property Management--Deploy enterprise tools for improved Operations and Maintenance (O&M) performance and verification. (3) Implement Network as the Fourth Utility--Utilize a converged broadband network to support Smart Building systems and provide GSA clients with connectivity for voice, data and video. (4) Enhance Safety and Security--Harmonize Physical Access Control Systems (PACS) with Smart Building Systems.

Ehrlich, Paul; Diamond, Rick

2009-04-01T23:59:59.000Z

434

Better Buildings Challenge is Expanding, Improving Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge is Expanding, Improving Energy Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America December 5, 2013 - 4:36pm Addthis Industry and government officials discuss the Better Buildings Challenge expansion at the White House earlier this week. | Photo courtesy of Department of Housing and Urban Development Industry and government officials discuss the Better Buildings Challenge expansion at the White House earlier this week. | Photo courtesy of Department of Housing and Urban Development Maria Tikoff Vargas Director, Department of Energy Better Buildings Challenge MORE RESOURCES Read the press release about the Better Buildings expansion Learn more about Better Buildings Accelerators

435

Kansas | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas Kansas Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The State has adopted the 2006 IECC as the applicable EE standard for commercial and industrial buildings in Kansas (KSA 66-1227). The same law also states that "the state corporation commission has no authority to adopt or enforce energy efficiency standards for residential, commercial, or industrial structures." Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kansas (BECP Report, Sept. 2009) Effective Date 04/10/2007 Code Enforcement Voluntary DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Kansas DOE Determination Letter, May 31, 2013

436

Residents and windows. 1. Shielding of windows  

SciTech Connect

In order to assess the influence of the shielding of windows performed by occupants in residential buildings on the heat balance of the building, the shielding of 40,000 windows was determined by observation during two heating seasons. It is shown that the demand for privacy has a large effect on the degree of window-shielding. There are also indications that many occupants trying to save energy use window-shielding as one of their means to achieve this.

Lyrberg, M.D.

1983-06-01T23:59:59.000Z

437

Federal Energy Management Program: Resources on Sustainable Buildings and  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Buildings and Campuses Sustainable Buildings and Campuses Building Technology Office Resources The Building Technology Office offers useful resources to plan and implement energy-efficiency projects. Building Energy Software Tools Directory Buildings Performance Database Energy Modeling Software Better Buildings Alliance Webinars Hospital Energy Alliance Videos Solid-State Lighting Technology Fact Sheets Many helpful resources about sustainable buildings and campuses are available. Also see Case Studies. Federal Requirements and Programs Buildings Technologies Program: A U.S. Department of Energy (DOE) program that leads a vast network of research and industry partners to continually develop innovative, cost-effective, energy-saving solutions for buildings. Crosswalk of Sustainability Goals and Targets: A document that features a table listing sustainability goals/targets under the requirement of Executive Order (E.O.) 13514 and E.O. 13423.

438

Building Energy-Efficiency Evaluation & Labeling Technologies in China  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Evaluation& Efficiency Evaluation& Labeling Technologies in China China Academy of Building Research Building Environment and Energy Efficiency May 2011 Main Contents : 1. Background 2. Building Energy-Efficiency Evaluation & Labeling Methods Technical Guideline for Civil Building Energy-efficiency Evaluation & Labeling (Trial) 3. Main Problems in Evaluation 4. Next Step ---- Key Compiling Points of National Industry Standard: " Technical Standard for Building Energy-efficiency Labeling" 1 Background 1.1 Function of Building Energy-efficiency Labeling Show the building energy-consumption and enhance market transparency. Promote building energy-saving, reflect the differences between different buildings , promote the development of high-energy saving buildings.

439

DOE Solar Decathlon: Educational Resources for Building Professionals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Professionals Building Professionals The U.S. Department of Energy Solar Decathlon provides educational opportunities for building professionals of all disciplines. Visiting the Solar Decathlon, touring the team houses, and participating in Building Industry Day are great ways to learn about new building technologies and techniques. Until the next event, you can learn more about renewable energy and energy-efficiency topics for building professionals by exploring the links below. EERE Building Technologies Program The Department of Energy Office of Energy Efficiency and Renewable Energy's (EERE's) Building Technologies Program funds research and technology development to reduce commercial and residential building energy use. Its website offers a variety of programs, tools, and resources for building

440

Building America Update - September 10, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 10, 2013 September 10, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Spotlight on 2013 Technical Update Meeting See the August issue of Green Builder magazine for the article, "Taking Control"-a recap of the Spring 2013 Building America Technical Update meeting, which brought together some of the world's foremost building scientists to discuss the latest research on building and remodeling challenges facing the industry today. The article outlines Building America recommendations for high impact issues such as: insulation challenges, optimal strategies

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Building America Update - April 5, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 5, 2013 April 5, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Learn about Top Innovations from Building America Since 1995, Building America research has resulted in more than 30 major innovations that are helping to transform our nation's home building and retrofit industry to high performance homes. In fact, Building America research teams have helped deliver more than 42,000 high performance new and existing homes, working with 300 U.S. production home builders. Learn about the Top Innovations as identified in 2012, and plans for future Top Innovations. An article in the

442

ENERGY STAR Score for Residence Halls/Dormitories  

NLE Websites -- All DOE Office Websites (Extended Search)

Residence HallsDormitories in the United States Page 1 ENERGY STAR Score for Residence HallsDormitories in the United States Technical Reference OVERVIEW The ENERGY STAR Score...

443

Results of the 2003 Association of Residents in Radiation Oncology (ARRO) surveys of residents and chief residents in the United States  

Science Conference Proceedings (OSTI)

Purpose: To document demographic characteristics of current residents, career motivations and aspirations, and training program policies and resources. Methods: In 2003, the Association of Residents in Radiation Oncology (ARRO) conducted two nationwide surveys: one of all U.S. radiation oncology residents and one of chief residents. Results: The Chief Residents' Survey was completed by representatives from all 77 programs (response rate, 100%). The Residents' Survey was returned by 229 respondents (response rate, 44%). In each, 32% of respondents were female. The most popular career after residency was private practice (46%), followed by permanent academic practice (28%). Changes that would entice those choosing private practice to consider an academic career included more research experience as a resident (76%), higher likelihood of tenure (69%), lesser time commitment (66%), and higher salary (54%). Although the majority of respondents were satisfied with educational experience overall, a number of programs were reported to provide fewer resources than required. Conclusions: Median program resources and numbers of outliers are documented to allow residents and program directors to assess the relative adequacy of experience in their own programs. Policy-making bodies and individual programs should consider these results when developing interventions to improve educational experiences of residents and to increase retention of radiation oncologists in academic practice.

Jagsi, Reshma [Massachusetts General Hospital, Boston, MA (United States); Buck, David A. [Medical College of Virginia, Richmond, VA (United States); Singh, Anurag K. [Washington University, Seattle, WA (United States); Engleman, Mark [Northwestern University, Chicago, IL (United States); Thakkar, Vipul [Cleveland Clinic, Cleveland, OH (United States); Frank, Steven J. [University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Flynn, Daniel [Holy Family Hospital, Methuen, MA (United States)

2005-03-01T23:59:59.000Z

444

Measure Guideline: Air Sealing Attics in Multifamily Buildings  

SciTech Connect

This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

Otis, C.; Maxwell, S.

2012-06-01T23:59:59.000Z

445

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

446

Electrotechnology Applications in Industrial Process Heating  

Science Conference Proceedings (OSTI)

Electrotechnology applications in industrial process heating are discussed in this technical update. This report builds on the research activities from the previous years and adds new and emerging process heating technologies. The primary focus is given to energy intensive industrial sectors such as primary metals and metal treatment. Successful implementation of the electrotechnologies in various industry applications are also presented in the form of case studies. The technical update also ...

2012-11-26T23:59:59.000Z

447

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

448

City of Cincinnati - Property Tax Abatement for Green Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Cincinnati - Property Tax Abatement for Green Buildings City of Cincinnati - Property Tax Abatement for Green Buildings City of Cincinnati - Property Tax Abatement for Green Buildings < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate For buildings with permits received on or before January 31, 2013: $562,792 maximum improved market value for residential buildings except no limitation with LEED Platinum certification (the maximum incentive increases by 3% every year) For buildings with permits received after January 31, 2013:

449

Anaheim Public Utilities - Green Building and New Construction Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - Green Building and New Construction Anaheim Public Utilities - Green Building and New Construction Rebate Program Anaheim Public Utilities - Green Building and New Construction Rebate Program < Back Eligibility Commercial Construction Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate Commercial Green Building: $75,000 Residential Green Building: $100,000 LEED Certification: $30,000 Green Building Rater Incentive: $6,000 Program Info State California Program Type Utility Rebate Program

450

Medical Resident Medicare Tax Refund Claims University of California  

E-Print Network (OSTI)

1 Medical Resident Medicare Tax Refund Claims University of California April 30, 2013 On March 2 portion of FICA taxes paid for medical residents prior to April 1, 2005, so long as the employer the requisite filings on behalf of its medical schools, medical centers, and residents for tax periods dating

Russell, Lynn

451

Development of a Performance-based Industrial Energy Efficiency Indicator  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Performance-based Industrial Energy Efficiency Development of a Performance-based Industrial Energy Efficiency Indicator for Food Processing Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports

452

Data Center Industry Leaders Agreement on Energy Efficiency Guiding  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Leaders Agreement on Energy Efficiency Industry Leaders Agreement on Energy Efficiency Guiding Principles, February 1, 2010 Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

453

ENERGY STAR Industrial Plant Certification: Instructions for applying |  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Certification: Instructions for Industrial Plant Certification: Instructions for applying Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

454

ENERGY STAR Industrial Plant Certification: Professional Engineers' Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Certification: Professional Industrial Plant Certification: Professional Engineers' Guide Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

455

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

456

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

457

Wynkoop Building Performance Measurement: Water  

SciTech Connect

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (< 30 psi) is less than half the pressure on the 7th floor (>80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

458

Wynkoop Building Performance Measurement: Water  

Science Conference Proceedings (OSTI)

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

459

Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation  

SciTech Connect

The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

Bazjanac, Vladimir

2007-08-01T23:59:59.000Z

460

Controlled short residence time coal liquefaction process  

DOE Patents (OSTI)

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "buildings industries residences" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

On May 4, 2007, a massive tornado destroyed or severely damaged 95% On May 4, 2007, a massive tornado destroyed or severely damaged 95% of Greensburg, Kansas. Since then, city and community leaders have been committed to rebuilding the town as a model sustainable community. Experts from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) worked with city leaders, business owners, and residents to identify ways to incorporate energy efficiency and renewable energy technologies into the new buildings. The town showcases energy-saving best practices that can be replicated not only in other communi- ties recovering from disaster, but any location focused on sustainability. The Town of Greensburg Founded in 1886, Greensburg had a population of approximately 1,400 people prior to the tornado, and relied on the agricultural, oil, and gas industries to

462

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On May 4, 2007, a massive tornado destroyed or severely damaged 95% On May 4, 2007, a massive tornado destroyed or severely damaged 95% of Greensburg, Kansas. Since then, city and community leaders have been committed to rebuilding the town as a model sustainable community. Experts from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) worked with city leaders, business owners, and residents to identify ways to incorporate energy efficiency and renewable energy technologies into the new buildings. The town showcases energy-saving best practices that can be replicated not only in other communi- ties recovering from disaster, but any location focused on sustainability. The Town of Greensburg Founded in 1886, Greensburg had a population of approximately 1,400 people prior to the tornado, and relied on the agricultural, oil, and gas industries to

463

Design and construction of a demonstration residence utilizing natural thermal storage  

DOE Green Energy (OSTI)

The Brookhaven House is an energy conserving residence which demonstrates how thermal mass combined with solar energy can be used to reduce heating costs in a conventional single-family house. The purpose of the project was to develop a prototypical house design that could result in immediate energy savings by being an acceptable, attractive design to developers, builders, and home buyers. Investigations were limited to only materials and methods of construction that were considered presently available and of Natural Thermal Storage design. Natural thermal storage is simply the heat storage obtained through architectural application of massive building materials integrated into the living space and structure of a residence. The research work involved analyzing many buildable configurations of thermal mass and combining their potential benefit with a variety of energy sources. It has been concluded that relatively thin mass walls of masonry directly irradiated through a multiglazed south facing aperture can significantly reduce annual heating requirements.

Jones, R.F.; Ghaffari, H.T.

1981-01-01T23:59:59.000Z

464

Building America  

Science Conference Proceedings (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

465

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

466

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

467

Building Energy Software Tools Directory: ZEBO  

NLE Websites -- All DOE Office Websites (Extended Search)

ZEBO ZEBO ZEBO is a decision support tool for the study and design of net zero energy buildings (NZEBs) in hot climates during early design phases. The aim of this tool is to facilitate and integrate the use of energy building performance simulation for architects. The tool embraces a graphical user interface for EnergyPlus. It allows for sensitivity analysis of possible variations of NZEB design parameters and elements during the early design phases in hot climates. Its added values reside in its ability to inform the decision before decisions are made about NZEB design. The tool is contextual and is based on an embedded benchmark model and database for Egyptian residential buildings, which includes local materials and construction and allows the generation of code-compliant design

468

Building Green in Greensburg: Dillons Kwik Shop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dillons Kwik Shop Dillons Kwik Shop After a tornado destroyed 95% of Greensburg, Kansas, in May 2007, residents needed a convenience store for gas and groceries. Just a year after the storm, Kroger Company broke ground on a prototype for rural grocery stores. Completed in February 2009, the new Dillons Kwik Shop is a hybrid between a convenience store and a gas station. Kroger Company hopes this type of store will serve the grocer needs of several rural county areas. Additionally, this building includes a number of unique green building and energy efficiency features. ENERGY EFFICIENCY FEATURES * Well-insulated roof with an R-value of R-24 that prevents heat loss and maintains cooler temperatures in summer * A high albedo reflective roof coating reflects heat away from the building in

469

Are Simulation Stethoscopes a Useful Adjunct for Emergency Medicine Residents Training on High-fidelity Mannequins?  

E-Print Network (OSTI)

of a simulator in training anesthesiology residents. Acadal. Simulation-based training of internal medicine residentsEmergency Residents Training on High-fidelity Mannequins?

Warrington, Steven Jay; Beeson, Michael S; Fire, Frank L

2013-01-01T23:59:59.000Z

470

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

471

ENERGY STAR plant certification | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

» ENERGY STAR plant certification » ENERGY STAR plant certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition ENERGY STAR Partner of the Year Award

472

Webinar: Introduction to Pre-engineered Metal Building Envelope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinar: Introduction to Pre-engineered Metal Building Envelope Webinar: Introduction to Pre-engineered Metal Building Envelope Commissioning Webinar: Introduction to Pre-engineered Metal Building Envelope Commissioning November 22, 2013 1:00PM EST The metal building industry produces more than 50% of all new low-rise nonresidential construction in the United States. These buildings serve many different end uses, including commercial, industrial, institutional, and educational applications. In this introduction to commissioning for building envelopes, participants will learn about the benefits of pre-engineered metal building envelope commissioning, stakeholders and participants, current guidelines and standards related to commissioning and envelope-specific commissioning tests. The information in this webinar will also be widely applicable to

473

Sample ENERGY STAR performance documents | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Existing buildings Existing buildings » Use Portfolio Manager » Verify and document your savings » Sample ENERGY STAR performance documents Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit

474

ENERGY STAR certification | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR certification ENERGY STAR certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings ENERGY STAR certification

475

Use ENERGY STAR benchmarking tools | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Use ENERGY STAR benchmarking tools Use ENERGY STAR benchmarking tools Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use Learn about benchmarking Use ENERGY STAR benchmarking tools ENERGY STAR in action Communicate and educate

476

Find financing | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Find financing Find financing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Find financing Calculate returns on energy efficiency investments Rebates, incentives, and financing services Public sector financing options Earn recognition Communicate your success Find financing Postponing the installation of energy-saving equipment can be an expensive

477

Building America's Top Innovations Advance High Performance Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Top America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently

478

Energy Information Administration (EIA)- About the Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

About the Commercial Buildings Energy Consumption Survey About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, their energy-related building characteristics, and their energy consumption and expenditures. Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential, industrial, or agricultural, so they include building types that might not traditionally be considered "commercial," such as schools, correctional institutions, and buildings used for religious worship. The CBECS was first conducted in 1979; the tenth, and most recent survey, will be fielded starting in April 2013 to provide data for calendar year

479

REScheck | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance » Software & Web Tools Compliance » Software & Web Tools Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center REScheck Subscribe to updates To receive updates about compliance tools subscribe to the BECP Mailing List. Residential Compliance Using REScheck(tm) The REScheck product group makes it fast and easy for builders, designers, and contractors to determine whether new homes, additions, and alterations meet the requirements of the IECC or a number of state energy codes. REScheck also simplifies compliance determinations for building officials, plan checkers, and inspe