National Library of Energy BETA

Sample records for buildings energy end-use

  1. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimates The end-use estimates had two main sources: the 1989 Commercial Buildings Energy Consumption Survey (CBECS) and the Facility Energy Decision Screening (FEDS) system....

  2. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  3. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  4. Energy End-Use Intensities in Commercial Buildings1995 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The...

  5. Energy End-Use Intensities in Commercial Buildings1995 -- Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    model using survey data from the 1995 commercial buildings energy consumption survey and building energy simulations provided by the Facility Energy Decision Screening system....

  6. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Energy Use in Commercial Buildings The purpose of this section is to provide an overview of how energy was used in commercial buildings. Focusing on 1989 buildings, the section...

  7. Efficient Multi-Level Modeling and Monitoring of End-use Energy Profile in Commercial Buildings

    E-Print Network [OSTI]

    Kang, Zhaoyi

    2015-01-01

    buildings”. In: Energy Efficiency 5.2 (2012), pp. 149–162. [Sys- tems for Energy-Efficiency in Buildings. ACM. 2011, pp.Efficient Multi-Level Modeling and Monitoring of End-use

  8. Energy End-Use Intensities in Commercial Buildings1992 -- Overview/End-Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd1995 End-Use

  9. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd Use:‹Home

  10. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  11. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Active Solar: As an energy source, energy from the sun collected and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the...

  12. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  13. 1999 Commercial Buildings Characteristics--Energy Sources and End Uses

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic Monthly ActualActivitiesEnergy Sources

  14. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    of existing building and energy use data and obtain energydata; IFS building inventory data, building prototypes,Inventory The IFS building inventory data included building

  15. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    Summer Study on Energy Efficiency in Buildings, Volume 10,Summer Study on Energy Efficiency in Buildings, V o l 10, ppSummer Study on Energy Efficiency in Buildings, Volume 3, p.

  16. Control Limits for Building Energy End Use Based on Engineering Judgment, Frequency Analysis, and Quantile Regression

    SciTech Connect (OSTI)

    Henze, G. P.; Pless, S.; Petersen, A.; Long, N.; Scambos, A. T.

    2014-02-01

    Approaches are needed to continuously characterize the energy performance of commercial buildings to allow for (1) timely response to excess energy use by building operators; and (2) building occupants to develop energy awareness and to actively engage in reducing energy use. Energy information systems, often involving graphical dashboards, are gaining popularity in presenting energy performance metrics to occupants and operators in a (near) real-time fashion. Such an energy information system, called Building Agent, has been developed at NREL and incorporates a dashboard for public display. Each building is, by virtue of its purpose, location, and construction, unique. Thus, assessing building energy performance is possible only in a relative sense, as comparison of absolute energy use out of context is not meaningful. In some cases, performance can be judged relative to average performance of comparable buildings. However, in cases of high-performance building designs, such as NREL's Research Support Facility (RSF) discussed in this report, relative performance is meaningful only when compared to historical performance of the facility or to a theoretical maximum performance of the facility as estimated through detailed building energy modeling.

  17. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    4. Figure 5-5. 1993 Electricity Consumption Estimates by EndkWh/ft ) 1993 Electricity Consumption Estimates by End Useof Total) 1993 Electricity Consumption Estimates by End Use

  18. End-use Breakdown: The Building Energy Modeling Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ,Local GovernmentofVoltageEnergyEnergyWell, theRSS

  19. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    Maintenance Hospital Residential Warehouse Miscellaneous Non-Building Utility PumpMaintenance Hospital Residential Warehouse Miscellaneous Non-Building Utility Pump

  20. Energy End-Use Intensities in Commercial Buildings 1989 data -- Publication

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd Use:‹Homeand

  1. Energy End-Use Intensities in Commercial Buildings 1995 - Index Page

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd1995 End-Use Data

  2. Realizing Building End-Use Efficiency with Ermerging Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the implementation of emerging technologies to maximize end-use efficiency in buildings.

  3. Table B19. Energy End Uses, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption6.9. Energy

  4. Office Buildings - End-Use Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan FebElements)Feet) Decade8 45YearYearEnd-Use

  5. Healthcare Energy End-Use Monitoring

    SciTech Connect (OSTI)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  6. Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes

    E-Print Network [OSTI]

    Benenson, P.

    2011-01-01

    OF ENERGY CONSERVATION BUILDING CODES B. COST CALCULATIONScost calculations carries weight in California because the state EnergyCOST CALCULATIONS AS A BASIS FOR CODES Even small improvements in conservation design save energy, and

  7. Healthcare Energy End-Use Monitoring

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Energy End-Use Monitoring Michael Sheppy, Shanti Pless, and Feitau Kung National Renewable Energy Laboratory Technical Report NRELTP-5500-61064 August 2014 NREL is a...

  8. Healthcare Energy: Using End-Use Data to Inform Decisions | Department...

    Energy Savers [EERE]

    Using End-Use Data to Inform Decisions Healthcare Energy: Using End-Use Data to Inform Decisions The Building Technologies Office conducted a healthcare energy end-use monitoring...

  9. Healthcare Energy End-Use Monitoring

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes the NREL partnership with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, which can be used to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  10. Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes

    E-Print Network [OSTI]

    Benenson, P.

    2011-01-01

    Impact Evaluation of New York State Energy Code (ASHRAE 90-N.Y. , N.Y. : New York State Energy Research and DevelopmentJ. "New York Puts Together Its Own State Energy Policy and

  11. Monitoring of Electrical End-Use Loads in Commercial Buildings 

    E-Print Network [OSTI]

    Martinez, M.; Alereza, T.; Mort, D.

    1988-01-01

    custom-designed to facilitate collection and validation of the end-use load data. For example, the Load Profile Viewer is a PC-based software program for reviewing and validating the end-use load data....

  12. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    N ATIONAL L ABORATORY India Energy Outlook: End Use DemandTables Figures Figure 1. India Primary Energy Supply by fuel33 Table 15. India Industry Energy Intensities (GJ/

  13. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  14. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  15. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    2002, “TEDDY: TERI’s energy data directory and yearbook2006. “TEDDY: TERI’s energy data directory and yearbookU.S. DOE, 2006, “Buildings Energy Data Book 2006”, September

  16. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energy’s (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  17. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    in Canadian Oil Refineries, 1990, 1994 to the current year Detailed reports on energy consumption, an initiative begun in October, 1991, is to expand and improve the existing knowledge on energy consumption data on energy consumption, on the characteristics of energy using equipment and buildings

  18. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Past Trend and Future Outlook",LBNL forthcoming. de la Rue2006. “Building up India: Outlook for India’s real estate”,2006a. “World Energy Outlook”, IEA/OECD, Paris, France.

  19. United States Industrial Sector Energy End Use Analysis

    E-Print Network [OSTI]

    Shehabi, Arman

    2014-01-01

    by end uses (e.g. , boilers, process, electric drives,MECS 2002, and MECS 1998 data. Indirect Uses-Boiler FuelConventional Boiler Use CHP and/or Cogeneration Process

  20. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  1. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Crises & Climate Challenges - 30 Years of Energy Use in IEACountries”, IEA/OECD, Paris, France. International Energy2006a. “World Energy Outlook”, IEA/OECD, Paris, France.

  2. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    for cooking and lighting. Biomass energy consumption willused in an economy, biomass energy consumption is certainlyby a large share of biomass energy use representing 50% of

  3. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    7 Figure 3. Energy Consumption in the Agriculture Sector (13 Figure 6. Energy Consumption in the ServiceFinal and Primary Energy Consumption in the Industry Sector,

  4. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    same activities that require energy today will continue toaccounting of how energy is consumed today. For each sector,

  5. Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use

    E-Print Network [OSTI]

    Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use Efficiency of Distributed Energy Resource, Microgrid, and End Use Efficiency Technologies (Task 8) This completes Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies

  6. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Tables Figures Figure 1. India Primary Energy Supply by fuel7 Figure 2. Final and Primary Energy (including biomass) by19 Figure 10. Final and Primary Energy Consumption in the

  7. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    gas oil nuclear hydro Energy output Own Uses Transmissiongas oil nuclear hydro Energy output Own Uses Transmissionenergy equivalence of electricity generated from hydro or

  8. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    pumps in India”, Renewable and Sustainable Energy Reviews,Renewable Energy (MNES), 2008. “Annual Report 2007-08”. Government of India.

  9. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Statistics and Programme Implementation published a condensed version of statics related to energy production and consumption (

  10. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    technologies. CIEEDAC is responsible for the industrial energy data under this initiative. The Centre operates as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian

  11. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Petroleum pricing in India: balancing efficiency andand Tables Figures Figure 1. India Primary Energy Supply by28 Table 13. India, US and France Farm Machinery

  12. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    of oil use for the need of LPG and kerosene for cooking andSector PJ Fuel Oil Diesel Oil LPG Electricity Source: CEA,PJ) PJ fuel oil diesel LPG electricity Energy consumption is

  13. Distribution Infrastructure and End Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us|of EnergySmall-

  14. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Energy Information Adminstration Office of Energy Markets and End Use U.S....

  15. Engineer End Uses for Maximum Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartmentApril 13, 2010|Earned Value (EV)

  16. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    Resources Canada's National Energy Use Database (NEUD) initiative. The primary goal of the NEUD to further analyze specific data- related issues. In terms of its database role, the Centre focuses-to-date documentation of the various databases; houses a specialized library of published reports; and maintains

  17. Alternative Strategies for Low Pressure End Uses | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y AEfficiency Rebate ProgramsAlpena<fuelalternative

  18. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect (OSTI)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

  19. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioning: See Energy End Use, Cooling. Authorization Form: A form signed by the respondent authorizing energy supplier companies that serve the building to release...

  20. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  1. End-use Breakdown: The Building Energy Modeling Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    class"field-items">

    The AEC Technology Symposium and Hackathon brings together software developers that work in and...

  2. Energy End-Use Intensities in Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity Glossary › FAQS ›1

  3. Energy End-Use Intensities in Commercial Buildings 1989

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity Glossary › FAQS ›19

  4. Energy End-Use Intensities in Commercial Buildings 1992

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd

  5. Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 3, Policy Barriers and Investment Decisions in Industry

    E-Print Network [OSTI]

    Benenson, Peter

    2011-01-01

    CONAES) and FEA End Use Energy Consumption Data Base: 1978).and FEA End Use Energy Consumption Data Base: 1978). (3)CONAES) and FEA End Use Energy Consumption Data Base: 1978).

  6. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  7. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  8. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses

    E-Print Network [OSTI]

    Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses Willett develop methods for assessing offshore wind resources, using a model of the vertical structure offshore wind power matched to inherent storage in energy end- uses, Geophys. Res. Lett., 34, L02817, doi

  9. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  10. Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys

    SciTech Connect (OSTI)

    Belzer, David B.

    2004-09-04

    This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

  11. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  12. 2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses

    E-Print Network [OSTI]

    Firestone, Jeremy

    2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4 by matching the winds of the 14 Middle-Atlantic Bight (MAB) to energy demand in the 15 adjacent states] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure

  13. Energy Efficient Buildings Hub

    SciTech Connect (OSTI)

    2013-04-01

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  14. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  15. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  16. Building Energy Optimization Analysis Method (BEopt) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House...

  17. 2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses

    E-Print Network [OSTI]

    Firestone, Jeremy

    2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure. Dhanju, R. W. 26 Garvine, and M. Z. Jacobson (2007), Large CO2 reductions via 27 offshore wind power

  18. Modeling of End-Use Energy Profile: An Appliance-Data-Driven Stochastic Approach

    E-Print Network [OSTI]

    Kang, Zhaoyi; Jin, Ming; Spanos, Costas J

    2014-01-01

    Demand side management: Demand response, intelligent energydesigning building demand-response system [5]. The Bottom-up

  19. Energy Information Administration - Energy Efficiency, Table 6b-End Uses of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun2003 Detailed Tables 0.20032003energy per

  20. Energy Information Administration - Energy Efficiency-Table 6a- End uses of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun2003 Detailed Tablesof Energy for alloffuel

  1. Energy Information Administration - Energy Efficiency-Table 6a- End uses of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun2003 Detailed Tablesof Energy for

  2. Service Report Energy Information Administration Office of Energy Markets and End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016November 2000 OverviewEnergy

  3. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of348

  4. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482. End

  5. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482. End5

  6. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.

  7. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.5 End

  8. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.5

  9. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.55

  10. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.556

  11. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809 245 15504 End Uses of1

  12. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809 245 15504 End Uses of12

  13. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01

    J. Sathaye. 2009. India Energy Outlook: End Use Demand ineetools.in/. New Delhi, India: Bureau of Energy Efficiency.Report on Building Energy Codes in India. Richland, Wash. :

  14. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01

    resources (DEER) Update Shldy (Energy Commission, 2001). Asfor Energy Efficiency Resources (DEER) Update Study" (Final

  15. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Potential Alternative Fuels Derivatives from Municipal Solid Waste. In EnergyPotential Energy Savings -- Source Separation Table 15. Comparative Energy Savings For Newsprint Recovery and MSW Fuel

  16. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    in the resource stream where energy recovery from materialsMSW Derived Energy Table 10. Recyclables in the Waste Stream

  17. Field Measurements of Cooling Energy Consumption in a Multi-Zone Office Building 

    E-Print Network [OSTI]

    Heidell, J. A.

    1985-01-01

    This paper discusses cooling energy use in a small office building with the objective of developing an understanding of where energy is used and identifying relationships between cooling energy and other energy end uses. Attributes of the building...

  18. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    in Residential Buildings, 1984 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand)...

  19. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    in Residential Buildings, 1987 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand)...

  20. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary report and...

  1. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01

    for coal, natural gas, oil, and waste-to-energy (WTE) firedcoal, natural gas, oil and waste-to-energy fired electricitytype (coal, oil, natural gas, or waste-to-energy, or WTE),

  2. INTERNATIONAL RESIDENTIAL ENERGY END USE DATA: ANALYSIS OF HISTORICAL AND PRESENT DAY STRUCTURE AND DYNAMICS

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01

    growth in the residential demand for energy, particularlydemand for energy. In Griffinps epic study (1) the author was forced to model residential

  3. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01

    2009. Doing Business in India 2009: Comparing Regulations inon Building Energy Codes in India. Richland, Wash. : PacificM. McNeil, & J. Sathaye. 2009. India Energy Outlook: End Use

  4. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    indoor air quality, buildings energy performance, computervoluntary building-energy-performance guidelines. Recentlyrelated to building-energy-performance standards, guidelines

  5. Building Energy Modeling Library

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM)...

  6. Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use

    E-Print Network [OSTI]

    potential renewable, distributed energy resource, and micro-grid technology initiatives. Specific activities renewable generation technologies. The more energy storage available on the grid, the more intermittent renewables such as wind and solar that can be added to the grid. Currently grids use backup power generators

  7. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    United States and China, Energy and Buildings, 2013. Underin Singapore. Energy and Buildings, 37, 167-174. Eom, J. ,building operations. Energy and Buildings, 33, 783–791.

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  9. Energy balances in the production and end-use of methanol derived from coal

    SciTech Connect (OSTI)

    1980-12-10

    Analysis is performed for three combinations of fuels, specifically: net petroleum gain (petroleum only); net premium fuel gain (natural gas and petroleum); and net energy gain (includes all fuels; does not include free energy from sun). The base case selected for evaluation was that of an energy-efficient coal-to-methanol plant located in Montana/Wyoming and using the Lurgi conversion process. The following variations of the base coal-methanol case are also analyzed: gasoline from coal with methanol as an intermediate step (Mobil-M); and methanol from coal (Texaco gasification process). For each process, computations are made for the product methanol as a replacement for unleaded gasoline in a conventional spark ignition engine and as a chemical feedstock. For the purpose of the energy analysis, computations are made for three situations regarding mileage of methanol/ gasoline compared to that of regular unleaded gasoline: mileage of the two fuels equal, mileage 4 percent better with gasohol, and mileage 4 percent worse with gasohol. The standard methodology described for the base case applies to all of the variations.

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  11. The evolution of carbon dioxide emissions from energy use in industrialized countries: an end-use analysis

    SciTech Connect (OSTI)

    Schipper, L.; Ting, M.; Khrushch, M.; Unander, F.; Monahan, P.; Golove, W.

    1996-08-01

    There has been much attention drawn to plans for reductions or restraint in future C02 emissions, yet little analysis of the recent history of those emissions by end use or economic activity. Understanding the components of C02 emissions, particularly those related to combustion of fossil fuels, is important for judging the likely success of plans for dealing with future emissions. Knowing how fuel switching, changes in economic activity and its structure, or changes in energy-use efficiency affected emissions in the past, we can better judge both the realism of national proposals to restrain future emissions and the outcome as well. This study presents a first step in that analysis. The organization of this paper is as follows. We present a brief background and summarize previous work analyzing changes in energy use using the factorial method. We then describe our data sources and method. We then present a series of summary results, including a comparison of C02 emissions in 1991 by end use or sector. We show both aggregate change and change broken down by factor, highlighting briefly the main components of change. We then present detailed results, sector by sector. Next we highlight recent trends. Finally, we integrate our results, discussing -the most important factors driving change - evolution in economic structure, changes in energy intensities, and shifts in the fuel mix. We discuss briefly some of the likely causes of these changes - long- term technological changes, effects of rising incomes, the impact of overall changes in energy prices, as well as changes in the relative prices of energy forms.

  12. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Building Performance Standards (EEBPS) are statewide minimum requirements that all new construction and additions to existing buildings must satisfy. Exceptions include...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Conservation Construction Code of New York State (ECCCNYS) requires that all government, commercial and residential buildings, including renovations involving building system replaceme...

  14. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction *...

  15. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    1982 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand) Consump- tion...

  16. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    1980 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand) Consump- tion...

  17. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    1981 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand) Consump- tion...

  18. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Summer Study on Energy Efficiency in Buildings. LBNL (2012).Summer Study on Energy Efficiency in Buildings. UNEP (2009).Standard for Energy Efficiency of Public Buildings. Energy

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  20. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  3. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  4. Building Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy...

  5. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    methodology for building energy data definition, collection,analyze good building energy data to provide valuable and9  A Standard Building Energy Data 

  6. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    improving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are brieflyimproving the energy efficiency of buildings in the U.S. New

  7. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    exchange of building energy performance data difficult.  understand  building  energy  performance  and  improve to understanding building energy performance and supporting 

  8. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    exchange of building energy performance data difficult.  understand  building  energy  performance  and  improve Reliable  Building  Energy  Performance Characterization 

  9. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became effective...

  11. End-Use Sector Flowchart

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial and residential—identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector.

  12. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  13. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    addressed by the Buildings Energy Data (BED) Group at LBL.buildings by the Buildings Energy Data (BED) Group at LBL,results from our buildings energy data bases. Actual energy

  14. Building Energy Asset Score: Building Owners

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use.

  15. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    China's Future Energy and Emissions Outlook. Berkeley, CA:Energy Agency), 2009. World Energy Outlook 2009. Paris: OECDAgency (IEA)’s World Energy Outlook (WEO) 2009, which set

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  18. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    Studies on China's Future Energy and Emissions Outlook.Institute. IEA (International Energy Agency), 2009.World Energy Outlook 2009. Paris: OECD Publishing. Li, J. ,

  19. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    Energy Agency), 2009. World Energy Outlook 2009. Paris: OECDEnergy Agency (IEA)’s World Energy Outlook (WEO) 2009, whichresults are taken from World Energy Outlook 2009. As seen in

  20. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy...

  1. End-use taxes: Current EIA practices

    SciTech Connect (OSTI)

    Not Available

    1994-08-17

    There are inconsistencies in the EIA published end-use price data with respect to Federal, state, and local government sales and excise taxes; some publications include end-use taxes and others do not. The reason for including these taxes in end-use energy prices is to provide consistent and accurate information on the total cost of energy purchased by the final consumer. Preliminary estimates are made of the effect on prices (bias) reported in SEPER (State Energy Price and Expenditure Report) resulting from the inconsistent treatment of taxes. EIA has undertaken several actions to enhance the reporting of end-use energy prices.

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  3. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    Annual Weather Statistics (HDH = Heating Degree Hours, C DH = Cooling Degree Hours, L E H = Latent Enthalpy Hours)

  4. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    Dix Bvr Brg Bng~ Plk Bhn Lwd Iwn Sll Yma Bis Shn Hood EndBvr Brg Bng Plk Bhn HVAC Lwd Iwn SII Non-HVAC Yma Bis ShnGWh). Dix Bvr Brg Bng Plk Bhn Lwd Iwn Sll Y m a Bis Shn Hood

  5. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    Bragg Fort Benning Fort Polk Fort Benjamin Harrison FortEstimated H V A C EUIs at Fort Polk Table 5-6. Annual DOE-2Electricity Use at Fort Polk [GWh/yr] Table 5-18. Annual E D

  6. "Table B25. Energy End Uses, Floorspace for Non-Mall Buildings, 2003"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6.

  7. Energy End-Use Intensities in Commercial Buildings 1992 - Index Page

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity Glossary › FAQS ›192

  8. CBECS 1989 - Energy End-use Intensities in Commercial Buildings -- Detailed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0and164 167 200Tables

  9. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Bhandari. Comparison of Building Energy Use Data between theUnited States and China, Energy and Buildings, 2013. Underand Analytics to Inform Energy Retrofit of High Performance

  10. Building Energy Modeling Insights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    RSS Welcome to the Building Technologies Office's Building Energy Modeling blog. September 3, 2015 Unmet Hours is a question-and-answer resource for the building energy modeling...

  11. Building Energy Efficient Schools 

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.

    1985-01-01

    Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards.  As with the previous 2003 IECC standards, which had been in...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  14. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01

    Environment Institute. IEA (International Energy Agency),GR 4. IND +25% HI P CIS IEA Ref 5. COM +25% FA LBNL Lowest4% OI EI GR ERI Low Carbon AIS IEA 450 ERI Accel. Low Carbon

  15. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    energy efficiency. Intelligent Buildings, 3:43-46, 2011. InM. Bhandari. Comparison of Building Energy Use Data betweenand China, Energy and Buildings, 2013. Under reviewed. 5. T.

  16. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    Seven recent energy-efficient U.S. office buildings areSeven recent energy-efficient U.S. office buildings areLaboratory (1982), "Energy Efficient Buildings Program FY

  17. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809 245 15504 End Uses of

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. SB 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In...

  19. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  2. How many people actually see the price signal? Quantifying market failures in the end use of energy

    E-Print Network [OSTI]

    Meier, Alan; Eide, Anita

    2007-01-01

    investment, behaviour, energy price, consumers Abstract “suggest that raising energy prices—such as in the form ofconsumers actually “see” energy prices and are therefore

  3. Rating the energy performance of buildings

    E-Print Network [OSTI]

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-01-01

    T. , (1998), Building Energy Measurement and PerformanceRating a building’s energy performance is becoming anrating of energy performance of buildings. Modern existing

  4. An analysis of buildings-related energy use in manufacturing

    SciTech Connect (OSTI)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  5. Buildings and energy in the 1980`s

    SciTech Connect (OSTI)

    1995-06-01

    Many energy programs were put into place during the 1970`s and 1980`s to lessen the dependence upon foreign oil supplies and to improve how all forms of energy are used. A significant percent of total energy consumption occurred in the residential and commercial sectors. This report concentrates on the physical makeup of the residential and commercial buildings sectors and their use of energy, and examines changes that occurred during the 1980`s. Chapter 1 presents a summary of major findings. The following three chapters focus on different aspects of the overarching theme of buildings and energy in the 1980`s. Chapter 2 discusses major characteristics of residential and commercial buildings. Chapter 3 considers the major energy sources and end uses in terms of number of buildings and floorspace. Chapter 4 focuses on energy consumption and expenditures. Chapters 2, 3, and 4 contain tables at the end of each chapter that summarize data from detailed tables that are available separately on diskette or via EIA`s Electronic Publishing System (EPUB). Following the body of the report, appendices and a glossary provide additional information on the methodologies used in this report and on the residential and commercial building consumption surveys on which this report is based. 62 figs., 30 tabs.

  6. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    of actual buildings energy consumption data confirm thedata bases. Actual energy consumption data are necessary toten years. The energy consumption data for new low-energy

  7. 2015 Building Energy Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Building Energy Summit 2015 Building Energy Summit March 25, 2015 6:00AM to 3:00PM EDT Washington, D.C. The 2015 Building Energy Summit brings together leaders from both the...

  8. Energy Signal Tool for Decision Support in Building Energy Systems

    SciTech Connect (OSTI)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  9. A functional analysis of electrical load curve modelling for some households specific electricity end-uses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    domestic end-uses, the development of plug-in hybrid and electric vehicles, the increase of heat pumps heating systems such as heat pumps in new building or which will replace old installed fossil fuels based influences: · best building insulation which will reduce the energy needs for heating and cooling; · new

  10. Alabama Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9 U B u o f l53DecadeVehicle

  11. Alaska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9 U BEstimatedSales (Billion342,261

  12. Arizona Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9Cubic Feet) Oil1369,739 330,914

  13. Arkansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9CubicFeet)

  14. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Efficiency Commercial Buildings Commercial Buildings At an estimated cost of 38 billion a year, lighting represents the largest source of...

  15. CALIFORNIA ENERGY Large HVAC Building

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Energy Systems: Productivity and Building Science Program. This program was funded by the California of Portland Energy Conservation, Inc. Project Management: Cathy Higgins, Program Director for New Buildings

  16. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    Comparing building energy performance to that of similarincluding building energy performance monitoring. Sitewhole-building behaviors and energy performance, incorporate

  17. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  18. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  19. End Use and Fuel Certification

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification John Eichberger, Vice President of Government Relations, National Association for Convenience Stores

  20. Comparison of Building Energy Modeling Programs: Building Loads

    E-Print Network [OSTI]

    LBNL-6034E Comparison of Building Energy Modeling Programs: Building Loads Dandan Zhu1 , Tianzhen Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U;Comparison of Building Energy Modeling Programs: Building Loads A joint effort between Lawrence Berkeley

  1. Building Energy Data Exchange Specification Scoping Report |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Data Exchange Specification Scoping Report Building Energy Data Exchange Specification Scoping Report The Building Energy Data Exchange Specification (BEDES),...

  2. Building Energy Information Systems: User Case Studies

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01

    a large gap between building energy performance as designed,and whole-building energy performance has been complicatedanalysis of building energy performance, and can have a

  3. Revealing myths about people, energy and buildings

    E-Print Network [OSTI]

    Diamond, R.

    2011-01-01

    Myths about People, Energy and Buildings Rick Diamond andmyths about people, energy and buildings are current today?myths about people, energy and buildings? Who tells these

  4. Energy Standards for State Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    The State is still required by statute to adopt planning and construction standards for state buildings that conserve energy and optimize the energy performance of new buildings. The standards mu...

  5. Interdisciplinary research on Buildings in energy systems

    E-Print Network [OSTI]

    Zhao, Yuxiao

    issues are: Zero energy buildings: implementation processes, planning tools Energy efficient renovation of existing buildings Building owners and inhabitants: their role in creating energy efficiency. LocalInterdisciplinary research on Buildings in energy systems Local and regional energy systems

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  7. Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed

    E-Print Network [OSTI]

    Pang, Xiufeng

    2013-01-01

    generation building energy simulation program. Energy andReal-Time Building Energy Simulation Using EnergyPlus andREAL-TIME BUILDING ENERGY SIMULATION USING ENERGYPLUS AND

  8. New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors

    E-Print Network [OSTI]

    New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors Building energy energy savings. This new, hands-on course strives to provide plans examiners and building inspectors and nonresidential projects. Free Energy Code Training for Plans Examiners & Building Inspectors For more information

  9. Buildings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: EnergyGHGsBuildings Jump to:

  10. Rating the energy performance of buildings

    E-Print Network [OSTI]

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-01-01

    Abel E. (1994). Low-energy buildings, Energy and Buildings,Thormark C. (2002). A low energy building in a life cycle –how to obtain a ‘Low energy building ‘and how to obtain an ‘

  11. Nonresidential Building Energy Use Disclosure Program

    E-Print Network [OSTI]

    · ·/ Nonresidential Building Energy Use Disclosure Program California Code of Regulations Title Commission Chapter 4. Energy Conservation Article 9. Nonresidential Building Benchmarking and Disclosure Manager that summarizes the space and energy usage of a building and compares a building's energy use

  12. Commercial Building Energy Assest Score Overall Building Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Energy Asset Score: Pilot Findings & Program Update April 16, 2014 Joan Glickman, DOE Nora Wang, PNNL 2 | Building Technologies Office eere.energy.gov 1) Asset...

  13. Funding Opportunity Coming Soon: Buildings Energy Efficiency...

    Office of Environmental Management (EM)

    Opportunity Coming Soon: Buildings Energy Efficiency Frontiers & Innovation Technologies (BENEFIT) 2016 Funding Opportunity Coming Soon: Buildings Energy Efficiency Frontiers &...

  14. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review...

  15. BUILDING ENERGY EFFICIENCY RESEARCH & TECHNOLOGY

    E-Print Network [OSTI]

    California at Davis, University of

    BUILDING ENERGY EFFICIENCY RESEARCH & TECHNOLOGY A JOURNAL REVIEW TTP 289A-003, CRN #42059 Friday 3, cultural). Topics: May include: Zero net energy, `smart' building controls, passive design strategies, human health and wellness in buildings. Students are encouraged to introduce their own topic of interest

  16. Energy Department Issues Green Building Certification System...

    Office of Environmental Management (EM)

    Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification...

  17. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema (OSTI)

    None

    2014-06-26

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  18. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect (OSTI)

    2014-03-14

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  19. Moving Toward Zero Energy Buildings 

    E-Print Network [OSTI]

    Ginsberg, M.

    2008-01-01

    to optimize the performance of the building. Then we need the best renewable energy technologies that can be incorporated into buildings: solar, small wind, and geothermal heat pumps (some day hydrogen storage). I see the day when every building... Conference for Enhanced Building Operations - ICEBO?08 Conference Center of the Federal Ministry of Economics and Technology Berlin, October 20 - 22, 2008 Mark Ginsberg Senior Executive Board Member EERE Board of Directors U.S. Department of Energy...

  20. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  1. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  2. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Sources and End Uses Energy is an important but often unnoticed contributor to the high levels of productivity and quality of life enjoyed by U.S. residents. Energy is used...

  3. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Program Solution Center Webinar 3:00PM to 4:00PM EDT 5 6 7 8 9 10 11 Zero Energy Buildings: What are they and how do we build them? 3:00PM to 4:00PM EDT Building...

  4. 1 | Building America eere.energy.gov DOE's Building America

    E-Print Network [OSTI]

    1 | Building America eere.energy.gov DOE's Building America Low-E Storm Window Adoption Program Working Group #12;2 | Building America eere.energy.gov Pacific Northwest National Laboratory · Katie Cort, Larson Manufacturing Company Key Staff #12;3 | Building America eere.energy.gov Problem · Windows account

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2009 S.B. 1182 created the Oklahoma Uniform Building Code Commission. The 11-member Commission was given the power to conduct rulemaking processes to adopt new building codes. The codes adopted...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  11. Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH

    E-Print Network [OSTI]

    Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www.energy from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

  12. Review of Building Energy Saving Techniques 

    E-Print Network [OSTI]

    Zeng, X.; Zhu, D.

    2006-01-01

    The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use...

  13. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    sum to totals. * See "Glossary" for definition of terms used in this report. Source: Energy Information Administration, Office of Energy Markets and End Use, Form EIA-457 of the...

  14. Building Energy Information Systems: User Case Studies

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01

    enterprise energy and building automation systems. Lilburn,providers' use of building automation systems (BAS), orof web- based building control and automation systems and

  15. Residential Buildings Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the...

  16. Sustainable Buildings and Campuses | Department of Energy

    Energy Savers [EERE]

    Buildings and Campuses Sustainable Buildings and Campuses Sustainable Buildings and Campuses The Federal Energy Management Program (FEMP) provides strategies, best practices, and...

  17. Commercial Buildings | Department of Energy

    Energy Savers [EERE]

    of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's National Renewable Energy Lab could help...

  18. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Low Energy Buildings .6.2.2.7. International Comparisons of Low Energy Building218 China Low Energy Building Case

  19. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01

    to increase energy efficiency in buildings: Infonnationto increase energy efficiency in buildings: Informationto increase energy efficiency in buildings: Information

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  2. Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants

    E-Print Network [OSTI]

    Lehrer, David; Vasudev, Janani

    2011-01-01

    to improve buildings’ energy performance by offeringvisualizing the building’s energy performance, and reportshow often they view building energy or performance data, and

  3. Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed

    E-Print Network [OSTI]

    Pang, Xiufeng

    2013-01-01

    creating a new-generation building energy simulationprogram. Energy and Buildings, 33: 319-331. Haves, P. ,Liu M. 2001. Use of Whole Building Simulation in On- Line

  4. RADON DAUGHTER EXPOSURES IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero, J.V.EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero, J.V.EXPOSURES IN ENERGY EFFICIENT BUILDINGS A.V. Nero, J.V.

  5. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    solution”. In: Energy and Buildings 52.0 (2012), pp. 39–49.with GenOpt”. In: Energy and Buildings 42.7 (2010), pp.lation Program”. In: Energy and Buildings 33.4 (2001), pp.

  6. Energy efficiency buildings program, FY 1980

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  7. Technologies for Energy Efficient Buildings

    E-Print Network [OSTI]

    Resource Technologies for Energy Security Subtask 8.4 Deliverable By GE Global Research Niskayuna, New York.4.2.3 Total electrical energy consumption 33 3.4.2.4 Consumer alert messages 33 3.5 Laboratory TestingTechnologies for Energy Efficient Buildings Prepared for the U.S. Department of Energy Office

  8. Building Energy Simulation & Modeling | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Architecture firm Skidmore, Owings & Merrill (SOM) used EnergyPlus to design a new 380,000 square foot federal office building in West Virginia. The...

  9. Commercial Building Energy Alliance Exterior Lighting Scoping...

    Office of Scientific and Technical Information (OSTI)

    Commercial Building Energy Alliance Exterior Lighting Scoping Study Citation Details In-Document Search Title: Commercial Building Energy Alliance Exterior Lighting Scoping Study...

  10. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

  11. Re-Energize: Building Energy Smart Communities

    Broader source: Energy.gov [DOE]

    Re-Energize: Building Energy Smart Communities Brand Book, as posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  12. Energy Efficiency Upgrades Help Build Better Neighborhoods |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Upgrades Help Build Better Neighborhoods Energy Efficiency Upgrades Help Build Better Neighborhoods May 6, 2013 - 4:55pm Addthis In neighborhoods all across the...

  13. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01

    Solar thermal collectors are not widely used i n Japan, the total energy consumptionsolar shading for a l l openings. End-Use Energy Consumptionenergy consumption for cooling i n office buildings is greater than for heating; as a result, solar

  14. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    All new residential, commercial, and community-owned buildings constructed on or after January 1, 1992 that recieve financing from the Alaska Housing Finance Corporation (AHFC) must comply with...

  16. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  17. Building Energy Codes Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of Energy America:Antonio,Building EnergyBuilding

  18. Energy use in office buildings

    SciTech Connect (OSTI)

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  19. Building Energy-Efficient Schools

    E-Print Network [OSTI]

    energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina certification; a goal was also set for schools undergoing major renovation to achieve 25% energy savingsBuilding Energy- Efficient Schools in New Orleans Lessons Learned #12;2 #12;3 The devastation

  20. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    A. B. (1992). Energy-Efficiency Buildings: Institutionalec.europa.eu/energy/efficiency/buildings/buildings_en.htm20). Plan on energy efficiency building to be announced,

  1. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    of Public Buildings. Energy and Buildings (41), 426–435.and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program, of the

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Delaware Energy Code is reviewed by Delaware Energy Office every three years for potential updates to the most recent version of International Energy Conservation Code (IECC) and ASHRAE Standard ...

  3. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    SciTech Connect (OSTI)

    Hong , Tianzhen; Yang, Le; Hill, David; Feng , Wei

    2014-01-25

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

  4. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    SciTech Connect (OSTI)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  5. Building Up Home Energy-Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Up Home Energy-Efficiency Building Up Home Energy-Efficiency August 26, 2014 - 11:00am Addthis Building or remodeling a home provides an opportunity to build...

  6. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Expenditures Consumption and Energy Intensities for Major Energy Sources Throughout the 1980's, energy consumption in residential buildings was greater than...

  7. Autotune Building Energy Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAuditsDepartment of(TEG)ofAutotune Building

  8. DOE Zero Energy Ready Home Webinar: Building Energy Optimization...

    Energy Savers [EERE]

    Webinar: Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014...

  9. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    SciTech Connect (OSTI)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  10. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01

    end-uses and whole building energy performance metrics. Theperformance metrics associated with each of the domains. For example, whole-building energy

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. This is the firs...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  16. GSA Building Energy Strategy

    Broader source: Energy.gov (indexed) [DOE]

    aggressive energy strategies, GSA is currently reporting a 23.54% reduction in consumption compared to 2003. - In terms of cost avoidance, this equates to a lower energy bill...

  17. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    conducted in two stages: (1) A Household (RECS)Building (CBECS) Survey and an Energy Suppliers Survey. The HouseholdBuilding Characteristics Survey consists of personal...

  18. Buildings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessment Toolkit JumpBuildingOS

  19. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    Energy Intensity by End-use Assumptions Urban enduse intensity SpaceEnergy Consumption by Fuel Table 3 End Use Saturations and Intensities Saturation, % Urban Space

  20. DOE Commercial Building Energy Asset Score: Software Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Score: Software Development for Phase II Building Types DOE Commercial Building Energy Asset Score: Software Development for Phase II Building Types DOE Commercial Building Energy...

  1. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY-EFFICIENT RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Berk, J.V.

    2011-01-01

    Laboratory Energy Efficient Buildings Mobile Laboratory.of 1,150 f t . LBL's Energy Efficient Buildings (EEB) MobileLaboratory. Energy Efficient Buildings Program Energy and

  2. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    operation with energy efficiency in building systems. X X Xoperation with energy efficiency in building systems. 10.3.for Energy Efficiency and Renewable Energy, Building

  3. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Improving energy efficiency in existing buildings. ASHRAEStandard for Energy Efficiency of Public Buildings. EnergyFor Energy Efficiency of Public Building -- GB 50189.

  4. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01

    Quality Measurements in Energy Efficient Buildings Craig D.Quality ~leasurements in Energy Efficient Buildings Craig D.Gregory W. Traynor Energy Efficient Buildings Program Energy

  5. Acquisition of building geometry in the simulation of energy performance

    E-Print Network [OSTI]

    Bazjanac, Vladimir

    2001-01-01

    New-Generation Building Energy Simulation Program," Energy &Classes,” Building Energy Simulation User News, Vol.21,Clarke, J.A. 1985. Energy Simulation in Building Design,

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  8. Optimization of energy parameters in buildings

    E-Print Network [OSTI]

    Jain, Ruchi V

    2007-01-01

    When designing buildings, energy analysis is typically done after construction has been completed, but making the design decisions while keeping energy efficiency in mind, is one way to make energy-efficient buildings. The ...

  9. N. Mariana Islands- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  10. Building Energy Asset Score: Real Estate Managers

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use.

  11. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    platforms and  building automation systems (BAS), a including  basic  building  automation  control,  fault Smart building power management automation. Building

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Tennessee is a "home rule" state which leaves adoption of codes up to the local codes jurisdictions. State energy codes are passed through the legislature, apply to all construction and must be...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  15. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    Standard for Energy Efficiency of Public Buildings. EnergySummer Study on Energy Efficiency in Buildings August 12,for Energy Efficiency of Residential Buildings in Hot Summer

  16. Energy-Saving Homes, Buildings, & Manufacturing

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

  17. Building Energy Information Systems: User Case Studies

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01

    informed by the energy services provider and the employeeparty energy consultants and service providers. However, theproviders' use of building automation systems (BAS), or energy

  18. Building Energy Codes Program (BECP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of Energy America:Antonio,Building Energy Codes

  19. Building Energy Codes Program (BECP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of Energy America:Antonio,Building Energy

  20. Penn State Consortium for Building Energy Innovation

    Broader source: Energy.gov [DOE]

    The Penn State Consortium for Building Energy Innovation (formerly the Energy Efficient Buildings Hub) develops, demonstrates, and deploys energy-saving technologies that can achieve 50% energy reduction in small- and medium-sized buildings. Its headquarters serves as a test bed for real-world integration of technology and market solutions.

  1. Implications of maximizing China's technical potential for residential end-use energy efficiency: A 2030 outlook from the bottom-up

    E-Print Network [OSTI]

    Khanna, Nina

    2014-01-01

    Levine. 2012. “China's Energy and Emissions Outlook to 2050:on China’s Future Energy and Emissions Outlook. LBNL-4032E.Energy Demand Outlook

  2. Energy Signal Tool for Decision Support in Building Energy Systems...

    Office of Scientific and Technical Information (OSTI)

    different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing...

  3. Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation

    E-Print Network [OSTI]

    Bazjanac, Vladimir

    2008-01-01

    STANDARD (NBIMS) ON BUILDING ENERGY PERFORMANCE SIMULATIONare pertinent to building energy performance simulation andprobable impact on building energy performance simulation

  4. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of Energy America:Antonio, TexasConnectionsDavid

  5. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan FebElements)Feet) Decade8

  6. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    study of Ningbo. Energy and Buildings(43), 2197-2202. Yin,buildings in China. Energy and Buildings, 36, 1191-1196.Public Buildings. Energy and Buildings, 41, 426:435. Hong,

  7. DOE Commercial Building Energy Asset Rating Program Focus Groups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ssetratingseattlefocusgroups.pdf More Documents & Publications Commercial Building Energy Asset Rating Workshop A Common Definition for Zero Energy Buildings Building Energy...

  8. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01

    Organization: Energy Efficiency Building Code (EEBC-92)INCREASE the ENERGY EFFICIENCY of BUILDINGS. Such standardsto increase energy efficiency in buildings: Infonnation

  9. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01

    develop a web-based building energy performance benchmarkingtraining, building energy performance studies, and thermaland Energy Performance Benchmarking for Commercial Buildings

  10. APPLICATION OF DOE-2 TO RESIDENTIAL BUILDING ENERGY PERFORMANCE STANDARDS

    E-Print Network [OSTI]

    Lokmanhekim, M.

    2013-01-01

    of Residential Building Energy Performance Standards".for the Evaluation of Building Energy Performance Standardsof Proposed Building Energy Performance Report, P~~~-3044,

  11. Revisit of Energy Use and Technologies of High Performance Buildings

    E-Print Network [OSTI]

    Li Ph.D., Cheng

    2014-01-01

    determine the building energy performance, the underlyingthis, the energy performance of individual building and theinto the actual energy performance of these buildings and to

  12. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    hospitals in their building energy performance standard (Information on energy performance of building products. •information on energy performance of building products.

  13. Acquisition of building geometry in the simulation of energy performance

    E-Print Network [OSTI]

    Bazjanac, Vladimir

    2001-01-01

    budgeting for building energy performance simulation, oneeffort in a building energy performance simulation project.In the case of building energy performance simulation, up to

  14. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    Healthcare Buildings: A Roadmap to Improved EnergyHealthcare Buildings: A Roadmap to Improved EnergyHealthcare Buildings: A Roadmap to Improved Energy

  15. SIMMODEL: A DOMAIN DATA MODEL FOR WHOLE BUILDING ENERGY SIMULATION

    E-Print Network [OSTI]

    O'Donnell, James

    2013-01-01

    whole building energy simulation program. In: IBPSA BuildingExchange Protocols for Energy Simulation of HVAC&R EquipmentInteroperability for Energy Simulation. buildingSmart (2010)

  16. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    S. (2011). Utilities and Building Energy Codes: Air QualityUtility Programs and Building Energy Codes: How utilityUtility Programs and Building Energy Codes: How utility

  17. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    E-Print Network [OSTI]

    Marini, Kyle

    2011-01-01

    Web based enterprise energy and building automation systems.from an Analysis of Building Energy Information SystemG. , & Price, P. 2009b. Building Energy Information Systems:

  18. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01

    constructing a net zero-energy building to house the REECCountry Report on Building Energy Codes in India. Richland,2010. Mainstreaming Building Energy Efficiency Codes in

  19. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  20. Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 3, Policy Barriers and Investment Decisions in Industry

    E-Print Network [OSTI]

    Benenson, Peter

    2011-01-01

    on Nu- clear and Alternative Energy Systems ( CONAES) andCommittee on Nuclear and Alternative Energy Systems (CONAES)on Nu- clear and Alternative Energy Systems (CONAES) and FEA

  1. Evaluation of Energy Concepts for Office Buildings 

    E-Print Network [OSTI]

    Fisch, M.; Norbert, M.; Plesser, S.

    2005-01-01

    synonym for innovative office buildings in Germany over the last 10 years. Since almost no reliable results of measurement and verification have been made public on the performance of these buildings – often very prominent company headquarters... buildings and analysed existing data on energy consumption suggest that glassed office buildings do not generally have a significantly higher energy consumption than regular office buildings. Introduction Over the last 10 years, some research...

  2. Energy Simulation for Buildings: Development and Training

    E-Print Network [OSTI]

    Energy Simulation for Buildings: Development and Training This report presents an architectural for Smart Building and Community Design, and Hawai`i Natural Energy Institute And submitted to Hawai Center for Smart Building and Community Design 3 Hawai`i Natural Energy Institute University of Hawai

  3. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    use for optimal building energy performance. One retail andstudy. The optimal building energy performance is calculatedorder to understand building energy performance in different

  4. Optimizing Building Energy Use Objective: Perform a comprehensive energy audit of a targeted New York City building,

    E-Print Network [OSTI]

    Wolberg, George

    Optimizing Building Energy Use Objective: Perform a comprehensive energy audit of a targeted New York City building, identify inefficiencies, recommend modifications to improve energy efficiency, electricity-generation method, and the energy efficiency of buildings. Building energy efficiency determines

  5. Web-based energy information systems for large commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann

    2003-03-29

    Energy Information Systems (EIS), which monitor and organize building energy consumption and related trend data over the Internet, have been evolving over the past decade. This technology helps perform key energy management functions such as organizing energy use data, identifying energy consumption anomalies, managing energy costs, and automating demand response strategies. During recent years numerous developers and vendors of EIS have been deploying these products in a highly competitive market. EIS offer various software applications and services for a variety of purposes. Costs for such system vary greatly depending on the system's capabilities and how they are marketed. Some products are marketed directly to end users while others are made available as part of electric utility programs. EIS can be a useful tool in building commissioning and retro-commissioning. This paper reviews more than a dozen EIS. We have developed an analytical framework to characterize the main features of these products, which are developed for a variety of utility programs and end-use markets. The purpose of this research is to evaluate EIS capabilities and limitations, plus examine longer-term opportunities for utilizing such technology to improve building energy efficiency and load management.

  6. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    SciTech Connect (OSTI)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  7. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix A How the Survey Was Conducted Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted by the Energy Information Administration (EIA) on a...

  8. Building America Residential Energy Efficiency Stakeholders Meeting...

    Energy Savers [EERE]

    Energy Efficiency Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report...

  9. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Residential Network What's Happening on Home Energy Pros?* Explore the Third Edition of Peer Exchange Call Lessons Learned Join the conversation on Home Energy Pros,...

  10. Better Buildings Neighborhood Program: Energy Efficiency Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: Energy Efficiency Market Sustainable Business Planning Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning U.S. Department of...

  11. Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants

    E-Print Network [OSTI]

    Lehrer, David; Vasudev, Janani

    2011-01-01

    end-use and historical energy data, and a nearly unanimoustime and historical energy data in a single-screen dashboardthat displays real-time energy data, and enables historical

  12. Renewable Energy Applications for Existing Buildings: Preprint

    SciTech Connect (OSTI)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  13. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at the Edge ofEnergy ProgramBuildingIQ, Inc:<

  14. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at the Edge ofEnergy ProgramBuildingIQ,

  15. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at the Edge ofEnergy ProgramBuildingIQ,February

  16. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  17. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    and display building energy data. iii Glossary Energy1) How to interpret energy data, to improve efficiency andutility bills or interval energy data. Longitudinal Cross-

  18. RADON AND ITS DAUGHTERS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    pp. 18- 23 in Energy Efficient Buildings Program, Lawrencein conventional and energy-efficient buildings; and 3) the

  19. Apply: Building Energy Efficiency Frontiers and Innovation Technologie...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Funding Opportunity Announcement Apply: Building Energy Efficiency Frontiers and Innovation...

  20. More Issues of Building Energy Simulation 

    E-Print Network [OSTI]

    Kang, Z.; Zhao, J.

    2006-01-01

    The paper investigates the development of building energy simulation software. It is shown that such applications can be used for energy forecasting, system design and operations, and energy evaluation. Several energy simulation methods are analyzed...

  1. Building Energy Information Systems: User Case Studies

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01

    2001). EMCS and time-series energy data analysis in a largeand display building energy data. Time-series data fromlevel of engagement with energy data and a role in energy

  2. Building Energy Modeling (BEM) Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amir Roth, Ph.D. amir.roth@ee.doe.gov Building Energy Modeling (BEM) Program Overview http:energy.goveerebuildingsbuilding-energy-modeling 2 BEM: An Energy-Efficiency...

  3. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    in evaluating relative building energy performance in Chinaunderstanding of the building’s energy performance and helpthe actual energy performance of the building and verify the

  4. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect (OSTI)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  5. Database Aids Building Owners and Operators in Energy-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to expanding the building energy-efficiency retrofit market is the lack of empirical data on building energy performance. This deficiency makes it difficult for building...

  6. INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, Craig D.

    2011-01-01

    microbial burden The Energy Efficient Buildings (EEB) Mobilein a number of energy efficient buildings, wherein pollutantenergy~efficient ventilation , institutional and commercial buildings.

  7. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    construction, and eventually the operation of the building.2008. Richland, Washington: Building Energy Codes Program,L. , & Hogan, J. (2003). Building Energy Code Enforcement: A

  8. Building America Expert Meeting: Energy Savings You Can Bank...

    Energy Savers [EERE]

    Building America Expert Meeting: Energy Savings You Can Bank On Building America Expert Meeting: Energy Savings You Can Bank On On October 12, 2011, Building America team Alliance...

  9. Using occupancy to reduce energy consumption of buildings

    E-Print Network [OSTI]

    Balaji, Bharathan

    2011-01-01

    Driven Energy Management for Smart Building Automation” InDriven Energy Management for Smart Building Au- tomation” Innetwork for all our smart building solutions. For this we

  10. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    resources to help meet requirements for green building rating systems, such as the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED), the Green...

  11. Energy Efficient Buildings Hub | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment of EnergyDepartmentEfficient Buildings Hub Energy

  12. Building Energy Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of EnergyEmerging Technologies » Building Energy

  13. Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia

    E-Print Network [OSTI]

    Tiedemann, Kenneth Mr.

    2013-01-01

    Summer Study on Energy Efficiency in Buildings, Washington ,Summer Study on Energy Efficiency in Buildings, Washington,

  14. PSNC Energy (Gas)- Green Building Rate Discount

    Office of Energy Efficiency and Renewable Energy (EERE)

    This discounted rate is available to commercial customers whose building meets the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification or equivalent. To...

  15. An energy performance index for historic buildings 

    E-Print Network [OSTI]

    Campbell, Scott

    1991-01-01

    This thesis reports studies conducted on historic buildings from the 1880 to 1900 era. These buildings were recently renovated and many more years of service are expected. Derivation of an energy demand prediction index was the primary study goal...

  16. Advanced Energy Retrofit Guide Retail Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  17. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  18. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Broader source: Energy.gov [DOE]

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  19. Building Momentum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResultsLong-TermDepartmentBuilding

  20. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

  1. Building Energy Asset Score: Energy Services Companies, Engineers and Consultants

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use.

  2. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Breakdown of Total  Electricty Consumption ? Building A kWh/Breakdown of Total  Electricty Consumption ? Building B kWh/Breakdown of Total   Electricty Consumption ? Building C 

  3. Zero Energy Buildings: What are they and how do we build them...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Buildings: What are they and how do we build them? Zero Energy Buildings: What are they and how do we build them? April 7, 2015 3:00PM to 4:00PM EDT Presenters:...

  4. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...

    Office of Environmental Management (EM)

    Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, &...

  5. Building Our Energy Future: Teaching Students the Significance...

    Office of Environmental Management (EM)

    Building Our Energy Future: Teaching Students the Significance of Energy Efficiency Building Our Energy Future: Teaching Students the Significance of Energy Efficiency April 2,...

  6. EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings...

    Office of Environmental Management (EM)

    Energy-Saving Homes, Buildings, and Manufacturing EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings, and Manufacturing Office of Energy Efficiency and Renewable Energy...

  7. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    operation, maintenance, occupant behavior: U.S. buildingsoperation,  maintenance, occupant behavior: U.S.  buildings building operation and occupant behavior in both countries: 

  8. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Sathaye, J. (2009). India Energy Outlook: End Use Demand inies.lbl.gov/iespubs/india_energy_outlook.pdf de la Rue duRetrieved from USAID India - Energy Conservation and

  9. Long Term Operation of Renewable Energy Building 

    E-Print Network [OSTI]

    Nelson, V.; Starcher, K.; Davis, D.

    1996-01-01

    As part of a renewable energy project, a building was designed and constructed to demonstrate several renewable energy technologies at the Wind Test Center of the Alternative Energy Institute (AEI). The systems are passive and active heating, solar...

  10. Sustainable Energy Future in China's Building Sector 

    E-Print Network [OSTI]

    Li, J.

    2007-01-01

    This article investigates the potentials of energy-saving and mitigation of green-house gas (GHG) emission offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy...

  11. Handbook of energy use for building construction

    SciTech Connect (OSTI)

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  12. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    of cumulative sums to identify energy use anomalies in 37Energy Information HandbookApplications for Energy-Efficient Building Operations J.

  13. Preliminary CBECS End-Use Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    For the past three CBECS (1989, 1992, and 1995), we used a statistically-adjusted engineering (SAE) methodology to estimate end-use consumption. The core of the SAE methodology...

  14. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    SciTech Connect (OSTI)

    Belzer, David B.

    2009-04-03

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  15. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    in this report were based on monthly billing records submitted by the buildings' energy suppliers. The section, "Annual Consumption and Expenditures" provide a detailed...

  16. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    the sponsor the government, utility or sponsored in-house. Energy Management and Control System Heating or cooling system monitored or controlled by a computerized building...

  17. Sustainable Buildings and Infrastructure | Department of Energy

    Energy Savers [EERE]

    (MOU) DOE Space Allocation Standard Implementation Resources U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan DOE Sustainable...

  18. Building America Residential Energy Efficiency Research Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and...

  19. Mainstreaming Building Energy Efficiency Codes in Developing...

    Open Energy Info (EERE)

    Mainstreaming Building Energy Efficiency Codes in Developing Countries: Global Experiences and Lessons from Early Adopters Jump to: navigation, search Tool Summary LAUNCH TOOL...

  20. Smart Buildings Equipment Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    increased interest in new strategies for engaging building energy assets to provide peak load management, regulation services, and ancillary services to the grid. Such engagement...

  1. Better Buildings Summit 2015 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    meeting is a forum for sharing innovative and replicable solutions for implementing energy efficiency across your portfolio of buildings. Over 180 presenters are invited to...

  2. Buildings Technologies Deployment | Clean energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full...

  3. Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries

    E-Print Network [OSTI]

    Smith, Jonathan Y. (Jonathan York), 1979-

    2004-01-01

    Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

  4. Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed

    E-Print Network [OSTI]

    Pang, Xiufeng

    2013-01-01

    and Glazer, J. 2001. EnergyPlus: creating a new-generationBuildings, 32:5-17. US DOE. 2010. EnergyPlus Documentation.buildings/energyplu s/energyplus_documentation.cfm Wetter,

  5. Characterization of commercial building appliances. Final report

    SciTech Connect (OSTI)

    Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

    1993-08-01

    This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

  6. U.S. Department of Energy Building Energy Data Exchange Specification...

    Office of Environmental Management (EM)

    U.S. Department of Energy Building Energy Data Exchange Specification U.S. Department of Energy Building Energy Data Exchange Specification This document describes the DOE Building...

  7. Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning

    SciTech Connect (OSTI)

    Coffey, Brian; Borgeson, Sam; Selkowitz, Stephen; Apte, Josh; Mathew, Paul; Haves, Philip

    2009-07-01

    This paper describes the origin, structure and continuing development of a model of time varying energy consumption in the US commercial building stock. The model is based on a flexible structure that disaggregates the stock into various categories (e.g. by building type, climate, vintage and life-cycle stage) and assigns attributes to each of these (e.g. floor area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock dynamics, the model has been used to study the likely outcomes of specific policy and innovation scenarios targeting very low future energy consumption in the building stock. Model use has highlighted the scale of the challenge of meeting targets stated by various government and professional bodies, and the importance of considering both new construction and existing buildings.

  8. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  9. Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings

    E-Print Network [OSTI]

    O'Donnell, James

    2008-01-01

    Laboratory Buildings. ” Energy and Buildings 34 Geoghegan,consumption data. ” Energy and Buildings 24, Hampton, Dave.building operations. ” Energy and Buildings 33, (8):783–791.

  10. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    SciTech Connect (OSTI)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  11. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect (OSTI)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  12. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecastenergy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast

  13. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    Heating and Cooling Efficiency Source: Glass, Analysis of building-integrated renewable energy systems in modern UK homes.

  14. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Richland, Washington: Building Energy Codes Program, PacificHogan, J. (2003). Building Energy Code Enforcement: A LookM. (2010, April). Options for Energy Efficiency in India and

  15. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    12 - Building Energy Savings per Square Foot of Window13 - Building Energy Savings per Square Foot of Windowshows the energy savings per square foot of window area for

  16. Better Buildings Challenge is Expanding, Improving Energy Efficiency...

    Office of Environmental Management (EM)

    and manufacturers to improve building energy efficiency by addressing whole building energy data access, utilizing industrial superior energy performance, or conducting performance...

  17. Energy Department Announces $5 Million for Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy Efficiency...

  18. reEnergize: Building Energy Smart Communities | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reEnergize: Building Energy Smart Communities reEnergize: Building Energy Smart Communities Slides presented in the "What's Working in Residential Energy Efficiency Upgrade...

  19. DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training...

    Energy Savers [EERE]

    DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training The National Renewable Energy Laboratory...

  20. Energy Department's New Buildings Solution Center Shares Proven...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Buildings Solution Center Shares Proven Strategies for Energy Efficiency Programs Energy Department's New Buildings Solution Center Shares Proven Strategies for Energy...

  1. DOE Announces Webinars on Building Energy Optimization Tool Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Optimization Tool Training, Placing Utility Energy Service Contract Task Orders, and More DOE Announces Webinars on Building Energy Optimization Tool Training,...

  2. EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings, and Manufacturing EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings, and Manufacturing Office of Energy...

  3. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    sum to totals. * See "Glossary" for definition of terms used in this report. Source: Energy Information Administration, Office of Energy Markets and End Use, Form EIA-788 of the...

  4. Energy Efficiency Trends in Residential and Commercial Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    building trends and energy use in commercial and residential buildings, including environmental impacts of buildings and trends in select product specification and market insights....

  5. Better Buildings Network View | March 2015 | Department of Energy

    Energy Savers [EERE]

    Better Buildings Network View | March 2015 Better Buildings Network View | March 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's...

  6. Measuring and Understanding the Energy Use Signatures of a Bank Building

    SciTech Connect (OSTI)

    Xie, YuLong; Liu, Bing; Athalye, Rahul A.; Baechler, Michael C.; Sullivan, Greg

    2012-08-12

    The Pacific Northwest National Laboratory measured and analyzed the energy end-use patterns in a bank building located in the north-eastern United States. This work was performed in collaboration with PNC Financial Service Group under the US DOE’s Commercial Building Partnerships Program. This paper presents the metering study and the results of the metered data analysis. It provides a benchmark for the energy use of different bank-related equipments. The paper also reveals the importance of metering in fully understanding building loads and indentifying opportunities for energy efficiency improvements that will have impacts across PNC’s portfolio of buildings and were crucial to reducing receptacle loads in the design of a net-zero bank branches. PNNL worked with PNC to meter a 4,000 ft2 bank branch in the state of Pennsylvania. 71 electrical circuits were monitored and 25 stand-alone watt-hour meters were installed at the bank. These meters monitored the consumption of all interior and exterior lighting, receptacle loads, service water heating, and the HVAC rooftop unit at a 5-minute sampling interval from November 2009 to November 2010. A total of over 8 million data records were generated, which were then analyzed to produce the end-use patterns, daily usage profiles, rooftop unit usage cycles, and inputs for calibrating the energy model of the building.

  7. Energy Efficiency in Buildings- the Utilities View 

    E-Print Network [OSTI]

    Konig, U.

    2008-01-01

    Efficiency in Buildings - the Utilities View U. K?nig RWE Energy AG The energy to lead ESL-IC-08-10-27 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE Energy... for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE Energy / Energieeffizienz bei Immobilien / U. K?nig / ICEBO '08 SEITE 3 RWE ? One of the five leading Energy Companies in Europe > Nr 1 producer of electricity in Germany, Nr 3 in UK...

  8. Flexible Framework for Building Energy Analysis: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

    2012-09-01

    In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

  9. Assessment of Energy Use in Multibuilding Facilities

    U.S. Energy Information Administration (EIA) Indexed Site

    CBECS asked for district steam or district hot water piped into the building. Source: Energy Information Administration, Office of Energy Markets and End Use, 1979, 1983, 1986 and...

  10. Healthcare Energy: Spotlight on Medical Equipment

    Broader source: Energy.gov [DOE]

    The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about large medical imaging equipment energy results.

  11. Healthcare Energy: Spotlight on Chiller Plants

    Broader source: Energy.gov [DOE]

    The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about the chiller plant energy results.

  12. Commercial Building Energy Efficiency Education Project

    SciTech Connect (OSTI)

    2013-01-13

    The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

  13. Energy Efficient Retrofits and Green Building Practices 

    E-Print Network [OSTI]

    Rahman, M.

    2010-01-01

    . Moreover, the increase in demand is also causing rise in pollution levels. Therefore, the subject of energy efficient retrofits and green building practices is becoming increasingly important. Based on the latest walkthrough energy audit it is proven...

  14. Building Energy Asset Score: Utilities and Energy Efficiency Program Administrators

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use.

  15. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    426–435. LBNL. (2012). Distributed Energy Resources CustomerATIONAL L ABORATORY Building Distributed Energy Performanceemployer. Building Distributed Energy Performance

  16. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    SciTech Connect (OSTI)

    New Buildings Institute; Pacific Northwest National Laboratory; Granderson, Jessica; Piette, Mary Ann; Rosenblum, Ben; Hu, Lily; Harris, Daniel; Mathew, Paul; Price, Phillip; Bell, Geoffrey; Katipamula, Srinivas; Brambley, Michael

    2011-10-01

    This handbook will give you the information you need to plan an energy-management strategy that works for your building, making it more energy efficient.

  17. Buildings.Energy.gov Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming the Energy Efficiency Market Buildings.Energy.gov * Design * Performance * Cost * Durability * Value * Appearance * Size * Function * AwardsSpecial Recognition *...

  18. Occupancy-Based Energy Management in Buildings: Final Report to Sponsors

    E-Print Network [OSTI]

    Sohn, Michael D.

    2010-01-01

    continually optimize building energy performance. The fieldmeans to improve building energy performance. A simulationand optimize building energy performance. When available,

  19. Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects

    E-Print Network [OSTI]

    Sanders, Mark D.

    2014-01-01

    Study of Energy Efficiency in Buildings. ACEEE, Washington,3)Financing Your Energy Efficiency Projects Building Energywith  Commercial   Building  Energy  Efficiency   Provide  

  20. Managing Energy in San Antonio Public Buildings 

    E-Print Network [OSTI]

    Gates, P.

    2013-01-01

    Public Buildings Leading by Example Philip Gates, CEM, CMVP, EIT Energy Manager 1 ESL-KT-13-12-27 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 2 H ow to be gin ? ESL-KT-13-12-27 CATEE 2013: Clean Air... and Policies it i li i Energy Management Responsibilities 3 ESL-KT-13-12-27 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Public Buildings: By the Numbers 4 15,000,000 sqft of building area ESL-KT-13-12-27 CATEE...

  1. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    U.S. energy-efficient and renewable building technologies,demonstration energy- efficient commercial building”, LBNLdemonstration energy-efficient office building Peng Xu Joe

  2. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01

    Study on Energy Efficiency in Buildings. Kinter-Meyer,Study on Energy Efficiency in Buildings. LBNL Report #50733.Study on Energy Efficiency in Buildings. LBNL Report #48284.

  3. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01

    Quality Measurements in Energy- Efficient Buildings; April,9576 EEB 79-5 NIA ENERGY EFFICIENT BUILDINGS PROGRAM ChapterCalifornia 94720 ENERGY EFFICIENT BUILDINGS PROGRAM Annual

  4. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    China demonstration energy- efficient commercial building”,China Demonstration Energy Efficient Office Building insideUS-China demonstration energy-efficient office building Peng

  5. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Figure 9 ? Annual electricity consumption comparison of the total annual electricity consumption, Buildings A and B mostly  measure  electricity  consumption,  cooling  loads, 

  6. A review of methods to match building energy simulation models to measured data

    E-Print Network [OSTI]

    Coakley, Daniel; Raftery, Paul; Keane, Marcus

    2014-01-01

    2 Building energy performance simulation (BEPS)generation building energy simulation program. Energy Buildwhen using building energy simulation. Build Serv Eng Res

  7. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Summer Study on Energy Efficiency in Buildings. ACEEE. EarthStudy on Energy Efficiency in Buildings, 10-196. Martinez,Rubild, J. (2008). Energy Efficiency in Buildings in China.

  8. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    Summer Study on Energy Efficiency in Buildings. pp. 8-249Summer Study on Energy Efficiency in Buildings. pp. 4-275 -Summer Study on Energy Efficiency in Buildings. pp. 8-170 -

  9. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01

    Summer Study on Energy Efficiency in Buildings, 4:351–366.Summer Study on Energy Efficiency in Buildings, 8:209–224.Summer Study on Energy Efficiency in Buildings, 10-196– 212.

  10. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01

    of pakistan" Energy and Buildings 15-16 (199019] )'533 535in the IT S S R" Energy and Buildings (1990) 14· 401-409 "the IT 5 5 R " Energy and Buildings (1992) 3. Yu Matrosov "

  11. Retrofitting Existing Buildings for Demand Response & Energy Efficiency

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Retrofitting Existing Buildings for Demand Response & Energy Efficiency www rate periods to avoid high charges. · Assembly Bill 1103 ­ Building Energy Efficiency Disclosure - Starting January 1, 2010, all commercial building lease transactions must disclose the energy efficiency

  12. Uncertainties in Energy Consumption Introduced by Building Operations and

    E-Print Network [OSTI]

    Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium-Size Office Building Liping Wang, Paul Mathew, Xiufeng Pang Environmental Energy Technologies Division between predicted and actual building energy consumption can be attributed to uncertainties introduced

  13. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    Table 12 Projected Primary Energy Savings between ReferenceEnergy (Primary Energy) .18 Figure 6 Primary Energy Consumption by End-Use in

  14. Estimation of Building Parameters Using Simplified Energy Balance Model and Metered Whole Building Energy Use 

    E-Print Network [OSTI]

    Masuda, H.; Claridge, D.

    2012-01-01

    This paper presents and evaluates an indirect data-driven method to estimate influential building parameters: air exchange rates and overall heat transfer coefficients of building envelopes from the separately metered energy use for electricity...

  15. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b. Total Primary Energy Consumption (U.S. and Census Region) By Principal Building Activity (Table 1c) html...

  16. Energy consumption series: Lighting in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1992-03-11

    Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy`s (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration`s (EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

  17. Celebrating Two Years of Building America's Clean Energy Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Years of Building America's Clean Energy Manufacturing Future Celebrating Two Years of Building America's Clean Energy Manufacturing Future March 27, 2015 - 3:23pm Addthis An...

  18. Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

    Office of Environmental Management (EM)

    Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) -...

  19. Inspiring and Building the Next Generation of Residential Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inspiring and Building the Next Generation of Residential Energy Professionals Inspiring and Building the Next Generation of Residential Energy Professionals April 29, 2014 -...

  20. Building Energy Codes Implementation Overview - 2014 BTO Peer...

    Energy Savers [EERE]

    Building Energy Codes Implementation Overview - 2014 BTO Peer Review Building Energy Codes Implementation Overview - 2014 BTO Peer Review Presenter: Jeremiah Williams, U.S....

  1. Building America Best Practices Series Vol. 14: Energy Renovations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners Building America Best Practices Series Vol. 14: Energy...

  2. Energy Department Invests $6 Million to Support Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Commercial Building Efficiency Energy Department Invests 6 Million to Support Commercial Building Efficiency July 24, 2014 - 5:08pm Addthis The Energy Department today...

  3. Obama Administration Launches $130 Million Building Energy Efficiency...

    Energy Savers [EERE]

    Administration Launches 130 Million Building Energy Efficiency Effort Obama Administration Launches 130 Million Building Energy Efficiency Effort February 12, 2010 - 12:00am...

  4. Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings...

    Energy Savers [EERE]

    Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge November 6, 2013 -...

  5. Business Case for Energy Efficient Building Retrofit and Renovation...

    Energy Savers [EERE]

    Business Case for Energy Efficient Building Retrofit and Renovation Business Case for Energy Efficient Building Retrofit and Renovation This report outlines ways to make the right...

  6. Building Performance with ENERGY STAR Pilot Program Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance with ENERGY STAR Pilot Program Portfolio Manager Fact Sheet Building Performance with ENERGY STAR Pilot Program Portfolio Manager Fact Sheet Building Performance with...

  7. DOE Announces Webinars on Top Solar Tools, Building Energy Optimizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Solar Tools, Building Energy Optimization Tool Training, and More DOE Announces Webinars on Top Solar Tools, Building Energy Optimization Tool Training, and More May 8, 2014 -...

  8. Using Qualified Energy Conservation Bonds for Public Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Using Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing...

  9. Commercial Building Energy Asset Scoring Tool 2013 Pilot Training...

    Broader source: Energy.gov (indexed) [DOE]

    Session More Documents & Publications Commercial Building Energy Asset Scoring Tool Application Programming Interface Commercial Building Energy Asset Score: 2013 Pilot Overview...

  10. Commercial Building Energy Asset Scoring Tool Application Programming...

    Energy Savers [EERE]

    Commercial Building Energy Asset Scoring Tool Application Programming Interface Commercial Building Energy Asset Scoring Tool Application Programming Interface slides from June 14,...

  11. Florida Solar Energy Center (Building America Partnership for...

    Open Energy Info (EERE)

    Florida Solar Energy Center (Building America Partnership for Improved Residential Construction Jump to: navigation, search Name: Florida Solar Energy Center (Building America...

  12. Energy Department Recognizes University of Utah in Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Recognizes University of Utah in Better Buildings Challenge Energy Department Recognizes University of Utah in Better Buildings Challenge September 4, 2014 -...

  13. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  14. Energy efficient building structure and panel therefor

    SciTech Connect (OSTI)

    Carroll, Th.J.; Paisley, J.K.

    1984-08-28

    A building structure is constructed from a plurality of sheathed, foam cored structural panels which are adapted to receive solar energy conversion or heat storage devices and are adapted to be connected in an air flow loop to provide integral heating and/or cooling systems for the building structure.

  15. Energy Audit Results for Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II Building and Community Design 3 Hawai`i Natural Energy Institute University of Hawai`i Manoa #12;#12;i This report analyses complete energy audit results from 28 homes within the Forest City residential complex

  16. Building America Webinar: Saving Energy in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Advanced Envelope Research for Factory-Built Housing Building America Webinar: Ventilation in...

  17. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  18. Energy Efficient State Building Initiative

    Broader source: Energy.gov [DOE]

    The order also requires that renovations or repairs of existing buildings achieve the maximum efficiency level that is cost-effective based on an analysis of construction and operating costs over...

  19. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    factors (chilled water), and energy efficiency ratios. TotalEnergy Rate Solar Hot Water Energy Rate Domestric HW EnergyGas  Oil  Renewable energy  Water  Cooling and heating loads

  20. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect (OSTI)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  1. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.82p. Total and Average Primaary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1982 Total Average RSE Row Fac- tors Expenditures...

  2. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.90p. Total and Average Primary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1990 Total Average RSE Row Fac- tors Expenditures...

  3. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.81p. Total and Average Primary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1981 Total Average RSE Row Fac- tors Expenditures...

  4. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.84p. Total and Average Primary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1984 Total Average RSE Row Fac- tors Expenditures...

  5. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.87p. Total and Average Primary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1987 Total Average RSE Row Factors Expenditures (million...

  6. Sweden Building Data | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Sweden Building Data Jump to: navigation, search For several years now, the Swedish Energy Agency has been working, under the name of the STIL2 project, to...

  7. Design for Energy Efficiency in Residential Buildings 

    E-Print Network [OSTI]

    Song, M.; Zhang, Y.; Yang, G.

    2006-01-01

    This paper presents the thermal design and heating design of an energy saving residential building in Beijing where the owners lived until 2004. Results show the advantages and disadvantages of a household-based heating mode by natural gas. Based...

  8. Better Buildings Summit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    is a national meeting where leading organizations across key sectors showcase solutions to cut energy intensity in their buildings portfolio-wide by 20% over the next 10 years....

  9. Country Report on Building Energy Codes in Canada

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  10. Country Report on Building Energy Codes in Australia

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  11. Country Report on Building Energy Codes in India

    SciTech Connect (OSTI)

    Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

    2009-04-07

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

  12. Country Report on Building Energy Codes in China

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  13. Building Energy Optimization Analysis Method (BEopt) - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of EnergyEmerging Technologies » Building

  14. Renewable energy in commercial buildings

    E-Print Network [OSTI]

    Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

    2008-01-01

    energetici. La corsa alle energie rinnovabili richiederàdelle tecnologie legate alle energie rinnovabili mostrano unof Climate Change). ENERGIE RINNOVABILI: IL MERCATO Le fonti

  15. Energy Simulation for Buildings: Development and Training

    E-Print Network [OSTI]

    Energy Simulation for Buildings: Development and Training This report presents an architectural analysis. Energy simulation training activities included development of a semester course, whole-day workshops, and summer internships. The report was submitted by HNEI to the U.S. Department of Energy Office

  16. Preliminary Findings from an Analysis of Building Energy Information System Technologies

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01

    of whole-building energy performance. Mary Ann Piette is arealizing improved building energy performance because theyto relate one building’s energy performance to that of other

  17. Co-Simulation of Building Energy and Control Systems with the Building

    E-Print Network [OSTI]

    LBNL-5065E Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Simulation, 4(3):185-203, 2011. Co-Simulation of Building Energy and Control Systems with the Building the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB

  18. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  19. Local Option- Property Tax Assessment for Energy Efficient Buildings

    Broader source: Energy.gov [DOE]

    An energy-efficient building is defined as any building that exceeds the energy efficiency standards of the Virginia Uniform Statewide Building Code by 30%; meets performance standards of the...

  20. Renewable energy in commercial buildings

    E-Print Network [OSTI]

    Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

    2008-01-01

    Dynamic life cycle assessment (LCA) of renewable energytechnologies, Renewable energy. [6] REN21 Renewable Energy Policy Network. 2005. “Renewables

  1. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01

    from the Long-Range Energy Alternatives Planning (LEAP) end-using the Long-Range Energy Alternatives Planning (LEAP)Energy Modeling. 10 Reference and Alternative

  2. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    SciTech Connect (OSTI)

    Vine, Edward

    2002-05-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements. The following lists suggest potential EERE-Buildings activities, grouped by whether EERE-Buildings would play a lead or supporting role.

  3. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01

    load reduction for a net zero energy building, ACEEE Summergreen building or net zero energy building goals, which

  4. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | Department ofBuildingSync BuildingSync® is

  5. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | Department ofBuildingSync BuildingSync®

  6. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | Department ofBuildingSync BuildingSync® 6 7

  7. Energy Department Invests $6 Million to Increase Building Energy...

    Energy Savers [EERE]

    using a methodology that provides statewide results with 90% reliability. Implement an education, training, and outreach program designed to increase residential building energy...

  8. Building Energy Asset Score: Energy Services Companies, Engineers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. View additional information...

  9. Building Operator Certification: Improving Commercial Building Energy Efficiency Through Operator Training and Certification 

    E-Print Network [OSTI]

    Putnam, C.; Mulak, A.

    2001-01-01

    Building Operator Certification (BOC) is a competency-based certification for building operators designed to improve the energy efficiency of commercial buildings. Operators earn certification by attending training sessions and completing project...

  10. Building Energy Performance Analysis of an Academic Building Using IFC BIM-Based Methodology 

    E-Print Network [OSTI]

    Aziz, Z.; Arayici, Y.; Shivachev, D.

    2012-01-01

    This paper discusses the potential to use an Industry Foundation Classes (IFC)/Building Information Modelling (BIM) based method to undertake Building Energy Performance analysis of an academic building. BIM/IFC based methodology provides a...

  11. Conversion of three-dimensional graphic building models into input data for building energy calculation program 

    E-Print Network [OSTI]

    Hayek, Raja Fares

    1994-01-01

    Building energy use calculation programs require descriptions of the building geometry as well as data relating to climate, materials, occupancy, among other aspects. Powerful micro-computers and sophisticated building ...

  12. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    December 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 29 30 1 2 3 4 5 Informational Webinar for RFI: GSA and DOE Seek Innovative Building Technologies 1:00PM to 3:00PM EST 6 7 8...

  13. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of34 End3.

  14. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of34 End3.7

  15. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of34 End3.78

  16. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of34

  17. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of348 End

  18. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of348 End7

  19. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of348 End78

  20. Energy-Aware Meeting Scheduling Algorithms for Smart Buildings

    E-Print Network [OSTI]

    Albonesi, David H.

    ; Build- ing energy efficiency 1 Introduction The energy consumption of commercial buildings is of growingEnergy-Aware Meeting Scheduling Algorithms for Smart Buildings Abhinandan Majumdar Computer Systems The increasing worldwide concern over the energy con- sumption of commercial buildings calls for new approaches

  1. DOE Commercial Building Energy Asset Score Web Service (Draft)

    SciTech Connect (OSTI)

    Elliott, Geoffrey; Wang, Na

    2013-09-30

    Documentation of the DOE Commercial Building Energy Asset Score application programming interface (API).

  2. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01

    Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Office of the Building

  3. End-Use Intensity in Commercial Buildings 1992 (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 9 21 5 64 1 9 Food Service . . . . . . . . . . . . . . 307 43 53 9 37 28 116 17 1 5 Health Care . . . . . . . . . . . . . . . 403 88 32 11 128 52 30 6 15 41 Lodging . . . . . ....

  4. 1999 Commercial Buildings Characteristics--End-Use Equipment

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic Monthly ActualActivities

  5. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    predicted vs. actual energy usage/savings, and present thetools for estimating energy usage. These data bases provideft -yr in resource energy usage. These same office bUild~ngs

  6. Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning, October 25, 2011.

  7. Uncalibrated Building Energy Simulation Modeling Results 

    E-Print Network [OSTI]

    Ahmad, M.; Culp, C.H.

    2006-01-01

    &R RESEARCH OCTOBER 2006 1141 Uncalibrated Building Energy Simulation Modeling Results Mushtaq Ahmad Charles H. Culp, PhD, PE Associate Member ASHRAE Fellow ASHRAE Received June 23, 2005; accepted April 17, 2006 Uncalibrated simulations have provided useful... was to analyze the performance of four uncali- brated simulation models using DOE-2.1E Version 119 (Ayres and Stamper 1995) as the simula- tion package. The four buildings were randomly selected from a building data base (LoanSTAR 2005). Three of the four...

  8. Energy Management Strategies for Existing Buildings 

    E-Print Network [OSTI]

    Gilmer, L.

    2009-01-01

    , as our demands increase, our infrastructure ages, and we set goals to reduce our green house gas emissions, building energy use plays a vital role. Our success in reducing our carbon footprint lies in our ability to determine energy use, identify...

  9. New York building stands out, saves energy

    Broader source: Energy.gov [DOE]

    A new energy-efficient building in New York is raising eyebrows and inspiring creativity, but its unique design and innovative features are helping the Cooper Union for the Advancement of Science and Art save energy, help the environment and keep its students’ imaginations fresh.

  10. Building America - Resources for Energy Efficient Homes

    SciTech Connect (OSTI)

    2012-04-19

    Building America publications help builders achieve whole-house energy savings in five major climate zones. Using the recommendation and process improvements outlined in the Best Practices Series handbooks, builders can re-engineer their designs to improve energy performance and quality. Case studies for new and existing homes provide results from actual projects.

  11. Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings

    E-Print Network [OSTI]

    Matson, Nance E.; Piette, Mary Ann

    2005-01-01

    to compare a given building’s energy performance to that ofof a given building’s energy performance based on thetheir building’s energy use intensities and performance to

  12. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    EnergyPlus (DOE, 2011). The energy usage intensity is shownResidential Building Site Energy Usage Intensity in ChinaGas Residen>al Building Energy Usage Intensity Comparison

  13. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    and Energy Management in Zero-Net-Energy Buildings Michaeland Energy Management in Zero-Net-Energy Buildings 1 Michaelgoal of achieving zero-net-energy commercial buildings (

  14. Buildings*","Buildings Using Any Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard ErrorsYear Jan Feb MarA6. BuildingB7.2. Energy

  15. Buildings*","Buildings Using Any Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard ErrorsYear Jan Feb MarA6. BuildingB7.2. Energy3.

  16. Building Energy Modeling (BEM) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    amir.roth@ee.doe.gov BEM is a Fundamental Energy-Efficiency Technology BEM calculates energy use from description of assets & operations * Predictive if all major inputs are...

  17. Energy Signal Tool for Decision Support in Building Energy Systems...

    Office of Scientific and Technical Information (OSTI)

    Signal Tool for Decision Support in Building Energy Systems Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I. 32 ENERGY CONSERVATION, CONSUMPTION, AND...

  18. Energy Department Launches Virtual Hackathon to Build the Next...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches Virtual Hackathon to Build the Next Big Solar Software Solutions Energy Department Launches Virtual Hackathon to Build the Next Big Solar Software Solutions February 20,...

  19. Energy Savings Through Improved Mechanical Systems and Building...

    Office of Environmental Management (EM)

    Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

  20. Buildings Energy Data Book - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    a variety of data sets and includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building...