National Library of Energy BETA

Sample records for buildings energy end-use

  1. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimates The end-use estimates had two main sources: the 1989 Commercial Buildings Energy Consumption Survey (CBECS) and the Facility Energy Decision Screening (FEDS) system....

  2. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source:...

  3. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  4. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  5. Energy End-Use Intensities in Commercial Buildings1992 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    in the way that variables such as building age and employment density could interact with the engineering estimates of end-use consumption. The SAE equations were...

  6. Energy End-Use Intensities in Commercial Buildings 1989

    U.S. Energy Information Administration (EIA) Indexed Site

    1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas, fuel oil, and district...

  7. Energy End-Use Intensities in Commercial Buildings1995 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The...

  8. Energy End-Use Intensities in Commercial Buildings1995 -- Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    model using survey data from the 1995 commercial buildings energy consumption survey and building energy simulations provided by the Facility Energy Decision Screening system....

  9. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Energy Use in Commercial Buildings The purpose of this section is to provide an overview of how energy was used in commercial buildings. Focusing on 1989 buildings, the section...

  10. Energy End-Use Intensities in Commercial Buildings 1989 data...

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey. Divider Bar To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  11. Energy End-Use Intensities in Commercial Buildings 1995 - Index...

    U.S. Energy Information Administration (EIA) Indexed Site

    End-Use Analyst Contact: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbec-eu1.html separater bar If...

  12. End-use Breakdown: The Building Energy Modeling Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End-use Breakdown: The Building Energy Modeling Blog End-use Breakdown: The Building Energy Modeling Blog RSS Welcome to the Building Technologies Office's Building Energy Modeling blog. April 14, 2016 A before-and-after image of the OpenStudio Measure "AEDG K-12 school daylighting package" demonstrates the surgical power of Measures. Source: NREL. There's a Measure for That! OpenStudio Measures are short programs that can be used to transform models, create custom visualizations and

  13. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  14. Energy End-Use Intensities in Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the building. Examples include the use of solar collectors for water...

  15. End-use Breakdown: The Building Energy Modeling Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Blog en EnergyPlus Logo Debuts on Revit Toolbar http:energy.goveerebuildingsarticlesenergyplus-logo-debuts-revit-toolbar

  16. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Active Solar: As an energy source, energy from the sun collected and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the...

  17. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  18. Energy End-Use Intensities in Commercial Buildings 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey. divider line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  19. Table B19. Energy End Uses, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Energy End Uses, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,,"Total Floorspace (million square feet)" ,"All Buildings","Energy Used For (more than one may apply)",,,,,"All Buildings","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manufact-uring",,"Space

  20. "Table B25. Energy End Uses, Floorspace for Non-Mall Buildings, 2003"

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Energy End Uses, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manu- facturing" "All Buildings* ...............",64783,60028,56940,56478,22237,3138 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  1. Control Limits for Building Energy End Use Based on Engineering Judgment, Frequency Analysis, and Quantile Regression

    SciTech Connect (OSTI)

    Henze, G. P.; Pless, S.; Petersen, A.; Long, N.; Scambos, A. T.

    2014-02-01

    Approaches are needed to continuously characterize the energy performance of commercial buildings to allow for (1) timely response to excess energy use by building operators; and (2) building occupants to develop energy awareness and to actively engage in reducing energy use. Energy information systems, often involving graphical dashboards, are gaining popularity in presenting energy performance metrics to occupants and operators in a (near) real-time fashion. Such an energy information system, called Building Agent, has been developed at NREL and incorporates a dashboard for public display. Each building is, by virtue of its purpose, location, and construction, unique. Thus, assessing building energy performance is possible only in a relative sense, as comparison of absolute energy use out of context is not meaningful. In some cases, performance can be judged relative to average performance of comparable buildings. However, in cases of high-performance building designs, such as NREL's Research Support Facility (RSF) discussed in this report, relative performance is meaningful only when compared to historical performance of the facility or to a theoretical maximum performance of the facility as estimated through detailed building energy modeling.

  2. Office Buildings - End-Use Equipment

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration, 2003 Commercial Buildings Energy Consumption Survey. More computers, dedicated servers, printers, and photocopiers were used in office buildings than in...

  3. Realizing Building End-Use Efficiency with Ermerging Technologies

    Broader source: Energy.gov [DOE]

    Information about the implementation of emerging technologies to maximize end-use efficiency in buildings.

  4. Healthcare Energy End-Use Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Energy End-Use Monitoring Healthcare Energy End-Use Monitoring NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers,

  5. Healthcare Energy End-Use Monitoring

    SciTech Connect (OSTI)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  6. 1999 Commercial Buildings Characteristics--End-Use Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Cooling Equipment Packaged air conditioning units were the predominant type of cooling...

  7. Healthcare Energy: Using End-Use Data to Inform Decisions

    Broader source: Energy.gov [DOE]

    The relative magnitude of the energy consumption of different end uses can be a starting point for prioritizing energy investments and action, whether the scope under consideration involves new metering, targeted energy audits, or end-use equipment upgrades.

  8. End-Use Sector Flowchart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End-Use Sector Flowchart End-Use Sector Flowchart This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial and residential-identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector. PDF icon End-Use Sector Flowchart More Documents & Publications Barriers to Industrial Energy

  9. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  10. Distribution Infrastructure and End Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Infrastructure and End Use Distribution Infrastructure and End Use The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007 requires 36 billion gallons of biofuels to be blended into transportation fuel by 2022. Meeting the RFS2 target introduces new challenges for U.S. infrastructure, as modifications will be needed to transport and deliver renewable fuels that are not compatible with existing petroleum infrastructure. The

  11. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  12. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energys (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  13. Energy Information Administration (EIA)- Commercial Buildings...

    Gasoline and Diesel Fuel Update (EIA)

    | Previous Building Characteristics Consumption & Expenditures Microdata Methodology ... number of buildings and floorspace XLS Energy sources and end uses Preliminary release ...

  14. Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education 15 74 83 11 113 2 16 4 32 21 371 Food Sales 6 12 7 Q 46 2 119 2 2 10 208 Food Service 10 28 24 10 42 13 70 2 2 15 217 Health Care 6 34 42 2 105 1 8 4 10 36 248 Inpatient 3 25 38 2 76 1 4 2 7 21

  15. Engineer End Uses for Maximum Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Maximum Efficiency (August 2004) More Documents & Publications Maintaining System Air Quality Compressed Air Storage Strategies Alternative Strategies for Low Pressure End Uses

  16. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  17. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Most Popular Tables PDFXLS 1.1.1 U.S. Residential and Commercial Buildings Total Primary Energy Consumption PDFXLS 3.1.1 Commercial Primary Energy Consumption, by Year and Fuel Type PDFXLS 1.1.3 Buildings Share of U.S. Primary Energy Consumption PDFXLS 3.1.4 2010 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type PDFXLS 3.1.5 2015 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 3.2.1 Total Commercial Floorspace and

  18. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Energy Information Adminstration Office of Energy Markets and End Use U.S....

  19. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioning: See Energy End Use, Cooling. Authorization Form: A form signed by the respondent authorizing energy supplier companies that serve the building to release...

  20. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  1. Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  2. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect (OSTI)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

  3. Healthcare Energy: Massachusetts General Hospital Gray Building |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Massachusetts General Hospital Gray Building Healthcare Energy: Massachusetts General Hospital Gray Building The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. This page contains highlights from monitoring at the Gray Building at Massachusetts General Hospital. In the figure above, click on items in the legend to focus on specific end uses. See below for basic information about the building. Photo

  4. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  5. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel --

  6. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  7. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547

  8. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  9. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17

  10. Energy End-Use Intensities in Commercial Buildings 1992 - Index...

    U.S. Energy Information Administration (EIA) Indexed Site

    Author Contact: Joelle.Michaels@eia.doe.gov Joelle Michaels CBECS Survey Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbecs1d.html separater bar...

  11. CBECS 1989 - Energy End-use Intensities in Commercial Buildings...

    U.S. Energy Information Administration (EIA) Indexed Site

    the sampling error is nonzero and unknown for the particular sample chosen, the sample design permits sampling errors to be estimated. Due to the complexity of the sample design,...

  12. Energy Efficient Buildings Hub

    SciTech Connect (OSTI)

    2013-04-01

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  13. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  14. Buildings and Energy in the 80's -- Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980...

  15. CBECS - Buildings and Energy in the 1980's - Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980...

  16. Buildings and Energy in the 80's -- Overview

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980...

  17. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  18. Building Energy Modeling Library

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and ... currently applied to potential energy efficiency measures by building owners when ...

  19. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  20. Buildings | Open Energy Information

    Open Energy Info (EERE)

    influence a building, including incentives, utilities, weather, climate, and locationground temperature. Municipalities and Renewable Energy Opportunities Building...

  1. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  2. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  3. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  4. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficient Commercial Buildings Energy 101: Energy Efficient Commercial Buildings

  5. Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) 12,109 21 4 2 2,059 25 – – Conventional Boiler Use 12,109 11 3 2 1,245 6 – – CHP 6 and/or Cogeneration Process – – 10 1 (s) 814 19 – – Direct End Use All Process Uses 657,810

  6. Buildings Energy Databook

    Buildings Energy Data Book [EERE]

    2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered

  7. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Impacts * Priorities for FY15 and Beyond 2 Building Energy Codes - Mission Support the building energy code and standard development, adoption, implementation and enforcement ...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became...

  9. Building energy analysis tool

    DOE Patents [OSTI]

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  10. California commercial building energy benchmarking

    SciTech Connect (OSTI)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  12. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a

  13. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  15. Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys

    SciTech Connect (OSTI)

    Belzer, David B.

    2004-09-04

    This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

  16. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Building Performance Standards (EEBPS) are statewide minimum requirements that all new construction and additions to existing buildings must satisfy. Exceptions include...

  17. Buildings | Open Energy Information

    Open Energy Info (EERE)

    work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. Related Links Buildings Gateway Retrieved from "http:en.openei.orgw...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  1. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  2. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  3. Buildings*","Energy Used For

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Energy End Uses, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manu- facturing" "All Buildings* ...............",4645,3982,3625,3472,801,119 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  4. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  5. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  6. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy

  7. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected

  8. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  9. Advanced Building Technologies: Toward a New Generation of Net-Zero Energy, Carbon-Neutral Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting, Berkeley CA August 14, 2007 Advanced Building Technologies Toward a New Generation of Net-Zero Energy, Carbon-Neutral Buildings Stephen Selkowitz Department Head, Building Technologies Department Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510/486-5064 Lawrence Berkeley National Laboratory Building Energy Demand Challenge: End Use Energy Consumption Buildings consume 39% of total U.S. energy * 71% of electricity and 54% of natural gas Lawrence Berkeley National Laboratory

  10. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 ...

  11. 2015 Building Energy Summit

    Broader source: Energy.gov [DOE]

    The 2015 Building Energy Summit brings together leaders from both the public and private sector to debate and discuss energy efficient technologies and solutions, energy policy, funding and incentives, alternative sources of energy, and more.

  12. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Explore Survey Data from the Energy Information Administration Follow the links below to two easy-to-use query tools, developed exclusively for this website. With these tools you can explore results from the Commercial Buildings Energy Consumption Survey (CBECS) and the Residential Energy Consumption Survey (RECS). Commercial Buildings Energy Index Use this custom query tool to analyze micro data from CBECS 2003. Residential Buildings Energy Index Use this custom Microsoft Excel pivot table to

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  16. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  19. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy...

  20. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    in Residential Buildings, 1984 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand)...

  1. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    in Residential Buildings, 1987 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand)...

  2. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy

  3. Commercial Building Energy Asset Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Energy Asset Score 2014 Building Technologies Office Peer Review Nora ... (MA DOER) and Northeast Energy Efficiency Partnership (NEEP) Building Owners...

  4. Sandia Energy - Building a Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building a Microgrid Home Infrastructure Security Energy Surety Partnership News Customers & Partners Energy Assurance Microgrid Building a Microgrid Previous Next Building a...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  6. Midwest Building Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for Code Compliance Enhancement Education - State Energy Offices, Utilities and ... annually or 7% over 3 years (EPA Data Trends Report Oct 2012) 11 | Building ...

  7. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    Science and industry work together to improve energy efficiency and reduce carbon emissions of both new and existing buildings while also stimulating private investment and quality job creation.

  8. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  9. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards. As with the previous 2003 IECC standards, which had been in...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: On March 9, 2016, the State Fire Prevention and Building Code Council adopted major updates to the State Uniform Code and the State Energy Code. The State Energy Code has been updated to 2015...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  14. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  15. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    9Market Transformation 9.1 ENERGY STAR 9.2 LEED 9.3 Certification Programs 9.4 High Performance Buildings Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter contains data on two market transformation programs that reach across the United States and to other countries: the ENERGY STAR program, jointly administered by the U.S.

  16. Assessment of U.S. Electric End-Use Energy Efficiency Potential

    SciTech Connect (OSTI)

    Gellings, Clark W.; Wikler, Greg; Ghosh, Debyani

    2006-11-15

    Demand-side management holds significant potential to reduce growth in U.S. energy consumption and peak demand, and in a cost-effective manner. But significant policy interventions will be required to achieve these benefits. (author)

  17. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire

  18. Building Energy Asset Score | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Analysis Tools » Building Energy Asset Score Building Energy Asset Score Building Energy Asset Score The U.S. Department of Energy's Building Energy Asset Score (Asset Score) is a national standardized tool for assessing the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities to invest in energy

  19. Saving Energy in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This presentation is for the Building Technologies program webinar titled Saving Energy in Multifamily Buildings delivered on July 25, 2011.

  20. Energy balances in the production and end-use of methanol derived from coal

    SciTech Connect (OSTI)

    1980-12-10

    Analysis is performed for three combinations of fuels, specifically: net petroleum gain (petroleum only); net premium fuel gain (natural gas and petroleum); and net energy gain (includes all fuels; does not include free energy from sun). The base case selected for evaluation was that of an energy-efficient coal-to-methanol plant located in Montana/Wyoming and using the Lurgi conversion process. The following variations of the base coal-methanol case are also analyzed: gasoline from coal with methanol as an intermediate step (Mobil-M); and methanol from coal (Texaco gasification process). For each process, computations are made for the product methanol as a replacement for unleaded gasoline in a conventional spark ignition engine and as a chemical feedstock. For the purpose of the energy analysis, computations are made for three situations regarding mileage of methanol/ gasoline compared to that of regular unleaded gasoline: mileage of the two fuels equal, mileage 4 percent better with gasohol, and mileage 4 percent worse with gasohol. The standard methodology described for the base case applies to all of the variations.

  1. Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Buildings EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to

  2. Building Energy Asset Score: Building Owners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Owners Building Energy Asset Score: Building Owners The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. View information

  3. Building Energy Codes Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program Building Energy Codes Program 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and

  4. Building Energy Asset Score

    Broader source: Energy.gov [DOE]

    Lead Performer: Pacific Northwest National Laboratory (PNNL) – Richland, WAProject Term: Ongoing ProgramFunding Type: Direct Lab FundingProgram Webpage: Commercial Building Energy Asset Score Homepage

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further considera...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    In November of 2015, the Commission adopted the 2015 International Building Code (IBC) with amendments. The Commission did not adopt the 2012 International Energy Conservation Code (IECC) as part...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. S.B. 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In Dece...

  9. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  10. Table 7. U.S. Energy-Related Carbon Dioxide Emissions by End-Use Sector, 1990-20

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy-Related Carbon Dioxide Emissions by End-Use Sector, 1990-2009" " (Million Metric Tons Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Residential",,963.38,980.093,981.418,1039.553,1032.275,1039.099,1099.143,1089.835,1097.465,1121.649,1185.104,1171.525,1203.666,1230.086,1227.758,1261.459,1192.007,1242.002,1228.992,1162.154 "

  11. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    1982 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand) Consump- tion...

  12. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    1980 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand) Consump- tion...

  13. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    1981 End Uses RSE Row Fac- tors All End Uses Space Heating Water Heating Air Conditioning Appliances Building Characteristics Buildings (thou- sand) Consump- tion...

  14. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the

  15. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  16. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    6.1 Electric Utility Energy Consumption 6.2 Electricity Generation, Transmission, and Distribution 6.3 Natural Gas Production and Distribution 6.4 Electric and Generic Quad Carbon Emissions 6.5 Public Benefit Funds/System Benefit Funds 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to

  17. Energy Information Administration (EIA)- Commercial Buildings Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Survey (CBECS) Data 5 CBECS Survey Data 2012 | 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy

  18. Better Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Better Buildings Hilton Worldwide and Whole Foods Market energy teams SWAP buildings in San Francisco, CA Hilton Worldwide and Whole Foods Market energy teams SWAP buildings in San Francisco, CA In the Better Buildings Challenge SWAP, brought to you by the U.S. Department of Energy, Hilton Worldwide and Whole Foods Market - two industry giants at the top of their game in energy conservation - swap energy teams to conduct an energy audit and uncover energy savings at each other's

  19. Zero Energy Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Zero Energy Buildings Zero Energy Buildings Zero Energy Buildings Zero energy buildings combine energy efficiency and renewable energy generation to consume only as much energy as can be produced onsite through renewable resources over a specified time period. Achieving zero energy is an ambitious yet increasingly achievable goal that is gaining momentum across geographic regions and markets. Private commercial property owners have a growing interest in developing zero

  20. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  1. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  2. Energy Information Administration (EIA)- Commercial Buildings Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Survey (CBECS) Data 9 CBECS Survey Data 2012 | 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures

  3. Table 2.5 Household Energy Consumption and Expenditures by End Use, Selected Years, 1978-2005

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Household 1 Energy Consumption and Expenditures by End Use, Selected Years, 1978-2005 Year Space Heating Air Conditioning Water Heating Appliances, 2 Electronics, and Lighting Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Electricity 3 Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Natural Gas Elec- tricity 3 LPG 5 Total Consumption (quadrillion Btu)<//td> 1978 4.26 0.40 2.05 0.23 6.94 0.31 1.04 0.29 0.14 0.06 1.53 0.28 1.46 0.03 1.77 1980 3.41 .27 1.30 .23 5.21 .36 1.15 .30 .22

  4. Table 3.6 Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars )

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars 1) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 5,272 4,186 10,352 20,112 1,844 1,440 7,319 10,678 2,082 2,625 6,069 366 5,624 16,691 35,327 35,379 1971 5,702 4,367 11,589 21,934 2,060 1,574

  5. Midwest Building Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Midwest Building Energy Program Midwest Building Energy Program Building Codes Project for the 2013 Building Technologies Office's Program Peer Review PDF icon bldgcodes02_paradis_040213.pdf More Documents & Publications Stretch/Reach Codes Appliance Standards and Building Codes Energy Code Compliance and Enforcement Best Practices

  6. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Glossary Acronyms and Initialisms Technology Descriptions Residential Space Heating Residential Space Cooling Residential Water Heating Commercial Space Cooling Commercial Space Heating Commercial Refrigeration Lighting Building Descriptions Commercial Residential Acronyms and Initialisms A B C D E F G H I L M N O P Q R S U V AAMA - American Architectural Manufacturers Association ACEEE - American Council for an Energy Efficient Economy AEO - EIA's Annual Energy Outlook AFEAS - Alternative

  7. Building Solutions | Open Energy Information

    Open Energy Info (EERE)

    Building Solutions Jump to: navigation, search Name: Building Solutions Place: California Sector: Efficiency Product: California-based energy efficiency contractor and consultancy....

  8. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    SciTech Connect (OSTI)

    Wall, L.W.; Rosenfeld, A.H.

    1982-12-01

    Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

  9. Building Energy Simulation & Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation & Modeling Building Energy Simulation & Modeling Lead Performer: Lawrence ... Development (CBERD) conducts energy efficiency research and development with a focus ...

  10. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and

  11. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore » mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.« less

  12. Residential Building Energy Analysis

    Energy Science and Technology Software Center (OSTI)

    1990-09-01

    PEAR (Program for Energy Analysis of Residences) provides an easy-to-use and accurate method of estimating the energy and cost savings associated with various energy conservation measures in site-built single-family homes. Measures such as ceiling, wall, and floor insulation; different window type and glazing layers; infiltration levels; and equipment efficiency can be considered. PEAR also allows the user to consider the effects of roof and wall color, movable night insulation on the windows, reflective and heatmore » absorbing glass, an attached sunspace, and use of a night temperature setback. Regression techniques permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to 880 U.S. locations determined by climate parameters. Based on annual energy savings, user-specified costs of conservation measures, fuel, lifetime of measure, loan period, and fuel escalation and interest rates, PEAR calculates two economic indicators; the Simple Payback Period (SPP) and the Savings-to-Investment Ratio (SIR). Energy and cost savings of different sets of conservation measures can be compared in a single run. The program can be used both as a research tool by energy policy analysts and as a method for nontechnical energy calculation by architects, home builders, home owners, and others in the building industry.« less

  13. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On this page, you may link to the summary report and presentations for the Building America Energy Efficiency meeting in July 2011, held in Denver, Colorado. PDF icon Summary of ...

  14. Energy Information Administration (EIA)- Commercial Buildings Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Survey (CBECS) Data 2 CBECS Survey Data 2012 | 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy

  15. Building Energy Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Building Energy Modeling Building Energy Modeling About the portfolio Building energy modeling (BEM)-physics-based calculation of building energy consumption-is a multi-use tool for building energy efficiency. Established use cases include design of new buildings and deep retrofits, development of whole-building energy efficiency codes and standards (e.g., ASHRAE 90.1) and performance-path compliance with those codes (e.g., ASHRAE 90.1 "Appendix G" Performance

  16. Energy Signal Tool for Decision Support in Building Energy Systems

    SciTech Connect (OSTI)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  17. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Contact Us Users of the Buildings Energy Data Book are encouraged to comment on errors, omissions, emphases, and organization of this report to one of the persons listed below. Requests for additional complementary copies of this report, additional data, or information on an existing table should be referred to Jordan Kelso of D&R International, using the feedback form on this page. First Name: Last Name: Organization: Email Address: Message: Submit Editor: Jordan D. Kelso D&R

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  19. Energy Standards for State Buildings

    Broader source: Energy.gov [DOE]

    The State is still required by statute to adopt planning and construction standards for state buildings that conserve energy and optimize the energy performance of new buildings. The standards mu...

  20. Building Energy Use Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Use Benchmarking Building Energy Use Benchmarking Benchmarking is the practice of comparing the measured performance of a device, process, facility, or organization to itself, its peers, or established norms, with the goal of informing and motivating performance improvement. When applied to building energy use, benchmarking serves as a mechanism to measure energy performance of a single building over time, relative to other similar buildings, or to modeled simulations of a

  1. Buildings and energy in the 1980`s

    SciTech Connect (OSTI)

    1995-06-01

    Many energy programs were put into place during the 1970`s and 1980`s to lessen the dependence upon foreign oil supplies and to improve how all forms of energy are used. A significant percent of total energy consumption occurred in the residential and commercial sectors. This report concentrates on the physical makeup of the residential and commercial buildings sectors and their use of energy, and examines changes that occurred during the 1980`s. Chapter 1 presents a summary of major findings. The following three chapters focus on different aspects of the overarching theme of buildings and energy in the 1980`s. Chapter 2 discusses major characteristics of residential and commercial buildings. Chapter 3 considers the major energy sources and end uses in terms of number of buildings and floorspace. Chapter 4 focuses on energy consumption and expenditures. Chapters 2, 3, and 4 contain tables at the end of each chapter that summarize data from detailed tables that are available separately on diskette or via EIA`s Electronic Publishing System (EPUB). Following the body of the report, appendices and a glossary provide additional information on the methodologies used in this report and on the residential and commercial building consumption surveys on which this report is based. 62 figs., 30 tabs.

  2. Buildings Energy Data Book | Open Energy Information

    Open Energy Info (EERE)

    Energy Data Book AgencyCompany Organization: United States Department of Energy Sector: Energy Focus Area: Buildings Topics: Market analysis, Pathways analysis, Technology...

  3. Building Energy Efficiency Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Biomass and Biofuels Building Energy Efficiency Marketing Summaries (81) Success Stories (3) Electricity Transmission Energy Analysis Energy Storage Geothermal ...

  4. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre-weatherization water-heating energy consumption and 17% of predicted). The overall BCR for the ECMs was 1.24 using the same assumptions followed in the selection technique: no administration cost, residential fuel costs, real discount rate of 0.05, and no fuel escalation. A weatherization program would be cost effective at an administration cost less than $335/house. On average, the indoor temperature increased in the audit houses by 0.5 F following weatherization and decreased in the control houses by 0.1 F. The following conclusions regarding the measure selection technique were drawn from the study: (1) a significant cost-effective level of energy savings resulted, (2) space-heating energy savings and total installation costs were predicted with reasonable accuracy, indicating that the technique's recommendations are justified, (3) effectiveness improved from earlier versions and can continue to be improved, and (4) a wider variety of ECMs were installed compared to most weatherization programs. An additional conclusion of the study was that a significant indoor temperature take-back effect had not occurred.

  5. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect (OSTI)

    2014-03-14

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  6. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema (OSTI)

    None

    2014-06-26

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  7. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Commercial Buildings Commercial Buildings At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's <a href="/node/712411">National Renewable Energy Lab</a> could help commercial buildings save on lighting and ventilation costs by improving the accuracy of motion detection. At an estimated cost of

  8. Building Codes Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program: Resource Center Building Energy Codes Program: Status of State Energy Code Adoption Impacts of Standard 90.1-2007 for Commercial Buildings at State ...

  9. An analysis of buildings-related energy use in manufacturing

    SciTech Connect (OSTI)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The California Building Standards Commission (BSC) is responsible for administering California's building standards adoption, publication, and implementation. Since 1989, the BSC has published tr...

  11. Buildings Energy Data Book

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and

  12. Building Energy Modeling Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Simulation Tools Competitively Awarded Projects BENEFIT: A New Hybrid Approach to Energy Modeling BUILD: User-Oriented Modeling Tools for Advanced Hybrid and ...

  13. Building Energy Assessment Toolkit | Open Energy Information

    Open Energy Info (EERE)

    Opportunities 3b.1. Assess technical potential for sector technologies Renewable Energy Technical Potential Toolkit Building Energy Assessment Toolkit Power System Screening...

  14. Energy Department Announces Building Energy Efficiency Investments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to create jobs, boost domestic manufacturing in energy-saving technologies and help American families and businesses save money. "Deploying energy efficiency in our buildings, ...

  15. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  16. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  17. Energy Conservation in State Buildings

    Broader source: Energy.gov [DOE]

    In 1992 the state enacted legislation requiring the Maryland Energy Administration (MEA) and the DGS to set energy performance standards that would reduce energy consumption in state buildings by...

  18. Funding Opportunity Coming Soon: Buildings Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Coming Soon: Buildings Energy Efficiency Frontiers & Innovation Technologies (BENEFIT) 2016 Funding Opportunity Coming Soon: Buildings Energy Efficiency Frontiers & ...

  19. Building America Top Innovations Hall of Fame Profile - Building Energy

    Energy Savers [EERE]

    Optimization Analysis Method (BEopt) | Department of Energy America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) Building America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) PDF icon 3_3a_ba_innov_beopt_011713.pdf More Documents & Publications Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation BEopt Version 2.0: New Features Building America Webinar: Building

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Board of Building Standards is the primary state agency that protects the public's safety by: adopting rules governing the construction, repair, and rehabilitation of buildings in the state;...

  6. BETTER BUILDINGS ALLIANCE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETTER BUILDINGS ALLIANCE BETTER BUILDINGS ALLIANCE Intra-organization Energy Efficiency Competitions Intra-organization Energy Efficiency Competitions Join Better Buildings ...

  7. Commercial Reference Buildings | Open Energy Information

    Open Energy Info (EERE)

    Reference Building Types1 , which represent approximately 70% of the commercial buildings in the U.S. 2. Whole building energy analysis data (developed using EnergyPlus...

  8. Energy Department Issues Green Building Certification System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification System ...

  9. Autotune Building Energy Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    quantification to determine importance of individual parameters * Suite of machine learning algorithms to generate calibration functions based on building dynamics * ...

  10. Sustainable Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Leadership in Energy & Environmental Design Platinum Certified Building in Ohio (September 2008). Fernald Preserve-Hamilton, Ohio Read more Mission The team evaluates and ...

  11. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficient Commercial Buildings Energy 101: Energy Efficient Commercial Buildings Addthis Description Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design. Text Version Below is the text version for the Energy

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  14. State Building Energy Standards

    Broader source: Energy.gov [DOE]

    In May 2013 the Sustainable Coonstruction Advisory Committee responsible for adopting buildings codes was mandated to automatically adopt tne most recent version of the rating systems developed b...

  15. BuildingSync | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Analysis Tools » BuildingSync BuildingSync BuildingSync® is a standardized language for commercial building energy audit data that software developers can use to exchange data between audit tools. For information on BuildingSync, please visit https://buildingsync.net. Buildings Home About Emerging Technologies Residential Buildings Commercial Buildings Analysis Tools Standard Energy Efficiency Data Platform Building Performance Database Energy Asset Score OpenStudio

  16. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    1 Energy Benchmarks for Newly Constructed Medium Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 38.6 0.9 0.8 1.1 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones.

  17. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    9 Energy Benchmarks for Newly Constructed Large Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 31.7 1.7 0.6 1.3 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones.

  18. Building America Webinar: Saving Energy in Multifamily Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Saving Energy in Multifamily Buildings Building America Webinar: Saving Energy in Multifamily Buildings This webinar introduced the Building America team Partnership for Advanced Residential Retrofit (PARR) and its partners, outlined team objectives, and highlighted their current research program, Energy Savers. File webinar_multifamily_bldgs_20110726.wmv More Documents & Publications Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings

  19. NREL Buildings and Energy Efficiency Program | Open Energy Information

    Open Energy Info (EERE)

    NREL Buildings and Energy Efficiency Program (Redirected from Buildings Energy Efficiency Capabilities at NREL) Jump to: navigation, search Logo: Buildings Energy Efficiency...

  20. NREL Buildings and Energy Efficiency Program | Open Energy Information

    Open Energy Info (EERE)

    NREL Buildings and Energy Efficiency Program Jump to: navigation, search Logo: Buildings Energy Efficiency Program at NREL Name Buildings Energy Efficiency Program at NREL Agency...

  1. 2005 Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    5 Buildings Energy Data Book Prepared for the Offi ce of Energy Effi ciency and Renewable Energy 2005 Buildings Energy Data Book August 2005 Prepared for the Office of Planning, Budget Formulation and Analysis Energy Efficiency and Renewable Energy U.S. Department of Energy by D&R International, Ltd. under contract to Oak Ridge National Laboratory This version is dated: August 2005 D I S C L A I M E R This document was designed for the internal use of the United States Department of Energy.

  2. Building Energy Optimization Tool (BEopt) Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Optimization Tool (BEopt) 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov The Home of the Future....Today 3 | ...

  3. Building Energy Codes Collaborative Technical Assistance for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Technical Assistance for States Building Energy Codes Collaborative Technical ... 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes ...

  4. Energy Department Issues Green Building Certification System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green...

  5. Buildings Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Buildings Success Stories Buildings Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in technology cost reduction,...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    All new residential, commercial, and community-owned buildings constructed on or after January 1, 1992 that receive financing from the Alaska Housing Finance Corporation (AHFC) must comply with...

  8. Residential Buildings Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the...

  9. Building Dashboard Network | Open Energy Information

    Open Energy Info (EERE)

    marketplacelisti Cost: Paid OpenEI Keyword(s): Building Management, Building Systems, Energy Management, Enterprise Management, Reporting, Sustainability, Tools, Water Building...

  10. Building Dashboard Kiosk | Open Energy Information

    Open Energy Info (EERE)

    marketplacelisti Cost: Paid OpenEI Keyword(s): Building Management, Building Systems, Energy Management, Enterprise Management, Reporting, Sustainability, Tools, Water Building...

  11. Sustainable Building Design Training | Open Energy Information

    Open Energy Info (EERE)

    Building Design Training AgencyCompany Organization: United States Department of Energy Focus Area: Buildings Resource Type: Training materials Website:...

  12. Building Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Building Science This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures?Ž PDF icon issue1_highr_enclosures.pdf More Documents & Publications Issue #1: How Do We First Do No Harm with High-R Enclosures? ZERH Webinar: Getting Enclosures Right in Zero Energy Ready Homes Basement Insulation Systems - Building America Top Innovation

  13. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Sources and End Uses Energy is an important but often unnoticed contributor to the high levels of productivity and quality of life enjoyed by U.S. residents. Energy is used...

  14. Building Energy Transparency Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This report discusses best practices in implementing benchmarking policies. It includes policy profiles from several cities and states. PDF icon Building Energy Transparency Report More Documents & Publications New York City Benchmarking and Transparency Policy Impact Evaluation Report Benchmarking and Disclosure: State and Local Policy Design Guide and Sample Policy Language Building Energy Rating and Disclosure Policies

  15. Buildings Performance Database Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Performance Database Overview Buildings Performance Database Overview Buildings Performance Database Overview, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. PDF icon bpd_overview_2014.pdf More Documents & Publications Buildings Performance Database (BPD) - 2014 BTO Peer Review Buildings Performance Database - 2013 BTO Peer Review Data Preparation Process for the Buildings Performance Database

  16. End-use taxes: Current EIA practices

    SciTech Connect (OSTI)

    Not Available

    1994-08-17

    There are inconsistencies in the EIA published end-use price data with respect to Federal, state, and local government sales and excise taxes; some publications include end-use taxes and others do not. The reason for including these taxes in end-use energy prices is to provide consistent and accurate information on the total cost of energy purchased by the final consumer. Preliminary estimates are made of the effect on prices (bias) reported in SEPER (State Energy Price and Expenditure Report) resulting from the inconsistent treatment of taxes. EIA has undertaken several actions to enhance the reporting of end-use energy prices.

  17. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  18. Energy Standards for Public Buildings | Open Energy Information

    Open Energy Info (EERE)

    Comprehensive MeasuresWhole Building CHPCogeneration Yes Life-Cycle Analysis and Energy Efficiency in State Buildings (Missouri) Energy Standards for Public Buildings Missouri...

  19. Building Energy Codes Program (BECP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements 2 BECP Budget FY 2015 5.59M + FOA budget 2Myr 3 800,000 825,000 5,607,000 Development Adoption Compliance Goal Reduce energy use in buildings subject to...

  20. End-Use Opportunity Analysis from Progress Indicator Results for ASHRAE Standard 90.1-2013

    SciTech Connect (OSTI)

    Hart, Philip R.; Xie, YuLong

    2015-02-05

    This report and an accompanying spreadsheet (PNNL 2014a) compile the end use building simulation results for prototype buildings throughout the United States. The results represent he energy use of each edition of ASHRAE Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004, 2007, 2010, 2013). PNNL examined the simulation results to determine how the remaining energy was used.

  1. Building Energy Asset Score: Utilities and Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities and Energy Efficiency Program Administrators Building Energy Asset Score: Utilities and Energy Efficiency Program Administrators The U.S. Department of Energy's Building ...

  2. Building Energy Asset Score: Energy Services Companies, Engineers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Services Companies, Engineers and Consultants Building Energy Asset Score: Energy ... and structural energy efficiency of commercial and multifamily residential buildings. ...

  3. How Building Energy Codes Can Support State Climate and Energy...

    Office of Environmental Management (EM)

    Building Energy Codes Can Support State Climate and Energy Planning How Building Energy Codes Can Support State Climate and Energy Planning Provides states and their stakeholders ...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. In 2015, the AER...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  9. Energy use in office buildings

    SciTech Connect (OSTI)

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  10. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Gasoline and Diesel Fuel Update (EIA)

    Pick a date range: From: To: Go Commercial Buildings Available formats 2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary Released: March 18, 2016 EIA has ...

  11. Energy Efficiency Upgrades Help Build Better Neighborhoods |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Upgrades Help Build Better Neighborhoods Energy Efficiency Upgrades Help Build Better Neighborhoods May 6, 2013 - 4:55pm Addthis In neighborhoods all across the...

  12. Commercial Building Energy Alliance Exterior Lighting Scoping...

    Office of Scientific and Technical Information (OSTI)

    Commercial Building Energy Alliance Exterior Lighting Scoping Study Citation Details In-Document Search Title: Commercial Building Energy Alliance Exterior Lighting Scoping Study ...

  13. Building a Universal Nuclear Energy Density Functional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

  14. Green Building Studio | Open Energy Information

    Open Energy Info (EERE)

    Studio Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Green Building Studio AgencyCompany Organization: Autodesk Sector: Energy Focus Area: Buildings, Energy...

  15. Re-Energize: Building Energy Smart Communities

    Broader source: Energy.gov [DOE]

    Re-Energize: Building Energy Smart Communities Brand Book, as posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  16. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  17. Building Energy Asset Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy efficiency in real estate transactions and spur investment in capital improvements. ... Property Trust * Marriott International * Marx Okubo * National Oceanic and Atmospheric ...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  19. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:www.energycodes.govaboutresults 5 Introduction: Model Energy Codes ANSIASHRAEIES Standard 90.1 * Current Version: 90.1-2013 (published 102013) * 30% more efficient ...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  1. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    sum to totals. * See "Glossary" for definition of terms used in this report. Source: Energy Information Administration, Office of Energy Markets and End Use, Form EIA-457 of the...

  2. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  3. Building Energy Optimization Analysis Method (BEopt) - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic from BEopt software. To achieve Building America's ambitious energy-efficiency goals, it becomes increasingly important that researchers can identify the most cost-effective, high-performance improvements. This Top Innovation profile describes BEopt, which has proven to be an

  4. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Estimation of Energy End-use Consumption CBECS 2012 - Release date: March 18, 2016 2012 CBECS The energy end-use consumption tables for the 2012 CBECS provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, computing (including servers), office equipment, and other uses. Although details vary by energy source, there are

  5. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology

  6. Building Science Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Building America » Building Science Education Building Science Education The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. The Building Science Education Roadmap, developed by DOE and leaders of the building science community,

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    Tennessee is a "home rule" state which leaves adoption of codes up to the local codes jurisdictions. State energy codes are passed through the legislature, apply to all construction and must be...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    On May 2014, Delaware updated its energy code to 2012 IECC with amendments for residential sector and ASHRAE 90.1-2010 with amendments for the commercial sector. The Delaware specific amendments to...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  11. Estimating Methods for Determining End-Use Water Consumption

    Broader source: Energy.gov [DOE]

    The Federal Building Metering Guidance specifies buildings with water using processes and whole building water consumption that exceeds 1,000 gallons per day must have a water meter installed. Below are methods for estimating daily water use for typical end-uses that drive building-level, end-use water consumption.

  12. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    5.5 : Thermal Distribution Systems 5.5.1 Market Share of Major HVAC Equipment Manufacturers ($2009 Million) Total Market Size Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123 DOWNLOAD TABLE AS PDF XLS Related Tables: PDFXLS 5.5.6 1999 Energy Efficient Motors, Replacements and Sales, by Horsepower Class Sources: EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators BTS/A.D. Little,

  13. Buildings Energy Data Book: 3.10 Hotels/Motels

    Buildings Energy Data Book [EERE]

    5 Energy Benchmarks for Newly Constructed Large Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 60.9 13.2 76.3 8.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are

  14. Buildings Energy Data Book: 3.10 Hotels/Motels

    Buildings Energy Data Book [EERE]

    6 Energy Benchmarks for Newly Constructed Small Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 36.6 2.7 12.0 3.9 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are

  15. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book [EERE]

    0 Energy Benchmarks for Newly Constructed Primary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 59.6 0.5 3.1 1.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are

  16. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book [EERE]

    2 Energy Benchmarks for Newly Constructed Secondary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 96.7 2.2 2.8 5.5 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They

  17. DOE Zero Energy Ready Home Webinar: Building Energy Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives ...

  18. Energy Department Announces Publication of Better Buildings Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publication of Better Buildings Energy Data Accelerator Resources Toolkit Energy Department Announces Publication of Better Buildings Energy Data Accelerator Resources Toolkit ...

  19. Building Agent Software - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search Building Agent Software Occupancy Feedback for Building Controls National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency (948 KB) <p> Building Agent System Architecture</p> Building Agent System Architecture <p>

  20. NREL: Energy Analysis - Building Technologies Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Technologies Analysis The Building Technologies analysis supports research and development on technologies and practices for energy efficiency, working closely with the building industry and manufacturers; promotes energy and money-saving opportunities to builders and consumers; and works with state and local regulatory groups to improve building codes and appliance standards. Building Energy Software Tools Directory Described here are 283 energy-related software tools for buildings,

  1. Buildings*","Buildings Using Any Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Other a " "All Buildings*

  2. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Disclaimer This document was designed for the internal use of the United States Department of Energy. This document will be occasionally updated and, therefore, this copy may not reflect the most current version. This document was prepared as account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  3. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    Security and Privacy Notices Security Notice This Web site is part of a Federal computer system used to accomplish Federal functions. The Department of Energy monitors this Web site for security purposes to ensure it remains available to all users and to protect information in the system. By accessing this Web site, you are expressly consenting to these monitoring activities. Unauthorized attempts to defeat or circumvent security features, to use the system for other than intended purposes, to

  4. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Expenditures Consumption and Energy Intensities for Major Energy Sources Throughout the 1980's, energy consumption in residential buildings was greater than...

  5. Green Building Incentive | Open Energy Information

    Open Energy Info (EERE)

    California Commercial Industrial Residential Comprehensive MeasuresWhole Building Photovoltaics Yes State Agency Energy Efficiency or Renewable Energy Technology Test...

  6. Green Building Incentives | Open Energy Information

    Open Energy Info (EERE)

    California Commercial Industrial Residential Comprehensive MeasuresWhole Building Photovoltaics Yes State Agency Energy Efficiency or Renewable Energy Technology Test...

  7. Buildings*","Buildings Using Any Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Other a " "All Buildings*

  8. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 53.7 14.2 0.9 8.0 0.6 23.7 0.1 23.2 100.8 23.4% Space Cooling 0.4 61.3 61.7 14.3% Lighting 59.3 59.3 13.8% Water Heating 18.3 2.6 2.0 4.6 17.8 40.7 9.4% Refrigeration (4) 26.9 26.9 6.2% Electronics (5) 26.1 26.1 6.1% Ventilation (6) 15.9 15.9 3.7% Cooking 4.0 0.8 0.8 8.8 13.6 3.2% Computers 12.1 12.1 2.8% Wet

  9. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (3) 49.5 15.9 1.3 8.1 0.7 25.9 0.2 18.7 94.3 22.7% Space Cooling 0.3 48.0 48.3 11.6% Lighting 45.9 45.9 11.0% Water Heating 17.6 2.6 1.5 4.1 18.3 40.0 9.6% Refrigeration (4) 24.9 24.9 6.0% Electronics (5) 19.8 19.8 4.7% Ventilation (6) 15.1 15.1 3.6% Computers 11.6 11.6 2.8% Wet Cleaning (7) 0.6 10.8 11.4 2.7% Cooking 3.9 0.9 0.9 4.4

  10. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 56.7 14.3 1.5 7.8 0.7 24.3 0.2 19.5 100.7 22.0% Space Cooling 0.3 50.5 50.9 11.1% Lighting 45.2 45.2 9.9% Water Heating 21.3 2.3 1.3 3.6 19.6 44.4 9.7% Refrigeration (4) 24.9 24.9 5.4% Electronics (5) 23.2 23.2 5.1% Computers 13.2 13.2 2.9% Wet Clean (6) 0.8 9.8 10.5 2.3% Cooking 4.8 0.8 0.8 4.9 10.5 2.3%

  11. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 63.4 13.0 1.6 7.7 0.8 23.1 0.2 20.6 107.2 20.9% Water Heating 23.8 2.2 1.2 3.4 35.8 63.0 12.3% Space Cooling 0.4 55.7 56.1 10.9% Lighting 47.8 47.8 9.3% Electronics (4) 27.2 27.2 5.3% Refrigeration (5) 27.0 27.0 5.3% Computers 14.8 14.8 2.9% Cooking 5.8 0.8 0.8 5.4 12.1 2.3% Wet Clean (6) 0.9 10.4 11.3 2.2%

  12. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building Technologies Office's Program Peer Review PDF icon bldgcodes03_guttman_040213.pdf More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review Atmospheric Pressure Deposition for Electrochromic Windows Building America System Research

  13. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 2003 Commercial Buildings Delivered Energy End-Use Intensities, by Building Activity (Thousand Btu per SF) (1) Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Note(s): Source(s): 43.5 45.2

  14. Better Buildings Neighborhood Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Buildings Performance Database - 2013 BTO Peer Review Building America System Research Energy Management Systems Package for Small Commercial ...

  15. Buildings Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    planning for commercial and multi-unit residential buildings have huge energy-saving potential. Explore EERE's buildings success stories below. January 14, 2016 Image...

  16. Better Buildings Federal Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    winner of the 2013 Better Buildings Federal Award. The Federal Energy Management Program's (FEMP) Better Buildings Federal Award recognizes the federal government's ...

  17. Maine Uniform Building and Energy Code

    Broader source: Energy.gov [DOE]

    The Maine Uniform Building and Energy Code includes the statewide minimum requirements that all new construction and additions to existing buildings must satisfy. Exceptions include log homes, ma...

  18. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    conducted in two stages: (1) A Household (RECS)Building (CBECS) Survey and an Energy Suppliers Survey. The HouseholdBuilding Characteristics Survey consists of personal...

  19. Better Buildings Federal Award | Department of Energy

    Energy Savers [EERE]

    U.S. Courthouse was the winner of the 2013 Better Buildings Federal Award. The Federal Energy Management Program's (FEMP) Better Buildings Federal Award recognizes the federal...

  20. Property:Buildings/Models | Open Energy Information

    Open Energy Info (EERE)

    It links to pages that use the form Buildings Publication. Pages using the property "BuildingsModels" Showing 2 pages using this property. G General Merchandise 50% Energy...

  1. Boston Green Building | Open Energy Information

    Open Energy Info (EERE)

    References Boston Green Building Retrieved from "http:en.openei.orgwindex.php?titleBostonGreenBuilding&oldid768441" Categories: Organizations Energy Efficiency...

  2. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide...

  3. Southeast Energy Efficiency Alliance's Building Energy Codes Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 Building Technologies Office's Program Peer Review PDF icon bldgcodes04_zweig_040213.pdf More Documents & Publications State and Local Code Implementation: Southeast Region - 2014 BTO Peer Review Stretch/Reach Codes Energy Code Compliance and Enforcement

  4. Building Up Home Energy-Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Up Home Energy-Efficiency Building Up Home Energy-Efficiency August 26, 2014 - 11:00am Addthis Building or remodeling a home provides an opportunity to build energy-efficiency into your design from the ground up. | Photo courtesy of Paul Norton, National Renewable Energy Laboratory Building or remodeling a home provides an opportunity to build energy-efficiency into your design from the ground up. | Photo courtesy of Paul Norton, National Renewable Energy Laboratory Paige Terlip Paige

  5. Energy-Saving Homes, Buildings, & Manufacturing

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

  6. Passive Energy Building Design Tool

    Energy Science and Technology Software Center (OSTI)

    1994-11-01

    SOLAR5 is a computer aided design tool to help architects design better, more energy efficient buildings. It is intended for use at the beginning of the design process. To get started, only four pieces of information are necessary to compute the energy needed: the square footage, the number of stories, the kind of building (such as school, home, hotel, or any one of 20 types), and its location (the program stores the temperature ranges formore » fourty major cities). Additional information may be given later to fine tune the design. An expert system using heuristics from a wide range of sources, automatically creates a passive solar baseline building from the four facts specified for that project. By modifying and adapting prior designs the user can create and work upon as many as nine schemes simultaneously. SOLAR5 can analyze the buildings thermal performance for each hour of each month and plot its total heat gain or loss as a three-dimensional surface. After reading the plot, the user can immediately redesign the building and rerun the analysis. Separate heat gain/loss surfaces can be plotted for each of the different parts of the building or schemes that add together to make up the total, including walls, roof, windows, skylights, floor, slab on grade, people, lights, equipment, and infiltration. Two different schemes can be instantly compared by asking for a three-dimensional plot showing only the difference in their performances. The objective of SOLAR5 is to allow the designer to make changes easily and quickly with detailed instantaneous pictorial feedback of the implications of the change.« less

  7. Building America Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Building America Research The DOE Building America Program is helping to create homes that are durable and energy efficient. Research-to-Market BA_Research_Image.png Learn how Building America works to accelerate the development and adoption of advanced building energy technologies and practices. Top Innovations 1-1-2 Adv Framing open header.jpg Read about outstanding Building America research achievements. Research Teams hirl3.jpg Learn about the Building America teams who continuously

  8. Commercial Building Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Activities Commercial Building Activities The Building Technologies Office commercial buildings effort researches and deploys advanced technologies and systems to reduce energy consumption in commercial buildings. Industry partners and national laboratories help identify market needs and solutions to accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's key projects. 179d Tax Calculator The 179d Calculator can help determine whether

  9. Building America Program | Department of Energy

    Energy Savers [EERE]

    Overview - 2015 BTO Peer Review Building America Overview - 2015 BTO Peer Review Presenter: Eric Werling, U.S. Department of Energy View the Presentation PDF icon Building America Overview - 2015 BTO Peer Review More Documents & Publications Building America Webinar: Building America Technology-to-Market Roadmaps Building America Webinar: Building America: Research for Real-World Results DOE ZERH Orientation Webinar: Better Business for Builders Department of Energy

    Partnership for

  10. Past Building America Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Past Building America Projects Past Building America Projects Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. This page provides an overview of the past projects, team members, and areas of focus. Learn about current Building America teams and projects. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation Building America Research Alliance Building America Partnership for

  11. Commercial Buildings Cooperative Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships » Commercial Buildings Cooperative Agreements Commercial Buildings Cooperative Agreements The Building Technologies Office's Commercial Buildings Integration program issues funding opportunities to advance energy efficiency solutions and technologies for commercial buildings. These competitive solicitations are typically open to industry, small businesses, academia, the national labs, and other entities. View the 2015, 2014, or 2013 projects. 2015 Awards In 2015, BTO sought

  12. Building America Residential Buildings Energy Efficiency Meeting: July 2010

    Broader source: Energy.gov [DOE]

    On this page, you may link to the summary report and presentations for the Building America Energy Efficiency meeting in July 2011, held in Denver, Colorado.

  13. Penn State Consortium for Building Energy Innovation

    Broader source: Energy.gov [DOE]

    The Penn State Consortium for Building Energy Innovation (formerly the Energy Efficient Buildings Hub) develops, demonstrates, and deploys energy-saving technologies that can achieve 50% energy reduction in small- and medium-sized buildings. Its headquarters serves as a test bed for real-world integration of technology and market solutions.

  14. Commercial Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings Integration Commercial Buildings Integration Energy Efficiency in Separate Tenant Spaces - A Feasibility Study Energy Efficiency in Separate Tenant Spaces - A Feasibility Study While commercial building owners generally have control over building systems and operations, tenants play a critical role in achieving lasting reductions in energy intensity. In recognition of this collaborative role, the Department of Energy has studied the feasibility of improving energy efficiency

  15. A Common Definition for Zero Energy Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Common Definition for Zero Energy Buildings A Common Definition for Zero Energy Buildings Thousands of project teams throughout the country seek to push the envelope and develop zero energy buildings. Generally speaking, a zero energy building produces enough renewable energy to meet its own annual energy consumption requirements, thereby reducing the use of non-renewable energy in the building sector. This definition also applies to campuses, portfolios, and communities. In addition to

  16. Energy Efficient Buildings Hub | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This model of a renovated historic building -- Building 661 -- in Philadelphia will house ... This model of a renovated historic building -- Building 661 -- in Philadelphia will house ...

  17. Honest Buildings | Open Energy Information

    Open Energy Info (EERE)

    Website: www.honestbuildings.com Web Application Link: www.honestbuildings.com Cost: Free Honest Buildings Screenshot References: Honest Buildings1 Logo: Honest Buildings...

  18. Building Energy Optimization Analysis Method (BEopt) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moreover, many BEopt algorithms have been adopted by private-sector HERS software tools that have helped improve the energy efficiency of tens-of-thousands of ENERGY STAR-certified ...

  19. CBECS Buildings Characteristics --Revised Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Sources and End Use Tables (27 pages, 152 kb) CONTENTS PAGES Table 18. Energy Sources, Number of Buildings, 1995 Table 19. Energy Sources, Floorspace, 1995 Table 20. Energy End Uses, Number of Buildings and Floorspace, 1995 Table 21. Space-Heating Energy Sources, Number of Buildings, 1995 Table 22. Space-Heating Energy Sources, Floorspace, 1995 Table 23. Primary Space-Heating Energy Sources, Number of Buildings, 1995 Table 24. Primary Space-Heating Energy Sources, Floorspace, 1995 Table

  20. DOE Commercial Building Energy Asset Score: Software Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Score: Software Development for Phase II Building Types DOE Commercial Building Energy Asset Score: Software Development for Phase II Building Types DOE Commercial Building Energy ...

  1. Building Energy Modeling Library - 2013 BTO Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Modeling Library - 2013 BTO Peer Review Building Energy Modeling Library - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building...

  2. Energy-Efficient Commercial Buildings Tax Deduction

    Broader source: Energy.gov [DOE]

    The federal Energy Policy Act of 2005 established a tax deduction for energy-efficient commercial buildings applicable to qualifying systems and buildings placed in service from January 1, 2006, ...

  3. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  4. Mainstreaming Building Energy Efficiency Codes in Developing...

    Open Energy Info (EERE)

    Area: Energy Efficiency, Buildings Topics: Policiesdeployment programs Resource Type: Lessons learnedbest practices Website: www.ecn.nlfileadminecnunitsbsIEC...

  5. Building America Residential Energy Efficiency Research Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Planning Meeting: October 2011 Building America Residential Energy Efficiency ... and Tools Standing Technical Committee Strategic Plan Enclosures Standing Technical ...

  6. Commercial Building Energy Asset Rating Workshop

    Broader source: Energy.gov [DOE]

    DOE commercial building energy asset rating program information presented to stakeholders at the workshop held in Washington, DC, December 2011

  7. Building Energy Asset Score: Energy Services Companies, Engineers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consultants | Department of Energy Energy Services Companies, Engineers and Consultants Building Energy Asset Score: Energy Services Companies, Engineers and Consultants The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies

  8. Building Energy Asset Score: Utilities and Energy Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administrators | Department of Energy Utilities and Energy Efficiency Program Administrators Building Energy Asset Score: Utilities and Energy Efficiency Program Administrators The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and

  9. Ventilation in Multifamily Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation in Multifamily Buildings Ventilation in Multifamily Buildings This webinar, hosted by Building America,was conducted on November 1, 2011, and describes ways to save energy in buildings through effective ventilation techniques. PDF icon carb_ventilation_webinar.pdf More Documents & Publications Multifamily Ventilation - Best Practice? Critical Question #2: What are the Best Practices for Ventilation Specific to Multifamily Buildings? Building America Webinar: Multifamily

  10. Building Energy Efficiency Frontiers & Innovations Technologies |

    Energy Savers [EERE]

    Department of Energy America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have

  11. Building America Research Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Research Teams Building America Research Teams Building America team members are experts in the field of residential building science and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. These teams work with industry partners to design, test, upgrade, and build technologies and high performance homes using strategies that significantly cut energy use. Learn more about Building America

  12. Grid-Responsive Buildings | Department of Energy

    Energy Savers [EERE]

    Grid-Responsive Buildings Grid-Responsive Buildings Project Objective The U.S.-India Joint Center for Building Energy Research and Development (CBERD) conducts energy efficiency research and development with a focus on integrating information technology with building controls and physical systems for commercial/high-rise residential units. This CBERD project is developing a framework to integrate building technologies with the smart grid through collaborative knowledge and industry partnerships.

  13. Commercial Buildings Energy Consumption Survey (CBECS) - How...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Usage Information Collected in the 2012 CBECS? CBECS 2012 - Release date: March 18, 2016 The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at ...

  14. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    Southface Energy Institute: Advanced Commercial Buildings Initiative Lead Performer: Southface Energy Institute - Atlanta, GA Partners: - City of Atlanta - Atlanta, GA - Georgia ...

  15. Better Buildings Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    relevant to improving the energy efficiency of our nation's buildings, schools, and homes. ... data-driven decision-making, as well as future opportunities for scaling energy ...

  16. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix A How the Survey Was Conducted Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted by the Energy Information Administration (EIA) on a...

  17. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    with the national average of 81 thousand Btu per square foot), while buildings using solar energy or passive solar features used the major energy sources more intensively...

  18. Building Energy Codes Collaborative Technical Assistance for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ACEEE. December, 2012. * Lee, Allen, et. al. "Attributing Building Energy Code Savings to Energy Efficiency Programs." Prepared by The Cadmus Group and partners for NEEP, IEE, and ...

  19. Building America Residential Energy Efficiency Stakeholders Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 Building America Residential Energy Efficiency Technical ...

  20. Energy-Saving Homes, Buildings, and Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Saving Homes, Buildings, and Manufacturing Energy-Saving Homes, Buildings, and Manufacturing Buildings Buildings Read more Government Energy Management Government Energy Management Read more Homes Homes Read more Manufacturing Manufacturing Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads a robust community of researchers and other partners to continually develop innovative, cost-effective energy-saving solutions, which helps make our country run better through

  1. Renewable Energy Applications for Existing Buildings: Preprint

    SciTech Connect (OSTI)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  2. DOE Commercial Building Energy Asset Rating Program Focus Groups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Commercial Building Energy Asset Rating Workshop A Common Definition for Zero Energy Buildings Building Energy Rating and Disclosure Policies

  3. Commercial Building Energy Asset Score - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Asset Score - 2014 BTO Peer Review Commercial Building Energy Asset Score - 2014 ... energy efficiency in the commercial building sector is that building owners and ...

  4. Commercial Building Energy Asset Scoring Tool | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Energy Asset Scoring Tool Commercial Building Energy Asset Scoring ... and help you gain insight into the energy efficiency potential of your building. ...

  5. Energy-Saving Homes, Buildings, and Manufacturing Success Stories...

    Energy Savers [EERE]

    Energy-Saving Homes, Buildings, and Manufacturing Success Stories Energy-Saving Homes, Buildings, and Manufacturing Success Stories Energy-Saving Homes, Buildings, and...

  6. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    SciTech Connect (OSTI)

    Hong , Tianzhen; Yang, Le; Hill, David; Feng , Wei

    2014-01-25

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

  7. Energy Signal Tool for Decision Support in Building Energy Systems...

    Office of Scientific and Technical Information (OSTI)

    different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing...

  8. Building Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Energy Efficiency in Separate Tenant Spaces - A Feasibility Study Energy Efficiency in Separate Tenant Spaces - A Feasibility Study While commercial building owners generally have control over building systems and operations, tenants play a critical role in achieving lasting reductions in energy intensity. In recognition of this collaborative role, the Department of Energy has studied the feasibility of improving energy efficiency in tenant spaces. Read more Apply

  9. Energy Conservation in Public Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mandating that buildings constructed and financed by the state must comply with the U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED)...

  10. ENERGY STAR Labeled Buildings and Plants | Open Energy Information

    Open Energy Info (EERE)

    STAR Labeled Buildings and Plants Jump to: navigation, search Name ENERGY STAR Labeled Buildings and Plants Data Format Excel Spreadsheet Geographic Scope United States TODO:...

  11. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  12. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY STAR and Green Building Rating Systems ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems October 13, 2015 2:00PM to 3:00PM EDT Online Hosted by the U.S....

  13. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and

  14. reEnergize: Building Energy Smart Communities | Department of Energy

    Energy Savers [EERE]

    reEnergize: Building Energy Smart Communities reEnergize: Building Energy Smart Communities Slides presented in the "What's Working in Residential Energy Efficiency Upgrade Programs Conference - Promising Approaches and Lessons Learned" on May 20, 2011 in Washington, D.C. PDF icon reEnergize: Building Energy Smart Communities More Documents & Publications Re-Energize: Building Energy Smart Communities Omaha, Nebraska Summary of Reported Data Mastermind Session: Combining Energy

  15. Building Energy Asset Score: Architects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Architects Building Energy Asset Score: Architects The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifices opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. View additional information

  16. Building Energy Asset Score: Real Estate Managers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Estate Managers Building Energy Asset Score: Real Estate Managers The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. View

  17. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  18. Advanced Energy Retrofit Guide Retail Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  19. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    3 Thermal Distribution Design Load and Electricity Intensities, by Building Activity Education 0.5 1.3 Food Sales 1.1 6.4 Food Service 1.5 6.4 Health Care 1.5 5.6 Lodging 0.5 1.9 Mercantile and Service 0.9 2.7 Office 1.3 3.3 Public Assembly 1.2 3.0 Warehouse 0.4 1.8 All Buildings 1.0 2.8 Source(s): Design Load Intensity End Use Intensity (W/SF) (kWh/SF) BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment,

  20. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in ... More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review ...

  1. Building Energy Tools Software Directory | Open Energy Information

    Open Energy Info (EERE)

    Company Organization: United States Department of Energy Sector: Energy Focus Area: Energy Efficiency, Buildings Phase: Create a Vision, Determine Baseline, Develop Goals...

  2. BuildingOS by Lucid | Open Energy Information

    Open Energy Info (EERE)

    Lucid Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Buildings, - ENERGY STAR, - HVAC, - LEED, Buildings - Commercial, Energy Efficiency, - Central Plant,...

  3. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, & ...

  4. Building America Top Innovations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research » Building America Top Innovations Building America Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Each year, Building America selects cutting-edge Top Innovations that demonstrate the value of investing in high-performance research and development and guide the industry toward more energy-efficient, healthier, and longer lasting homes. Building America Top Innovations align with and support every aspect of the home

  5. Commercial Buildings Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings Partnerships Commercial Buildings Partnerships The Commercial Buildings Integration program engages market leaders to accelerate adoption of energy saving technologies and practices by the commercial buildings market and support development of new, integrated program models for building retrofit. CBI relies on these partners to test and refine resources, conduct real-world demonstrations, and facilitate the deployment of solutions to the market through peer sharing and

  6. Windows and Building Envelope | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Building Envelope Windows and Building Envelope About the Portfolio Next-generation windows and building envelope technologies have substantial technical potential to reduce energy consumption in buildings. However, to make significant progress toward the program goal, any next-generation technologies must be developed with a specific emphasis on achieving a market-acceptable installed cost to facilitate mass-market adoption. Activities in windows and building envelope will focus on

  7. N. Mariana Islands- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  8. PSNC Energy (Gas)- Green Building Rate Discount

    Office of Energy Efficiency and Renewable Energy (EERE)

    This discounted rate is available to commercial customers whose building meets the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification or equivalent. To...

  9. Better Buildings Neighborhood Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Neighborhood Program From 2010 to 2013, the Better Buildings Neighborhood Program helped more than 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of homes and buildings. These leading communities used innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, create jobs, and save consumers hundreds of millions of dollars. From 2010 to

  10. Better Buildings Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Partners Better Buildings Partners The Better Buildings Neighborhood Program worked with hundreds of communities across the country to promote energy efficiency upgrades in homes and other buildings. Partners accomplished their goals of implementing energy efficiency improvements in their communities while promoting increased comfort for homeowners and lower operating costs for businesses. Use the map or list below to learn more about our partners. Click on partner locations to

  11. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    SciTech Connect (OSTI)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  12. Building Energy Data Exchange Specification (BEDES) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Data Exchange Specification (BEDES) Building Energy Data Exchange Specification (BEDES) Building Energy Data Exchange Specification (BEDES) Overview The Building Energy Data Exchange Specification (BEDES, pronounced "beads" or /bi:ds/) is a dictionary of terms, definitions, and field formats which was created to help facilitate the exchange of information on building characteristics and energy use. It is intended to be used in tools and activities that help stakeholders make

  13. DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software | Department of Energy Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives an overview of the BEopt software tool. PDF icon DOE ZERH Technical Webinar_BEopt.pdf More Documents & Publications DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training Building America Webinar: BEopt Optimization Tool and National Residential Efficiency Measures

  14. BuildingIQ Inc: Predictive Energy Optimization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BuildingIQ Inc: Predictive Energy Optimization BuildingIQ Inc: Predictive Energy Optimization BuildingIQ Inc: Predictive Energy Optimization Lead Performer: BuildingIQ Inc. - Foster City, California Partners: Department of General Services - Washington, DC DOE Funding: $1,767,138 Cost Share: $1,767,138 Project Term: October 2014 - September 2016 Funding Opportunity: Funding Opportunity Announcement Number DE-FOA-0001084 Project Objective BuildingIQ offers an innovative, scalable, and low-cost

  15. Better Buildings Neighborhood Program | Department of Energy

    Energy Savers [EERE]

    and Upgrade Programs Nationwide | Department of Energy Accelerators: Driving Uptake of Home Energy Information and Upgrade Programs Nationwide Better Buildings Accelerators: Driving Uptake of Home Energy Information and Upgrade Programs Nationwide March 14, 2016 - 2:18pm Addthis The U.S. Department of Energy's Better Buildings Home Upgrade Program and Home Energy Information Accelerators work with partners across the nation and are making important progress in lowering the costs of energy

  16. Energy Use in Commercial Buildings - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Commercial Buildings Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse

  17. Energy Department Announces Building Energy Efficiency Investments in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Twenty-Two States | Department of Energy Building Energy Efficiency Investments in Twenty-Two States Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States June 27, 2012 - 6:55pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The Energy Department today announced new investments in state-led energy efficiency projects, supporting the Obama Administration's commitment to reduce building energy costs and transfer those savings directly to taxpayers.

  18. SUNREL Energy Simulation Software | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SUNREL Energy Simulation Software SUNREL® is a hourly building energy simulation program that aids in the design of small energy-efficient buildings where the loads are dominated by the dynamic interactions between the building's envelope, its environment, and its occupants. The program is based on fundamental models of physical behavior and includes algorithms specifically for passive technologies, such as Trombe walls, programmable window shading, advanced glazings, and natural ventilation.

  19. Buildings Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Events Buildings Events May 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 DOE Better Buildings Summit 9:00AM to 5:00PM EDT AEMC ...

  20. Web-based energy information systems for large commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann

    2003-03-29

    Energy Information Systems (EIS), which monitor and organize building energy consumption and related trend data over the Internet, have been evolving over the past decade. This technology helps perform key energy management functions such as organizing energy use data, identifying energy consumption anomalies, managing energy costs, and automating demand response strategies. During recent years numerous developers and vendors of EIS have been deploying these products in a highly competitive market. EIS offer various software applications and services for a variety of purposes. Costs for such system vary greatly depending on the system's capabilities and how they are marketed. Some products are marketed directly to end users while others are made available as part of electric utility programs. EIS can be a useful tool in building commissioning and retro-commissioning. This paper reviews more than a dozen EIS. We have developed an analytical framework to characterize the main features of these products, which are developed for a variety of utility programs and end-use markets. The purpose of this research is to evaluate EIS capabilities and limitations, plus examine longer-term opportunities for utilizing such technology to improve building energy efficiency and load management.

  1. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Date: July 12, 2012 | Revised Date: June 19, 2014 The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at least four years, beginning with ...

  2. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data collection for the 2012 Commercial Buildings Energy Consumption Survey (CBECS) took place between April and November 2013, collecting data for reference year 2012. The goal of ...

  3. Category:Building Models | Open Energy Information

    Open Energy Info (EERE)

    category "Building Models" The following 12 pages are in this category, out of 12 total. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings General...

  4. Sustainable Buildings and Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Buildings and Infrastructure "A sustainable society is one which satisfies its ... Department of Energy facilities managers have a significant role to play in achieving the ...

  5. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    in this report were based on monthly billing records submitted by the buildings' energy suppliers. The section, "Annual Consumption and Expenditures" provide a detailed...

  6. NASA Net Zero Energy Buildings Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NASA Net Zero Energy Buildings Roadmap Shanti Pless, DOE NREL Wayne Thalasinos, NASA ... CO Image courtesy of RNL NASA NZEBs Roadmap Structure To guide NASA's incremental ...

  7. Commercial Energy Efficiency Rebate for Existing Buildings

    Broader source: Energy.gov [DOE]

    Business customers retrofitting existing buildings through measures not covered under the standard incentive program can still receive financial assistance from Energy Trust through the custom...

  8. Preliminary Energy Savings Impact Evaluation: Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4, 2013. PDF icon Preliminary Energy Savings Impact Evaluation More Documents & Publications Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final ...

  9. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    the sponsor the government, utility or sponsored in-house. Energy Management and Control System Heating or cooling system monitored or controlled by a computerized building...

  10. Preliminary Energy Savings Impact Evaluation: Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Preliminary Energy Savings Impact Evaluation: Better Buildings Neighborhood Program American Recovery and Reinvestment Act of 2009 November 4, 2013 Prepared For: U.S....

  11. Smart Buildings Equipment Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    increased interest in new strategies for engaging building energy assets to provide peak load management, regulation services, and ancillary services to the grid. Such engagement...

  12. Building Energy Efficiency Technologies Available for Licensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Marketing Summaries TAG CLOUD TAG CLOUD TAG CLOUD optical surface thermal residential flow heat production temperature software materials fluid ...

  13. Better Buildings Training Toolkit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Better Buildings Residential Network Training Toolkit can be used by residential energy efficiency programs interested in realizing the value of providing training ...

  14. Smart Buildings Equipment Initiative | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid, but also the future energy-efficient building. CONTACTS DOE Technology Manager: Marina Sofos Lead Performer: Andrew Nicholls, Pacific Northwest National Lab; Benjamin...

  15. Better Buildings Neighborhood Program | Department of Energy

    Energy Savers [EERE]

    selected state and local governments develop sustainable programs to upgrade the energy efficiency of homes and buildings. These leading communities used innovation and...

  16. Commercial Building Energy Alliances (CBEA) Fact Sheet

    SciTech Connect (OSTI)

    2008-05-01

    This fact sheet provides an overview of the Commercial Building Energy Alliances and also spotlights the Commercial Lighting Solutions web tool.

  17. City of Chicago- Building Energy Code

    Broader source: Energy.gov [DOE]

    The CECC establishes standards to minimize solar energy absorbed by building roofs, a condition known as the urban heat island effect. Increased reflecting capacity of individual and aggregate...

  18. Residential Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Residential Buildings Integration Zero Energy Ready Home Zero Energy Ready Home Zero Energy Ready Homes are so efficient that a renewable energy system can offset all or most of its annual energy consumption. Read more Home Performance with ENERGY STAR Home Performance with ENERGY STAR The Home Performance with ENERGY STAR (HPwES) program provides resources to identify contractors that can explain homes' energy use, as well as identify home improvements for energy performance and

  19. EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings...

    Office of Environmental Management (EM)

    Energy-Saving Homes, Buildings, and Manufacturing EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings, and Manufacturing Office of Energy Efficiency and Renewable Energy...

  20. NREL: Technology Deployment - Building Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and

  1. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of Chinas total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on Chinas success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  2. Energy Department Announces Publication of Better Buildings Energy Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerator Resources Toolkit | Department of Energy Publication of Better Buildings Energy Data Accelerator Resources Toolkit Energy Department Announces Publication of Better Buildings Energy Data Accelerator Resources Toolkit March 30, 2016 - 10:01am Addthis The U.S. Department of Energy today announced the publication of a high-impact, informational resources toolkit through its Better Buildings Energy Data Accelerator developed in partnership with 18 cities and utilities across the

  3. 2016 Better Buildings Summit | Department of Energy

    Energy Savers [EERE]

    Better Buildings Summit 2016 Better Buildings Summit May 9, 2016 8:00AM EDT to May 11, 2016 5:00PM EDT Washington, D.C. The Washington Hilton 1919 Connecticut Avenue NW Washington, D.C. The Better Buildings Summit is a three-day event featuring more than 100 sessions covering how to improve energy efficiency in buildings, schools, and homes. Registration ends April 2016

  4. Building America Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News & Events » Building America Meetings Building America Meetings Photo of people watching a presentation on a screen the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Current Webinars Past Webinars Upcoming Meetings Past Technical and Stakeholder

  5. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect (OSTI)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  6. Building Energy Optimization (BEopt) Software | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Building America » Building Energy Optimization (BEopt) Software Building Energy Optimization (BEopt) Software BEopt 2.4 Now Available! With the release of BEopt Version 2.4 Beta, users can now perform modeling analysis on multifamily buildings! Other new options for input include: heat pump clothes dryers; electric/gas clothes dryers; condensing tank water heaters; door construction and area; window areas defined by façade-specific WWRs; and 2013 ASHRAE 62.2

  7. Energy Department Invests $6 Million to Increase Building Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Transformation (Washington, DC) Performance Systems Development (Ithaca, NY) Southeast Energy Efficiency Alliance (Atlanta, GA) Lean more about BTO's Building Energy Codes Program. ...

  8. Buildings.Energy.gov Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov * Design * Performance * Cost * ... Risk 1: Ensured Comfort * Lower Htg.Clg. Loads * Lower Air ...

  9. Energy Efficiency Program Administrators and Building Energy Codes

    SciTech Connect (OSTI)

    none,

    2009-09-01

    Explores how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels using technical, institutional, financial, and other resources.

  10. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    SciTech Connect (OSTI)

    New Buildings Institute; Pacific Northwest National Laboratory; Granderson, Jessica; Piette, Mary Ann; Rosenblum, Ben; Hu, Lily; Harris, Daniel; Mathew, Paul; Price, Phillip; Bell, Geoffrey; Katipamula, Srinivas; Brambley, Michael

    2011-10-01

    This handbook will give you the information you need to plan an energy-management strategy that works for your building, making it more energy efficient.

  11. Building Momentum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Momentum Building Momentum June 28, 2012 - 4:02pm Addthis President Barack Obama and former President Bill Clinton take a tour of the upgrades of the Transwestern Building in Washington, Dec. 2, 2011. | Official White House Photo by Lawrence Jackson. President Barack Obama and former President Bill Clinton take a tour of the upgrades of the Transwestern Building in Washington, Dec. 2, 2011. | Official White House Photo by Lawrence Jackson. Jeff Zients Acting Director of the Office of Management

  12. Energy Efficient State Building Initiative

    Broader source: Energy.gov [DOE]

    The DOA has incorporated the requirements of the Executive Order into Indiana's standard instructions to designers for projects on state-owned buildings. Efficiency can be demonstrated through...

  13. Test Procedures for Building Energy Simulation Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Procedures for Building Energy Simulation Tools Test Procedures for Building Energy Simulation Tools Lead Performer: -- National Renewable Energy Laboratory - Golden, CO -- J. Neymark & Associates - Golden, CO -- Lawrence Berkeley National Laboratory (LBNL) - Berkeley, CA Partners: -- ASHRAE Standing Special Projects Committee 140 -- Residential Energy Services Network (RESNET) -- International Energy Agency (IEA) - Paris, France -- Trane Inc. - Piscataway, NJ -- Carrier Corp. -

  14. Re-Building Greensburg | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Re-Building Greensburg Re-Building Greensburg Addthis Description Greensburg, Kansas - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs rallied residents behind the idea of "greening" Greensburg, inspiring the construction of energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Greensburg has demonstrated

  15. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for ...

  16. Commercial Building Energy Efficiency Education Project

    SciTech Connect (OSTI)

    2013-01-13

    The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

  17. Energy Reduction Plan for State Buildings

    Broader source: Energy.gov [DOE]

    In April 2007, Massachusetts Gov. Deval Patrick signed Executive Order 484, titled “Leading by Example: Clean Energy and Efficient Buildings.” This order establishes numerous energy targets and...

  18. Summer Study on Energy Efficiency in Buildings

    Broader source: Energy.gov [DOE]

    The 2016 Summer Study will be the 19th biennial ACEEE conference on Energy Efficiency in Buildings. A diverse group of professionals from around the world will gather at this pre-eminent meeting to discuss the technological basis for, and practical implementation of, actions to reduce energy use and the climate impacts associated with buildings.

  19. Building Energy Data Exchange Specification Scoping Report

    Broader source: Energy.gov [DOE]

    Building Energy Data Exchange Specification Scoping Report. The Building Energy Data Exchange Specification (BEDES), developed by DOE, is a uniform format is intended to make it easier for external stakeholders to use DOE tools, streamline reporting for DOE programs, and help unlock the full utility of the data that the DOE collects.

  20. Flexible Framework for Building Energy Analysis: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

    2012-09-01

    In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

  1. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    SciTech Connect (OSTI)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  2. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect (OSTI)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  3. Energy Information Administration (EIA)- Commercial Buildings Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Survey (CBECS) Data 2003 CBECS Survey Data 2012 | 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of

  4. International Energy Outlook 2016-Buildings sector energy consumption -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration 6. Buildings sector energy consumption Overview Energy consumed in the buildings sector consists of residential and commercial end users and accounts for 20.1% of the total delivered energy consumed worldwide. Consumption of delivered, or site, energy contrasts with the use of the primary energy that also includes the energy used to generate and deliver electricity to individual sites such as homes, offices, or industrial plants. In the International Energy

  5. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book [EERE]

    2003 Delivered Energy End-Use Intensities and Consumption of Educational Facilities, by Building Activity (1) Space Heating 389 47% 39.4 Cooling 79 10% 8.0 Ventilation 83 10% 8.4 Water Heating 57 7% 5.8 Lighting 113 14% 11.5 Cooking 8 1% 0.8 Refrigeration 16 2% 1.6 Office Equipment 4 0% 0.4 Computers 32 4% 3.4 Other 39 5% 4.0 Total 820 100% 83.1 (2) Note(s): Source(s): Energy Consumption Energy Intensity (10^12 Btu) (thousand Btu/SF) 1) Educational facilities include K-12 as well as higher

  6. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  7. Building Energy Codes Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Building Energy Codes Fact Sheet Building energy codes have been in place for over 20 years. Today's codes are providing energy savings of more than 30% compared to the codes of a decade ago. They're also saving consumers an estimated $5 billion annually as of 2012. Since 1992, building codes have saved about 300 million tons of carbon cumulatively. Read the fact sheet below to learn more about the Building Technologies Office's Building Energy Codes program. View the Fact Sheet -

  8. Residential Lighting End-Use Consumption

    Broader source: Energy.gov [DOE]

    The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications.

  9. Save (More) Energy Now with Intelligent Industrial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (More) Energy Now with Intelligent Industrial Buildings Save (More) Energy Now with Intelligent Industrial Buildings This tip sheet outlines a variety of tools to reduce energy use ...

  10. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  11. Energy Standards for Public Buildings

    Broader source: Energy.gov [DOE]

    Note: As of July 2015, Missouri state facilities under construction or renovation, and commercial buildings purchased or leased by state agencies, must comply with the 2015 IECC, pursuant to the...

  12. Buildings Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 29 30 1 2 3 4 5 Informational Webinar: GSA and DOE Seek Innovative Building Technologies 1:00PM to 3:00PM EST Addressing...

  13. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    4 2010 U.S. Buildings Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Fuel Other Renw. Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Space Heating (5) 5.14 0.76 0.30 0.10 0.54 0.72 7.56 37.0% | 2.24 9.07 22.5% Space Cooling 0.04 1.92 1.96 9.6% | 5.94 5.98 14.8% Lighting 1.88 1.88 9.2% | 5.82 5.82 14.4% Water Heating 1.73 0.13 0.07 0.04 0.54 2.51 12.3% | 1.67 3.63 9.0% Refrigeration (6) 0.84 0.84 4.1% | 2.62 2.62 6.5% Electronics (7)

  14. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    5 2015 U.S. Buildings Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Space Heating (5) 5.10 0.68 0.26 0.09 0.55 0.59 7.27 35.9% | 1.77 8.45 21.5% Lighting 1.52 1.52 7.5% | 4.65 4.65 11.8% Space Cooling 0.04 0.54 0.57 2.8% | 4.60 4.63 11.8% Water Heating 1.79 0.10 0.05 0.05 0.57 2.55 12.6% | 1.71 3.70 9.4% Refrigeration (6) 0.81 0.81 4.0% | 2.43 2.43 6.2%

  15. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    6 2025 U.S. Buildings Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Space Heating (5) 4.96 0.57 0.24 0.09 0.57 0.63 7.05 33.2% | 1.89 8.31 19.6% Space Cooling 0.03 1.64 1.67 7.9% | 4.94 4.97 11.7% Lighting 1.55 1.55 7.3% | 4.68 4.68 11.0% Water Heating 1.84 0.08 0.04 0.05 0.62 2.63 12.4% | 1.86 3.88 9.1% Refrigeration (6) 0.82 0.82 3.9% | 2.47 2.47 5.8%

  16. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    7 2035 U.S. Buildings Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Space Heating (5) 4.84 0.49 0.22 0.09 0.57 0.66 6.87 30.5% | 1.93 8.15 17.9% Space Cooling 0.03 1.79 1.82 8.1% | 5.27 5.30 11.7% Lighting 1.63 1.63 7.3% | 4.81 4.81 10.6% Water Heating 1.81 0.07 0.03 0.06 0.63 2.60 11.6% | 1.86 3.83 8.4% Electronics (6) 0.90 0.90 4.0% | 2.66 2.66 5.8%

  17. Buildings Energy Data Book: 3.7 Retail Markets and Companies

    Buildings Energy Data Book [EERE]

    6 Energy Benchmarks for Newly Constructed Retail Buildings, by Selected City and End-Use (thousand Btu per square foot) IECC Climate Zone Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 108.9 0.1 9.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate

  18. Buildings Energy Data Book: 3.8 Hospitals and Medical Facilities

    Buildings Energy Data Book [EERE]

    6 Energy Benchmarks for Newly Constructed Outpatient Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 99.7 8.8 1.4 17.7 Commercial building energy benchmarks are based off of the current stock of commercial buildings and are designed to provide a consistent

  19. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b. Total Primary Energy Consumption (U.S. and Census Region) By Principal Building Activity (Table 1c) html...

  20. Building Energy Codes Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provide funding to help measure & improve code compliance The Building Energy Codes Program aims to "lock in" savings from energy codes by participating in code development processes and supporting local and state governments in the adoption and implementation of progressively more advanced building energy codes across the country. External Influences: DOE budget, Construction industry, Real estate market, State/local policies & budget Objectives Activities / Partners Outputs

  1. U.S. DOE Commercial Building Energy Asset Score | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. DOE Commercial Building Energy Asset Score U.S. DOE Commercial Building Energy Asset Score provides quick start intstructions for creating a commercial building energy asset score PDF icon Commercial Building Energy Asset Score: Quick Start Guide More Documents & Publications Commercial Building Energy Asset Score: Pilot Findings and Program Update Commercial Building Energy Asset Score Program Building Energy Asset Score

  2. #AskEnergySaver: Building Envelopes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Envelopes #AskEnergySaver: Building Envelopes May 30, 2014 - 3:16pm Addthis You're home's building envelope protects your home's interior from the outdoor environment to keep you comfortable all year long. But it can also contribute to higher heating and cooling costs. Learn how to improve its efficiency and save you money. | Photo courtesy of Kenneth Kelly, National Renewable Energy Lab. You're home's building envelope protects your home's interior from the outdoor environment to keep

  3. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Type Definitions In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, ...

  4. Better Building Federal Award Underway | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Better Building Federal Award builds on President Obama's goal of reducing the Federal Government's energy consumption by 30 percent by 2015. The eight finalist buildings for the ...

  5. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends ...

  6. Energy Department and National Institute of Building Sciences...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Workforce Guidelines Energy Department and National Institute of Building Sciences Release Better Buildings Workforce Guidelines March 9, 2015 - 1:37pm Addthis ...

  7. Partner With DOE and Residential Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Partner With DOE and Residential Buildings Partner With DOE and Residential Buildings The U.S. Department of Energy (DOE) partners with a variety of ...

  8. Building Energy Codes Program Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Building Energy Codes Program activities. Through robust feedback, the ...

  9. Better Buildings Network View | April 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | April 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  10. Better Buildings Network View | June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | June 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon ...

  11. Better Buildings Network View | May 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Better Buildings Network View | May 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon ...

  12. Better Buildings Network View | May 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | May 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon ...

  13. Better Buildings Network View | March 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | March 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  14. Better Buildings Network View | April 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Better Buildings Network View | April 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  15. Better Buildings Network View | March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Better Buildings Network View | March 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  16. Better Buildings Network View | March 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Better Buildings Network View | March 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF ...

  17. Better Buildings Network View | June 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Better Buildings Network View | June 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon ...

  18. Energy consumption series: Lighting in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1992-03-11

    Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy`s (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration`s (EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

  19. Energy Information Administration (EIA)- Commercial Buildings Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Survey (CBECS) Data 2012 CBECS Survey Data 2012 | 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics A table of Relative Standard Errors (RSEs) is included as a worksheet tab in the Excel version of all building characteristics tables. See the Guide to the 2012 CBECS Detailed Tables for more information. + EXPAND ALL Summary tables Preliminary release date: March 4, 2015 Release date: May 24,

  20. Energy Information Administration (EIA)- Commercial Buildings Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Survey (CBECS) Data Previous CBECS Survey Data 2012 | 2003 | 1999 | 1995 | 1992 | Previous 1989 Building Characteristics Tables Consumption and Expenditures Tables Microdata Released: January 2009 The 1989 CBECS Public Use Files are comma separated value (.csv) files that each contain 5,876 records. They represent commercial buildings from the 50 States and the District of Columbia. Each record corresponds to a single responding, in-scope sampled building, and contains

  1. Smart Buildings Equipment Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Equipment Initiative Smart Buildings Equipment Initiative Lead Performers: -- Pacific Northwest National Laboratory - Richland, WA -- National Renewable Energy Laboratory - Golden, CO DOE Funding: $2,100,000 Cost Share: N/A Project Term: Oct. 2014 - Sept. 2015 PROJECT OBJECTIVE The purpose of this project is to develop data taxonomies and standard communication protocols that enable building equipment to engage the larger electric system and to develop analytic methods and testing

  2. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect (OSTI)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  3. The BetterBuildings View | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The BetterBuildings View The BetterBuildings View The BetterBuildings View Newsletter, April 2011, from the U.S. Department of Energy's Better Buildings Neighborhood Program. PDF icon The BetterBuildings View April 2011 More Documents & Publications The Better Buildings Neighborhood View - October 2012 The Better Buildings Neighborhood View -- Fall 2011 The Better Buildings Neighborhood View -- April 2013

  4. Energy efficiency in buildings: Progress and promise

    SciTech Connect (OSTI)

    O'Hara, F.M. Jr.; Hirst, E.; Clinton, J.; Geller, H.; Kroner, W.

    1986-01-01

    The purpose of this book is twofold: to review current knowledge on energy use and efficiency in residential and commercial buildings and to suggest important research and program topics for future study. The introductory chapters set the stage for subsequent discussions of what we now know and where we want to go. We first review overall patterns of energy use in residential and commercial buildings and the dramatic changes in energy trends after 1973, including the roles of government, utility, and private sector efforts in making these changes. We next discuss reasons for continuing research and programs to improve energy efficiency in buildings and note the complexity and diversity among buildings in their design, construction, operation, maintenance, and use. We then turn our attention to how much has been accomplished and learned about reducing energy use in buildings since the 1973 oil embargo. Finally, we offer many suggestions that merit attention in both the short and long terms. The short-term proposals flow logically from current research and programs on energy efficient buildings. The long-term agenda (including several visions of the future) covers ideas that, in some ways, require changes in how we view our built environment and the social institutions under which buildings are constructed and operated. 406 refs., 52 figs., 33 tabs.

  5. Energy efficient building structure and panel therefor

    SciTech Connect (OSTI)

    Carroll, Th.J.; Paisley, J.K.

    1984-08-28

    A building structure is constructed from a plurality of sheathed, foam cored structural panels which are adapted to receive solar energy conversion or heat storage devices and are adapted to be connected in an air flow loop to provide integral heating and/or cooling systems for the building structure.

  6. Building Our Energy Future: Teaching Students the Significance of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Building Our Energy Future: Teaching Students the Significance of Energy Efficiency Building Our Energy Future: Teaching Students the Significance of Energy Efficiency April 2, 2015 - 4:39pm Addthis Students at St. Agnus Catholic School in Arlington, Va., measure weatherstripping to place around doors and windows Students at St. Agnus Catholic School in Arlington, Va., measure weatherstripping to place around doors and windows Holly Ravesloot Lead Energy

  7. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    1 Energy Policy Act of 2005, Provisions Affecting Energy Consumption in Federal Buildings Source(s): Energy Management Requirements - Amended reduction goals set by the National Energy Conservation Policy Act, and requires increasing percentage reductions in energy consumption through FY 2015, with a final energy consumption reduction goal of 20 percent savings in FY 2015, as compared to the baseline energy consumption of Federal buildings in FY 2003. (These goals were superseded by Section 431

  8. Building Energy Asset Score Frequently Asked Questions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Commercial Buildings » Analysis Tools » Energy Asset Score » Building Energy Asset Score Frequently Asked Questions Building Energy Asset Score Frequently Asked Questions This page features answers to the most frequently asked questions about the Building Energy Asset Score. Choose from the list of questions below to learn more: Program Overview What is the Building Energy Asset Score? The Building Energy Asset Score is a national standardized tool for assessing the physical and

  9. Small Buildings = Big Opportunity for Energy Savings (Fact Sheet), Building Technologies Office (BTO), Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings = Big Opportunity for Energy Savings There is nothing small about the impact that small commercial buildings have on energy use in the United States. In fact, the 4.6 million small buildings across the nation consume 44% of the overall energy use in buildings, presenting an enormous opportunity to cut costs, energy use, and greenhouse gas emissions. Despite this potential, small building owners and operators face unique challenges that have historically impeded the adoption of

  10. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect (OSTI)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  11. Building America FY14 Projects by Building Type | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects by Building Type Building America FY14 Projects by Building Type This table lists U.S. Department of Energy Building America FY14 research projects by building type. PDF icon building_america_fy14projects_bldgtype.pdf More Documents & Publications Building America FY14 Research Projects by Research Team

  12. Commercial Buildings Energy Consumption Survey (CBECS) - Data...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the ...

  13. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.82p. Total and Average Primaary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1982 Total Average RSE Row Fac- tors Expenditures...

  14. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.90p. Total and Average Primary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1990 Total Average RSE Row Fac- tors Expenditures...

  15. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.81p. Total and Average Primary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1981 Total Average RSE Row Fac- tors Expenditures...

  16. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.84p. Total and Average Primary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1984 Total Average RSE Row Fac- tors Expenditures...

  17. Buildings and Energy in the 1980's

    U.S. Energy Information Administration (EIA) Indexed Site

    Table R8.87p. Total and Average Primary Consumption and Expenditures for All Major Energy Sources in Residential Buildings, 1987 Total Average RSE Row Factors Expenditures (million...

  18. Sweden Building Data | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Sweden Building Data Jump to: navigation, search For several years now, the Swedish Energy Agency has been working, under the name of the STIL2 project, to...

  19. Building Energy Data Exchange Specification Scoping Report |...

    Broader source: Energy.gov (indexed) [DOE]

    The Building Energy Data Exchange Specification (BEDES), developed by DOE, is a uniform ... for DOE programs, and help unlock the full utility of the data that the DOE collects. ...

  20. Buildings Performance Metrics Terminology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Metrics Terminology Buildings Performance Metrics Terminology This document provides the terms and definitions used in the Department of Energys Performance Metrics Research Project. PDF icon metrics_terminology_20090203.pdf More Documents & Publications Procuring Architectural and Engineering Services for Energy Efficiency and Sustainability Transmittal Letter for the Statewide Benchmarking Process Evaluation Guide for Benchmarking Residential Energy Efficiency Program

  1. ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    participate in a benchmarking and disclosure program. Guide to Energy Efficiency Competitions for Buildings & Plants More Documents & Publications Benchmarking Outreach and Data ...

  2. Energy Star Building Upgrade Value Calculator | Open Energy Informatio...

    Open Energy Info (EERE)

    Upgrade Value Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Star Building Upgrade Value Calculator (for Office Properties) AgencyCompany...

  3. A Common Definition for Zero Energy Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Definition for Zero Energy Buildings September 2015 Prepared for the U.S. Department of Energy by The National Institute of Building Sciences NREL Research Support Facility, photo credit: Bill Gillies, NREL (This page intentionally left blank) Acknowledgements The Project Team would like to thank the Subject Matter Experts who were interviewed during the research phase of the project, as well as the Stakeholders who provided comments during the evaluation phase of the project. They all

  4. Advanced Building Control Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Control Solutions Advanced Building Control Solutions Lead Performer: Pacific Northwest National Laboratory (PNNL) - Richland, WA Partners: -- Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN -- Lawrence Berkeley National Laboratory (LBNL) - Berkeley, CA FY16 DOE Funding: $1,200,000 Project Term: Current - September 30, 2016 Funding Type: Direct Lab Funding PROJECT OBJECTIVE In order to enable and ensure persistent energy savings energy savings through advancements in sensing and

  5. Commercial Building Energy Assest Score Overall Building Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... additional information beyond score (recommendations, ... Assess End Uses for Asset Score Report (Current Thinking) ... opportunities * Applies life-cycle-cost analysis * Estimates ...

  6. Building a Stronger Foundation for Philanthropic Energy Investments |

    Energy Savers [EERE]

    Building Up Home Energy-Efficiency Building Up Home Energy-Efficiency August 26, 2014 - 11:00am Addthis Building or remodeling a home provides an opportunity to build energy-efficiency into your design from the ground up. | Photo courtesy of Paul Norton, National Renewable Energy Laboratory Building or remodeling a home provides an opportunity to build energy-efficiency into your design from the ground up. | Photo courtesy of Paul Norton, National Renewable Energy Laboratory Paige Terlip Paige

  7. Subscribe to Building Technologies Office Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subscribe to Building Technologies Office Updates Subscribe to Building Technologies Office Updates Sign up to receive email notices of funding opportunities, special events, live webinars, and news from the Building Technologies Office (BTO). These periodic notices include the following topics: New energy-saving technology Energy efficient commercial buildings Energy efficient residential buildings Appliance standards Building energy codes Buildings-to-Grid Integration Enter your email address

  8. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously ...

  9. Webinar: Energy Is Everywhere! Join the Better Buildings Challenge

    Broader source: Energy.gov [DOE]

    Multifamily residential buildings and operations can be made more energy-efficient using cost-effective energy improvements, while simultaneously creating jobs and building a stronger economy....

  10. Building Energy Codes: State and Local Code Implementation Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Lessans Fellow Building Energy Codes: State and Local Code Implementation Overview ... building code regarding energy efficiency to the revised model code and submit a ...

  11. NREL Develops Diagnostic Test Cases To Improve Building Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs The National ... research groups developed a set of diagnostic test cases for building energy simulations. ...

  12. Commercial Building Energy Asset Scoring Tool 2013 Pilot Training...

    Broader source: Energy.gov (indexed) [DOE]

    Session More Documents & Publications Commercial Building Energy Asset Scoring Tool Application Programming Interface Commercial Building Energy Asset Score: 2013 Pilot Overview...

  13. Business Case for Energy Efficient Building Retrofit and Renovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Case for Energy Efficient Building Retrofit and Renovation Business Case for Energy Efficient Building Retrofit and Renovation This report outlines ways to make the right ...

  14. Building Energy Codes-Best Practices Report for APEC Economies...

    Open Energy Info (EERE)

    AgencyCompany Organization: The Building Codes Assistance Project (BCAP) Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policiesdeployment programs Resource...

  15. Commercial Building Energy Asset Score Program | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Energy Asset Score Sample Report Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) Commercial ...

  16. DOE Announces Webinars on Reducing Energy Use in Buildings, Integratin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Use in Buildings, Integrating Bioenergy into the Classroom, and More DOE Announces Webinars on Reducing Energy Use in Buildings, Integrating Bioenergy into the ...

  17. Building Energy-Efficient Schools in New Orleans: Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy-Efficient Schools in New Orleans: Lessons Learned Building ... These brochures present the lessons learned from incorporating energy efficiency in the ...

  18. Database Aids Building Owners and Operators in Energy-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database Aids Building Owners and Operators in Energy-Efficiency Project Decision Making Database Aids Building Owners and Operators in Energy-Efficiency Project Decision Making ...

  19. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications (EIA)

    2008-01-01

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  20. BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF...

    Office of Scientific and Technical Information (OSTI)

    BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF) Citation Details In-Document Search Title: BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF) The ...

  1. Energy Performance Certification of Buildings: A Policy Tool...

    Open Energy Info (EERE)

    Certification of Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Performance Certification of Buildings: A...

  2. DOE Resources Help Measure Building Energy Benchmarking Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Help Measure Building Energy Benchmarking Policy & Program Effectiveness DOE Resources Help Measure Building Energy Benchmarking Policy & Program Effectiveness May 21,...

  3. Better Buildings Network View | May 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Better Buildings Network View | May 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View May 2015 More Documents & Publications Better Buildings Network View | June 2015 Home Performance with ENERGY STAR - 2014 BTO Peer Review Better Buildings Network View | April 2015

  4. Better Buildings Network View | April 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | April 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View April 2014 More Documents & Publications Better Buildings Network View | December 2014 Better Buildings Residential Network Orientation Webinar Better Buildings Network View | May

  5. Better Buildings Network View | April 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Better Buildings Network View | April 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View April 2015 More Documents & Publications Better Buildings Network View | May 2015 Better Buildings Network View | March 2015 Better Buildings Network View | July-August

  6. Better Buildings Network View | April 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Better Buildings Network View | April 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View April 2016 More Documents & Publications Better Buildings Network View | March 2016 Better Buildings Network View | January 2016 Better Buildings Network View | February 2016

  7. Better Buildings Network View | February 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | February 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View February 2014 More Documents & Publications Better Buildings Network View | January 2014 Better Buildings Network View | May 2015 Better Buildings Network View | June 2015

  8. Better Buildings Network View | February 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Better Buildings Network View | February 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View February 2016 More Documents & Publications Better Buildings Network View | March 2016 Better Buildings Network View | June 2014 Better Buildings Network View | April 2016

  9. Better Buildings Network View | January 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | January 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View January 2014 More Documents & Publications Better Buildings Network View | February 2015 Better Buildings Network View | May 2015 Better Buildings Network View | September 2014

  10. Better Buildings Network View | January 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Better Buildings Network View | January 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View January 2016 More Documents & Publications Better Buildings Network View | October 2015 Better Buildings Network View | April 2016 Better Buildings Network View | December

  11. Better Buildings Network View | June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | June 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View June 2014 More Documents & Publications Better Buildings Network View | June 2015 Better Buildings Network View | July-August 2014 Better Buildings Network View | April 2014

  12. Better Buildings Network View | March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Better Buildings Network View | March 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View March 2015 More Documents & Publications Better Buildings Network View | January 2015 Better Buildings Network View | December 2014 Better Buildings Network View | April 2015

  13. Better Buildings Network View | March 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Better Buildings Network View | March 2016 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View March 2016 More Documents & Publications Better Buildings Network View | April 2016 Better Buildings Network View | February 2016 Better Buildings Network View | January 2016

  14. Better Buildings Network View | November 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | November 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View November 2014 More Documents & Publications Better Buildings Network View | July-August 2014 Better Buildings Residential Network Orientation Webinar Better Buildings Network View | December 2014

  15. Better Buildings Network View | October 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Better Buildings Network View | October 2015 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network. PDF icon Better Buildings Network View October 2015 More Documents & Publications Better Buildings Network View | January 2016 Better Buildings Network View | April 2016 Better Buildings Network View | November

  16. Building Envelopes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to demonstrate the impact of cool roofs in reducing energy use and improving thermal comfort (e.g., by reducing indoor air and radiant temperatures) Database of radiative ...

  17. NEEP Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Challenge * Political - change in leadership or no longer a priority * Funding and staffing constraints * Lack of communication amongst state departments ( codes, energy etc.) ...

  18. Buildings and Energy in the 1980's (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    sum to totals. * See "Glossary" for definition of terms used in this report. Source: Energy Information Administration, Office of Energy Markets and End Use, Form EIA-788 of the...

  19. Buildings.Energy.gov DOE Challenge Home Tech Training Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 130 for water and sewer combined How Big is Hot Water? Water heating is the 1 st or 2 nd largest residential energy end-use: 15 - 30% of a house's total energy pie. - What ...

  20. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.