Sample records for buildings energy efficiency

  1. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  2. Building Energy Efficient Schools

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.

    1985-01-01T23:59:59.000Z

    Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

  3. Buildings Energy Efficiency Policy

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Efficiency Wind Biomass Natural Gas Combined Cycle Nuclear Coal IGCC Photovoltaics RangeofBuildings Energy Efficiency Policy ­ A Brief History Steven Nadel Executive Director American Council for an Energy- Efficient Economy #12;U.S. Energy Use in Relation to GDP 1970-2008 0.0 50.0 100

  4. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    the case for building energy-efficiency labels. 3.1 Trendsenergy efficiency. Building energy efficiency labels are anThe use of building energy efficiency labels may be the

  5. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

  6. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    Seven recent energy-efficient U.S. office buildings areSeven recent energy-efficient U.S. office buildings are18, 1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W.

  7. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  8. 2008 BUILDING ENERGY EFFICIENCY STANDARDS

    E-Print Network [OSTI]

    2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards and consultants. Valerie Hall, Deputy Director of the Energy Efficiency and Renewable Division provided policy

  9. Energy Department Announces Building Energy Efficiency Investments...

    Office of Environmental Management (EM)

    Building Energy Efficiency Investments in Twenty-Two States Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States June 27, 2012 - 6:55pm Addthis...

  10. Building America Residential Energy Efficiency Research Planning...

    Energy Savers [EERE]

    Building America Residential Energy Efficiency Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On...

  11. Building Energy-Efficient Schools

    E-Print Network [OSTI]

    ), through the National Renewable Energy Laboratory (NREL), began providing technical assistance to New to spend their Federal Emergency Management Agency (FEMA) settlement money on temporary campuses. LangstonBuilding Energy- Efficient Schools in New Orleans Lessons Learned #12;2 #12;3 The devastation

  12. RADON DAUGHTER EXPOSURES IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,vs. VENTILATION IN ENERGY EFFICIENT HOUSES Air change rate(

  13. Energy Efficient Buildings Hub

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI.of Energy Energy

  14. Building America Residential Energy Efficiency Stakeholders Meeting...

    Energy Savers [EERE]

    Energy Efficiency Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report...

  15. Building America Residential Energy Efficiency Technical Update...

    Energy Savers [EERE]

    Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

  16. Better Buildings Neighborhood Program: Energy Efficiency Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: Energy Efficiency Market Sustainable Business Planning Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning U.S. Department of...

  17. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action...

  18. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    of actual buildings energy consumption data confirm thedata bases. Actual energy consumption data are necessary toten years. The energy consumption data for new low-energy

  19. ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY STAR Guide to Energy Efficiency Competitions for Buildings and Plants ENERGY STAR Guide to Energy Efficiency Competitions for Buildings and Plants This step-by-step...

  20. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    Quality Measurements in Energy Efficient Buildings Craig D.Quality ~leasurements in Energy Efficient Buildings Craig D.Gregory W. Traynor Energy Efficient Buildings Program Energy

  1. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    energy use in buildings and energy efficiency retrofits;example in which building and energy-efficiency experts cameTechnical Standard of Building Energy Efficiency Labeling.

  2. PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS

    E-Print Network [OSTI]

    PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS Title 24, Part 6, and Associated400201200415 DAY #12;2013 Building Energy Efficiency Standards Page 1 NOTICE NOTICE This version of the 2013 Building Energy Efficiency Standards is a marked version; that is, it contains underlined or struck

  3. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    improving building energy efficiency has the potential toand improving building energy efficiency by exploring thecontributes to general building energy efficiency efforts by

  4. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    communication on building energy efficiency policy in China.emitting country. Building energy efficiency has become antarget. One of the building energy efficiency policies the

  5. Achieving Energy Efficiency in Exis0ng Buildings How achieve significant commercial building energy efficiency?

    E-Print Network [OSTI]

    Hutyra, Lucy R.

    · Led BU Energy Audit over past 3 years · University Sustainability CommiAchieving Energy Efficiency in Exis0ng Buildings ·How achieve significant commercial building energy efficiency? Focus on HVAC. ·Our solu0on

  6. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    the case to building owners for energy efficiency. Developoperation with energy efficiency in building systems. X X XBuildings: A Roadmap to Improved Energy Efficiency 11-Sept-

  7. INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, Craig D.

    2011-01-01T23:59:59.000Z

    new buildings incorporating energy- efficient designs, Theenergy-efficient residential, studied as possible models design.

  8. Commercial Building Energy Efficiency Education Project

    SciTech Connect (OSTI)

    None

    2013-01-13T23:59:59.000Z

    The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

  9. Energy Efficiency Standards for State Buildings

    Broader source: Energy.gov [DOE]

    In April 2009, the legislature passed [http://data.opi.mt.gov/bills/2009/billhtml/SB0049.htm S.B. 49], creating energy efficiency standards for state-owned and state-leased buildings. Energy...

  10. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Environmental Management (EM)

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends...

  11. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect (OSTI)

    None

    2014-03-14T23:59:59.000Z

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  12. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  13. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01T23:59:59.000Z

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  14. Retrofitting Existing Buildings for Demand Response & Energy Efficiency

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Retrofitting Existing Buildings for Demand Response & Energy Efficiency www rate periods to avoid high charges. · Assembly Bill 1103 ­ Building Energy Efficiency Disclosure - Starting January 1, 2010, all commercial building lease transactions must disclose the energy efficiency

  15. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    SciTech Connect (OSTI)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30T23:59:59.000Z

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  16. Obama Administration Launches $130 Million Building Energy Efficiency...

    Energy Savers [EERE]

    Administration Launches 130 Million Building Energy Efficiency Effort Obama Administration Launches 130 Million Building Energy Efficiency Effort February 12, 2010 - 12:00am...

  17. Design for Energy Efficiency in Residential Buildings

    E-Print Network [OSTI]

    Song, M.; Zhang, Y.; Yang, G.

    2006-01-01T23:59:59.000Z

    -saving efficiency was 50%. Tab. 1 Difference of over all heat transfer coefficient limitation of building Exterior wall Exterior window Roof 65% energy-saving residence buildings in Beijing (>5 stories) 0.6 2.8 0.6 South of Sweden 0.17 2.5 0...

  18. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    cooling, and lighting using passive systems, and optimal building design strategies to realize that potential. ASSESSMENT OF PROGRESS-

  19. SPEER: Building a Regional Energy Efficiency Partnership 

    E-Print Network [OSTI]

    Lewin, D.

    2013-01-01T23:59:59.000Z

    SPEER: Building a Regional Energy Efficiency Partnership Clean Air Through Energy Efficiency Conference – San Antonio, TX Doug Lewin December 18, 2013 ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... Dec. 16-18 SPEER • Member-based, non-profit organization • The Newest Regional Energy Efficiency Organization (REEO) • Founded in 2011 • 38 members from wide cross section of E.E. industries ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy...

  20. SPEER: Building a Regional Energy Efficiency Partnership

    E-Print Network [OSTI]

    Lewin, D.

    2013-01-01T23:59:59.000Z

    SPEER: Building a Regional Energy Efficiency Partnership Clean Air Through Energy Efficiency Conference – San Antonio, TX Doug Lewin December 18, 2013 ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... Dec. 16-18 SPEER • Member-based, non-profit organization • The Newest Regional Energy Efficiency Organization (REEO) • Founded in 2011 • 38 members from wide cross section of E.E. industries ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy...

  1. Business Case for Energy Efficient Building Retrofit and Renovation...

    Energy Savers [EERE]

    More Documents & Publications Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Marketing and Market Transformation Building America...

  2. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    SciTech Connect (OSTI)

    New Buildings Institute; Pacific Northwest National Laboratory; Granderson, Jessica; Piette, Mary Ann; Rosenblum, Ben; Hu, Lily; Harris, Daniel; Mathew, Paul; Price, Phillip; Bell, Geoffrey; Katipamula, Srinivas; Brambley, Michael

    2011-10-01T23:59:59.000Z

    This handbook will give you the information you need to plan an energy-management strategy that works for your building, making it more energy efficient.

  3. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    Engineers, 5th Energy Audit Symposium and Productivitycontributions. Numerous energy audits have taken placeabout the accuracy of energy audit procedures used to

  4. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01T23:59:59.000Z

    Quality Measurements in Energy- Efficient Buildings; April,air are built into energy-efficient buildings, 2 Burnersuse to design new energy efficient buildings and to analyze

  5. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    China demonstration energy- efficient commercial building”,China Demonstration Energy Efficient Office Building insideUS-China demonstration energy-efficient office building Peng

  6. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    analysis of building energy efficiency in China. Tsinghuaand energy efficiency potential in public buildings inraise the energy-efficiency awareness of building owners and

  7. Technologies for Energy Efficient Buildings

    E-Print Network [OSTI]

    .4.2.3 Total electrical energy consumption 33 3.4.2.4 Consumer alert messages 33 3.5 Laboratory Testing of Electricity Delivery and Energy Reliability Under Award No. DE-FC26-06NT42847 Hawai`i Distributed Energy of work sponsored by an agency of the United States Government. Neither the United States Government nor

  8. Efficient and Sustainable Energy: Ecology and Energy Challenges Energy Efficient and Sustainable Buildings M. Kostic

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Efficient and Sustainable Energy: Ecology and Energy Challenges Energy Efficient and Sustainable proven and the "cutting-edge" comprehensive buildings' "green & sustainable" energy technologies of the Northern Illinois Region, an inspiration for multidisciplinary "Energy & Environmental Sustainability

  9. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect (OSTI)

    Holt, Jeffrey W.

    2013-09-26T23:59:59.000Z

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  10. Energy Efficient Industrial Building Design

    E-Print Network [OSTI]

    Holness, G. V. R.

    1983-01-01T23:59:59.000Z

    " or precooled air concept of ventilation, with a high temperature hot-water/chilled-water changeover piping system. Extensive energy recovery systems would be provided for production equipment and oil mist control would be by local captive systems, rather...

  11. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    solution”. In: Energy and Buildings 52.0 (2012), pp. 39–49.with GenOpt”. In: Energy and Buildings 42.7 (2010), pp.lation Program”. In: Energy and Buildings 33.4 (2001), pp.

  12. Better Buildings Financing Energy Efficiency Retrofits in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Energy Efficiency Retrofits in the Commercial Sector -- Part 1 Better Buildings Financing Energy Efficiency Retrofits in the Commercial Sector -- Part 1 Slides from the...

  13. European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency

    E-Print Network [OSTI]

    Wirth, U.

    2008-01-01T23:59:59.000Z

    Gubelstrasse 22 CH-6301 Zug 00 41 41/ 7 24 55 60 wirth.ulrich@siemens.com European Union Energy Performance of Buildings Directive and The impact of Building Automation on Energy Efficiency Buildings account for 40 percent of global energy... building automation and control and technical building management based on the same may provide a demonstrable contribution to EU savings goals of 20 percent by 2020. The goal of European Directive 2002/91/EC on the total energy efficiency of buildings...

  14. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    in China. Vienna: Renewable Energy & Energy EfficiencyY. , & Zeng, D. (2011). China Renewable Energy Architecture155 Building-Integrated Renewable Energy

  15. Energy-Efficient Building Standards for State Facilities

    Broader source: Energy.gov [DOE]

    Via Executive Order 27, Maine requires that construction or renovation of state buildings must incorporate "green building" standards that would achieve "significant" energy efficiency and...

  16. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    control logic for building energy systems. Most moderncontrol actuators. Modern digital building automation systemssystem in the lab. The lab is equipped with a modern digital control

  17. Better Buildings Webinar: Making Utility Energy Efficiency Funds...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Webinar: Making Utility Energy Efficiency Funds Work for You Better Buildings Webinar: Making Utility Energy Efficiency Funds Work for You December 2, 2014 3:00PM...

  18. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Sustainable Development: Potential for US-India Collaboration in Buildings, Industry and the Smart

  19. RADON AND ITS DAUGHTERS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    W.W. Nazaroff, Radon in Energy-Efficient Houses, LawrenceStudies, pp. 18- 23 in Energy Efficient Buildings Program,AMD ITS DAUCHTERS IN ENERGY-EFFICIENT BUILDINCS A.V. Nero,

  20. RADON AND ITS DAUGHTERS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    AMD ITS DAUCHTERS IN ENERGY-EFFICIENT BUILDINCS A.V. Nero,W.W. Nazaroff, Radon in Energy-Efficient Houses, LawrenceStudies, pp. 18- 23 in Energy Efficient Buildings Program,

  1. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    Learning Control for Thermal Energy Storage Systems”. In:Predictive Control of Thermal Energy Storage in Buildingmaking use of building thermal energy storage, and this work

  2. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    electric loads in buildings: energy efficiency (for steadyof Building Controls and Energy Efficiency Options Usingof Building Controls and Energy Efficiency Options Using

  3. A joint U.S.-China demonstration energy efficient office building

    E-Print Network [OSTI]

    Zimmerman, Mary Beth; Huang, Yu JoeWatson, Rob; Shi, Han; Judkoff, Ron; She rman, Micah

    2000-01-01T23:59:59.000Z

    to promote building energy efficiency in a major foreignknown interest in building energy efficiency in China. InSummer Study on Energy Efficiency in Buildings, August 20-

  4. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    words: green building/ energy efficiency/ commercial realThe Diffusion of Energy Efficiency in Building. ” Americanor energy efficiency into commercial buildings, and company,

  5. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    electric loads in buildings: energy efficiency (for steady-of Building Controls and Energy Efficiency Options Usingof Building Controls and Energy Efficiency Options Using

  6. How ambient intelligence will improve habitability and energy efficiency in buildings

    E-Print Network [OSTI]

    Arens, Edward A; Federspiel, C.; Wang, D.; Huizenga, C.

    2005-01-01T23:59:59.000Z

    improvements to building energy efficiency and the well-Habitability and Energy Efficiency in Buildings. ” PublishedHabitability and Energy Efficiency in Buildings. ” Published

  7. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    renewables- integrated green building floor space growing towhich renewable energy resources are used to provide spacerenewable energy (especially rooftop solar), and energy-efficient light bulbs, rather than for energy-efficient space-

  8. Energy Audit Results for Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

  9. Energy Efficiency in Buildings- the Utilities View

    E-Print Network [OSTI]

    Konig, U.

    for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE Energy / Energieeffizienz bei Immobilien / U. K?nig / ICEBO '08 SEITE 5 1. RWE/RWE Energy 2. German Energy Market 3. Buildings and Climate Protection 4. What does RWE do? 5. Need.... German Energy Market 3. Buildings and Climate Protection 4. What does RWE do? 5. Need for action va W GGEHEN ESL-IC-08-10-27 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008...

  10. Energy Efficiency in Buildings- the Utilities View 

    E-Print Network [OSTI]

    Konig, U.

    2008-01-01T23:59:59.000Z

    for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE Energy / Energieeffizienz bei Immobilien / U. K?nig / ICEBO '08 SEITE 5 1. RWE/RWE Energy 2. German Energy Market 3. Buildings and Climate Protection 4. What does RWE do? 5. Need.... German Energy Market 3. Buildings and Climate Protection 4. What does RWE do? 5. Need for action va W GGEHEN ESL-IC-08-10-27 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008...

  11. Curriculum for Commissioning Energy Efficient Buildings

    SciTech Connect (OSTI)

    Webster, Lia

    2012-09-30T23:59:59.000Z

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual lessons, followed by a 24 hour hands-on lab. Total time required is between 50 and 70 hours, depending on the pace of the independent learner. • Individual courses can be taken for continuing education credits. • Assessments are included for each course, and a score of at least 80% is required for completion. • Completion of Modules 1 through 3 is prerequisite for participating in the laboratory. More experienced participants have the option to test out of Modules 1 and 2 and complete Module 3 to progress to the laboratory.

  12. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    an energy-efficient demonstration building and design centerenergy- efficient demonstration office building and designenergy-efficient materials, space-conditioning systems, controls, and design

  13. Business Energy Efficiency Rebate for Existing Buildings

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon offers incentives for commercial, agricultural and institutional customers of any of the state's investor owned utilities to increase the energy efficiency of their existing...

  14. European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency 

    E-Print Network [OSTI]

    Wirth, U.

    2008-01-01T23:59:59.000Z

    Gubelstrasse 22 CH-6301 Zug 00 41 41/ 7 24 55 60 wirth.ulrich@siemens.com European Union Energy Performance of Buildings Directive and The impact of Building Automation on Energy Efficiency Buildings account for 40 percent of global energy... consumption. The European Union's 2002 Energy Performance of Buildings Directive takes this fact into account and formulates savings goals. A resulting European standard, and uniform certification, applicable throughout Europe, form the foundation since...

  15. Building Algorithm-Based Energy Efficient High Performance Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Algorithm-Based Energy Efficient High Performance Computing Systems with Resilience Event Sponsor: Mathematics and Computing Science Seminar Start Date: May 12 2015 -...

  16. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    E-Print Network [OSTI]

    Vine, Edward

    2002-01-01T23:59:59.000Z

    to the goal of building energy efficiency into air qualityfacing it. Building energy efficiency represents a cost-Focusing on building energy efficiency is an appropriate

  17. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    and A. H. Rosenfeld Energy Efficient Windows Program S.Verderber, and J. Klems Energy Efficient Lighting Program S.1978 A. K. OPPENHEIM Energy Efficient Buildings INTRODUCTION

  18. Building on Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    easy-to-use tools to size and finance rooftop solar panels; and download virtual energy audit software that can cut costs for building owners and help get retrofits started...

  19. Energy Efficient Buildings Hub | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen| Department ofBatteriesRecordEnergy

  20. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    the larger diffusion of green and energy efficient buildingsowners, the costs of green and energy efficient buildings,market. Demand for Green and Energy Efficient Buildings The

  1. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    owners, the costs of green and energy efficient buildings,the larger diffusion of green and energy efficient buildingsmarket. Demand for Green and Energy Efficient Buildings The

  2. Building Energy Efficiency Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and technologyA Science DMZ

  3. Energy Efficiency and Green Building Standards for State Buildings

    Broader source: Energy.gov [DOE]

    In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and...

  4. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

  5. 45-Day Language Hearing Agenda Building Energy Efficiency Standards

    E-Print Network [OSTI]

    Shirakh 09:15 AM Revisions to Sections 10-101 ­ 10-114 ­ Energy Building Regulations, All Occupancies Gary45-Day Language Hearing Agenda Building Energy Efficiency Standards Revisions for Residential for Solar Ready Buildings ­ All Occupancies Patrick Saxton 10:35 AM Revisions to Sections 150

  6. Energy Efficiency and Sustainable Construction Standards for Public Buildings

    Broader source: Energy.gov [DOE]

    Senate Bill 130 of 2008 established energy efficiency goals for new state building projects. All major facility projects over 10,000 square feet should strive to exceed the efficiency standards of...

  7. Analysis of the Russian Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.; Roshchanka, Volha

    2012-12-01T23:59:59.000Z

    This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

  8. Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    and improve building energy efficiency. The areas forto improve the building’s energy efficiency and comfort (Study on Energy Efficiency in Buildings. Pacific Grove,

  9. Building Operator Certification: Improving Commercial Building Energy Efficiency Through Operator Training and Certification

    E-Print Network [OSTI]

    Putnam, C.; Mulak, A.

    2001-01-01T23:59:59.000Z

    Building Operator Certification (BOC) is a competency-based certification for building operators designed to improve the energy efficiency of commercial buildings. Operators earn certification by attending training sessions and completing project...

  10. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    might expect an energy-efficient building to be expensive toand Analysis of Energy Efficient New Commercial Buildings,possible to build an energy-efficient building for no more

  11. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2014-01-01T23:59:59.000Z

    Energy Efficient Build- ings: Technical Potentials and Policy Recom- mendations for Conservation and Renewable

  12. Analysis of the Chinese Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20T23:59:59.000Z

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

  13. Building Efficiency Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartment ofCodes ResourcesBuilding

  14. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    Building thermal loadThe building thermal load predictor. . . . . . . .of Figures 1.1 Classification schematic for building MPC

  15. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    SciTech Connect (OSTI)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06T23:59:59.000Z

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  16. Energy Efficiency Evaluation and Planning for Existing Buildings

    Broader source: Energy.gov [DOE]

    For meeting Federal sustainability requirements, agencies can use evaluation methods—such as benchmarking and energy audits—and planning to make their existing buildings energy efficient. To comply...

  17. Local Option- Property Tax Assessment for Energy Efficient Buildings

    Broader source: Energy.gov [DOE]

    In March 2008, Virginia enacted legislation that would allow local jurisdictions to assess the property tax of energy efficient buildings at a reduced rate. Under this law, eligible energy...

  18. Energy efficient building design: Guidelines for local government

    SciTech Connect (OSTI)

    Balon, R.J.

    1989-07-01T23:59:59.000Z

    The aim of the project was to develop an effective, in-house energy review process for County building design, covering new buildings and major renovations of existing buildings. Montgomery County enacted regulations for energy efficient design of buildings in July 1986. In essence, the regulation sets energy consumption limits for buildings and calls for life-cycle-cost analysis of design choices. In the course of this project significant achievements were realized in the following areas: Energy Design Guidelines were established or refined in several areas of energy technology and design practice. The Energy Review Process was formalized and implemented. Energy personnel received supplemental training in lighting technologies and design methods, energy analysis programs and commercial design standards. The key technical findings of the project are as follows: A combination of energy design tools was found to provide optimum results, including energy analysis, life-cycle-cost analysis, prescriptive standards and guide specifications. There is a dramatic decrease in design energy consumption in buildings processed under the guidelines, ranging from 30 % to 50 % decrease in energy consumption compared to existing County buildings. On average, it was found that energy-efficient new buildings cost no more to build than energy-hog buildings. An economic analysis indicates a very high rate of return in utility savings compared to the cost of implementing the program. 10 figs.

  19. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

  20. Energy-efficient buildings: Does the marketplace work?

    SciTech Connect (OSTI)

    Brown, M.A.

    1996-12-31T23:59:59.000Z

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  1. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    more sophisticated building automation systems and buildingthrough the building automation system “Automated Logic Websystem. ALC is a building automation system, offering a user

  2. HVAC & Building Management Control System Energy Efficiency Replacements

    SciTech Connect (OSTI)

    Hernandez, Adriana

    2012-09-21T23:59:59.000Z

    The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

  3. Audit Procedures for Improving Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

  4. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    use for ten categories of new, energy- efficient commercialto the estimates for new energy-efficient buildings, weof energy use for new energy-efficient all-electric

  5. 2014 ACEEE Summer Study on Energy Efficiency in Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 2014 Summer Study is the 18th biennial ACEEE conference on Energy Efficiency in Buildings. A diverse group of professionals from around the world will gather at this pre-eminent meeting to...

  6. Application of Infrared Thermography in Building Energy Efficiency

    E-Print Network [OSTI]

    Shi, Y.; Chen, H.; Xu, Q.; I, D.; Wang, Z.; Fang, X.

    2006-01-01T23:59:59.000Z

    Based on experience, the paper introduces the key issues during the use of infrared thermography in building energy efficiency. In order to get a more useful thermal infrared spectrum, we must correct the operating apparatus and measure more...

  7. Application of Infrared Thermography in Building Energy Efficiency 

    E-Print Network [OSTI]

    Shi, Y.; Chen, H.; Xu, Q.; I, D.; Wang, Z.; Fang, X.

    2006-01-01T23:59:59.000Z

    Based on experience, the paper introduces the key issues during the use of infrared thermography in building energy efficiency. In order to get a more useful thermal infrared spectrum, we must correct the operating apparatus and measure more...

  8. Life-Cycle Analysis and Energy Efficiency in State Buildings

    Broader source: Energy.gov [DOE]

    Several provisions of Missouri law govern energy efficiency in state facilities. In 1993 Missouri enacted legislation requiring life-cycle cost analysis for all new construction of state buildings...

  9. The Florida Energy Efficiency Building Code, the Second Generation

    E-Print Network [OSTI]

    Dixon, R. W.

    1985-01-01T23:59:59.000Z

    This paper discusses the Revision of the Residential Sections of the Florida Energy Efficiency Code for Building Construction. The procedures utilized in the Revision and the concepts integrated in to the 2nd Generation of the Florida Specific...

  10. Energy Efficiency Program for State Government Buildings

    Broader source: Energy.gov [DOE]

    The High-Performance Buildings Advisory Committee assisted the Finance and Administration Cabinet with setting out the standards and benchmarks by which to evaluate buildings. Leadership in Energ...

  11. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    s Title 24 Building Energy Efficiency Standards W.J. Fisk,s Title 24 Building Energy Efficiency Standards Report toCommission, 2008 Building energy efficiency standards for

  12. Cost and benefit of energy efficient buildings

    E-Print Network [OSTI]

    Zhang, Wenying, S.B. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    A common misconception among developers and policy-makers is that "sustainable buildings" may not be financially justified. However, this report strives to show that building green is cost-effective and does make financial ...

  13. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    study of Ningbo. Energy and Buildings(43), 2197-2202. Yin,buildings in China. Energy and Buildings, 36, 1191-1196.Public Buildings. Energy and Buildings, 41, 426:435. Hong,

  14. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30T23:59:59.000Z

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  15. Index to Evaluate Energy Efficiency of the Building HVAC System

    E-Print Network [OSTI]

    Wang, L.; Wang, L.; Claridge,D.

    2014-01-01T23:59:59.000Z

    1An Index to Evaluate Energy Efficiency of the Entire Building HVAC System Presented by Dr. Claridge Date: 09/15/2014 ESL-IC-14-09-15 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14...-17, 2014 2Outline •Why we need the Energy/Load Ratio •How to get the Energy/Load Ratio •Methodology Adjustment •Case Study •Results Showed by tables and Plots ESL-IC-14-09-15 Proceedings of the 14th International Conference for Enhanced Building Operations...

  16. Intervention strategies for energy efficient municipal buildings: Influencing energy decisions throughout buildings` lifetimes

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    The current energy-related decisionmaking processes that take place during the lifetimes of municipal buildings in San Francisco do not reflect our ideal picture of energy efficiency as a part of staff awareness and standard practice. Two key problems that undermine the success of energy efficiency programs are lost opportunities and incomplete actions. These problems can be caused by technology-related issues, but often the causes are institutional barriers (organizational or procedural {open_quotes}people problems{close_quotes}). Energy efficient decisions are not being made because of a lack of awareness or policy mandate, or because financial resources are not available to decisionmakers. The Bureau of Energy Conservation (BEC) is working to solve such problems in the City & County of San Francisco through the Intervention Strategies project. In the first phase of the project, using the framework of the building lifetime, we learned how energy efficiency in San Francisco municipal buildings can be influenced through delivering services to support decisionmakers; at key points in the process of funding, designing, constructing and maintaining them. The second phase of the project involved choosing and implementing five pilot projects. Through staff interviews, we learned how decisions that impact energy use are made at various levels. We compiled information about city staff and their needs, and resources available to meet those needs. We then designed actions to deliver appropriate services to staff at these key access points. BEC implemented five pilot projects corresponding to various stages in the building`s lifetime. These were: Bond Guidelines, Energy Efficient Design Practices, Commissioning, Motor Efficiency, and Facilities Condition Monitoring Program.

  17. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    chillers/cooling towers for energy conversion, an electricalconsuming energy are chillers, cooling towers, and pumps. Atconsuming energy are chillers, cooling towers, and pumps. It

  18. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26T23:59:59.000Z

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC’s enactment, only two states and one territory out of 35 Indian states and union territories formally adopted ECBC and six additional states are in the legislative process of approving ECBC. There are several barriers that slow down the process. First, stakeholders, such as architects, developers, and state and local governments, lack awareness of building energy efficiency, and do not have enough capacity and resources to implement ECBC. Second, institution for implementing ECBC is not set up yet; ECBC is not included in local building by-laws or incorporated into the building permit process. Third, there is not a systematic approach to measuring and verifying compliance and energy savings, and thus the market does not have enough confidence in ECBC. Energy codes achieve energy savings only when projects comply with codes, yet only few countries measure compliance consistently and periodic checks often indicate poor compliance in many jurisdictions. China and the U.S. appear to be two countries with comprehensive systems in code enforcement and compliance The United States recently developed methodologies measuring compliance with building energy codes at the state level. China has an annual survey investigating code compliance rate at the design and construction stages in major cities. Like many developing countries, India has only recently begun implementing an energy code and would benefit from international experience on code compliance. In this paper, we examine lessons learned from the U.S. and China on compliance assessment and how India can apply these lessons to develop its own compliance evaluation approach. This paper also provides policy suggestions to national, state, and local governments to improve compliance and speed up ECBC implementation.

  19. The State Energy Program: Building Energy Efficiency and Renewable Energy Capacity in the States

    Broader source: Energy.gov [DOE]

    This study documents the capacity-building effects that the federal State Energy Program (SEP) has had on the states' capacity to design, manage and implement energy efficiency and renewable energy programs.

  20. The State Energy Program: Building Energy Efficiency and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Understanding of building control equipment, systems, software and operations. * Renewable energy technology and equipment fundamentals and an understanding of how they...

  1. Energy efficiency in public buildings through ICT based control and monitoring systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy efficiency in public buildings through ICT based control and monitoring systems G, France Keywords: energy efficiency, existing public buildings, control strategies, dynamic simulations a project entitled "Smart Energy Efficient Middleware for Public Spaces" (SEEMPubS). The project addresses

  2. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    Lighting Efficiency Modern control systems typically trendAnalogous to modern HVAC control systems, which offer datamodern building automation systems (BAS) are able to store, trend, and plot system-level operational or control

  3. Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings 

    E-Print Network [OSTI]

    Bernstein, R.

    2010-01-01T23:59:59.000Z

    Energy efficiency through intelligent control is a core element of any "Green Building". We need smarter, more efficient ways of managing the energy consuming elements within a building. But what we think of as "the building" ...

  4. Energy Sensing and Monitoring Framework with an Integrated Communication Backbone in Energy Efficient Intelligent Buildings

    E-Print Network [OSTI]

    Jain, Raj

    Building, Communication, Sustainability, Smart Energy, Smart Box, Cloud Computing, Smart Phone. Abstract Efficient Intelligent Buildings Jianli Pan1, 3, a , Shanzhi Chen2, b , Raj Jain3, c , Subharthi Paul3, d 1. Building environments are significant sources of global energy consumption. To create energy efficient

  5. DOE Building Energy Asset Score: Energy Efficiency Services Companies Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar DOE Building Energy Asset Score: Energy Efficiency Services Companies, presented in March 2015.

  6. Building Energy-Efficiency Best Practice Policies and Policy Packages

    SciTech Connect (OSTI)

    Levine, Mark; Can, Stephane de la Rue de; Zheng, Nina; Williams, Christopher; Amman, Jennifer; Staniaszek, Dan

    2012-10-26T23:59:59.000Z

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4th Assessment Report estimates that globally 35% to 40% of all energy-related CO{sub 2} emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth in building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries. At the same time, the buildings sector has been particularly resistant to achieving this potential. Technology in other sectors has advanced more rapidly than in buildings. In the recent past, automobile companies have made large investments in designing, engineering, and marketing energy efficient and alternative fuel vehicles that reduce greenhouse gas emissions. At the same time, the buildings sector – dependent on millions and millions of decisions by consumers and homeowners – face a large variety of market barriers that cause very substantial underinvestment in energy efficiency. How can the trajectory of energy use in buildings be changed to reduce the associated CO{sub 2} emissions? Is it possible to greatly accelerate this change? The answer to these questions depends on policy, technology, and behavior. Can policies be crafted and implemented to drive the trajectory down? Can the use of existing energy efficiency technologies be increased greatly and new technologies developed and brought to market? And what is the role of behavior in reducing or increasing energy use in buildings? These are the three overarching issues. The information assembled in this study and the knowledge derived from it needs to be brought to bear on these three questions. And thus we turn to some of the insights from the study, presented in the form of findings and recommendation.

  7. Sustainable Buildings, Energy Efficiency, and Williams College A Look at the North and South Academic Buildings

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    Sustainable Buildings, Energy Efficiency, and Williams College A Look at the North and South major features of sustainability. The first is the college's energy use and emissions impact, which, and operate them so as to use energy efficiently #12;throughout their lives."(http://www.williams.edu/resources/sustainability/sustainability

  8. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    incorporating energy efficient designs. Indoor air qualityincorporating energy efficient designs. In the future, theenergy efficient ventilation standards and ventilation designs

  9. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01T23:59:59.000Z

    requirements for energy-efficient design and construction,technologies used for energy-efficient design. Being able toand engineers design energy efficient buildings. Currently

  10. Energy Efficient Retrofits and Green Building Practices

    E-Print Network [OSTI]

    Rahman, M.

    2010-01-01T23:59:59.000Z

    are reduced, making the business more profitable and competitive. ? Comfort levels are increased for staff, which can improve productivity. ? Increase life of the equipment, provide trouble free operation and minimize equipment down time ? Energy usage.... Before Retrofits; The central chiller plant was equipped with 4 Chillers each Chiller was provided with Multi Stage Centrifugal Compressor. Each Chiller was connected to an individual Radiator for Heat Rejection, each Radiator was provided with 4...

  11. Incentive program for energy efficient design of state buildings

    SciTech Connect (OSTI)

    Case, M.E.; Wingerden, J. [and others

    1998-07-01T23:59:59.000Z

    In 1996, the State of Utah instigated a pilot program intended to improve the energy efficiency of newly designed State buildings. The goal of the program was to show that buildings could be designed to be more energy efficient than the State's energy code, ASHRAE/IES 90.1, without adding to the construction costs. Four of the eight buildings beat the code by at least 50%; one by 40% and one by only 22%. One project is still in design. This paper summarizes the program's design, implementation and results through May 3, 1998. It presents an informal evaluation and discusses program highlights - both positive and negative. The difficulties--both technical and political--in using the ASHRAE Standard for Energy Efficient Design of New Buildings (ASHRAE/IES 90.1) in an incentive-based program are discussed. Possible solutions to specific problems are presented. The impact of incentives on the design teams, their methods and the resulting design are also discussed.

  12. Planning for energy efficiency in new commercial buildings

    SciTech Connect (OSTI)

    Deakin, J.F.; O'Sullivan, T.

    1986-02-01T23:59:59.000Z

    The project described in this report provides other cities with an example of a city working to develop locally sponsored building energy review procedures. These procedures should result in the construction of new buildings incorporating the most energy efficient design measures. This will provide two specific benefits to San Francisco. First, it will reduce energy consumption in new buildings and will slow down the overall energy growth rate for the City's commercial sector. Over the past five years the growth rate for commercial building electricity use in San Francisco has averaged 5% per year, a rate double that of Citywide growth. This project works toward bringing that growth rate in line with the rest of San Francisco's energy users. In addition, San Francisco has the highest rental costs for commercial space in the nation outside of New York City. Any action that can be taken to reduce energy consumption in a new building will result in lower operating costs throughout its life. Reducing costs that would otherwise be spent on energy frees those resources to be spent on more productive areas of the local economy. 39 refs., 8 figs., 8 tabs.

  13. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    O. , 2004. Energy efficient data centers. Report LBNL-54163,is a showcase for energy-efficient data center design andimplementation of energy-efficient data centers. Chapter 5:

  14. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    consensus on energy efficient designs by climate and inestimates for an energy efficient alternative design can behighly energy efficient hospitals while the design community

  15. Building Energy-Efficient Schools in New Orleans: Lessons Learned |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-Efficient Schools

  16. Energy-efficient buildings program evaluations. Volume 2: Evaluation summaries

    SciTech Connect (OSTI)

    Lee, A.D.; Mayi, D.; Edgemon, S.D.

    1997-04-01T23:59:59.000Z

    This document presents summaries of code and utility building program evaluations reviewed as the basis for the information presented in Energy-Efficient Buildings Program Evaluations, Volume 1: Findings and Recommendations, DOE/EE/OBT-11569, Vol. 1. The main purpose of this volume is to summarize information from prior evaluations of similar programs that may be useful background for designing and conducting an evaluation of the BSGP. Another purpose is to summarize an extensive set of relevant evaluations and provide a resource for program designers, mangers, and evaluators.

  17. Towards Energy Efficient Building Assets: A Review on Sub-Tropical Climate

    E-Print Network [OSTI]

    Chowdhury, A. A.; Rasul, M. G.; Khan, M. M. K.

    2006-01-01T23:59:59.000Z

    Fifteenth Symposium on Improving Building Systems in Hot and Humid Climate July 24-26, 2006 The Buena Vista Palace Hotel, Orlando, Florida TOWARDS ENERGY EFFICIENT BUILDING ASSETS: A REVIEW ON SUB-TROPICAL CLIMATE A.A. CHOWDHURY M.G. RASUL M... building’s stability. To approach the concept of energy efficient building assets in a sub-tropical climate, building assets must adopt a number of innovative strategies to take advantage of subtropical climate. The importance of energy efficiency...

  18. Building America Residential Buildings Energy Efficiency Meeting: July 2010

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372 RoomforinDepartment of| Department of

  19. Abstract--Energy efficiency for the buildings is vital for the environment and sustainability. Buildings are responsible for

    E-Print Network [OSTI]

    Jain, Raj

    1 Abstract--Energy efficiency for the buildings is vital for the environment and sustainability. Buildings are responsible for significant energy consumption and carbon dioxide emissions in the United for a multi-disciplinary research project on energy efficiency. We collected the building energy data

  20. TITLE: Integrated Building Energy Efficiency HOSTS: Howard Chong, Brandon Hencey, and Kenneth Schlather

    E-Print Network [OSTI]

    Angenent, Lars T.

    sustainable buildings research come out of many departments including Architecture, Computer Science, Design on building energy efficiency. Facilities Services, which has a strong team on Energy and Sustainability and Environmental Analysis (DEA), Economics, Engineering, and Hotel Administration. Sustainable buildings represent

  1. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    component level. Building Automation System (BAS): A systemthe terms building automation system, building managementaddition, modern building automation systems (BAS) are able

  2. Providing for energy efficiency in homes and small buildings. Part I. Understanding and practicing energy conservation in buildings

    SciTech Connect (OSTI)

    Parady, W. Harold; Turner, J. Howard

    1980-06-01T23:59:59.000Z

    This is a training program to educate students and individuals in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. A teacher guide and student workbook are available to supplement the basic guide, which contains three parts. Part I considers the following: understanding the importance of energy; developing a concern for conserving energy; understanding the use of energy in buildings; care and maintenance of energy-efficient buildings; and developing energy-saving habits. A bibliography is presented.

  3. Low-to-No Cost Strategy for Energy Efficiency in Public Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Blue version of the EERE PowerPoint template,...

  4. Building Energy Efficiency in China - Status, Trends, Targets, and Solutions 

    E-Print Network [OSTI]

    Xia, J.

    2008-01-01T23:59:59.000Z

    It is well accepted that the reduction of building energy consumption is one of the most effective actions fro reducing the emission of CO2 and for protection of energy resources world wide. Understanding and comparing the real building energy...

  5. Building Energy Efficiency in China - Status, Trends, Targets, and Solutions

    E-Print Network [OSTI]

    Xia, J.

    2008-01-01T23:59:59.000Z

    It is well accepted that the reduction of building energy consumption is one of the most effective actions fro reducing the emission of CO2 and for protection of energy resources world wide. Understanding and comparing the real building energy...

  6. Building Energy Asset Score: Utilities and Energy Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartment

  7. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an 

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01T23:59:59.000Z

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  8. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01T23:59:59.000Z

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  9. The Practice and Thinking of Building Energy Efficiency Evaluation & Labeling in Shanghai

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the development of Building Energy Efficiency Evaluation and Labeling in Shanghai with project examples and theory.

  10. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    SciTech Connect (OSTI)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01T23:59:59.000Z

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  11. Energy efficiency indicators for high electric-load buildings

    E-Print Network [OSTI]

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-01-01T23:59:59.000Z

    Aebischer, A. Huser, 2003: Energy Consumption of InformationCalifornia Commercial Building Energy Benchmarking Database.Architekt Nr. 50, p. The Energy Data and Modelling Center,

  12. Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings

    E-Print Network [OSTI]

    Gugercin, Serkan

    Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings Jeff models for the indoor-air environment in control design for energy efficient buildings. In one method by a desire to incorporate models of the indoor-air environment in the design of energy efficient buildings

  13. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings: Preprint

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-08-01T23:59:59.000Z

    Zero net energy buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis.

  14. Energy-Efficient Building HVAC Control Using Hybrid System LBMPC

    E-Print Network [OSTI]

    Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

    2012-01-01T23:59:59.000Z

    Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

  15. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCool Roofs Energy 101: Cool Roofs Addthis

  16. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

  17. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    site location into energy-efficient design strategies. Theof IT and non-IT energy efficient design measures (Brown etcenter with an energy-efficient design. A closer evaluation

  18. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01T23:59:59.000Z

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  19. Rule to Support Increased Energy Measurement and Efficient Building...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related goals and to provide energy leadership to the country. Addthis Related Articles Energy Department Issues Green Building Certification System Final Rule to Support...

  20. Better Buildings Challenge is Expanding, Improving Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    the Energy Department's (DOE) Better Buildings Challenge is making America more sustainable by transforming how organizations improve energy performance at facilities...

  1. Laying the Foundation for Energy Efficient Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping commercial building owners and operators throughout America save energy and reduce carbon emissions.

  2. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    Energy Outlook, World Energy Demand and Economic Outlook.in a nearly constant cooling energy demand even in shoulderand reset Demand control ventilation Use energy efficient

  3. Building Up Home Energy-Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing at DOE's Paducah SiteEnergy 5

  4. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    iv Chapter 5: National energy demand and potential energyEnergy Demands and Efficiency Strategies   in Data Center AC02?05CH11231.   Energy Demands and Efficiency Strategies

  5. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect (OSTI)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30T23:59:59.000Z

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  6. A Tale of Two Buildings: Achieving Energy Efficiency 

    E-Print Network [OSTI]

    Rouse, S.

    2011-01-01T23:59:59.000Z

    , the EB Cx process identified and developed the energy efficiency measures needed to cut the wasted energy use....

  7. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Center for Building Energy Efficiency, and the China Center on Building Energy Efficiency (CERC-BEE) November,1)  CERC  Building  Energy  Efficiency  (CERC?BEE) 

  8. Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency

    E-Print Network [OSTI]

    Boyer, Edmond

    Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency, intelligent building design, energy efficiency, construction costs, multi-objective optimization. 1 for the optimization of buildings, in terms of sustainable development, is the reduction of energy use (while also

  9. A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency

    E-Print Network [OSTI]

    Hamadi, Yousseff

    A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency ´Alvaro Fialho 1 and Youssef Hamadi 2 and Marc Schoenauer 3 Abstract. The issue of energy efficiency of buildings for Sustainable De- velopment [14], the building sector is responsible for the most impor- tant energy consumption

  10. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    poor performance. Boiler efficiencies tend to range fromMethods Load Profiling Example 5: Boiler Efficiency vs.Part-Load Capacity Boiler efficiency is plotted and

  11. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01T23:59:59.000Z

    New York State Energy Research and Development Authority (of conserved energy values from the CEF and New York stateEnergy Efficiency Resource Development Potential In New York.

  12. Agent Technology to Improve Building Energy Efficiency and Occupant Comfort

    E-Print Network [OSTI]

    Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

    2006-01-01T23:59:59.000Z

    Global warming, caused largely by energy consumption, has become a major problem. During the last decades the introduction of energy saving technologies has strongly reduced energy consumption of buildings. Users' preferences and behavior have...

  13. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    an energy management and energy audit; Chapter 8 Energyan energy management and energy audit; Chapter 8 Energyan energy management and energy audit; Chapter 8 Energy

  14. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009- June 30, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  15. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31T23:59:59.000Z

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  16. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    Efficiency Alliance. Performance indicators: Better Bricks.Efficiency Alliance. Performance indicators: Better Bricks.operations/tools/performance-indicators-0. Website with

  17. Energy Efficient Residential Building Code for Arab Countries

    E-Print Network [OSTI]

    Hanna, G. B.

    2010-01-01T23:59:59.000Z

    This paper presents an energy analysis to support the Egyptian efforts to develop a New Energy Code for New Residential Buildings in the Arab Countries. Also, the paper represents a brief summary of the code contents specially, the effectiveness...

  18. Energy Efficient Residential Building Code for Arab Countries 

    E-Print Network [OSTI]

    Hanna, G. B.

    2010-01-01T23:59:59.000Z

    This paper presents an energy analysis to support the Egyptian efforts to develop a New Energy Code for New Residential Buildings in the Arab Countries. Also, the paper represents a brief summary of the code contents ...

  19. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    air sealing cracks; and installing programmable thermostats, energy-efficient replacement water heaters, heat pumps, air conditioners,

  20. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    Lighting Efficiency Modern control systems typically trendAnalogous to modern HVAC control systems, which offer data

  1. Collaboration and Consensus Building in States to Support Energy Efficiency as a Resource

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on collaboration and consensus building in states to support energy efficiency as a resource.

  2. Field Analysis of Thermal Comfort in Two Energy Efficient Office Buildings in Malaysia

    E-Print Network [OSTI]

    Qahtan, A. T.; Keumala, N.; Rao, S. P.; Samad, Z. A.

    2010-01-01T23:59:59.000Z

    the effectiveness of tropical passive solar control components in integrating thermal comfort with energy efficiency in office building. Field measurements are carried out in selected workspace of two office buildings that have been practiced the passive solar...

  3. Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA, presented by Kristen Taddonio of the Commercial Buildings program in...

  4. AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    for Energy Efficiency in Existing Buildings (AB 549 Report), the Energy Commission made a series in California homes and small commercial buildings (estimated at close to 420,000 units in 2010) is 30 to 50 the resources necessary to enforce health and safety codes and energy efficiency standards because the revenue

  5. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    Demand-Side Management EC European Commission ECBC Energy Conservation Buildingdemand-side management (DSM). These experiences should be researched to understand the extent to which the commercial building

  6. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    Chapter 8 Energy Monitoring and Targeting. 2004. GuideGuide to energy monitoring and targeting, with extensiveResources Canada. Monitoring and targeting techniques in

  7. Predicted versus monitored performance of energy-efficiency measures in new commercial buildings from energy edge

    SciTech Connect (OSTI)

    Piette, M.A.; Nordman, B.; deBuen, O.; Diamond, R.

    1993-08-01T23:59:59.000Z

    Energy Edge is a research-oriented demonstration program involving 28 new commercial buildings in the Pacific Northwest. This paper discusses the energy savings and cost-effectiveness of energy-efficiency measures for the first 12 buildings evaluated using simulation models calibrated with measured end-use data. Average energy savings per building from the simulated code baseline building was 19%, less than the 30% target. The most important factor for the lower savings is that many of the installed measures differ from the measures specified in the design predictions. Only one of the first 12 buildings met the project objective of reducing energy use by more than 30% at a cost below the target of 56 mills/kWh (in 1991 dollars). Based on results from the first 12 calibrated simulation models, 29 of the 66 energy-efficiency measures, or 44%, met the levelized cost criterion. Despite the lower energy savings from individual measures, the energy-use intensities of the buildings are lower than other regional comparison data for new buildings. The authors review factors that contribute to the uncertainty regarding measured savings and suggest methods to improve future evaluations.

  8. Lab Helps FAA Build Energy-Efficient Control Towers

    Broader source: Energy.gov [DOE]

    With help from the Pacific Northwest National Laboratory and its subcontractor, Redhorse Corporation, the agency that keeps our country’s airports running is bolstering its energy efficiency.

  9. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    such as retrofits and heat supply reform (Levine, et al. ,including envelope and heat supply network retrofits,Energy- saving Operation Heat Supply System Efficiency

  10. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    photovoltaic array generation enables you to quantify output or net energy consumption, as well as to prevent performance degradation.

  11. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    with solar irradiance data, and compare array output todata gaps before computing. Step 2: Aggregate AC total solar energy output

  12. Comprehensive Evaluation Model of Building Energy Efficiency Based on Rough Sets Theory

    E-Print Network [OSTI]

    Ding, L.; Ruan, X.; Huang, J.; Li, Y.

    2006-01-01T23:59:59.000Z

    of building the paper precedes energy evaluation. There is method of ambiguity synthesis evaluation chiefly, but ambiguity optimization model gets weight normalization indicator by adopting commonly expert evaluation or empirical evidence method, so... and Comfort, Vol. VI-3-1 The evaluation of building energy efficiency evaluation subentry index and establishment of reference grade table The value of building energy efficiency subentry index evaluation should be graded by authoritative experts...

  13. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect (OSTI)

    Hadley, SW

    2004-10-11T23:59:59.000Z

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

  14. Low-Cost Flexible Electrochromic Film for Energy Efficient Buildings

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: ITN is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN’s roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods. Evaluating deposition processes from a control standpoint ultimately strengthens the ability for ITN to handle unanticipated deviations quickly and efficiently, enabling more consistent large-volume production. The team is currently moving from small-scale prototypes into pilot-scale production to validate roll-to-roll manufacturability and produce scaled prototypes that can be proven in simulated operating conditions. Electrochromic plastic films could also open new markets in building retrofit applications, vastly expanding the potential energy savings.

  15. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01T23:59:59.000Z

    Energy Information System (EIS): Software, data acquisitionenergy information systems (EIS) commonly include intervallevel, and in the case of EIS may also contain system-level

  16. Building Energy Efficiency Policies (BEEP) Database | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridgerBuckeye Power,energy

  17. Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

  18. Building Up Home Energy-Efficiency | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisition » BalancedBestBudgetAboutUp

  19. Building Energy Efficiency Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtual

  20. Energy Efficiency Standards for State Buildings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2,and/or local financial incentivesState Government

  1. Energy-Efficient Commercial Buildings Tax Deduction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2,and/orDepartment(DayENERGYEnergy Projects |LED

  2. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M [ORNL] [ORNL; Kuruganti, Phani Teja [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  3. Low-Energy Building Design Guidelines: Energy-Efficient Design for New Federal Facilities

    SciTech Connect (OSTI)

    Zachman, W.; Carlisle, N.

    2001-07-19T23:59:59.000Z

    This guidebook has been prepared primarily for Federal energy managers to provide practical information for applying the principles of low-energy, whole-building design in new Federal buildings. An important objective of this guidebook is to teach energy managers how to be advocates for renewable energy and energy-efficient technologies, and how to apply specific strategies during each phase of a given project's time line. These key action items are broken out by phase and appear in abbreviated form in this guidebook.

  4. NREL Buildings and Energy Efficiency Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames Global EmissionsNIFE

  5. NREL Buildings and Energy Efficiency Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames Global EmissionsNIFE

  6. ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM STAR Certified Homes,

  7. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    SciTech Connect (OSTI)

    Finch, P.; Potes, A.

    2010-06-01T23:59:59.000Z

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  8. The New House of the Region of Hannover - Building Energy Efficient in a Public Private Partnership

    E-Print Network [OSTI]

    Schubert, T.; Plesser, S.

    2008-01-01T23:59:59.000Z

    / 3 91 - 35 84 plesser@igs.bau.tu-bs.de The New House of the Region of Hannover - Building energy Efficient in a Public Private Partnership Topic: Examples of advanced/demonstration buildings Key words: Demonstration building, PPP..., public private partnership, commissioning, energy efficiency, user comfort Public Private Partnerships are an increasingly popular approach to carry out public infra-structure projects. PPPs aim at reducing costs and risk and improving service...

  9. Energy Department Announces Building Energy Efficiency Investments in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'Kane Tauscher -The

  10. Southeast Energy Efficiency Alliance's Building Energy Codes Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite ScreeningSound OilDepartment ofof

  11. Building Energy Efficiency Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and technologyA Science DMZ Eli

  12. The potential and challenges of monitoring-supported energy efficiency improvement strategies in existing buildings 

    E-Print Network [OSTI]

    Schub, M.; Mahdavi, A.; Simonis, H.; Menzel, K.; Browne, D.

    2012-01-01T23:59:59.000Z

    The ongoing EU-supported CAMPUS 21 explores the energy efficiency potential of integrated security, control, and building management software. The main objective of the project is to compare the energy and indoor-environmental performance...

  13. Webinar: Impacts of Energy Efficiency on the Financial Performance of Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Department of Energy conducted a review of existing market research on the impact of Energy Efficiency and Green Labels on building financial performance. This webinar will review the results...

  14. Retail Building Guide for Entrance Energy Efficiency Measures

    SciTech Connect (OSTI)

    Stein, J.; Kung, F.

    2012-03-01T23:59:59.000Z

    This booklet is based on the findings of an infiltration analysis for supermarkets and large retail buildings without refrigerated cases. It enables retail building managers and engineers to calculate the energy savings potential for vestibule additions for supermarkets; and bay door operation changes in large retail stores without refrigerated cases. Retail managers can use initial estimates to decide whether to engage vendors or contractors of vestibules for pricing or site-specific analyses, or to decide whether to test bay door operation changes in pilot stores, respectively.

  15. Apply: Funding Opportunity- Advancing Solutions to Improve Energy Efficiency of Commercial Buildings

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 20, 2015 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million for Funding Opportunity Announcement (FOA) DE-FOA-0001168, “Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings

  16. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    good benchmark energy consumption data for buildings, and (total energy consumption Although the measured data arelimited data available for building energy consumption in

  17. Proposed Training Plan to Improve Building Energy Efficiency in Vietnam

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd

    2013-01-01T23:59:59.000Z

    Vietnam has experienced fast growth in energy consumption in the past decade, with annual growth rate of over 12 percent. This is accompanied by the fast increase in commercial energy use, driven by rapid industrialization, expansion of motorized transport, and increasing energy use in residential and commercial buildings. Meanwhile, Vietnam is experiencing rapid urbanization at a rate of 3.4 percent per year; and the majority of the growth centered in and near major cities such as Hanoi and Ho Chi Minh City. This has resulted in a construction boom in Vietnam.

  18. Building a More Efficient Industrial Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of EnergyRoland RisserDepartmentBuilding

  19. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    SciTech Connect (OSTI)

    Engel, R. A.' Zoellick, J J.

    2007-07-31T23:59:59.000Z

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  20. Best Practices: Policies for Building Efficiency and Emerging Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about appliance standards, building energy codes, ENERGY STAR program and tax incentives for building efficiency.

  1. Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas

    E-Print Network [OSTI]

    Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

    2006-01-01T23:59:59.000Z

    , and provides the technical and economic analysis, which may provide reference of the suitable plans for the energy efficient reconstruction of buildings in cold area. 2. ANALYSIS ON HEATING ENERGY CONSUMPTION 2.1 Building Situation Based... on the existing residential building in Beijing, the paper discusses the reconstruction plan of energy saving. The outside air temperature for heating in Beijing is -9 , and the outside mean temperature is -1.6 during the heating period of 125 days...

  2. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    2006). Re: 2008 Building Energy Efficiency Standards -2010). 2008 Building Energy Efficiency Standards2010). 2008 Building Energy Efficiency Standards Residential

  3. Business Case for Energy Efficient Building Retrofit and Renovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRIDLight W ater R

  4. Control, Estimation and Optimization of Energy Efficient Buildings Jeff Borggaard , John A. Burns , Amit Surana , Lizette Zietsman

    E-Print Network [OSTI]

    Burns, John A.

    Control, Estimation and Optimization of Energy Efficient Buildings Jeff Borggaard , John A. Burns-- Commercial buildings are responsible for a sig- nificant fraction of the energy consumption and greenhouse efficient buildings can have a tremendous impact on energy cost and greenhouse gas emission. Buildings

  5. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  6. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    SciTech Connect (OSTI)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12T23:59:59.000Z

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  7. DOE/ NREL Build One of the World's Most Energy Efficient Office Spaces

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Technology ? from sophisticated computer modeling to advanced windows that actually open ? will help the newest building at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) be one of the world's most energy efficient offices. Scheduled to open this summer, the 222,000 square-foot RSF will house more than 800 staff and an energy efficient information technology data center. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  8. Energy Efficiency Opportunities in Highway Lodging Buildings: Development of 50% Energy Savings Design Technology Packages

    SciTech Connect (OSTI)

    Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.; Liu, Bing

    2010-06-30T23:59:59.000Z

    This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50% saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.

  9. Norwegian National Program for Lifetime Commissioning and Energy Efficient Operation of Buildings

    E-Print Network [OSTI]

    Novakovic, V.; Djuric, N.; Holst, J.; Frydenlund, F.

    2006-01-01T23:59:59.000Z

    The project “Life-Time Commissioning for Energy Efficient Operation of Buildings” is actually a network of industrial companies, private and public entities, and R&D organizations. The overall objective of the project is to contribute...

  10. Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency 

    E-Print Network [OSTI]

    Zhu, H.

    2006-01-01T23:59:59.000Z

    The application of the variable refrigerant volume multi-zone air conditioning systems has met with mixed results since the publication of the Design Standard for Energy Efficiency of Public Buildings. This paper analyzes the characteristics...

  11. Norwegian National Program for Lifetime Commissioning and Energy Efficient Operation of Buildings 

    E-Print Network [OSTI]

    Novakovic, V.; Djuric, N.; Holst, J.; Frydenlund, F.

    2006-01-01T23:59:59.000Z

    The project “Life-Time Commissioning for Energy Efficient Operation of Buildings” is actually a network of industrial companies, private and public entities, and R&D organizations. The overall objective of the project is to contribute...

  12. Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT)- 2015 Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 12, 2015 This Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) 2015 FOA contributes to advancement in two core technological areas: non-vapor compression HVAC technologies and advanced vapor compression HVAC technologies.

  13. Building Energy Efficiency Standards Approved Default Cool Roof Performance Values for

    E-Print Network [OSTI]

    Building Energy Efficiency Standards Approved Default Cool Roof Performance Values for Low-Sloped Roofs That Use Aggregate As the Surface Layer Aggregate used as the surface layer of low-sloped roofs shall have the default cool roof properties

  14. Building an Efficient Model for Afterburn Energy Release

    SciTech Connect (OSTI)

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03T23:59:59.000Z

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  15. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    retrofitted, and new "energy efficient design" hospitals.incorporating energy efficient designs. The EEB mobilecurrently available, energy efficient design practices and

  16. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01T23:59:59.000Z

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  17. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect (OSTI)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08T23:59:59.000Z

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  18. 2008 ACEEE Summer Study on Energy Efficiency in Buildings August 1722, 2008 Asilomar Conference Center Pacific Grove, California

    E-Print Network [OSTI]

    Kissock, Kelly

    2008 ACEEE Summer Study on Energy Efficiency in Buildings August 17­22, 2008 · Asilomar Conference Center · Pacific Grove, California 1 Targeting Energy Efficiency in Commercial Buildings Using Advanced-parameter change-point regression model of energy use versus weather for each building and type of energy

  19. Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency

    E-Print Network [OSTI]

    Zhu, H.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-3 Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency Huawei Zhu Zhejiang Urban and Rural Planning Design Institute... conditioning system has led to extensive criticism. 2. THE CHARACTERISTICS OF THE VARIABLE REFRIGERANT VOLUME AIR CONDITIONING SYSTEM AND ITS PRESENT APPLICATION ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-3 2...

  20. Better Buildings Challenge Webinar: PACE Financing for Energy Efficiency Success Stories

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy's (DOE's) Better Buildings Challenge, this webinar will cover Property Assessed Clean Energy (PACE) financing and how its a vehicle to pay for energy efficiency improvements or renewable energy installations on private property.

  1. Washington State Department of Transportation energy efficiency guidelines for small buildings

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This document provides energy efficiency guidelines for the construction and remodel of small buildings owned by the Washington State Department of Transportation (DOT). For the purpose of these guidelines {open_quotes}small buildings{close_quotes} are defined as those under 25,000 square feet. However, many of the guidelines can also be used for larger buildings. DOT is responsible for 641 buildings totaling 2.2 million square feet and consuming approximately $1,087,500 dollars in energy costs each year. Building types covered by these guidelines are small offices, shop buildings, and heated and unheated storage. These building types can be expected to vary greatly in both the distribution and magnitude of energy use.

  2. Revised: March 6, 2013 2013 Residential Building Energy Efficiency Standards Measures Summary

    E-Print Network [OSTI]

    1 Revised: March 6, 2013 2013 Residential Building Energy Efficiency Standards Measures; allows Smart Vents and Night Breeze as alternatives in CZs 814. (Section 150.1(c)12) 4. Adding for all residential buildings including kitchens, bathrooms, dining rooms, utility rooms, garages, hall

  3. A Tale of Two Buildings: Achieving Energy Efficiency

    E-Print Network [OSTI]

    Rouse, S.

    2011-01-01T23:59:59.000Z

    This presentation will discuss a 30% reduction in Natural Use that was achieved by benchmarking two very similar buildings within a commercial property management portfolio. The Existing Building Commissioning (EB Cx) 4 Phase approach was used...

  4. DOE Announces Webinars on Energy Efficiency Competitions, Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy -State Efficiency,ofofofRFIResearch Tools,

  5. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2014-01-01T23:59:59.000Z

    Passive Solar Building Performance: A Theoretical Ap2roach to the DesignPassive Solar Analysis and Design group. ENERGY PERFORMANCE BUILDINGS*

  6. Making It Happen: Achieving Energy Efficiency in Multi-Family Buildings Housing Low-Income Tenants

    E-Print Network [OSTI]

    Haun, C. R.

    1985-01-01T23:59:59.000Z

    convert single-family, commercial, industrial, and public buildings into energy efficient structures have not been readily transferable to multi-family buildings. Consequently, with few exceptions, the knot has remained a complex tangle of variables...-family residences owned by low-income people, they undoubtedly would object to wide- spread public investment in commercial, income- producing properties. The excepi~ion to this generalization is the national Solar Energy and Energy Conservation Bank...

  7. Towards Energy Efficient Building Assets: A Review on Sub-Tropical Climate 

    E-Print Network [OSTI]

    Chowdhury, A. A.; Rasul, M. G.; Khan, M. M. K.

    2006-01-01T23:59:59.000Z

    ., Clark R. J., Building energy efficiency in different climates. Specific Eng, October, 1992 Halliday S., Beggs C. B., Sleigh P.A., The use of solar desiccant cooling in the UK: A fesibility study, Applied Thermal Engineering, 22, 1327- 1338, 2002...Fifteenth Symposium on Improving Building Systems in Hot and Humid Climate July 24-26, 2006 The Buena Vista Palace Hotel, Orlando, Florida TOWARDS ENERGY EFFICIENT BUILDING ASSETS: A REVIEW ON SUB-TROPICAL CLIMATE A.A. CHOWDHURY M.G. RASUL M...

  8. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    in Operation. Energy and Buildings. 43(11): 3106-3111.and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program. Key

  9. PAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs

    E-Print Network [OSTI]

    Flinn, Jason

    , it adapts the network struc- ture to minimize energy usage. Our results show that PAN-on- Demand reducesPAN-on-Demand: Leveraging multiple radios to build self-organizing, energy-efficient PANs Manish- area network (PAN) that balances performance and energy con- cerns by scaling the structure

  10. Top: Rudder Tower is one of 24 Texas A&M buildings undergoing energy efficiency upgrades.

    E-Print Network [OSTI]

    Top: Rudder Tower is one of 24 Texas A&M buildings undergoing energy efficiency upgrades. Bottom: From the left: Jeff Murray, Siemens; Jim Riley, Director Utilities & Energy Management, Texas A&M; Jacob Richardson, Siemens; Les Williams, Associate Director Utilities & Energy Management, Texas A

  11. Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes

    E-Print Network [OSTI]

    Benenson, P.

    2011-01-01T23:59:59.000Z

    LITIGATION AGAINST ENERGY CONSERVATION BUILDING CODES I TWO-OF LITIGATION AGAINST ENERGY CONSERVATION BUILDING CODESDIFFERENT PURPOSES OF ENERGY CONSERVATION BUILDING CODES B.

  12. Inventory of U.S.-led International Activities on Building Energy Efficiency Initial Findings

    SciTech Connect (OSTI)

    Delgado, Alison; Evans, Meredydd

    2010-04-01T23:59:59.000Z

    Several U.S. Government agencies promote energy efficiency in buildings internationally. The types and scope of activities vary by agency. Those with the largest role include the U.S. Agency for International Development (USAID), the U.S. Department of State and the Environmental Protection Agency (EPA). Both USAID and the Department of State have a substantial presence overseas, which may present some complementarities with the Department of Energy’s efforts to reach out to other countries. Generally speaking, USAID focuses on capacity building and policy issues; the Department of State focuses on broad diplomatic efforts and some targeted grants in support of these efforts, and EPA has more targeted roles linked to ENERGY STAR appliances and a few other activities. Several additional agencies are also involved in trade-related efforts to promote energy efficiency in buildings. These include the Department of Commerce, the Export-Import Bank, the Overseas Private Investment Corporation and the Trade and Development Agency (TDA). This initial synthesis report is designed to summarize broad trends and activities relating to international cooperation on energy efficiency in buildings, which can help the U.S. Department of Energy (DOE) in developing its own strategy in this area. The Pacific Northwest National Laboratory will develop a more complete synthesis report later in 2010 as it populates a database on international projects on building energy efficiency.

  13. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

  14. Technology Prioritization: Transforming the U.S. Building Stock to Embrace Energy Efficiency

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Farese, Philip [Advantix Systems] [Advantix Systems; Abramson, Alexis [U.S. Department of Energy, Building Technologies Program] [U.S. Department of Energy, Building Technologies Program; Phelan, Patrick [U.S. Department of Energy, Building Technologies Program] [U.S. Department of Energy, Building Technologies Program

    2013-01-01T23:59:59.000Z

    The U.S. Buildings sector is responsible for about 40% of the national energy expenditures. This is due in part to wasteful use of resources and limited considerations made for energy efficiency during the design and retrofit phases. Recent studies have indicated the potential for up to 30-50% energy savings in the U.S. buildings sector using currently available technologies. This paper discusses efforts to accelerate the transformation in the U.S. building energy efficiency sector using a new technology prioritization framework. The underlying analysis examines building energy use micro segments using the Energy Information Administration Annual Energy Outlook and other publically available information. The tool includes a stock-and-flow model to track stock vintage and efficiency levels with time. The tool can be used to investigate energy efficiency measures under a variety of scenarios and has a built-in energy accounting framework to prevent double counting of energy savings within any given portfolio. This tool is developed to inform decision making and estimate long term potential energy savings for different market adoption scenarios.

  15. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    metering - Energy monitoring and management systems targetedconstruction - Energy monitoring and management systems forEnergy monitoring, assessment, and management systems -

  16. Energy Efficiency Services Sector: Workforce Education and Training Needs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2010-01-01T23:59:59.000Z

    courses including Building Energy Efficiency and Energyprovide specified building energy efficiency services. AEEexperts. Building Performance and Energy Efficiency is an

  17. A systematic approach to energy efficiency retrofit solutions for exsisting office buildings

    E-Print Network [OSTI]

    Shao,Y.

    2014-01-01T23:59:59.000Z

    EV 2009 DIN V 18599 Potential improvements ESL-IC-14-09-33 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 Institute of Energy Efficient and Sustainable Design and Building Prof. Dr....-Ing. Werner Lang Optimization NSGA-II Design variables Objectives & constraints Requirement Analysis QFD Design Database Energy performance DIN V 18599 Excel & VBA Calculator: economic criteria, environmental loading, resource use, etc. Multi...

  18. Recommendations for 15% Above-Code Energy-Efficiency Measures for Commercial Office Buildings

    E-Print Network [OSTI]

    Mukhopadhyay, J.; Haberl, J. S.; Yazdani, B.; Culp, C.; Cho, S.

    Introduction Base-Case Building Energy Efficiency Measures Results Conclusion OUTLINE INTRODUCTION BA SECA S E EEM’S RESULTS CONC L U S I O N 3 Energy Systems Laboratory © 2007 INTRODUCTION THE 79 TH LEGISLATURE TO ENHANCE EFFECTIVENESS OF SENATE BILL 5... INTRODUCTION BA SECA S E EEM’S RESULTS CONC L U S I O N 4 Energy Systems Laboratory © 2007 BASE-CASE As per ASHRAE 90.1-1999 Building Envelope #0;? 6-story office building (89,304 ft 2 ) in Houston, TX #0;? Roof R-value: R-15 #0;? Wall R-value: R-13...

  19. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01T23:59:59.000Z

    uses. Note that residential heat pump heating (Figure A-4)A-4: Residential Heating, Electric Heat Pump EfficiencyResidential Thermal Shell (Heating) Efficiency Index Trends Figure A-8: Commercial Electric Heat Pump

  20. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01T23:59:59.000Z

    the technologies such as heat pump water heaters are stillheat pump water heater, horizontal axis clothes washer Best-heat pump efficiency Improved efficiency central and room air conditioners, variable speed RAC Reduced standby-loss electric resistance water heater,

  1. EA-1872: Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Broader source: Energy.gov [DOE]

    This EA evaluated the environmental impacts of a proposal to amend the current rule for commercial and high-rise multi-family residential buildings, 10 CFR 433 “Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings,” to replace ASHRAE Standard 90.1-2004 with the more stringent ASHRAE Standard 90.1-2007, incorporated by reference. This EA also evaluated the environmental impacts with regard to low-rise residential buildings; this rulemaking updated 10 CFR 435 Subpart A, “Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings,” to replace the International Energy Conservation Code (IECC) 2004 with the more stringent IECC 2009, incorporated by reference. This EA was completed as DOE/EA-1871.

  2. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01T23:59:59.000Z

    Washington, DC: Energy Information Administration, U.S.Washington, DC: Energy Information Administration, U.S.Washington, DC: Energy Information Administration, U.S.

  3. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Develop and promote awareness of energy monitoring andand/or promote market awareness of energy monitoring andIncrease market awareness and utilization of existing energy

  4. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    IECC International Energy Conservation Code IEE IntelligentThe International Energy Conservation Code (IECC) and2009 International Energy Conservation Code for residential

  5. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Summary of energy & sustainability codes. • Analysis ofCoordinate energy and sustainability codes, standards andconsolidation of energy and sustainability codes, standards

  6. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    Doing Good? Green Office Buildings. American Economic ReviewEnergy Effriciency in Commercial Buildings in Operation.Energy and Buildings. 43(11): 3106-3111. Ezovski, Derek.

  7. Energy Efficiency Solution for the Chet Holifield Federal Building

    SciTech Connect (OSTI)

    Not Available

    2000-07-01T23:59:59.000Z

    Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals.

  8. Database Aids Building Owners and Operators in Energy-Efficiency...

    Energy Savers [EERE]

    to identify the best efficiency investment opportunities and limits the ability of public-sector actors to design and implement programs that are tailored to local market...

  9. Better Buildings, Better Plants: Volvo Boosting Energy Efficiency...

    Office of Environmental Management (EM)

    adding more daylighting, moving to high efficiency fans and LED lighting in the assembly area, and installing a passive solar wall to supplement heating. Volvo Group demonstrates...

  10. Energy Department, Volvo Partnership Builds More Efficient Trucks...

    Office of Environmental Management (EM)

    developing and improving vehicle technologies in engine efficiency, aerodynamics, waste heat recovery, and hybridization, among other approaches. Through the SuperTruck program,...

  11. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    the ways that sustainability and energy efficiency areto incorporating sustainability and energy efficiency, andprovide broader sustainability or energy efficiency services

  12. Commissioning of energy-efficiency measures: Costs and benefits for 16 buildings

    SciTech Connect (OSTI)

    Piette, M.A.; Nordman, B.; Greenberg, S.

    1995-04-01T23:59:59.000Z

    Building systems and energy-efficiency measures (EEMs) often don`t perform as well in practice as expected at the design stage. This fact has become clear to many organizations concerned with ensuring building performance. What to do about these problems is less clear. Several electric utilities around the U.S. have begun to take action to address the start-up, control, and operational problems that are found in nearly every building. One of the most beneficial periods to intervene in the building life cycle is during the start-up phase of a now building. Building commissioning during start up is such an intervention. Commissioning can be defined as: a set of procedures, responsibilities, and methods to advance a system from static installation to full working order in accordance with design intent. In broad terms, commissioning can extend from design reviews through operations and maintenance planning and training. With such a broad scope aimed at the entire building life cycle, commissioning is often likened to {open_quotes}Total Quality Management{close_quotes} Yet the heart of commissioning are the procedures developed and executed to ensure that all building systems function as intended. The incorporation of energy-efficiency criteria into building commissioning is a new development.

  13. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-01-01T23:59:59.000Z

    Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

  14. A Total Quality Management (TQM) Approach for Energy Savings Through Employee Awareness and Building Upgrades to Improve Energy Efficiency

    E-Print Network [OSTI]

    Stewart, D. H.

    . The partnership between the employees and management is critical for an energy-efficient program to succeed. The informed team of"Energy Partners" can track energy use and develop programs which will reduce energy waste, improve the environment and improve...A TOTAL QUALIn' MANAGEMENT (TQM) APPROACH FOR ENERGY SAVINGS THROUGH EMPLOYEE AWARENESS AND BUILDING UPGRADES TO IMPROVE ENERGY EFFICIENCY Daniel H. Stewart, Principal Engineer, Facilities Department, Rh6oe-Poulenc. Inc., Cranbury, NJ...

  15. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    We see that the low energy buildings need not cost more thanincludes both very low energy buildings, and buildings thatrange shows the low-energy buildings at the left end, and

  16. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    We see that the low energy buildings need not cost more thanincludes both very low energy buildings, and buildings thatThe range shows the low-energy buildings at the left end,

  17. Recommendations for 15% Above-Code Energy Efficiency Measures for Commercial Office Building

    E-Print Network [OSTI]

    Cho, S.; Mukhopadhyay, J.; Culp, C.; Haberl, J.; Yazdani, B.

    1 RECOMMENDATIONS FOR 15% ABOVE-CODE ENERGY EFFICIENCY MEASURES FOR COMMERCIAL OFFICE BUILDINGS Soolyeon Cho Graduate Research Assistant Jaya Mukhopadhyay Research Associate Charles Culp, Ph.D., P.E. Associate Director Jeff Haberl, Ph... CL US IO N Energy Systems Laboratory @2007 BASE-CASE As per ASHRAE 90.1-1999 Building Envelope square4 6-story office building (89,304 ft2) in Houston, TX square4 Roof R-value: R-15 square4 Wall R-value: R-13 Fenestration square4 50...

  18. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01T23:59:59.000Z

    US DOE. 1998. Annual Energy Outlook 1999, with ProjectionsUS DOE. 2007b. Annual Energy Outlook 2007, with ProjectionsAdministration’s Annual Energy Outlook (AEO) 2007 Reference

  19. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY-EFFICIENT RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Berk, J.V.

    2011-01-01T23:59:59.000Z

    Modem RESIDENTIAL ENERGY CONSUMPTION DATA (1976) TOTAL 18.95HEATING COMMERCIAL ENERGY CONSUMPTION DATA (1976) TOTAL 10.3data on various active and pas- sive methods of reducing energy consumption

  20. Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WASHINGTON - As part of the Obama Administration's efforts to double energy productivity by 2030, the Energy Department today recognized the city of Milwaukee, Wis., for...

  1. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building better understanding of product performance by the entire construction materials industry. INNOVATIONSFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  2. Smart Sensing, Estimation, and Prediction for Efficient Building Energy Management

    E-Print Network [OSTI]

    Chang, Yu-Han

    is accounted for in heating, ventilation, and air conditioning (HVAC) systems. Smart sensing and adaptive efficiency by continuously adapting to occupancy forecasts of each room. 1 Introduction Heating, ventilation

  3. ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT (EECBG) - BETTER BUILDINGS NEIGHBORHOOD PROGRAM AT GREATER CINCINNATI ENERGY ALLIANCE Project Title: Home Performance with Energy Star® and Better Buildings Performance

    SciTech Connect (OSTI)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30T23:59:59.000Z

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training Center, a program that was developed and funded by the Energy Alliance and housed at Cincinnati State Technical and Community College. Nearly 100 residential and commercial contractors currently participate in the Energy Alliance’s two major programs, which have together served over 2,800 residential and 100 commercial customers. Additionally, the Energy Alliance established loan programs for homeowners, nonprofits and commercial businesses. The GC-HELP program was established to provide up to ten year low interest, unsecured loans to homeowners to cover the energy efficiency products they purchased through the Energy Alliance approved contractor base. To date the Energy Alliance has financed over $1 million in energy efficiency loans for homeowners, without any loans written off. The nonprofit business community is offered five year, fixed-interest rate loans through the Building Communities Loan Fund of $250,000. Additionally, the Energy Alliance has developed GC-PACE, a commercial financing tool that enables buildings owners to finance their energy upgrades through voluntary property assessments deploying low-interest extended-term capital from the bond market. The Energy Alliance and its partners are actively evaluating additional market-based financing solutions.

  4. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building materials industry. INNOVATIONS IN BUILDINGS Contact ORNL 2012-G00695/tcc Ensuring Affordable, EfficientFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  5. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    SciTech Connect (OSTI)

    Belzer, David B.

    2009-04-03T23:59:59.000Z

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  6. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01T23:59:59.000Z

    School, Columbus, Ohio Energy Efficient House, CarrollOhio, and Washington, in Kennewick, Washington) microprocessor-based energy

  7. International Comparison of Energy Labeling and Standards for Energy Efficient and Green Buildings 

    E-Print Network [OSTI]

    Hennicke, P.; Shrestha, S.; Schleicher, T.

    2011-01-01T23:59:59.000Z

    This paper discusses the approaches of the European Union, Germany and India to reduce GHG- emissions and mitigate climate change impacts from buildings through the establishment of energy performance standards and green building...

  8. Interoperability of Computer Aided Design and Energy Performance Simulation to Improve Building Energy Efficiency and Performance 

    E-Print Network [OSTI]

    Chaisuparasmikul, P.

    2006-01-01T23:59:59.000Z

    The paper describes very significant novel interoperability and data modeling technology for existing building that maps a building information parametric model with an energy simulation model, establishing a seamless link between Computer Aided...

  9. International Comparison of Energy Labeling and Standards for Energy Efficient and Green Buildings

    E-Print Network [OSTI]

    Hennicke, P.; Shrestha, S.; Schleicher, T.

    2011-01-01T23:59:59.000Z

    This paper discusses the approaches of the European Union, Germany and India to reduce GHG- emissions and mitigate climate change impacts from buildings through the establishment of energy performance standards and green building...

  10. Costs and benefits from utility-funded commissioning of energy- efficiency measures in 16 buildings

    SciTech Connect (OSTI)

    Piette, M.A.; Nordman, B.

    1995-10-01T23:59:59.000Z

    This paper describes the costs and savings of commissioning of energy- efficiency measures in 16 buildings. A total of 46 EEMs were commissioned for all 16 buildings and 73 deficiencies were corrected. On average, commissioning was marginally cost effective on energy savings alone, although the results were mixed among all 16 buildings. When considered as a stand-alone measure, the median simple payback time of 6.5 years under the low energy prices in the Pacific Northwest. Under national average prices the median payback time is about three years. In estimating the present value of the energy savings from commissioning we considered low and high lifetimes for the persistence of savings from deficiency corrections. Under the low- lifetime case the average present value of the energy savings ($0. 21/ft{sup 2}) were about equal to the average commissioning costs ($0. 23/ft{sup 2}). Under the high-lifetime case the savings ($0.51/ft{sup 2}) were about twice the costs. Again, the savings would be about twice as large under national average prices. The results are subject to significant uncertainty because of the small sample size and lack of metered data in the evaluation. However, the findings suggest that investments in commissioning pay off. Building owners want buildings that work as intended, and are comfortable, healthy, and efficient. It is likely that the non-energy benefits, which are difficult to quantify, are larger than the energy-savings benefits.

  11. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    increased use of air conditioning. Given current energy useRefrigerating and Air-Conditioning Engineers BCAP Buildingventilation, and air-conditioning IBR Shenzhen Institute of

  12. Better Buildings Challenge is Expanding, Improving Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015Energyon23264Compare energy use by theTrack

  13. Business Case for Energy Efficient Building Retrofit and Renovation |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState andGreenhouse Gases |Energy

  14. Better Buildings Financing Energy Efficiency Retrofits in the Commercial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for Consumers anymoreEnergy DataSector --

  15. Apply: Building Energy Efficiency Frontiers and Incubator Technologies

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americasfor aApplication foror(BENEFIT)

  16. The Challenge: Improving the Energy Efficiency of Buildings Across the

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 Power PlantAPRIL

  17. Better Buildings Challenge is Expanding, Improving Energy Efficiency

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRAM-04-07 Audit Report:Field Experiment | DepartmentBestBBSC

  18. Mainstreaming Building Energy Efficiency Codes in Developing Countries:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie EnergyMahindra REVAMainsail

  19. Building Energy-Efficient Schools in New Orleans: Lessons Learned |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeetingHomeowner'sTucson,NetEnergyEnergy DataDepartment

  20. Worldwide Energy Efficiency Action through Capacity Building and Training

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin Polysilicon Co LtdWorldWind Energy(WEACT)

  1. Business Case for Energy Efficient Building Retrofit and Renovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (HUD): www.hud.gov HUD, Office of Environment and Energy * : www.hud.govofficescpd libraryenergyindex.cfm U.S. Department of Commerce * : www.commerce.gov U.S. Census...

  2. 'Extreme Makeover: Home Edition' Builds Efficiently | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage#AskEnergySaver: LEDEDTSaving

  3. Energy Efficiency Evaluation and Planning for Existing Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen andResiliency |EfficiencyDepartment ofEducation:

  4. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Giguère, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01T23:59:59.000Z

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  5. Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System

    E-Print Network [OSTI]

    or stagnant winds to propel wind turbines). Dur- ing an episode, the power grid operators must contend of an 8-12 hour demand period. The primary power demand is often air conditioning. Efforts to balance1 Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System Mary

  6. Building America Residential Energy Efficiency Research Planning Meeting:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372 RoomforinDepartment of| Department

  7. Building America Residential Energy Efficiency Stakeholders Meeting: March

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372 RoomforinDepartment of| Department2011 |

  8. Building America Residential Energy Efficiency Technical Update Meeting:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372 RoomforinDepartment of| Department2011

  9. Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114, 2013 Better1,9,,2,

  10. Building America Residential Energy Efficiency Research Planning Meeting:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctober 2011 | Department of

  11. Energy Department Invests $14 Million in Innovative Building Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNF &Department of EnergyTechnologies | Department

  12. Rule to Support Increased Energy Measurement and Efficient Building Design

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -DepartmentRetailEnergy Role of Modeling| Department of

  13. Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 AcquisitionO

  14. Driving Transformation to Energy Efficient Buildings:Policies and Actions |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin Semichem CoDow CorningDrive5

  15. Report: President's Energy Efficiency Contracting for Federal Buildings a

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | DepartmentTheDepartment of

  16. NREL/OAS-Regional Building Efficiency Workshop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames GlobalViewLCI(RedirectedSector

  17. NREL: Energy Efficiency Potential Mapping (Analysis & Tools for Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash,Energy NREL Job TaskWelcome Remarks

  18. Energy Efficiency Pilot Projects in Jaipur: Testing the Energy Conservation Building Code

    SciTech Connect (OSTI)

    Evans, Meredydd; Mathur, Jyotirmay; Yu, Sha

    2014-03-26T23:59:59.000Z

    The Malaviya National Institute of Technology (MNIT) in Jaipur, India is constructing two new buildings on its campus that allow it to test implementation of the Energy Conservation Building Code (ECBC), which Rajasthan made mandatory in 2011. PNNL has been working with MNIT to document progress on ECBC implementation in these buildings.

  19. The Denver Federal Courthouse: Energy-efficiency in a new Federal building

    SciTech Connect (OSTI)

    Jacobs, P.C.; Holtz, M.J.; Digert, N.; Starkweather, S.; Porter, F.; Clevenger, C.

    1999-07-01T23:59:59.000Z

    The US Federal Courthouse Expansion in Denver, Colorado is twelve story, 16,112 m{sup 2} project to be constructed adjacent to several existing Courthouse and Federal buildings in downtown Denver. The project has been designated a sustainable design showcase by the General Services Administration, and additional funds were made available to the project for sustainable design features. The design achieves a high level of energy efficiency through a combination of strategies that seek first to reduce building lighting and HVAC loads as low as possible, and then satisfy the remaining, loads through a combination of state-of-the-art, high-efficiency mechanical, electrical, and renewable energy systems. The unique attributes of the Denver climate--sunny skies and low humidity, are utilized throughout the design to minimize energy consumption. The resulting building provides a visible expression of sustainability through the incorporation of a set of features that are designed to work together in an integrated energy-efficient building system. Careful life-cycle assessment of materials and building practices results in minimized use of natural resources as well as a healthier environment for the occupants. The use of local materials is emphasized and the building is designed to have a 100-year life. Issues addressed in material selection include sustainability, recyclability, toxicity, and maintenance. The criteria used to establish the success of the design are contained in the Leadership in Energy and Environmental Design (LEED) rating system. Although the building is currently entering final design, a LEED gold rating is expected.

  20. Better Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWind SitingVerificationCombined

  1. Tax Incentives for Energy Efficiency Upgrades in Commercial Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind » Tax

  2. Energy Efficiency Upgrades Help Build Better Neighborhoods | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen andResiliencyDepartment ofTrends inEnergy

  3. Energy Department, Volvo Partnership Builds More Efficient Trucks and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen| Department ofBatteries andProjectManufacturing

  4. Energy Efficiency Trends in Residential and Commercial Buildings - August

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy Act of 2005andPolicies2010 | Department

  5. Obama Administration Launches $130 Million Building Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil Research | Department ofwith Presidential

  6. Light Inspires Energy Efficient Building Design - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in aLight

  7. The Challenge: Improving the Energy Efficiency of Buildings Across the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest(EAP)SummerTheGenerators =Nation |

  8. Southeast Enertgy Efficiency Alliance's Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideos Solid-State LightingSouth Carolina

  9. ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT (EECBG) - BETTER BUILDINGS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering HowAnaDynamicGulf

  10. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavidDepartmentRatingEnergy-

  11. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01T23:59:59.000Z

    achieve goals of zero energy buildings in 2020 fornet zero energy goals for new residential buildings in 2020

  12. Funding Opportunity Announcement State Energy Program (SEP) Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) National Energy Technology Laboratory (NETL), on behalf of the Office of Energy Efficiency and Renewable Energys (EEREs) State Energy Program (SEP), is seeking applications to advance policies, programs, and market strategies that accelerate job creation and reduce energy bills while achieving energy and climate security for the nation.

  13. Energy efficient data centers

    E-Print Network [OSTI]

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-01-01T23:59:59.000Z

    Varone. 2002a. Energy- and Eco-Efficiency of Data Centres. ANew Buildings S Energy- and Eco-Efficiency of Data Centres:FC Source: Energy- and Eco-Efficiency of Data Centres: A

  14. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect (OSTI)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01T23:59:59.000Z

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  15. Energy Savings with Energy-Efficient HVAC Systems in Commercial Buildings of Hong Kong 

    E-Print Network [OSTI]

    Yang, J.; Chan, K.; Wu, X.

    2006-01-01T23:59:59.000Z

    Hong Kong has seen a dramatic increase in energy consumption in recent years, particularly electricity use in commercial buildings. The growth of electricity demand in future years is crucial both economically and environmentally. As over half...

  16. Energy Savings with Energy-Efficient HVAC Systems in Commercial Buildings of Hong Kong

    E-Print Network [OSTI]

    Yang, J.; Chan, K.; Wu, X.

    2006-01-01T23:59:59.000Z

    Hong Kong has seen a dramatic increase in energy consumption in recent years, particularly electricity use in commercial buildings. The growth of electricity demand in future years is crucial both economically and environmentally. As over half...

  17. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01T23:59:59.000Z

    Consumption in Buildings and Energy Efficiency Projectsnon-residential buildings: Energy Efficiency of ElectricalBetter" National Building Agency "Energy Efficiency in New

  18. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    Mainstreaming Building Energy Efficiency Codes in Developing2010. Transforming the Building Energy Efficiency Market inin crafting new building energy efficiency policies and

  19. Energy Efficiency and Conservation Block Grant (EECBG)- Better Buildings Neighborhood Program Final Report

    SciTech Connect (OSTI)

    Brown, Donisha; Harris, Barbara; Blue, Cynthia; Gaskins, Charla

    2014-09-16T23:59:59.000Z

    The original BetterBuildings for Greensboro grant program included an outreach campaign to inform 100% of the Greensboro community about the benefits of reducing energy use; a plan to reduce energy consumption in at least 34% of the homes and 10% of the other buildings in the east Greensboro target area; and a plan to create and retain jobs in the energy conservation industry. Under the original program structure the City of Greensboro planned to partner with local and regional lenders to create a diversified portfolio of loan products to meet the needs of various income levels and building types. All participants would participate in the loan programs as a method of meeting the program’s 5 to1 private capital match/leverage requirements. In June 2011 the program was restructured to include partnerships with large commercial and multifamily projects, with these partners providing the greater portion of the required match/leverage. The geographic focus was revised to include reducing energy consumption across the entire City of Greensboro, targeting neighborhoods with high concentrations of low-moderate income households and aged housing stock. The community outreach component used a neighborhood-based approach to train community residents and volunteers to conduct door-to-door neighborhood sweeps; delivered high quality information on available program resources; helped residents to evaluate alternative energy efficiency measures and alternative financing sources; assisted with contractor selections and monitoring/evaluation of work; coordinated activities with BetterBuildings program partners; and collected data required by the Department of Energy. Additionally, HERO (Home Energy Response Officers) delivered intro packages (energy efficiency information and products) to thousands of households at the initial point of contact. A pilot program (Early Adopters) was offered from March 1, 2011 through June 30, 2011. The Early Adopters program was designed to offer immediate assistance to property owners ready and able to make their homes more energy efficient, by offering a rebate on their energy assessment and on the cost of upgrades installed. Eligible energy efficient upgrades were inclusive of basic level insulating and weather-stripping, HVAC system and water heater upgrades, to whole home upgrades that include the replacement of windows, doors and appliances. Renewable energy systems such as solar hot water systems were also eligible for the rebate program.

  20. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    decision to adopt energy efficient design, as well as theenergy efficient and sustainable technologies and designs.investing in green design or energy efficient technologies?

  1. Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes

    E-Print Network [OSTI]

    Benenson, P.

    2011-01-01T23:59:59.000Z

    C. RECOMMENDATIONS MAKE CODES TRULY PERFORMANCE BASED WORKENERGY CONSERVATION BUILDING CODES I TWO-WEEK LOAN COPY I iENERGY CONSERVATION BUILDING CODES INTRODUCTION DIFFERENT

  2. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    fast urbanization makes building energy efficiency a crucials potential for building energy efficiency and on-siteor carbon effective building energy efficiency and on-site

  3. Discussion of Problems in the Development of Building Energy Efficiency In China 

    E-Print Network [OSTI]

    Liu, Y.; Fu, X.; Luo, Q.

    2006-01-01T23:59:59.000Z

    In the context that Chinese energy shortage is beginning to emerge and China is constructing an economical society, much attention is paid to building energy consumption by the Chinese government and common people. Therefore, Building Energy...

  4. Discussion of Problems in the Development of Building Energy Efficiency In China

    E-Print Network [OSTI]

    Liu, Y.; Fu, X.; Luo, Q.

    2006-01-01T23:59:59.000Z

    In the context that Chinese energy shortage is beginning to emerge and China is constructing an economical society, much attention is paid to building energy consumption by the Chinese government and common people. Therefore, Building Energy...

  5. Handling model uncertainty in model predictive control for energy efficient buildings

    E-Print Network [OSTI]

    Maasoumy, Mehdi; Razmara, M; Shahbakhti, M; Sangiovanni-Vincentelli, Alberto

    2014-01-01T23:59:59.000Z

    trol for the operation of building cooling systems, IEEEK. Wirth, Energy ef?cient building climate control usingSagerschnig, E. Z ? á?ceková, Building [8] J. Prí vara, S.

  6. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction

    SciTech Connect (OSTI)

    Ostowari, Ken; Nosson, Ali

    2000-09-30T23:59:59.000Z

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

  7. The ACT{sup 2} project: Demonstration of maximum energy efficiency in real buildings

    SciTech Connect (OSTI)

    Crawley, D.B. [Pacific Northwest Lab., Richland, WA (United States); Krieg, B.L. [Pacific Gas and Electric Co., San Ramon, CA (United States)

    1991-11-01T23:59:59.000Z

    A large US utility recently began a project to determine whether the use of new energy-efficient end-use technologies and systems would economically achieve substantial energy savings (perhaps as high as 75% over current practice). Using a field-based demonstration approach, the Advanced Customer Technology Test (ACT{sup 2}) for Maximum Energy Efficiency is providing information on the maximum energy savings possible when integrated packages of new high-efficiency end-use technologies are incorporated into commercial and residential buildings and industrial and agricultural processes. This paper details the underlying rationale, approach, results to date, and future plans for ACT{sup 2}. The ultimate goal is energy efficiency (doing more with less energy) rather than energy conservation (freezing in the dark). In this paper, we first explain why a major United States utility is committed to pursuing demand-side management so aggressively. Next, we discuss the approach the utility chose for conducting the ACT{sup 2} project. We then review results obtained to date from the project`s pilot demonstration site. Last, we describe other related demonstration projects being proposed by the utility.

  8. The ACT sup 2 project: Demonstration of maximum energy efficiency in real buildings

    SciTech Connect (OSTI)

    Crawley, D.B. (Pacific Northwest Lab., Richland, WA (United States)); Krieg, B.L. (Pacific Gas and Electric Co., San Ramon, CA (United States))

    1991-11-01T23:59:59.000Z

    A large US utility recently began a project to determine whether the use of new energy-efficient end-use technologies and systems would economically achieve substantial energy savings (perhaps as high as 75% over current practice). Using a field-based demonstration approach, the Advanced Customer Technology Test (ACT{sup 2}) for Maximum Energy Efficiency is providing information on the maximum energy savings possible when integrated packages of new high-efficiency end-use technologies are incorporated into commercial and residential buildings and industrial and agricultural processes. This paper details the underlying rationale, approach, results to date, and future plans for ACT{sup 2}. The ultimate goal is energy efficiency (doing more with less energy) rather than energy conservation (freezing in the dark). In this paper, we first explain why a major United States utility is committed to pursuing demand-side management so aggressively. Next, we discuss the approach the utility chose for conducting the ACT{sup 2} project. We then review results obtained to date from the project's pilot demonstration site. Last, we describe other related demonstration projects being proposed by the utility.

  9. Energy Efficiency Improvements to Wundar Hall, a Historic Building on the Concordia Campus, Milwaukee, Wisconsin

    SciTech Connect (OSTI)

    Karman, Nathan

    2012-11-29T23:59:59.000Z

    The Forest County Potawatomi Community (â??FCPCâ? or â??Communityâ?) implemented energy efficiency improvements to revitalize Wundar Hall, a 34,000 square foot (â??SFâ?) building that was formerly used as a dormitory and is listed on the National Registry of Historic Places, into an office building. Wundar Hall is the first of many architecturally and historically significant buildings that the Community hopes to renovate at the former Concordia College campus, property on the near west side of Milwaukee that was taken into trust for the Community by the United States on July 10, 1990 (collectively, the â??Concordia Trust Propertyâ?). As part of this project, which was conducted with assistance from the Department of Energyâ??s Tribal Energy Program (â??TEPâ?), the Community updated and/or replaced the building envelope, mechanical systems, the plumbing system, the electrical infrastructure, and building control systems. The project is expected to reduce the buildingâ??s natural gas consumption by 58% and the electricity consumption by 55%. In addition, the project was designed to act as a catalyst to further renovation of the Concordia Trust Property and the neighborhood. The City of Milwaukee has identified redevelopment of the Concordia Trust Property as a â??Catalytic Projectâ? for revitalizing the near west side. The Tribe envisions a revitalized, mixed-use campus of community services, education, and economic developmentâ??providing services to the Indian community and jobs to the neighborhood.

  10. Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.

    E-Print Network [OSTI]

    Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

    2012-01-01T23:59:59.000Z

    requirements in building codes, energy efficiency policiesto improve the building’s energy efficiency. Lease contractsimprove the building’s energy efficiency. We focus first on

  11. Making the Market Right for Environmentally Sound Energy-Efficient Technologies: U.S. Buildings Sector Successes that Might Work in Developing Countries and Eastern Europe

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01T23:59:59.000Z

    for Achieving Energy-Efficient Buildings in ASEAN, inAmerican Council for an Energy-Efficient Economy, 1990. 33American Council for an Energy-Efficient Economy, 1991. 17

  12. Building Energy Codes Collaborative Technical Assistance for...

    Energy Savers [EERE]

    State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through State Energy Codes...

  13. EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AC61)

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

  14. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  15. Review of Prior Commercial Building Energy Efficiency Retrofit Evaluation: A Report to Snohomish Public Utilities District

    SciTech Connect (OSTI)

    Price, Phillip

    2014-12-22T23:59:59.000Z

    Snohomish County Public Utilities District (the District or Snohomish PUD) provides electricity to about 325,000 customers in Snohomish County, Washington. The District has an incentive programs to encourage commercial customers to improve energy efficiency: the District partially reimburses the cost of approved retrofits if they provide a level of energy performance improvement that is specified by contract. In 2013 the District contracted with Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and Verification (M&V) practices the District uses to evaluate whether companies are meeting their contractual obligations. This work helps LBNL understand the challenges faced by real-world practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. (2013). The District selected a typical project for which they had already performed an evaluation. The present report includes the District's original evaluation as well as LBNL's review of their approach. The review is based on the document itself; on investigation of the load data and outdoor air temperature data from the building evaluated in the document; and on phone discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the building studied in the document the subject building, the original Snohomish PUD report will be referred to as the Evaluation, and this discussion by LBNL is called the Review.

  16. Energy Department Issues Green Building Certification System...

    Office of Environmental Management (EM)

    Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification...

  17. Better Buildings Webinar: Making Utility Energy Efficiency Funds Work for You

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Better Buildings will host a webinar on innovative collaborations with utilities to bring big energy savings to their building portfolios and help reduce utility peak electricity demand.

  18. MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    sample includes both very low energy buildings and buildingsto produce a low-energy building over a considerable range9Q.E guidelines. The low energy use of these building may be

  19. A joint U.S.-China demonstration energy efficient office building

    E-Print Network [OSTI]

    Zimmerman, Mary Beth; Huang, Yu JoeWatson, Rob; Shi, Han; Judkoff, Ron; She rman, Micah

    2000-01-01T23:59:59.000Z

    design approach is used to identify the most cost-effective energy strategies for this building, including passive solar

  20. Survey of Energy Efficient Tracking and Localization Techniques in Buildings Using

    E-Print Network [OSTI]

    Wieringa, Roel

    's homes and buildings are responsible for 41% of the energy consumption in the European Union and control. This leads to unnecessary energy consumption. Especially in homes and buildings, energy can conditioning, etc.. Both home and building automation heavily rely on sensors and actuators that interchange

  1. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    SciTech Connect (OSTI)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-03-28T23:59:59.000Z

    California has been using DOE-2 as the main building energy analysis tool in the development of building energy efficiency standards (Title 24) and the code compliance calculations. However, DOE-2.1E is a mature program that is no longer supported by LBNL on contract to the USDOE, or by any other public or private entity. With no more significant updates in the modeling capabilities of DOE-2.1E during recent years, DOE-2.1E lacks the ability to model, with the necessary accuracy, a number of building technologies that have the potential to reduce significantly the energy consumption of buildings in California. DOE-2's legacy software code makes it difficult and time consuming to add new or enhance existing modeling features in DOE-2. Therefore the USDOE proposed to develop a new tool, EnergyPlus, which is intended to replace DOE-2 as the next generation building simulation tool. EnergyPlus inherited most of the useful features from DOE-2 and BLAST, and more significantly added new modeling capabilities far beyond DOE-2, BLAST, and other simulations tools currently available. With California's net zero energy goals for new residential buildings in 2020 and for new commercial buildings in 2030, California needs to evaluate and promote currently available best practice and emerging technologies to significantly reduce energy use of buildings for space cooling and heating, ventilating, refrigerating, lighting, and water heating. The California Energy Commission (CEC) needs to adopt a new building energy simulation program for developing and maintaining future versions of Title 24. Therefore, EnergyPlus became a good candidate to CEC for its use in developing and complying with future Title 24 upgrades. In 2004, the Pacific Gas and Electric Company contracted with ArchitecturalEnergy Corporation (AEC), Taylor Engineering, and GARD Analytics to evaluate EnergyPlus in its ability to model those energy efficiency measures specified in both the residential and nonresidential Alternative Calculation Method (ACM) of the Title-24 Standards. The AEC team identified gaps between EnergyPlus modeling capabilities and the requirements of Title 24 and ACMs. AEC's evaluation was based on the 2005 version of Title 24 and ACMs and the version 1.2.1 of EnergyPlus released on October 1, 2004. AEC's evaluation is useful for understanding the functionality and technical merits of EnergyPlus for implementing the performance-based compliance methods described in the ACMs. However, it did not study the performance of EnergyPlus in actually making building energy simulations for both the standard and proposed building designs, as is required for any software program to be certified by the CEC for use in doing Title-24 compliance calculations. In 2005, CEC funded LBNL to evaluate the use of EnergyPlus for compliance calculations by comparing the ACM accuracy test runs between DOE-2.1E and EnergyPlus. LBNL team identified key technical issues that must be addressed before EnergyPlus can be considered by the CEC for use in developing future Nonresidential Title-24 Standards or as an ACM tool. With Title 24 being updated to the 2008 version (which adds new requirements to the standards and ACMs), and EnergyPlus having been through several update cycles from version 1.2.1 to 2.1, it becomes crucial to review and update the previously identified gaps of EnergyPlus for use in Title 24, and more importantly to close the gaps which would help pave the way for EnergyPlus to be adopted as a Title 24 compliance ACM. With this as the key driving force, CEC funded LBNL in 2008 through this PIER (Public Interest Energy Research) project with the overall technical goal to expand development of EnergyPlus to provide for its use in Title-24 standard compliance and by CEC staff.

  2. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01T23:59:59.000Z

    improvements in building energy efficiency are anticipatedthe required pace of building energy efficiency improvementthese aggressive building energy efficiency goals will

  3. Cost-Effective Energy Efficiency Measures for Above Code (2003 and 2009 IECC) Residential Buildings in the City of Arlington

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    -code approaches that have been made in the CoA during the 2008-2010. #1; Results of the current project: Recommendations of 17 energy efficiency measures (EEMs) to maximize energy savings for residential buildings in the CoA with #1; estimated cost... energy savings from heating, cooling, lighting, equipment and DHW for emissions reductions determination. * Building type: Residential 2. Savings depend on fuel mix used. * Gross area: 2,325 sq-ft * Energy Cost: Electricity = $0.11/k...

  4. Guide Specifications: AnOverlooked Avenue for Promoting Building Energy Efficiency

    E-Print Network [OSTI]

    - efficient products in commercial buildings. It documents several instances where this has already occurred to building codes. Guide specifications are produced for sale in the U.S. by several commercial firms by commercial specs. For instance, the State of Wisconsin Commercial Buildings: Program Design, Implementation

  5. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    SciTech Connect (OSTI)

    Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

    2012-06-01T23:59:59.000Z

    Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

  6. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  7. Evaluation and Optimization of Underground Thermal Energy Storage Systems of Energy Efficient Buildings (WKSP)- A Project within the new German R&D- Framework EnBop 

    E-Print Network [OSTI]

    Bockelmann, F.; Kipry, H.; Plesser, S.; Fisch, M. N.

    2008-01-01T23:59:59.000Z

    Evaluation and optimization of underground thermal energy storage systems of Energy Efficient Buildings (WKSP) - A project within the new German R&D-framework EnBop Dipl.-Ing. Franziska Bockelmann IGS ? Institute of Building Services... and Energydesign, Technical University of Braunschweig, Germany Dipl.-Ing. Herdis Kipry IGS ? Institute of Building Services and Energydesign, Technical University of Braunschweig, Germany Dipl.-Ing. Stefan Plesser Head of Energy Efficient Non...

  8. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    SciTech Connect (OSTI)

    Birru, Dagnachew [Philips Research North America; Wen, Yao-Jung [Philips Research North America; Rubinstein, Francis M. [Lawrence Berkeley National Laboratory; Clear, Robert D. [Lawrence Berkeley National Laboratory

    2013-10-28T23:59:59.000Z

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the developed control technology were evaluated and verified through both simulations and testbed implementations. Simulations coupling a DOE medium office reference building in EnergyPlus building simulation software and a prototype controller in Matlab were performed. During summer time in a mixed-humid climate zone, the simulations revealed reductions of 27% and 42% in electric lighting load and cooling load, respectively, when compared to an advanced base case with daylight dimming and blinds automatically tilted to block direct sun. Two single-room testbeds were established. The testbed at Philips Lighting business building (Rosemont, IL) was designed for quantifying energy performance of integrated controls. This particular implementation achieved 40% and 79% savings on lighting and HVAC energy, respectively, compared to a relatively simple base case operated on predefined schedules. While the resulting energy savings was very encouraging, it should be noted that there may be several caveats associated with it. 1) The test was run during late spring and early summer, and the savings numbers might not be directly used to extrapolate the annual energy savings. 2) Due to the needs for separate control and metering of the small-scale demonstrator within a large building, the HVAC system, hence the corresponding savings, did not represent a typical energy code-compliant design. 3) The light level in the control case was regulated at a particular setpoint, which was lower than then the full-on light level in the base case, and the savings resulted from tuning down the light level to the setpoint was not attributable to the contribution of the developed technology. The testbed at the Lawrence Berkeley National Laboratory (Berkeley, CA) specifically focused on glare control integration, and has demonstrated the feasibility and capability of the glare detection and prevention technique. While the short one-month test in this testbed provided a functional indication of the developed technology, and it would require at least a full solstice-to-solstice cycle to ruinously quan

  9. Finding the Next Big Thing(s) in Building Energy Efficiency: HIT Catalyst and the Technology Demo Program

    Broader source: Energy.gov [DOE]

    Learn how the Department prioritizes high impact technologies (HITs) to advance energy efficiency. Hear from a Better Buildings program participant who is working with Department staff to test promising technologies in buildings. Learn what they are finding and how you can get involved.

  10. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  11. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Center National Building Energy Efficiency CommissionNTAden@lbl.gov Building Energy Efficiency Joe Huang, Staffbuilding—developing organizations to promote energy efficiency

  12. Bainbridge Energy Challenge. Energy efficiency and conservation block grant (EECBG) - Better buildings neighborhood program. Final Technical Report

    SciTech Connect (OSTI)

    Kraus, Yvonne X.

    2014-02-14T23:59:59.000Z

    RePower Bainbridge and Bremerton (RePower) is a residential energy-efficiency and conservation program designed to foster a sustainable, clean, and renewable energy economy. The program was a 3.5 year effort in the cities of Bainbridge Island and Bremerton, Washington, to conserve and reduce energy use, establish a trained home performance trade ally network, and create local jobs. RePower was funded through a $4.8 million grant from the US Department of Energy, Better Buildings Program. The grant’s performance period was August 1, 2010 through March 30, 2014.

  13. Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas 

    E-Print Network [OSTI]

    Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

    2006-01-01T23:59:59.000Z

    : Based on the existing residential buildings in cold areas, this paper takes the existing residential buildings in a certain district in Beijing to provide an analysis of the thermal characteristics of envelope and energy consumption in winter...

  14. The New European GreenBuilding Programme to Promote Energy Efficiency Investments in non-Residential Buildings

    E-Print Network [OSTI]

    Adnot, J.; Bertoldi, P.

    2004-01-01T23:59:59.000Z

    -generation;Building shell (insulation, windows);Passive cooling, heating and natural ventilation;Renewable Energies (solar, biomass, etc.); #0;5#0;5 Renewable Energies GreenBuilding Modules HVAC Lighting Co-generation Office equipment Commercial Appliances Distribution...;5#0;5 Renewable Energies Some Examples of GreenBuilding Projectswith Improved Cooling System #0;5#0;5 Renewable Energies CRF Canteen: Architecture and functional scheme ECO-MENSA: SCHEMA FUNZIONALE In all seasonsIn all seasonsthe electrical power produced...

  15. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01T23:59:59.000Z

    passive solar system analysis capabilities to the building designpassive solar design concepts to the non-residential building

  16. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Hurricane Katrina was the largest natural disaster in the United States, striking the Gulf Coast on August 29, 2005, and flooding 80% of New Orleans; to make matters worse, the city was flooded again only three weeks later by the effects of Hurricane Rita. Many of the buildings, including schools, were heavily damaged. The devastation of schools in New Orleans from the hurricanes was exacerbated by many years of deferred school maintenance. This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. The experiences of four new schools-Langston Hughes Elementary School, Andrew H. Wilson Elementary School (which was 50% new construction and 50% major renovation), L.B. Landry High School, and Lake Area High School-and one major renovation, Joseph A. Craig Elementary School-are described to help other school districts and design teams with their in-progress and future school building projects in hot-humid climates. Before Hurricane Katrina, New Orleans had 128 public schools. As part of the recovery planning, New Orleans Public Schools underwent an assessment and planning process to determine how many schools were needed and in what locations. Following a series of public town hall meetings and a district-wide comprehensive facility assessment, a Master Plan was developed, which outlined the renovation or construction of 85 schools throughout the city, which are expected to be completed by 2017. New Orleans Public Schools expects to build or renovate approximately eight schools each year over a 10-year period to achieve 21st century schools district-wide. Reconstruction costs are estimated at nearly $2 billion.

  17. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Buildings Total energy consumption trends for the JapaneseFigure 9. Total energy consumption trends i n the JapaneseFigure 10. Energy consumption intensity trends i n Japanese

  18. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2011-01-01T23:59:59.000Z

    3. SEP funding for building energy efficiency by marketSEP funding for building energy efficiency by market sectoroverall budget for buildings energy efficiency, while some

  19. Energy Efficiency and Conservation Block Grant (EECBG): Better Buildings Neighborhood Program Final Report

    SciTech Connect (OSTI)

    Donnelly, Kat A.

    2014-01-10T23:59:59.000Z

    The Neighbor to Neighbor Energy Challenge (N2N) brought together a consortium of 14 leading clean energy rural, suburban, and low income communities throughout Connecticut. N2N was awarded $4.2 million from the U.S. Department of Energy (DOE) competitive BetterBuildings Neighborhood Program on August 10, 2010 to run a two-year pilot program (plus one year of transition and evaluation) (Award No. EMCBC- 00969-10). N2N tested innovative program models and hypotheses for improving Connecticut’s existing residential energy efficiency programs that are overseen by the ratepayer fund board and administered by CT utilities. N2N’s original goal was to engage 10 percent of households in participating communities to reduce their energy usage by 20 percent through energy upgrades and clean energy measures. N2N planned for customers to complete more comprehensive whole-home energy efficiency and clean energy measures and to achieve broader penetration than existing utility-administered regulated programs. Since this was an ARRA award, we report the following figures on job creation in Table 1. Since N2N is not continuing in its current form, we do not provide figures on job retention. Table 1 N2N Job Creation by Quarter Jobs Created 2010 Q4 6.65 2011 Q1 7.13 2011 Q2 4.98 2011 Q3 9.66 2011 Q4 5.43 2012 Q1 11.11 2012 Q2 6.85 2012 Q3 6.29 2012 Q4 6.77 2013 Q1 5.57 2013 Q2 8.35 2013 Q3 6.52 Total 85.31 The N2N team encountered several gaps in the existing efficiency program performance that hindered meeting N2N’s and DOE’s short-term program goals, as well as the State of Connecticut’s long-term energy, efficiency, and carbon reduction goals. However, despite the slow program start, N2N found evidence of increasing upgrade uptake rates over time, due to delayed customer action of one to two years from N2N introduction to completion of deeper household upgrades. Two main social/behavioral principles have contributed to driving deeper upgrades in CT: 1. Word of mouth, where people share their experience with others, which leads to others to take action; and 2. Self-herding, where people follow past behavior, which leads to deeper and deeper actions within individual households.

  20. Controlling Energy-Efficient Buildings in the Context of Smart Grid: A Cyber Physical System Approach

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2014-01-01T23:59:59.000Z

    hq-en.pdf. [4] Buildings energy data book. http://2012. [11] Building Energy Data Book of DOE. http://

  1. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect (OSTI)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01T23:59:59.000Z

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  2. Comparison of Building Energy Modeling Programs: Building Loads

    E-Print Network [OSTI]

    LBNL-6034E Comparison of Building Energy Modeling Programs: Building Loads Dandan Zhu1 , Tianzhen Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U;Comparison of Building Energy Modeling Programs: Building Loads A joint effort between Lawrence Berkeley

  3. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    SciTech Connect (OSTI)

    Wang, Na

    2013-03-13T23:59:59.000Z

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  4. Recommendations for 15% Above-Code Energy Efficiency Measures for Commercial Office Buildings

    E-Print Network [OSTI]

    Montgomery, C.; Yazdani, B.; Haberl, J. S.; Culp, C.; Liu, Z.; Mukhopadhyay, J.; Cho, S.

    This report presents detailed information about the recommendations for achieving 15% above-code energy performance for commercial office buildings complying with ASHRAE Standard 90.1-19991. To accomplish the 15% annual energy consumption reductions...

  5. Presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, August 20-25, 2000 in Pacific Grove, CA, and published in the Proceedings.

    E-Print Network [OSTI]

    LBNL-46303 Presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, August 20 of Energy`s (DOE) Office of Building Equipment combined DOE-2 results for a large set of prototypical commercial and residential buildings with data from the Energy Information Administration (EIA) residential

  6. Live Webinar on Better Buildings Case Competition: Energy Efficiency in the Restaurant Franchise Model Case Study

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "A Side of Savings: Energy Efficiency in the Restaurant Franchise Model Case Study."

  7. Targeted Energy Efficiency Expert Evaluation Report: Neal Smith Federal Building, Des Moines, IA

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Goddard, James K.; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01T23:59:59.000Z

    This report summarizes the energy efficiency measures identified and implemented, and an analysis of the energy savings realized using low-cost/no-cost control system measures identified.

  8. Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes

    E-Print Network [OSTI]

    Benenson, P.

    2011-01-01T23:59:59.000Z

    could be persuaded that energy efficient design is a "good"energy savings (Cochran 1978:4). More efficient techniques would include improved conservation methods or passive solar designs.

  9. Improving Real World Efficiency of High Performance Buildings

    E-Print Network [OSTI]

    this shortfall is critical as the focus on moving toward zero net energy buildings and carbon reductionImproving Real World Efficiency of High Performance Buildings Buildings End-Use Energy Efficiency Research www.energy.ca.gov/research/buildings February 2012 The Issue Highperformance buildings

  10. FOA: SEP Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) National Energy Technology Laboratory (NETL), on behalf of the Office of Energy Efficiency and Renewable Energy’s (EERE’s) State Energy Program (SEP), is seeking applications to advance policies, programs, and market strategies that accelerate job creation and reduce energy bills while achieving energy and climate security for the nation.

  11. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future

  12. Buildings, Commissioning, Efficiency, Comfort, and CO2

    E-Print Network [OSTI]

    Claridge, D. E.

    2006-01-01T23:59:59.000Z

    comfort, optimize energy use and identify retrofits for existing commercial and institutional buildings and central plant facilities. It includes the entire commissioning process from assessment through implementation and subsequent follow-up as necessary...Buildings, Commissioning, Efficiency, Comfort, and CO2 Asian Pacific Building Commissioning Conference ICEBONovember 8, 2006Shenzhen, ChinaPresented ByDavid E. ClaridgeEnergy Systems LaboratoryTexas A&M University Commissioning New Buildings...

  13. The potential and challenges of monitoring-supported energy efficiency improvement strategies in existing buildings

    E-Print Network [OSTI]

    Schub, M.; Mahdavi, A.; Simonis, H.; Menzel, K.; Browne, D.

    2012-01-01T23:59:59.000Z

    participants from both academic institutions and industry and is supported by the European Union (EU 2012). The premises of the project are as follows: o In most European countries, existing buildings represent, in terms of volume and energy use intensity... laboratories and its construction is typical of many buildings constructed across a range of institutions in Ireland during the early twentieth century. The building is naturally ventilated and heated by iron cast steel radiators fed from the campus CHP...

  14. Energy Efficiency in Commercial Buildings: Experiences and Results from the German funding Program SolarBau

    E-Print Network [OSTI]

    Herkel, S.; Lohnert, G.; Voss, K.; Wagner, A.

    2004-01-01T23:59:59.000Z

    comfort range? Energy use oflean officebuildings University Karlsruhe (TH) - Department of Architecture Building Physics and Technical Building Services Targets ofSolarBau End- bzw. Prim?renergie in kWh/m?a 050100150200250300 Beleuchtung Klimatisierung L...?ftung W?rme Beleuchtung25751030 Klimatisierung113000 L?ftung13401030 W?rme1251404040 Bestand SolarBau End-energiePrim?r-energieEnd-energiePrim?r-energie Energy in kWh/m?a LightingAir Cond.VentilationHeating LightingAir Cond...

  15. Administering Nonprofit Energy Efficiency Programs | Department...

    Energy Savers [EERE]

    Administering Nonprofit Energy Efficiency Programs Administering Nonprofit Energy Efficiency Programs Better Buildings Neighborhood Program Peer Exchange Call: Administering...

  16. Complementary State Policies for Energy Efficiency Programs ...

    Energy Savers [EERE]

    for Energy Efficiency Programs Better Buildings Residential Network Program Sustainability Peer Exchange Call: Complementary State Policies for Energy Efficiency Programs,...

  17. Coordinating Energy Efficiency with Other Disaster Resiliency...

    Energy Savers [EERE]

    Coordinating Energy Efficiency with Other Disaster Resiliency Services Coordinating Energy Efficiency with Other Disaster Resiliency Services Better Buildings Residential Network...

  18. Coordinating Energy Efficiency With Water Conservation Services...

    Energy Savers [EERE]

    Coordinating Energy Efficiency With Water Conservation Services Coordinating Energy Efficiency With Water Conservation Services Better Buildings Residential Network Program...

  19. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Savers [EERE]

    Incorporating Energy Efficiency into Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program...

  20. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  1. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    o d e l i n g Center (Japan) ESCO energy service company GHGEnergy Service Company (ESCO) Activities Energy Servicewas established in So far ESCO energy-efficiency services

  2. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    2006. “Strengthening the Building Energy Efficiency (BEE)Of The Impacts Of Building Energy Efficiency Policies Andcommercial building, energy intensity, energy efficiency,

  3. Energy efficient commercial buildings : a study of natural daylighting in the context of adaptive reuse

    E-Print Network [OSTI]

    Crowley, John Stephen

    1982-01-01T23:59:59.000Z

    Daylighting is a powerful design element which can have a dramatic impact on people's perception of space, physical and psychological well-being as well as a building's annual and daily energy requirements. Understanding ...

  4. Retrofit Options for Increasing Energy Efficiency in Office Buildings- Methodology Review

    E-Print Network [OSTI]

    Pereira, N. C.

    Portuguese Buildings represent 35% of primary energy consumption in 2006, with non-residential sector representing almost half of this number globally and around 65% in Lisbon city. Expected to grow 5% yearly in this period, non...

  5. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    buildings. Measured electricity consumption Figure 3 showsthe measured total electricity consumption of the buildingmonths of 2005. The electricity consumption per floor area

  6. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01T23:59:59.000Z

    Plan for Building Thermal Envelope Systems and Insulatingwith the recently developed Thermal Envelopes and Insulatinga new device A the Envelope Thermal Testing Unit (ETTU),~ .

  7. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    heating is provided by district heating. The building isis heated from a district heating system that provides hotconverts the heat from district heating system to the hot

  8. India’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with India

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd

    2010-06-01T23:59:59.000Z

    This report outlines India’s current activities and future plans in building energy efficiency R&D and deployment, and maps them with R&D activities under the Department of Energy’s Building Technologies Program. The assessment, conducted by the Pacific Northwest National Laboratory in FY10, reviews major R&D programs in India including programs under the 11th Five-Year Plan, programs under the NEF, R&D and other programs under state agencies and ongoing projects in major research institutions .

  9. Energy Efficient Buildings and Appliances: From Berkeley Lab to the Marketplace (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Rosenfeld, Art [Commissioner, California Energy Commission

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2006: Art Rosenfeld, an appointee to the California Energy Commission and one of the architects of energy efficiency research at Berkeley Lab in the 1970s, discusses what it takes to shepherd innovative energy efficiency research from the lab to the real world.

  10. Proceedings of the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, August 20-25, 2000, Pacific Grove, California.

    E-Print Network [OSTI]

    and laboratories. These buildings are four to one hundred times more energy-intensive than typical office buildings

  11. Recommendations for 15% Above ASHRAE 90.1-2007 Code-Compliant Building Energy Efficiency Measures for Small Office Buildings

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

    2012-01-01T23:59:59.000Z

    per 2009 IECC Section 501.2 15% Above-Code Analysis for Small Office, p.5 January 2012 Energy Systems Laboratory, Texas A&M University Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL...-19341 (Thornton et al. 2010) Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al. 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341...

  12. MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    the forefront of energy- efficient design. About two-thirdaemphasis placed on energy-efficient design in the retailenergy efficient, based on actual mea8ured performance data. Despite a number of recent reports summarizing the design

  13. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    This brochure presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita.

  14. Presented at the ACEEE 2002 Summer Study on Energy Efficiency in Buildings, August 18-23, 2002, Asilomar Conference Center, Pacific Grove, California, and published in the proceedings.

    E-Print Network [OSTI]

    for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs of energy simulation tools, but none has brought a significant increase in the consideration of energy of the building industry in energy performance and environmental impact, current practice trends, modeling

  15. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    desirable. In 1975 an energy audit and monitoring programphases: Conduct an effective energy audit and define energyACTIVITIES FOR 1978 Simple energy audits will be carried out

  16. The Impact of DOE Building Technology Energy Efficiency Programs on U.S. Employment, Income, and Investment

    SciTech Connect (OSTI)

    Scott, Michael J.; Roop, Joseph M.; Schultz, Robert W.; Anderson, Dave M.; Cort, Katherine A.

    2008-07-31T23:59:59.000Z

    To more fully evaluate its programs to increase the energy efficiency of the U.S. residential and commercial building stock, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) assesses the macroeconomic impacts of those programs, specifically on national employment, wage income, and (most recently) investment. The analysis is conducted using the Impact of Sector Energy Technologies (ImSET) model, a special-purpose 188-sector input-output model of the U.S. economy designed specifically to evaluate the impacts of energy efficiency investments and saving. For the analysis described in the paper, ImSET was amended to provide estimates of sector-by-sector capital requirements and investment. In the scenario of the Fiscal Year (FY) 2005 Buildings Technology (BT) program, the technologies and building practices being developed and promoted by the BT program have the prospect of saving about 2.9×1015 Btu in buildings by the year 2030, about 27% of the expected growth in buildings energy consumption by the year 2030. The analysis reported in the paper finds that, by the year 2030, these savings have the potential to increase employment by up to 446,000 jobs, increase wage income by $7.8 billion, reduce needs for capital stock in the energy sector and closely related supporting industries by about $207 billion (and the corresponding annual level of investment by $13 billion), and create net capital savings that are available to grow the nation’s future economy.

  17. Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings

    E-Print Network [OSTI]

    Bernstein, R.

    2010-01-01T23:59:59.000Z

    protocols standards like ISO/IEC 14908 have been developed specifically for this purpose. They incorporate all control communication layers into one common structure and are easily and cost effectively implemented in each device. The ISO/IEC 14908... continues to enhance the interoperability guidelines and provides a forum for organizations to develop and adopt interoperable controls using ISO/IEC 14908. Energy Efficiency ? Driving Smart Controls Energy efficiency, energy conservation, and energy...

  18. The Department of Architectural Engineering is providing the technical leadership on the recently awarded Department of Energy Innovation Hub for Energy Efficient Buildings. This initiative was led on behalf of the

    E-Print Network [OSTI]

    Yener, Aylin

    awarded Department of Energy Innovation Hub for Energy Efficient Buildings. This initiative was led the building industry and radically improve the energy efficiency of building systems." See below, the Department should be playing a pivotal role in the development of the next generation of energy

  19. Optimization of energy parameters in buildings

    E-Print Network [OSTI]

    Jain, Ruchi V

    2007-01-01T23:59:59.000Z

    When designing buildings, energy analysis is typically done after construction has been completed, but making the design decisions while keeping energy efficiency in mind, is one way to make energy-efficient buildings. The ...

  20. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    constructing a net zero-energy building to house the REECCountry Report on Building Energy Codes in India. Richland,2010. Mainstreaming Building Energy Efficiency Codes in

  1. China’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with China

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd

    2010-04-01T23:59:59.000Z

    This report includes an evaluation of China’s current activities and future direction in building energy efficiency R&D and its relevance to DOE’s R&D activities under the Building Technologies Program in the Office of Energy Efficiency and Renewable Energy. The researchers reviewed the major R&D programs in China including the so-called 973 Program, the 863 Program, and the Key Technology R&D Program1 as well as the research activities of major research institutes. The report also reviewed several relevant documents of the Chinese government, websites (including the International Energy Agency and national and local governments in China), newsletters, and financial information listed in the program documents and websites.

  2. A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings

    E-Print Network [OSTI]

    Williams, Alison

    2012-01-01T23:59:59.000Z

    2013 California Building Energy Efficiency Standards.2013 California Building Energy Efficiency Standards.Summer Study on Energy Efficiency in Buildings 3:309-322.

  3. 15% Above-Code Energy Efficiency Measures for Residential Buildings in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.

    Emissions Savings (lbs/year) Combined Estimated Cost ($) Simple Estimated Payback (yrs) 0.025 11.1 30.1- Combined Ozone Season Period NOx Emissions Savings (lbs/day) 28.5-16.3 6.7 - 34.9 ESL-TR-07-08-02 Energy Systems Laboratory - August 2007 7... individual measures above for specific savings * Energy Cost: Electricity cost = $0.15/kWh Natural gas cost = $1.00/therm 4. Savings depend on fuel mix used. See detailed writeup (Building Description) * Building type: Residential * Gross area: 2...

  4. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01T23:59:59.000Z

    four phases: In 1975 an energy audit and monitoring programKennewick, WA Conduct an energy audit and identify energyeach school were based on an energy audit and computer model

  5. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    as well as an ice thermal energy storage (TES) system in thefrom the ice thermal energy storage system. More data on the

  6. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01T23:59:59.000Z

    for each school were based on an energy audit and computeraudit and monitoring program was developed to study the energy consumption of schools

  7. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    LBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey ............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSs

  8. Operation of Energy-Efficient Air-Conditioned Buildings: An Overview

    E-Print Network [OSTI]

    Khalil, E. E.

    2010-01-01T23:59:59.000Z

    To design an optimum HVAC airside system that provides comfort and air quality in the air-conditioned spaces with efficient energy consumption is a great challenge. This paper evaluates recent progresses of HVAC airside design for the air...

  9. Operation of Energy-Efficient Air-Conditioned Buildings: An Overview 

    E-Print Network [OSTI]

    Khalil, E. E.

    2010-01-01T23:59:59.000Z

    To design an optimum HVAC airside system that provides comfort and air quality in the air-conditioned spaces with efficient energy consumption is a great challenge. This paper evaluates recent progresses of HVAC airside ...

  10. Office of Energy Efficiency and Renewable Energy Fiscal Year...

    Energy Savers [EERE]

    Energy Saving Homes, Buildings, and Manufacturing Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Energy Saving Homes, Buildings, and...

  11. Commercial Buildings Integration Program | Department of Energy

    Office of Environmental Management (EM)

    Million to Support Commercial Building Efficiency These four projects will generate data, case studies, and information intended to help commercial building owners adopt new energy...

  12. "Imagine An Energy Efficient Campus:

    E-Print Network [OSTI]

    Imagine An Energy Efficient Campus: Benchmarking Energy Use through ENERGY STAR Are you frustrated by rising energy costs? Are your campus buildings operating efficiently? How can you benchmark your portfolio?s energy consumption? We will show... you how you can use the ENERGY STAR?s free online Portfolio Program to benchmark your buildings? energy performance across your campus. Establishing a baseline for energy use throughout your portfolio of buildings will allow you to prioritize energy...

  13. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Commission (BDRC) Beijing Energy Efficiency Center (BECon)of Construction Energy Efficiency Bureau Ministry ofNational Building Energy Efficiency Commission National

  14. Recommendations for 15% Above-Code Energy Efficiency Measures on Implementing Houston Amendments to Single-Family Buildings in Houston Texas 

    E-Print Network [OSTI]

    Liu, Z.; Mukhopadhyay, J.; Malhotra, M.; Kota, S.; Haberl, J. S.; Culp, C.; Yazdani, B.

    2008-01-01T23:59:59.000Z

    This report presents detailed information about the analysis that was performed to calculate the energy saving potential for residential buildings in Houston. In this analysis the energy efficient measures were proposed ...

  15. A Comparison of the 2003 and 2006 International Energy Conservation Codes to Determine the Potential Impact on Residential Building Energy Efficiency

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Baxter, Van D [ORNL

    2008-03-01T23:59:59.000Z

    The IECC was updated in 2006. As required in the Energy Conservation and Production Act of 1992, Title 3, DOE has a legislative requirement to "determine whether such revision would improve energy efficiency in residential buildings" within 12 months of the latest revision. This requirement is part of a three-year cycle of regular code updates. To meet this requirement, an independent review was completed using personnel experienced in building science but not involved in the code development process.

  16. Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS

    SciTech Connect (OSTI)

    David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

    2008-05-31T23:59:59.000Z

    ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

  17. Building an Energy Efficient Plant Certification Program: Management System for Energy 2000:2008

    E-Print Network [OSTI]

    Meffert, B; Brown, M.

    2008-01-01T23:59:59.000Z

    The US Department of Energy’s Industrial Technologies Program (ITP) is partnering with industry to drive a 25% reduction in industrial energy intensity by 2017—and also contribute to an 18% reduction in carbon intensity economy-wide by 2012...

  18. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, &...

  19. Abstract--Current building designs are not energy-efficient enough due to many reasons. One of them is the centralized

    E-Print Network [OSTI]

    Jain, Raj

    1 Abstract--Current building designs are not energy-efficient enough due to many reasons. One the occupants' actual usage and adjusting the energy consumption accordingly. In this paper, we discuss our into the energy policy control by using the now popular GPS-embedded smart phones. Every occupant in the building

  20. Collaboration and Consensus Building in States to Support Energy Efficiency as a Resource

    Broader source: Energy.gov [DOE]

    Today’s webcast is part of a 7-part series that was initially created for five states. You can see them here who have a cooperative agreement and funding with DOE under the State Energy Program. These states are all developing policy and program frameworks to support a greater investment in cost-effective energy efficiency over the long term.

  1. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    SciTech Connect (OSTI)

    Carbary, Lawrence D. [Dow Corning Corporation] [Dow Corning Corporation; Perkins, Laura L. [Dow Corning Corporation] [Dow Corning Corporation; Serino, Roland [Dryvit Systems, Inc] [Dryvit Systems, Inc; Preston, Bill [Dryvit Systems, Inc] [Dryvit Systems, Inc; Kosny, Jan [Fraunhofer USA, Inc. CSE] [Fraunhofer USA, Inc. CSE

    2014-01-29T23:59:59.000Z

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of 2012 compared to previous winters. This project achieved its goal of developing a system that is constructible, offers protection to the VIPs, and meets all performance targets established for the project.

  2. The impact of the adoption of efficient electrical products and control technologies on office building energy use

    SciTech Connect (OSTI)

    Newsham, G.; Cornick, S.; Sander, D. [National Research Council Canada, Ottawa, Ontario (Canada). Inst. for Research in Construction; Mahdavi, A.; Mathew, P.; Brahme, R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1998-12-31T23:59:59.000Z

    Energy savings attributable to efficient lighting and office equipment technologies are often quoted for the technology in isolation. However, total energy savings will depend on interactions with the building HVAC system. The authors predicted overall energy savings from parametric simulations of a typical North American office building. Cooling and heating energy impacts were expressed as a fraction of the direct electrical energy savings due to the adoption of efficient lighting and office equipment technologies ({Delta}C/{Delta}L and {Delta}H/{Delta}L, respectively). {Delta}C/{Delta}L varied little with the source and magnitude of the direct savings or with building envelope variations. However, cooling system type had a large effect. {Delta}H/{Delta}L varied substantially with envelope variations and the magnitude of direct savings. For cooling, the results agree with a previously published simplified method and may expand the method`s scope. However, for heating, the results suggest that the existing simplified method may not be generally valid.

  3. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    Costs and Financial Benefits of Green Buildings” A Report toEvidence on the Green Building Rent and Price Premium,” (Properties. San Rafael: Green Building Finance Consortium.

  4. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

  5. 15% Above-Code Energy Efficiency Measures for Commercial Buildings in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.

    efficiency measures. In the pages that follow, 15% above-code measures for new commercial buildings are presented for the 41 non-attainment and affected counties in Texas, separated by climate area. Each page contains a description of the individual....6% $1,718 $18,135 $0 - $0 3 Occupancy Sensors Installation 11.5% $32,242 -3.6% -$576 $31,667 $26,500 - $28,000 4 Shading (none to 2.5 ft overhangs) 1.6% $3,261 2.4% $395 $3,656 $67,900 - $110,000 B HVAC System Measures 5 Cold Deck Reset 5.7% $4...

  6. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01T23:59:59.000Z

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  7. Energy Savers: A one-stop energy efficiency shop for multifamily building

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy ActEnergy |Division, OAPM |Energyowners |

  8. OPTIONS for ENERGY EFFICIENCY

    E-Print Network [OSTI]

    OPTIONS for ENERGY EFFICIENCY in EXISTING BUILDINGS December 2005 CEC-400-2005-039-CMF.B. Blevins Executive Director Valerie Hall Deputy Director Efficiency, Renewables and Demand Analysis Elaine Hussey Contract Manager #12;Acknowledgments The Efficiency Committee expresses its gratitude

  9. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08T23:59:59.000Z

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  10. Energy Consumption Status of Public Buildings and the Analysis of the Potential on Energy Efficiency in Xiamen 

    E-Print Network [OSTI]

    Pei, X.; Zhang, S.; Chen, L.; Zhang, X.; Chen, J.

    2006-01-01T23:59:59.000Z

    Based on the survey on the preset and applied situation of the central air conditioning systems in public buildings in Xiamen, this paper analyzes the status of energy consumption, and indicates the irrational aspects of operation and management...

  11. Energy Consumption Status of Public Buildings and the Analysis of the Potential on Energy Efficiency in Xiamen

    E-Print Network [OSTI]

    Pei, X.; Zhang, S.; Chen, L.; Zhang, X.; Chen, J.

    2006-01-01T23:59:59.000Z

    Based on the survey on the preset and applied situation of the central air conditioning systems in public buildings in Xiamen, this paper analyzes the status of energy consumption, and indicates the irrational aspects of operation and management...

  12. Efficiency Vermont's Enhanced Building Operations Programs

    E-Print Network [OSTI]

    Laflamme, S.

    2011-01-01T23:59:59.000Z

    assistance, economic analysis, and financial incentives to help Vermont households and businesses reduce their energy costs 4 Efficiency Vermont?s Commercial & Industrial Programs New Construction Program ? Prescriptive - Rebates ? Core Performance... ? Custom Market Opportunity Program ? Prescriptive - Rebates ? Custom Retrofit Program ? Custom* * includes improving building operations programs More Information at www.efficiencyvermont.com 5 Efficiency Vermont?s Operational Improvement...

  13. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    SciTech Connect (OSTI)

    Anderson, Temashio [Scotts Valley Band of Pomo Indians

    2013-06-28T23:59:59.000Z

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  14. Building America Webinar: National Residential Efficiency Measures...

    Energy Savers [EERE]

    Database Webinar Slides Building America Webinar: Saving Energy in Multifamily Buildings Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

  15. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    and C O Reduction i n District Heating and C o o l i n g . "Energy Efficiency o f District Heating and C o o l i n g byP o w e r Generation/District Heating and C o o l i n g

  16. Analysis and Research on the Thermal Properties of Energy-efficient Building Glass: A Case Study in PVB Laminated Glass

    E-Print Network [OSTI]

    Chen, Z.; Meng, Q.

    2006-01-01T23:59:59.000Z

    , are analyzed. The methods on usage of energy-saving glass are promoted based on the differences of their thermal properties. Meanwhile, a new kind of glass?PVB laminated glass (Fig.1), is introduced. Fl at cl ear gl ass 0. 05mmLOWE coati ng Fl at cl ear g... lass 3 mm( 5 mm) 0. 38mmPVB 3 mm( 5 mm) 0. 38mmPVB Fig. 1 Structure of PVB laminated glass ICEBO2006, Shenzhen, China Envelope Technologies for Building Energy Efficiency, Vol.II-4-5 2. EVALUATION STANDARDS OF SOLAR-OPTICAL PROPERTY The main...

  17. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    new Federal buildings which begin the planning process by 2020 to achieve zero net energy by 2030zero-net

  18. Collaborating With Utilities on Residential Energy Efficiency...

    Office of Environmental Management (EM)

    on Residential Energy Efficiency Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Collaborating With Utilities on Residential Energy...

  19. Incorporating Behavior Change Efforts Into Energy Efficiency...

    Energy Savers [EERE]

    Into Energy Efficiency Programs Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Incorporating Behavior Change Efforts into Energy...

  20. Proceedings of the 2004 ACEEE Summer Study on Energy Efficiency in Buildings. August 22 -27, 2004 Asilomar Conference Center Pacific Grove, California.

    E-Print Network [OSTI]

    Proceedings of the 2004 ACEEE Summer Study on Energy Efficiency in Buildings. August 22 - 27, 2004 · Asilomar Conference Center · Pacific Grove, California. Developing a Next-Generation Community College

  1. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    United States and China, Energy and Buildings, 2013. Underin Singapore. Energy and Buildings, 37, 167-174. Eom, J. ,building operations. Energy and Buildings, 33, 783–791.

  2. Building America Webinar: Central Multifamily Water Heating Systems- Energy-Efficient Controls for Multifamily Domestic Hot Water

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America webinar on January 21, 2015.

  3. Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants

    E-Print Network [OSTI]

    Lehrer, David; Vasudev, Janani

    2011-01-01T23:59:59.000Z

    of LEED-Certified Commercial Buildings. ” Proceedings,on Energy Efficiency in Buildings, ACEEE, Washington DC,System User Interface for Building Occupants. ” ASHRAE

  4. Project REED (Residential Energy Efficiency Design) is a Web-based building performance simulation tool

    E-Print Network [OSTI]

    -based whole building simulation program that displays graphi- cally the gas and electricity cost of building to deliver powerful build- ing performance simulation tools to precisely targeted audiences. Using interface design, the web has the potential to deliver powerful new building performance simulation tools

  5. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    Buildings to Be Green and Energy-Efficient: Optimizingdevelopment such as green buildings and energy-efficientin making their properties green or energy efficient (mostly

  6. Cost-Effecitive Energy Efficiency Measure for Above 2003 and 2009 IECC Code-Compliant Residential and Commercial Buildings in the City of Arlington

    E-Print Network [OSTI]

    Kim, H.; Do, S.; Baltazar, J.C.; Haberl, J.; Lewis, C.

    ESL-TR-11-07-01 COST-EFFECTIVE ENERGY EFFICIENCY MEASURES FOR ABOVE CODE (2003 AND 2009 IECC): RESIDENTIAL BUILDINGS IN THE CITY OF ARLINGTON A Research Project for the City of Arlington Hyojin Kim Sung Lok Do...-family residential buildings in the CoA. For more realistic recommendations, the CoA provided two years of residential building energy compliance reports from 2008 to 2010 which exceeded the energy efficiency requirements of the CoA (i.e., 2003 International...

  7. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    Hao Bin. 2009. “Building Energy Efficiency Evaluation andWhy is the building energy efficiency retrofit difficult?University Building Energy Efficiency Research Centre (

  8. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    University Building Energy Efficiency Research Centre (Report on China Building Energy Efficiency. Beijing: Chinaand Practice on Building Energy Efficiency in China. ”

  9. Energy Department Invests $6 Million to Increase Energy Efficiency...

    Office of Environmental Management (EM)

    6 Million to Increase Energy Efficiency of Schools, Offices, Stores and other U.S. Buildings Energy Department Invests 6 Million to Increase Energy Efficiency of Schools, Offices,...

  10. Energy Reduction Plan for State Buildings

    Broader source: Energy.gov [DOE]

    In April 2007, Massachusetts Gov. Deval Patrick signed Executive Order 484, titled “Leading by Example: Clean Energy and Efficient Buildings.” This order establishes numerous energy targets and...

  11. Residential Buildings Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promote the use of energy efficient technologies and methods by builders through the DOE Zero Energy Ready Home program. Building Codes and Equipment Standards Provide a wide...

  12. Building Energy Optimization Tool (BEopt) Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool (BEopt) 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov The Home of the Future....Today 3 | INNOVATION & INTEGRATION:...

  13. reEnergize: Building Energy Smart Communities | Department of...

    Energy Savers [EERE]

    reEnergize: Building Energy Smart Communities reEnergize: Building Energy Smart Communities Slides presented in the "What's Working in Residential Energy Efficiency Upgrade...

  14. An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    This paper presents the results of the analyses of various envelope upgrades for residential energyefficiency in hot and humid climates. The building components considered for the upgrades include: building shape, construction type, roof...

  15. An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates 

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    2006-01-01T23:59:59.000Z

    This paper presents the results of the analyses of various envelope upgrades for residential energyefficiency in hot and humid climates. The building components considered for the upgrades include: building shape, construction ...

  16. Residential Energy Efficiency Customer Service Best Practices...

    Energy Savers [EERE]

    Residential Energy Efficiency Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call...

  17. Guide for Benchmarking Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. Guide for Benchmarking Residential Energy Efficiency Program...

  18. Roaring Fork Valley- Energy Efficient Appliance Program

    Broader source: Energy.gov [DOE]

    The Aspen Community Office for Resource Efficiency (CORE) promotes renewable energy, energy efficiency and green building techniques in western Colorado's Roaring Fork Valley. For customers who...

  19. Sawnee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes....

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  1. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

  4. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    A demand-side management framework from building operationsdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This paper summarizes the integration of DR in demand-side management

  5. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    a building operations perspective, a demand-side managementdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This report summarizes the integration of DR in demand-side management

  6. City of Chicago- Building Energy Code

    Broader source: Energy.gov [DOE]

    The Chicago Energy Conservation Code (CECC) requires residential buildings applying for building permits to comply with energy efficient measures which go beyond those required by the [http://www...

  7. REDUCING ENERGY USE IN FLORIDA BUILDINGS

    E-Print Network [OSTI]

    Raustad, R.; Basarkar, M.; Vieira, R.

    to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

  8. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  9. Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-01-01T23:59:59.000Z

    strategies (building codes and energy- efficiency standards)Summer Study on Energy Efficiency in Buildings, Asilomar CA,ratepayer-funded energy efficiency programs, building energy

  10. Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

    2012-01-01T23:59:59.000Z

    pp. 728–733. Chapter 2: Commissioning guidelines for UFAD2.0 To accomplish commissioning of UFAD system, specificprocedure for use by commissioning agents and other building

  11. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    Doing Well by Doing Good? Green Office Buildings. AmericanWhy Do Companies Rent Green? Real Property and Corporatepaper? ] Kahn, Matthew. 2006. “Green Cities, Urban Grown and

  12. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    buildings. A demand-side management framework from buildingthe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  13. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  14. Green Building- Efficient Life Cycle 

    E-Print Network [OSTI]

    Kohns, R.

    2008-01-01T23:59:59.000Z

    Energy saving does not just apply to traffic, production or agriculture. Buildings are also contributing to the climate change. The focus here is on the energy they use and on their CO2 emissions. Each year, Siemens invests more than two billion...

  15. Green Building- Efficient Life Cycle

    E-Print Network [OSTI]

    Kohns, R.

    Energy saving does not just apply to traffic, production or agriculture. Buildings are also contributing to the climate change. The focus here is on the energy they use and on their CO2 emissions. Each year, Siemens invests more than two billion...

  16. Social Game for Building Energy Efficiency: Utility Learning, Simulation, and Analysis

    E-Print Network [OSTI]

    Konstantakopoulos, Ioannis C; Ratliff, Lillian J; Jin, Ming; Sastry, S. Shankar; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    Efficiency: Utility Learning, Simulation, and Analysisthe utility learning problem as well as simulation of the

  17. 2013 California Building Energy Efficiency Standards December 2011 CODES AND STANDARDS ENHANCEMENT INITIATIVE (CASE)

    E-Print Network [OSTI]

    ...................................................................................23 4.3.4 The Effect of Non-condensables on Air Conditioner Efficiency

  18. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01T23:59:59.000Z

    in the Evolving Electricity Generation and Deliveryfor meeting building electricity and heat requirementswas funded by the Office of Electricity Delivery and Energy

  19. Building Partnerships to Cut Petroleum Use in Transportation (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE Building Envelopes101-HV

  20. Building Partnerships to Cut Petroleum Use in Transportation (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE Building Envelopes101-HVClean Cities