National Library of Energy BETA

Sample records for buildings energy efficiency

  1. Energy Efficient Buildings Hub

    SciTech Connect (OSTI)

    2013-04-01

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  2. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    improving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are brieflyimproving the energy efficiency of buildings in the U.S. New

  3. Building Energy Efficient Schools 

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.

    1985-01-01

    Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

  4. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary report and...

  5. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy...

  6. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

  7. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    Seven recent energy-efficient U.S. office buildings areSeven recent energy-efficient U.S. office buildings areLaboratory (1982), "Energy Efficient Buildings Program FY

  8. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  9. Funding Opportunity Coming Soon: Buildings Energy Efficiency...

    Office of Environmental Management (EM)

    Opportunity Coming Soon: Buildings Energy Efficiency Frontiers & Innovation Technologies (BENEFIT) 2016 Funding Opportunity Coming Soon: Buildings Energy Efficiency Frontiers &...

  10. BUILDING ENERGY EFFICIENCY RESEARCH & TECHNOLOGY

    E-Print Network [OSTI]

    California at Davis, University of

    BUILDING ENERGY EFFICIENCY RESEARCH & TECHNOLOGY A JOURNAL REVIEW TTP 289A-003, CRN #42059 Friday 3, cultural). Topics: May include: Zero net energy, `smart' building controls, passive design strategies, human health and wellness in buildings. Students are encouraged to introduce their own topic of interest

  11. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    indoor air quality, buildings energy performance, computervoluntary building-energy-performance guidelines. Recentlyrelated to building-energy-performance standards, guidelines

  12. Building Energy-Efficient Schools

    E-Print Network [OSTI]

    energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina certification; a goal was also set for schools undergoing major renovation to achieve 25% energy savingsBuilding Energy- Efficient Schools in New Orleans Lessons Learned #12;2 #12;3 The devastation

  13. RADON DAUGHTER EXPOSURES IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero, J.V.EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero, J.V.EXPOSURES IN ENERGY EFFICIENT BUILDINGS A.V. Nero, J.V.

  14. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

  15. Energy Efficiency Upgrades Help Build Better Neighborhoods |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Upgrades Help Build Better Neighborhoods Energy Efficiency Upgrades Help Build Better Neighborhoods May 6, 2013 - 4:55pm Addthis In neighborhoods all across the...

  16. Technologies for Energy Efficient Buildings

    E-Print Network [OSTI]

    Resource Technologies for Energy Security Subtask 8.4 Deliverable By GE Global Research Niskayuna, New York.4.2.3 Total electrical energy consumption 33 3.4.2.4 Consumer alert messages 33 3.5 Laboratory TestingTechnologies for Energy Efficient Buildings Prepared for the U.S. Department of Energy Office

  17. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    addressed by the Buildings Energy Data (BED) Group at LBL.buildings by the Buildings Energy Data (BED) Group at LBL,results from our buildings energy data bases. Actual energy

  18. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    A. B. (1992). Energy-Efficiency Buildings: Institutionalec.europa.eu/energy/efficiency/buildings/buildings_en.htm20). Plan on energy efficiency building to be announced,

  19. Building America Residential Energy Efficiency Stakeholders Meeting...

    Energy Savers [EERE]

    Energy Efficiency Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report...

  20. Better Buildings Neighborhood Program: Energy Efficiency Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: Energy Efficiency Market Sustainable Business Planning Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning U.S. Department of...

  1. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY-EFFICIENT RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Berk, J.V.

    2011-01-01

    Laboratory Energy Efficient Buildings Mobile Laboratory.of 1,150 f t . LBL's Energy Efficient Buildings (EEB) MobileLaboratory. Energy Efficient Buildings Program Energy and

  2. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    operation with energy efficiency in building systems. X X Xoperation with energy efficiency in building systems. 10.3.for Energy Efficiency and Renewable Energy, Building

  3. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Improving energy efficiency in existing buildings. ASHRAEStandard for Energy Efficiency of Public Buildings. EnergyFor Energy Efficiency of Public Building -- GB 50189.

  4. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01

    Quality Measurements in Energy Efficient Buildings Craig D.Quality ~leasurements in Energy Efficient Buildings Craig D.Gregory W. Traynor Energy Efficient Buildings Program Energy

  5. Energy efficiency buildings program, FY 1980

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  6. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    of actual buildings energy consumption data confirm thedata bases. Actual energy consumption data are necessary toten years. The energy consumption data for new low-energy

  7. INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, Craig D.

    2011-01-01

    microbial burden The Energy Efficient Buildings (EEB) Mobilein a number of energy efficient buildings, wherein pollutantenergy~efficient ventilation , institutional and commercial buildings.

  8. RADON AND ITS DAUGHTERS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    pp. 18- 23 in Energy Efficient Buildings Program, Lawrencein conventional and energy-efficient buildings; and 3) the

  9. Apply: Building Energy Efficiency Frontiers and Innovation Technologie...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Funding Opportunity Announcement Apply: Building Energy Efficiency Frontiers and Innovation...

  10. Energy Efficient State Building Initiative

    Broader source: Energy.gov [DOE]

    The order also requires that renovations or repairs of existing buildings achieve the maximum efficiency level that is cost-effective based on an analysis of construction and operating costs over...

  11. Building Up Home Energy-Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Up Home Energy-Efficiency Building Up Home Energy-Efficiency August 26, 2014 - 11:00am Addthis Building or remodeling a home provides an opportunity to build...

  12. Building America Residential Energy Efficiency Research Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On this page, you may link to the summary report and...

  13. Mainstreaming Building Energy Efficiency Codes in Developing...

    Open Energy Info (EERE)

    Mainstreaming Building Energy Efficiency Codes in Developing Countries: Global Experiences and Lessons from Early Adopters Jump to: navigation, search Tool Summary LAUNCH TOOL...

  14. Energy Efficient Buildings Hub | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment of EnergyDepartmentEfficient Buildings Hub Energy

  15. Commercial Building Energy Efficiency Education Project

    SciTech Connect (OSTI)

    2013-01-13

    The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

  16. Energy Efficient Retrofits and Green Building Practices 

    E-Print Network [OSTI]

    Rahman, M.

    2010-01-01

    . Moreover, the increase in demand is also causing rise in pollution levels. Therefore, the subject of energy efficient retrofits and green building practices is becoming increasingly important. Based on the latest walkthrough energy audit it is proven...

  17. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  18. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Summer Study on Energy Efficiency in Buildings. ACEEE. EarthStudy on Energy Efficiency in Buildings, 10-196. Martinez,Rubild, J. (2008). Energy Efficiency in Buildings in China.

  19. Retrofitting Existing Buildings for Demand Response & Energy Efficiency

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Retrofitting Existing Buildings for Demand Response & Energy Efficiency www rate periods to avoid high charges. · Assembly Bill 1103 ­ Building Energy Efficiency Disclosure - Starting January 1, 2010, all commercial building lease transactions must disclose the energy efficiency

  20. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    and display building energy data. iii Glossary Energy1) How to interpret energy data, to improve efficiency andutility bills or interval energy data. Longitudinal Cross-

  1. Database Aids Building Owners and Operators in Energy-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to expanding the building energy-efficiency retrofit market is the lack of empirical data on building energy performance. This deficiency makes it difficult for building...

  2. Efficient and Sustainable Energy: Ecology and Energy Challenges Energy Efficient and Sustainable Buildings M. Kostic

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    existing buildings, and to develop a proposal for funding of a model "Energy Efficient Building" on NIU and practices and develop new ones. The new "Energy Efficient Building" could be a Model Energy LandmarkEfficient and Sustainable Energy: Ecology and Energy Challenges Energy Efficient and Sustainable

  3. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema (OSTI)

    None

    2014-06-26

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  4. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect (OSTI)

    2014-03-14

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  5. Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

    Office of Environmental Management (EM)

    Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) -...

  6. Obama Administration Launches $130 Million Building Energy Efficiency...

    Energy Savers [EERE]

    Administration Launches 130 Million Building Energy Efficiency Effort Obama Administration Launches 130 Million Building Energy Efficiency Effort February 12, 2010 - 12:00am...

  7. Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings...

    Energy Savers [EERE]

    Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge November 6, 2013 -...

  8. Business Case for Energy Efficient Building Retrofit and Renovation...

    Energy Savers [EERE]

    Business Case for Energy Efficient Building Retrofit and Renovation Business Case for Energy Efficient Building Retrofit and Renovation This report outlines ways to make the right...

  9. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    Heating and Cooling Efficiency Source: Glass, Analysis of building-integrated renewable energy systems in modern UK homes.

  10. Energy Efficiency in Buildings- the Utilities View 

    E-Print Network [OSTI]

    Konig, U.

    2008-01-01

    Efficiency in Buildings - the Utilities View U. K?nig RWE Energy AG The energy to lead ESL-IC-08-10-27 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE Energy... for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE Energy / Energieeffizienz bei Immobilien / U. K?nig / ICEBO '08 SEITE 3 RWE ? One of the five leading Energy Companies in Europe > Nr 1 producer of electricity in Germany, Nr 3 in UK...

  11. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    April). Options for Energy Efficiency in India and Barriersmain.htm Bureau of Energy Efficiency, Government of India. (of Building Energy Efficiency Labeling. Presentation.

  12. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    of cumulative sums to identify energy use anomalies in 37Energy Information HandbookApplications for Energy-Efficient Building Operations J.

  13. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    SciTech Connect (OSTI)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  14. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Richland, Washington: Building Energy Codes Program, PacificHogan, J. (2003). Building Energy Code Enforcement: A LookM. (2010, April). Options for Energy Efficiency in India and

  15. Better Buildings Challenge is Expanding, Improving Energy Efficiency...

    Office of Environmental Management (EM)

    and manufacturers to improve building energy efficiency by addressing whole building energy data access, utilizing industrial superior energy performance, or conducting performance...

  16. Building Energy Asset Score: Utilities and Energy Efficiency Program Administrators

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use.

  17. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    U.S. energy-efficient and renewable building technologies,demonstration energy- efficient commercial building”, LBNLdemonstration energy-efficient office building Peng Xu Joe

  18. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01

    Quality Measurements in Energy- Efficient Buildings; April,9576 EEB 79-5 NIA ENERGY EFFICIENT BUILDINGS PROGRAM ChapterCalifornia 94720 ENERGY EFFICIENT BUILDINGS PROGRAM Annual

  19. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    China demonstration energy- efficient commercial building”,China Demonstration Energy Efficient Office Building insideUS-China demonstration energy-efficient office building Peng

  20. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    SciTech Connect (OSTI)

    New Buildings Institute; Pacific Northwest National Laboratory; Granderson, Jessica; Piette, Mary Ann; Rosenblum, Ben; Hu, Lily; Harris, Daniel; Mathew, Paul; Price, Phillip; Bell, Geoffrey; Katipamula, Srinivas; Brambley, Michael

    2011-10-01

    This handbook will give you the information you need to plan an energy-management strategy that works for your building, making it more energy efficient.

  1. Local Option- Property Tax Assessment for Energy Efficient Buildings

    Broader source: Energy.gov [DOE]

    An energy-efficient building is defined as any building that exceeds the energy efficiency standards of the Virginia Uniform Statewide Building Code by 30%; meets performance standards of the...

  2. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01

    predicted vs. actual energy usage/savings, and present thetools for estimating energy usage. These data bases provideft -yr in resource energy usage. These same office bUild~ngs

  3. SPEER: Building a Regional Energy Efficiency Partnership 

    E-Print Network [OSTI]

    Lewin, D.

    2013-01-01

    , Texas Dec. 16-18 SPEER Members ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Our Focus Areas • BuildingsEnergy Efficiency as a Resource • Combined Heat and Power and Distributed Generation.... • Not enough coordination amongst professions, manufacturers, governmental entities. • EE viewed as dependent upon incentives; view as less than a full resource. ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas...

  4. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect (OSTI)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  5. Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning, October 25, 2011.

  6. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    solution”. In: Energy and Buildings 52.0 (2012), pp. 39–49.with GenOpt”. In: Energy and Buildings 42.7 (2010), pp.lation Program”. In: Energy and Buildings 33.4 (2001), pp.

  7. Improving Energy Efficiency in Federal Commercial Buildings

    SciTech Connect (OSTI)

    Nasseri, Cyrus H.; Somasundaram, Sriram; Winiarski, David W.

    2004-08-27

    This paper is an overview of various activities underway in the Federal sector to help improve the energy efficiency in new and existing Federal commercial buildings. The two main drivers for the energy efficiency upgrades within the Federal sector are Executive Orders (E.O.) from the Executive branch and the legislative requirements passed by the legislative branch and then signed into law by the Executive branch of the U.S. Federal Government. The recent Executive Orders pertaining to this discussion are the E.O. 12902 (1994) and the E.O. 13123 (1999). The legislative requirements are contained in the Energy Policy Act (EPACT) of 1992 which amended the Energy Conservation and Production Act (ECPA) and the pending Energy Policy Act of 2003.

  8. Products and Building Services for Energy-Efficient Homes | Department...

    Energy Savers [EERE]

    Products and Building Services for Energy-Efficient Homes Products and Building Services for Energy-Efficient Homes March 1, 2015 - 10:37am Addthis Production builder Centex Homes...

  9. Energy Audit Results for Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II Building and Community Design 3 Hawai`i Natural Energy Institute University of Hawai`i Manoa #12;#12;i This report analyses complete energy audit results from 28 homes within the Forest City residential complex

  10. RADON AND ITS DAUGHTERS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    AMD ITS DAUCHTERS IN ENERGY-EFFICIENT BUILDINCS A.V. Nero,W.W. Nazaroff, Radon in Energy-Efficient Houses, LawrenceStudies, pp. 18- 23 in Energy Efficient Buildings Program,

  11. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01

    of green and energy efficient buildings throughout the urbancosts of green and energy efficient buildings, barriers toof green or energy-efficient buildings across a metropolitan

  12. How ambient intelligence will improve habitability and energy efficiency in buildings

    E-Print Network [OSTI]

    Arens, Edward A; Federspiel, C.; Wang, D.; Huizenga, C.

    2005-01-01

    Habitability and Energy Efficiency in Buildings. ” PublishedHabitability and Energy Efficiency in Buildings. ” PublishedHabitability and Energy Efficiency in Buildings. ” Published

  13. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01

    Study in Energy Efficiency in Buildings August Nationalelectric loads in buildings: energy efficiency (for steady-and Energy Efficiency Options Using Commercial Building

  14. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01

    The Diffusion of Energy Efficiency in Building. ” Americanmake green or energy efficiency investments in buildings arefeatures or energy efficiency into commercial buildings, and

  15. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    Comparing building energy performance to that of similarincluding building energy performance monitoring. Sitewhole-building behaviors and energy performance, incorporate

  16. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    renewables- integrated green building floor space growing towhich renewable energy resources are used to provide spacerenewable energy (especially rooftop solar), and energy-efficient light bulbs, rather than for energy-efficient space-

  17. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    of Buildings: Energy Policies in Europe – Examples of BestEnergy Buildings in Europe: Current State of Play, Definitions and Bestto finance energy-efficiency projects in Europe. The best

  18. Better Buildings Financing Energy Efficiency Retrofits in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the Better Buildings webinar presented on May 4, 2011: Survey of Small Commercial Energy Efficiency Finance Programs Sponsored by State Governments Oregon Energy Loan:...

  19. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  20. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01

    Energy Efficiency & Renewable Energy Financing Districts ForEfficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

  1. Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings

    E-Print Network [OSTI]

    Casillas Barranquero, Jorge

    Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings R. Alcal´a DECSAI- tion in buildings represents about 40% of to- tal energy consumption and more than a half controllers, tuning techniques, multiobjective optimisation, en- ergy efficiency, buildings, BEMS, HVAC sys

  2. Energy Audit Results for Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

  3. Curriculum for Commissioning Energy Efficient Buildings

    SciTech Connect (OSTI)

    Webster, Lia

    2012-09-30

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual lessons, followed by a 24 hour hands-on lab. Total time required is between 50 and 70 hours, depending on the pace of the independent learner. • Individual courses can be taken for continuing education credits. • Assessments are included for each course, and a score of at least 80% is required for completion. • Completion of Modules 1 through 3 is prerequisite for participating in the laboratory. More experienced participants have the option to test out of Modules 1 and 2 and complete Module 3 to progress to the laboratory.

  4. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    Achieving sustainability goals may require High Performanceperformance). Coordination and potentially consolidation of energy and sustainabilityPerformance Healthcare Buildings: A Roadmap to Improved Energy Efficiency 11-Sept-2009 o Link government reimbursements to efficiency and sustainability

  5. Building America Residential Energy Efficiency Technical Update...

    Broader source: Energy.gov (indexed) [DOE]

    Update meeting in August 2011, held in Denver, Colorado. 2011 Residential Energy Efficiency Technical Update Meeting More Documents & Publications 2011 Residential Energy...

  6. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CODES AND INCENTIVES 31 Chapter Six VOLUNTARY PROGRAMS AND LOCAL AND STATE POLICIES FOR GREEN AND ENERGY-EFFICIENT BUILDINGS 38 Chapter Seven RESOURCES FOR MORE INFORMATION 50...

  7. MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    data for new energy-efficient commercial buildings, we alsois an energy-efficient commercial building?" and "efficientin new, energy-efficient commercial buildings. Most new

  8. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    E-Print Network [OSTI]

    Vine, Edward

    2002-01-01

    reductions from energy-efficiency building technologies andreductions from energy-efficiency building technologies andLBNL-49750 Energy Efficiency in Buildings as an Air Quality

  9. Topical Lunch Summary, May 28, 2013 Integrated Building Energy Efficiency The Integrated Building Energy Efficiency topical lunch gathered 30 participants, about 50%

    E-Print Network [OSTI]

    Walter, M.Todd

    Topical Lunch Summary, May 28, 2013 ­ Integrated Building Energy Efficiency The Integrated Building on building energy efficiency at Cornell. Several potential collaborations were discussed. One highlight Energy Efficiency topical lunch gathered 30 participants, about 50% faculty/researchers, 40% facilities

  10. Social Game for Building Energy Efficiency: Incentive Design

    E-Print Network [OSTI]

    Sastry, S. Shankar

    consumption of buildings, both residential and commercial, accounts for approximately 40% of all energy usageSocial Game for Building Energy Efficiency: Incentive Design Lillian J. Ratliff, Ming Jin, Ioannis of a social game encouraging energy efficient behavior in occupants by dis- tributing points which determine

  11. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01

    the larger diffusion of green and energy efficient buildingsowners, the costs of green and energy efficient buildings,market. Demand for Green and Energy Efficient Buildings The

  12. Energy efficient building structure and panel therefor

    SciTech Connect (OSTI)

    Carroll, Th.J.; Paisley, J.K.

    1984-08-28

    A building structure is constructed from a plurality of sheathed, foam cored structural panels which are adapted to receive solar energy conversion or heat storage devices and are adapted to be connected in an air flow loop to provide integral heating and/or cooling systems for the building structure.

  13. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    and A. H. Rosenfeld Energy Efficient Windows Program S.Verderber, and J. Klems Energy Efficient Lighting Program S.1978 A. K. OPPENHEIM Energy Efficient Buildings INTRODUCTION

  14. Design for Energy Efficiency in Residential Buildings 

    E-Print Network [OSTI]

    Song, M.; Zhang, Y.; Yang, G.

    2006-01-01

    This paper presents the thermal design and heating design of an energy saving residential building in Beijing where the owners lived until 2004. Results show the advantages and disadvantages of a household-based heating mode by natural gas. Based...

  15. INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, Craig D.

    2011-01-01

    for studies of indoor air quality and energy utilization inExt. 6782 Indoor Air Quality in Energy- Buildings Craig D.1, 1979) Indoor Air Quality in Energy~Efficient LBL-8892 EEB

  16. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    might expect an energy-efficient building to be expensive toto build an energy-efficient building for no more thanestimates for new energy-efficient buildings, we compiled

  17. Energy Department Announces Building Energy Efficiency Investments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department's national strategy to create jobs, boost domestic manufacturing in energy-saving technologies and help American families and businesses save money. "Deploying...

  18. Building Operator Certification: Improving Commercial Building Energy Efficiency Through Operator Training and Certification 

    E-Print Network [OSTI]

    Putnam, C.; Mulak, A.

    2001-01-01

    Building Operator Certification (BOC) is a competency-based certification for building operators designed to improve the energy efficiency of commercial buildings. Operators earn certification by attending training sessions and completing project...

  19. Analysis of the Russian Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.; Roshchanka, Volha

    2012-12-01

    This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

  20. Building America - Resources for Energy Efficient Homes

    SciTech Connect (OSTI)

    2012-04-19

    Building America publications help builders achieve whole-house energy savings in five major climate zones. Using the recommendation and process improvements outlined in the Best Practices Series handbooks, builders can re-engineer their designs to improve energy performance and quality. Case studies for new and existing homes provide results from actual projects.

  1. Analysis of the Chinese Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

  2. Audit Procedures for Improving Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Audit Procedures for Improving Residential Building Energy Efficiency This report analyses Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & Technology Sustainability Program Subtask 3.5.1: Residential Energy Efficiency Deliverable 1 Prepared by The University

  3. Energy Efficient Buildings Hub | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects |EnergyAll 50BatteriesitsEnergyofThis

  4. Building a State Industrial Energy Efficiency Network 

    E-Print Network [OSTI]

    Ferland, K.

    2005-01-01

    Energy Efficiency Network? Kathey Ferland Project Manager Texas Industries of the Future University of Texas at Austin (512)232-4823 or kferland@mail.utexas.edu http://TexasIOF.ces.utexas.edu Texas Industries of the Future brings the tools... industrial energy users. The presentation will cover recent activities of the program, technology highlights from a conference on NOx reduction and energy efficiency, and upcoming events. ...

  5. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    SciTech Connect (OSTI)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  6. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    ALC) system. ALC is a building automation system, offering aModern digital building automation systems satisfy thesemore sophisticated building automation systems and building

  7. Energy Efficiency Evaluation and Planning for Existing Buildings

    Broader source: Energy.gov [DOE]

    For meeting Federal sustainability requirements, agencies can use evaluation methods—such as benchmarking and energy audits—and planning to make their existing buildings energy efficient. To comply...

  8. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Low Energy Buildings .6.2.2.7. International Comparisons of Low Energy Building218 China Low Energy Building Case

  9. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    and interpret. HVAC Efficiency and Energy Signatures can beHeating and Cooling Efficiency Energy Signature EnergyHeating and Cooling Efficiency Energy Signature Appendix

  10. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    SciTech Connect (OSTI)

    Authors, Various

    1981-05-01

    The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

  11. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    Control for Active and Passive Building Thermal Storage”.Control for Active and Passive Building Thermal StorageControl for Active and Passive Building Thermal Storage

  12. HVAC & Building Management Control System Energy Efficiency Replacements

    SciTech Connect (OSTI)

    Hernandez, Adriana

    2012-09-21

    The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

  13. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Energy efficiency in building sector in India through Heat Pump Technology By Mr Pradeep Kumar sector in India · Residential building sector in India · HVAC growth in residential sector. · Heat Pump, Sustainable habitat, Biotechnology, Renewable energy, Water technology, Industrial research, Social

  14. Developing a next-generation community college curriculum for energy-efficient high-performance building operations

    E-Print Network [OSTI]

    2004-01-01

    the subject of energy-efficient buildings has never beforecontrol technologies and energy-efficient building sciences.Lab in the energy efficient buildings program. Faculty

  15. Controlling Energy-Efficient Buildings in the Context of Smart Grid: A Cyber Physical System Approach

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2014-01-01

    and K. Wirth. Energy efficient building climate controlsys- tems in energy efficient buildings. Master’s thesis,Forecasts for Energy Efficient Building Climate Control”.

  16. Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01

    and provide energy efficiency and building technologies toStudy on Energy Efficiency in Buildings. Pacific Grove,in improving energy efficiency in commercial buildings would

  17. 2014 ACEEE Summer Study on Energy Efficiency in Buildings

    Broader source: Energy.gov [DOE]

    The 2014 Summer Study is the 18th biennial ACEEE conference on Energy Efficiency in Buildings. A diverse group of professionals from around the world will gather at this pre-eminent meeting to...

  18. Tax Incentives for Energy Efficiency Upgrades in Commercial Buildings

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the tax deductions available for improving the energy efficiency of commercial buildings, as well as links to qualified software available for calculating...

  19. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    Model Predictive Control and Thermal Storage: a Simple 3.3of Building Thermal Storage”. In: ASHRAE Transactions 96.2 (and Passive Building Thermal Storage”. In: International

  20. Energy Efficiency Program for State Government Buildings

    Broader source: Energy.gov [DOE]

    The High-Performance Buildings Advisory Committee assisted the Finance and Administration Cabinet with setting out the standards and benchmarks by which to evaluate buildings. Leadership in Energ...

  1. Audit Procedures for Improving Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Audit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability As part of Cooperative Agreement No. DE-EE0003507 Under Task 3.5: Energy

  2. Cost and benefit of energy efficient buildings

    E-Print Network [OSTI]

    Zhang, Wenying, S.B. Massachusetts Institute of Technology

    2006-01-01

    A common misconception among developers and policy-makers is that "sustainable buildings" may not be financially justified. However, this report strives to show that building green is cost-effective and does make financial ...

  3. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    solar radiation, occupancy, and electrical devices in the buildings as a function of weather information, time, and date.solar radiation, occupancy, and electrical devices in the buildings as a function of weather information, time, and date.

  4. Sustainable Buildings, Energy Efficiency, and Williams College A Look at the North and South Academic Buildings

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    Sustainable Buildings, Energy Efficiency, and Williams College A Look at the North and South in providing recognition is the US Green Buildings Council's Leadership in Energy and Environmental De Academic Buildings While relatively new, the Williams College commitment to environmentally sustainable

  5. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    study of Ningbo. Energy and Buildings(43), 2197-2202. Yin,buildings in China. Energy and Buildings, 36, 1191-1196.Public Buildings. Energy and Buildings, 41, 426:435. Hong,

  6. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    hospitals in their building energy performance standard (Information on energy performance of building products. •information on energy performance of building products.

  7. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    Healthcare Buildings: A Roadmap to Improved EnergyHealthcare Buildings: A Roadmap to Improved EnergyHealthcare Buildings: A Roadmap to Improved Energy

  8. Abstract--Energy efficiency for the buildings is vital for the environment and sustainability. Buildings are responsible for

    E-Print Network [OSTI]

    Jain, Raj

    1 Abstract--Energy efficiency for the buildings is vital for the environment and sustainability for a multi-disciplinary research project on energy efficiency. We collected the building energy data. Index Terms-- Green Buildings, Energy Efficiency, Energy Modeling, Smart Energy, Energy

  9. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  10. Energy Sensing and Monitoring Framework with an Integrated Communication Backbone in Energy Efficient Intelligent Buildings

    E-Print Network [OSTI]

    Jain, Raj

    . Building environments are significant sources of global energy consumption. To create energy efficient in the intelligent buildings to realize the goals of coordination, integration, and energy efficiency. Also, we Efficient Intelligent Buildings Jianli Pan1, 3, a , Shanzhi Chen2, b , Raj Jain3, c , Subharthi Paul3, d 1

  11. Energy Efficient Residential Building Code for Arab Countries 

    E-Print Network [OSTI]

    Hanna, G. B.

    2010-01-01

    26-28, 2010, Kuwait 1 Energy Efficient Residential Building Code for Arab Countries George B. HANNA Consultant, Emeritus Professor, Institute of Building Physics and Environment, Housing and Building National Research Center, P. O. Box... in most of the Arab Countries. ESL-IC-10-10-62 Proceedings of the Tenth International Conference for Enhanced Building Operations, Kuwait, October 26-28, 2010 ICEBO2010, October 26-28, 2010, Kuwait 2 E le c tru c i ty C o n s u m p tio n 2 0 0...

  12. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    construction, and eventually the operation of the building.2008. Richland, Washington: Building Energy Codes Program,L. , & Hogan, J. (2003). Building Energy Code Enforcement: A

  13. Energy Efficiency Standards for State Buildings

    Broader source: Energy.gov [DOE]

    The Montana Department of Labor must also develop and adopt high performance building standards, along with the Montana university system and other state agencies. These standards must take into...

  14. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    might expect an energy-efficient building to be expensive toand Analysis of Energy Efficient New Commercial Buildings,LBL-19293 EEB-BED-85-04 ENERGY-EFFICIENT NEW COMMERCIAL

  15. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    based on mass and energy conservation law is developed andbased on mass and energy conservation laws, and the buildingmass and internal energy conservation laws, m ? CHW S ? m ?

  16. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    components that use energy, and thermal energy load. When aLearning Control for Thermal Energy Storage Systems”. In:to validate the energy savings and thermal comfort. Also the

  17. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    of the efficiency measure and associated energy cost savingsthe particular efficiency measure. FY11 savings were 10.8%,efficiency measures, the CUSUM should grow increasingly negative, as energy savings

  18. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC’s enactment, only two states and one territory out of 35 Indian states and union territories formally adopted ECBC and six additional states are in the legislative process of approving ECBC. There are several barriers that slow down the process. First, stakeholders, such as architects, developers, and state and local governments, lack awareness of building energy efficiency, and do not have enough capacity and resources to implement ECBC. Second, institution for implementing ECBC is not set up yet; ECBC is not included in local building by-laws or incorporated into the building permit process. Third, there is not a systematic approach to measuring and verifying compliance and energy savings, and thus the market does not have enough confidence in ECBC. Energy codes achieve energy savings only when projects comply with codes, yet only few countries measure compliance consistently and periodic checks often indicate poor compliance in many jurisdictions. China and the U.S. appear to be two countries with comprehensive systems in code enforcement and compliance The United States recently developed methodologies measuring compliance with building energy codes at the state level. China has an annual survey investigating code compliance rate at the design and construction stages in major cities. Like many developing countries, India has only recently begun implementing an energy code and would benefit from international experience on code compliance. In this paper, we examine lessons learned from the U.S. and China on compliance assessment and how India can apply these lessons to develop its own compliance evaluation approach. This paper also provides policy suggestions to national, state, and local governments to improve compliance and speed up ECBC implementation.

  19. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    Improved Performance of Ice Storage Systems”. In: Energy andfor Thermal Energy Storage Systems”. In: HVAC&R Research

  20. Index to Evaluate Energy Efficiency of the Building HVAC System 

    E-Print Network [OSTI]

    Wang, L.; Wang, L.; Claridge,D.

    2014-01-01

    Efficiency of the Entire Building HVAC System Presented by Dr. Claridge Date: 09/15/2014 ESL-IC-14-09-15 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 2Outline •Why we need the Energy.../Load Ratio •How to get the Energy/Load Ratio •Methodology Adjustment •Case Study •Results Showed by tables and Plots ESL-IC-14-09-15 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 3...

  1. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    Energy Signature Heating and Cooling Efficiency Fundamental Methods References and Technical Resources Air-Conditioning,

  2. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b. Total Primary Energy Consumption (U.S. and Census Region) By Principal Building Activity (Table 1c) html...

  3. AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    homes energy efficient through Title 24 Part 6 Building Energy Efficiency Standards (Standards for Energy Efficiency in Existing Buildings (AB 549 Report), the Energy Commission made a series to existing buildings, disclosure of home energy ratings at point- of-sale, expansion of whole-building

  4. The State Energy Program: Building Energy Efficiency and Renewable Energy Capacity in the States

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study documents the capacity-building effects that the federal State Energy Program (SEP) has had on the states' capacity to design, manage and implement energy efficiency and renewable energy programs.

  5. Building Energy-Efficiency Best Practice Policies and Policy Packages

    SciTech Connect (OSTI)

    Levine, Mark; Can, Stephane de la Rue de; Zheng, Nina; Williams, Christopher; Amman, Jennifer; Staniaszek, Dan

    2012-10-26

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4th Assessment Report estimates that globally 35% to 40% of all energy-related CO{sub 2} emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth in building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries. At the same time, the buildings sector has been particularly resistant to achieving this potential. Technology in other sectors has advanced more rapidly than in buildings. In the recent past, automobile companies have made large investments in designing, engineering, and marketing energy efficient and alternative fuel vehicles that reduce greenhouse gas emissions. At the same time, the buildings sector – dependent on millions and millions of decisions by consumers and homeowners – face a large variety of market barriers that cause very substantial underinvestment in energy efficiency. How can the trajectory of energy use in buildings be changed to reduce the associated CO{sub 2} emissions? Is it possible to greatly accelerate this change? The answer to these questions depends on policy, technology, and behavior. Can policies be crafted and implemented to drive the trajectory down? Can the use of existing energy efficiency technologies be increased greatly and new technologies developed and brought to market? And what is the role of behavior in reducing or increasing energy use in buildings? These are the three overarching issues. The information assembled in this study and the knowledge derived from it needs to be brought to bear on these three questions. And thus we turn to some of the insights from the study, presented in the form of findings and recommendation.

  6. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    investments: Energy-efficiency resource standards, energyon land, energy, water, resource/material efficiency, andWeighting Energy Efficiency Resource/ Material Efficiency

  7. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    E-Print Network [OSTI]

    Vine, Edward

    2002-01-01

    LBNL-49750 Energy Efficiency in Buildings as an Air QualityStudy on Energy Efficiency in Buildings (www.aceee.org), and

  8. DOE Building Energy Asset Score: Energy Efficiency Services Companies Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar DOE Building Energy Asset Score: Energy Efficiency Services Companies, presented in March 2015.

  9. Energy-efficient buildings with earth-shelter protection. Proceedings

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.; Sterling, R.L.; Baggs, S.A. (eds.)

    1983-01-01

    Climate and proximity to the equator as well as acceptance of the concept made Australia a logical place for an international conference on the energy-efficiency opportunities of earth-sheltered buildings. Papers presented at the conference are grouped under 10 general topics: earth environment, landscape/site, passive solar integration, hazard protection, design process, livability/acceptance, interior environment, energy conservation, performance simulation, and structural variations. Sixty-two papers were separately abstracted for the Department of Energy's Data Base.

  10. Energy Efficiency Trends in Residential and Commercial Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    building trends and energy use in commercial and residential buildings, including environmental impacts of buildings and trends in select product specification and market insights....

  11. Efficient Multi-Level Modeling and Monitoring of End-use Energy Profile in Commercial Buildings

    E-Print Network [OSTI]

    Kang, Zhaoyi

    2015-01-01

    buildings”. In: Energy Efficiency 5.2 (2012), pp. 149–162. [Sys- tems for Energy-Efficiency in Buildings. ACM. 2011, pp.Efficient Multi-Level Modeling and Monitoring of End-use

  12. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01

    efficiency investments in buildings are made, and by examining the larger diffusion of green and energy efficient buildings throughout the urbanurban variables and the overall socio-cultural and regulatory environment that may make green labeling or energy efficiency

  13. USING INTRADISK PARALLELISM TO BUILD ENERGY-EFFICIENT

    E-Print Network [OSTI]

    Gurumurthi, Sudhanva

    INTRADISK PARALLELISM TO BUILD ENERGY-EFFICIENT STORAGE SYSTEMS .................................................................................................................................................................................................................. SERVER STORAGE SYSTEMS USE NUMEROUS DISKS TO ACHIEVE HIGH PERFORMANCE, THEREBY CONSUMING A SIGNIFICANT it to process and deliver content to users. In addition to storage capacity, storage systems within data centers

  14. Energy Efficiency in Buildings in Switzerland 

    E-Print Network [OSTI]

    Chuard, J.

    2004-01-01

    In Switzerland, a culture for low energy concepts is established. The procedure for quality assurance during design, elaboration, construction, and acceptance phases is based on detailed technical checklists. These procedures are similar...

  15. RADON DAUGHTER EXPOSURES IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    heat exchanger. Both the radon-2? 2 concentration (a) andMeeting on the Assessrm of Radon and Daughter Exposure andItaly, March 3-7, 1980 RADON-DAUGHTER EXPOSURES IN ENERGY-

  16. Building Efficiency Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC |EnergycurrentlyJuneEnergyAssistant

  17. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Passive House Passive House (Passivhaus in German) is the oldest voluntary standard for super-efficient buildings

  18. Energy Efficiency and Green Building Standards for State Buildings |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |Tool for< BackDepartmentDepartment of Energy

  19. ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    competition or challenge, which can be used to engage the community and provide motivation to participate in a benchmarking and disclosure program. Guide to Energy Efficiency...

  20. The New European GreenBuilding Programme to Promote Energy Efficiency Investments in non-Residential Buildings 

    E-Print Network [OSTI]

    Adnot, J.; Bertoldi, P.

    2004-01-01

    Energies The New European GreenBuilding Programme to Promote Energy Efficiency Investmentsin non-Residential Buildings Jerome Adnot, Centerfor Energy Studies,Ecole desMines de ParisPaolo Bertoldi, European Commission ?5?5 Renewable Energies Objectives... of the GreenBuilding Programme ?GBP is designed and will be operated in order to contribute to the EU objective to reduce energy demand in buildings.?GBP main goal is to stimulate ?additional? cost-effectiveenergy efficiency and renewable energies projects...

  1. Comprehensive Evaluation Model of Building Energy Efficiency Based on Rough Sets Theory 

    E-Print Network [OSTI]

    Ding, L.; Ruan, X.; Huang, J.; Li, Y.

    2006-01-01

    In order to improve the objectivity of building energy efficiency evaluation, this paper uses a new method to evaluate building energy efficiency on the basis of rough sets theory. The contribution of different subentry evaluation indicators...

  2. The Practice and Thinking of Building Energy Efficiency Evaluation & Labeling in Shanghai

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the development of Building Energy Efficiency Evaluation and Labeling in Shanghai with project examples and theory.

  3. Building Energy Efficiency in China - Status, Trends, Targets, and Solutions 

    E-Print Network [OSTI]

    Xia, J.

    2008-01-01

    It is well accepted that the reduction of building energy consumption is one of the most effective actions fro reducing the emission of CO2 and for protection of energy resources world wide. Understanding and comparing the real building energy...

  4. Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings

    E-Print Network [OSTI]

    Gugercin, Serkan

    Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings Jeff models for the indoor-air environment in control design for energy efficient buildings. In one method by a desire to incorporate models of the indoor-air environment in the design of energy efficient buildings

  5. TITLE: Integrated Building Energy Efficiency HOSTS: Howard Chong, Brandon Hencey, and Kenneth Schlather

    E-Print Network [OSTI]

    Walter, M.Todd

    TITLE: Integrated Building Energy Efficiency HOSTS: Howard Chong, Brandon Hencey, and Kenneth Schlather DATE: May 28, 12-1pm, 300 Rice Hall Abstract: Several strands of building energy efficiency work of building energy efficiency work at Cornell. These include: Cooperative Extension, which has strength

  6. Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency

    E-Print Network [OSTI]

    Hamadi, Yousseff

    Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency, intelligent building design, energy efficiency, construction costs, multi-objective optimization. 1 for the time being). But the more energy-efficient is the building, the more expensive tends to be its

  7. A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency

    E-Print Network [OSTI]

    Hamadi, Yousseff

    A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency ´Alvaro Fialho 1 and Youssef Hamadi 2 and Marc Schoenauer 3 Abstract. The issue of energy efficiency of buildings energy-efficient the building, the more expensive it is to be built. One must thus find a compromise be

  8. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    and marketing energy efficient and alternative fuel vehiclesand marketing energy efficient and alternative fuel vehiclesalternative financing vehicles that are often used, to make repayable energy-

  9. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an 

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  10. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    metric is produced. Building automation systems, somecomponent level. Building Automation System (BAS): A systemof this work, the terms building automation system, building

  11. Energy-Efficient Building HVAC Control Using Hybrid System LBMPC

    E-Print Network [OSTI]

    Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

    2012-01-01

    Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

  12. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01

    Natural Gas Energy Efficiency Resource Development Potentialenergy efficiency is a “renewable” resource, in that any efficiencyEnergy Intensity Between AEO Forecasts Future Work Due to time and resource constraints, this analysis relied mainly on data from previous efficiency

  13. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    SciTech Connect (OSTI)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  14. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    volume server efficiency measures, which have energy savingthe savings potential available through efficiency measures.savings from volume servers is the result of IT efficiency measures

  15. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Summer Study on Energy Efficiency in Buildings. LBNL (2012).Summer Study on Energy Efficiency in Buildings. UNEP (2009).Standard for Energy Efficiency of Public Buildings. Energy

  16. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

  17. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  18. Data-Driven Benchmarking of Building Energy Efficiency Utilizing Statistical Frontier Models

    SciTech Connect (OSTI)

    Kavousian, A; Rajagopal, R

    2014-01-01

    Frontier methods quantify the energy efficiency of buildings by forming an efficient frontier (best-practice technology) and by comparing all buildings against that frontier. Because energy consumption fluctuates over time, the efficiency scores are stochastic random variables. Existing applications of frontier methods in energy efficiency either treat efficiency scores as deterministic values or estimate their uncertainty by resampling from one set of measurements. Availability of smart meter data (repeated measurements of energy consumption of buildings) enables using actual data to estimate the uncertainty in efficiency scores. Additionally, existing applications assume a linear form for an efficient frontier; i.e.,they assume that the best-practice technology scales up and down proportionally with building characteristics. However, previous research shows that buildings are nonlinear systems. This paper proposes a statistical method called stochastic energy efficiency frontier (SEEF) to estimate a bias-corrected efficiency score and its confidence intervals from measured data. The paper proposes an algorithm to specify the functional form of the frontier, identify the probability distribution of the efficiency score of each building using measured data, and rank buildings based on their energy efficiency. To illustrate the power of SEEF, this paper presents the results from applying SEEF on a smart meter data set of 307 residential buildings in the United States. SEEF efficiency scores are used to rank individual buildings based on energy efficiency, to compare subpopulations of buildings, and to identify irregular behavior of buildings across different time-of-use periods. SEEF is an improvement to the energy-intensity method (comparing kWh/sq.ft.): whereas SEEF identifies efficient buildings across the entire spectrum of building sizes, the energy-intensity method showed bias toward smaller buildings. The results of this research are expected to assist researchers and practitioners compare and rank (i.e.,benchmark) buildings more robustly and over a wider range of building types and sizes. Eventually, doing so is expected to result in improved resource allocation in energy-efficiency programs.

  19. Rule to Support Increased Energy Measurement and Efficient Building...

    Office of Environmental Management (EM)

    related goals and to provide energy leadership to the country. Addthis Related Articles Energy Department Issues Green Building Certification System Final Rule to Support...

  20. Laying the Foundation for Energy Efficient Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping commercial building owners and operators throughout America save energy and reduce carbon emissions.

  1. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    integrates renewable and energy service companies (ESCOs),in China. Vienna: Renewable Energy & Energy EfficiencyD. (2011). China Renewable Energy Architecture Development

  2. Energy Savings with Energy-Efficient HVAC Systems in Commercial Buildings of Hong Kong 

    E-Print Network [OSTI]

    Yang, J.; Chan, K.; Wu, X.

    2006-01-01

    Kong for sustainable development. In this study, the major factors influencing the electricity use of HVAC systems are studied with the building energy simulation program EnergyPlus, which include chiller efficiency, space cooling temperature, variable...

  3. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect (OSTI)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  4. Energy Efficient Operations and Maintenance Practices In New York State Buildings

    E-Print Network [OSTI]

    Smerdon, Jason E.

    Energy Efficient Operations and Maintenance Practices In New York State Buildings Columbia and implementation of energy efficient O&M practices in New York State government buildings. We would like to extend EUI Energy Use Intensity, often measured in kBtu per gross square foot of building area NYPA New York

  5. Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System

    E-Print Network [OSTI]

    1 Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System Mary in the context of the power grid and its interaction with buildings. We describe significant issues in energy-efficient, and the building operator was unable to "store energy" before an event occurs or must alter demand only after

  6. Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency

    E-Print Network [OSTI]

    Boyer, Edmond

    Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency, intelligent building design, energy efficiency, construction costs, multi-objective optimization. 1 for the optimization of buildings, in terms of sustainable development, is the reduction of energy use (while also

  7. 2013 Building Energy Efficiency Standards Page 1 SECTION 10-101 SCOPE

    E-Print Network [OSTI]

    2013 Building Energy Efficiency Standards Page 1 SECTION 10-101 ­ SCOPE ARTICLE 1 ­ ENERGY BUILDING and mechanical Acceptance Test Providers and the Certification Agencies that train and certify them. (b) Industry)3. #12;2013 Building Energy Efficiency Standards Page 2 SECTION 10-103-A ­ NONRESIDENTIAL LIGHTING

  8. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    needs. • Include energy efficiency best practice in designand benchmarking energy use; best practices and training;of practitioners. Energy performance best practices ideally

  9. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01

    New York State Energy Research and Development Authority (of conserved energy values from the CEF and New York stateEnergy Efficiency Resource Development Potential In New York.

  10. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    property management plans for water, energy, and materialheating, cooling and water heating energy use based on theSites Possible Points Water Efficiency Energy and Atmosphere

  11. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    of Buildings: Energy Policies in Europe – Examples of BestCEC. (2005). Integrated Energy Policy Report. CEC-100-2005-Heating  Region.  Energy Policy , 37 (6), 2113-2118. Li,

  12. Agent Technology to Improve Building Energy Efficiency and Occupant Comfort 

    E-Print Network [OSTI]

    Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

    2006-01-01

    Global warming, caused largely by energy consumption, has become a major problem. During the last decades the introduction of energy saving technologies has strongly reduced energy consumption of buildings. Users' preferences and behavior have...

  13. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    1.5. Effective energy management systems. 1.6. Fill gaps incontrols and energy management systems (20-30 min) Intro:through building or energy management system trending or

  14. Building Up Home Energy-Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | Department of EnergyBuilding or

  15. European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency 

    E-Print Network [OSTI]

    Wirth, U.

    2008-01-01

    ) of consumers in the room and the integration in a superposed building automation and control system to meet efficiency class A. A high level of control accuracy (CA) for individual room controllers is necessary so that the room user adjusts the system... for the concrete implementation of required measures. Siemens Building Technologies has taken a leading role in these activities and with its products and systems that meet the requirements at a high level of quality. Properly designed building automation...

  16. Better Buildings, Better Plants: Volvo Boosting Energy Efficiency...

    Office of Environmental Management (EM)

    of the total U.S. manufacturing energy footprint, the savings are adding up. One Better Buildings, Better Plants partner, Volvo Group North America, has achieved 16% savings...

  17. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureElyElectro NitrationEnergeticsElectricEnergy

  18. Energy efficiency in public buildings through ICT based control and monitoring systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    functions and tools to add energy efficiency features to the Building Management System (BMS), by monitoringEnergy efficiency in public buildings through ICT based control and monitoring systems G and spaces by implementing an intelligent ICT-based building monitoring and managing system. Actions

  19. Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings 

    E-Print Network [OSTI]

    Bernstein, R.

    2010-01-01

    Energy efficiency through intelligent control is a core element of any "Green Building". We need smarter, more efficient ways of managing the energy consuming elements within a building. But what we think of as "the building" is only a small piece...

  20. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    in evaluating relative building energy performance in Chinaunderstanding of the building’s energy performance and helpthe actual energy performance of the building and verify the

  1. Energy-Efficient Commercial Buildings Tax Deduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducationNevadaSessionToo!of MovingEnergy-Efficient

  2. Energy Efficiency Standards for State Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducation Data Jam EnergyEfficiencyRICHMONDStandards

  3. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01

    on Energy-Efficient and Clean-Energy Technologies. 2000.Scenarios for a Clean Energy Future. Oak Ridge, TN andSector: Results from the Clean Energy Futures Study. Energy

  4. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  5. Systemic impediments to constructing energy-efficient commercial buildings

    E-Print Network [OSTI]

    Franklin, James G

    2015-01-01

    Exploring a systems-based view of the energy efficiency roadblocks faced by financiers, builders, owners, and tenants. In 1992 Amory Lovins, founder of the Rocky Mountain Institute, wrote a paper entitled "Energy-Efficient ...

  6. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009- June 30, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  7. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    energy-efficiency measure installed by households under this program, followed by heating system replacements and solar

  8. Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas 

    E-Print Network [OSTI]

    Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

    2006-01-01

    with the software PKPM, and provides the technical and economic analysis, which may provide reference for suitable plans for energy efficient reconstruction of buildings in cold areas....

  9. Collaboration and Consensus Building in States to Support Energy Efficiency as a Resource

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assistance Program (TAP), provides information on collaboration and consensus building in states to support energy efficiency as a resource.

  10. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    To foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end, we present anmore »integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less

  11. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    SciTech Connect (OSTI)

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    To foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end, we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.

  12. Energy Efficient Building Environment Control Strategies Using Real-time Occupancy Measurements

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Energy Efficient Building Environment Control Strategies Using Real-time Occupancy Measurements (HVAC) systems ac- count for 50% of the total energy budget in buildings [5]. Prior research has shown 10 to 15% of HVAC energy can be reduced in buildings that set ventilation rates based on maximum

  13. Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA, presented by Kristen Taddonio of the Commercial Buildings program in...

  14. Comparison of Building Energy Efficiency and Life Span for Different Envelopes 

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Li, L.; Zhang, G.; Liu, J.

    2006-01-01

    life and provide occupants a more comfortable indoor climate. At the same time, this heat preservation technology can ensure building energy efficiency and economy. It is reasonable to adopt the external heat preservation wall mode to make the building...

  15. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    F and Enscoe, A. Saving energy with highly-controlledsame category (dimmed) Energy Savings Energy Savings CurrentCumulative Sum Energy Savings Energy Savings Advanced

  16. Energy Consumption Status of Public Buildings and the Analysis of the Potential on Energy Efficiency in Xiamen 

    E-Print Network [OSTI]

    Pei, X.; Zhang, S.; Chen, L.; Zhang, X.; Chen, J.

    2006-01-01

    of the central air conditioning system in public buildings. At the same time, this paper comments on energy economization in Xiamen, and presents proposals and advice for energy efficiency. Presently, energy efficiency is relatively low in Xiamen, and energy...

  17. Towards Energy Efficient Building Assets: A Review on Sub-Tropical Climate 

    E-Print Network [OSTI]

    Chowdhury, A. A.; Rasul, M. G.; Khan, M. M. K.

    2006-01-01

    and environment protection. The idea of energy efficient buildings can be implemented by applying innovative technologies and measures like bioclimatic building design and orientation which includes a concept of low-energy architecture; by using passive solar....g. lighting and air conditioning, introduction of environmentally friendly energy generation installations, introduction of bioclimatic building design and orientation etc. The basic rule should be to introduce standard well-proven energy efficient...

  18. A Tale of Two Buildings: Achieving Energy Efficiency 

    E-Print Network [OSTI]

    Rouse, S.

    2011-01-01

    to reveal the reasons for differing energy intensity levels of almost 50%. The 'perceived' better performing building was actually using more natural gas. The significance of the Understand Right, Use Right, Buy Right philosophy was confirmed. More important...

  19. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    the impact of data center operation on climate change wouldfrom data centers in addressing climate change, andData centers are presented within the greater context of building energy, indoor air quality, and climate change.

  20. Better Buildings Challenge is Expanding, Improving Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to energy efficiency including 3M, Alcoa, the Cleveland Clinic, Ford, Macy's, Starbucks, Transwestern, the cities of Atlanta, Chicago, Houston, Seattle and others The...

  1. Building Energy-Efficient Schools in New Orleans: Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Both the summary brochure and the full brochure are available....

  2. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    O. , 2004. Energy efficient data centers. Report LBNL-54163,and Cooling in the Data Center. Advanced Micro Devices.2007. Special Study: Data Center of the Future. New York,

  3. Lab Helps FAA Build Energy-Efficient Control Towers

    Broader source: Energy.gov [DOE]

    With help from the Pacific Northwest National Laboratory and its subcontractor, Redhorse Corporation, the agency that keeps our country’s airports running is bolstering its energy efficiency.

  4. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01

    ROOF PORT HOLES AIR REGISTERS E8 XBL 7712-11473B Figure 3 - Schematic of Exterior and Interior of Energy Efficient

  5. Building Energy-Efficient Schools in New Orleans: Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy- Efficient Schools in New Orleans Lessons Learned 2 3 The devastation of schools in New Orleans from the hurricanes was exacerbated by many years of deferred school...

  6. Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01

    Buildings Energy Databook. U.S. Department of Energy, Officeof Energy EfficiencyRenewable Energy. http://buildingsdatabook.eere.energy.gov/.

  7. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    Byron, JL, Hart, D. Energy management information systems:Byron, JL, Hart, D. Energy management information systems:2.0. Federal Energy Management Program, US Department of

  8. Use of an Enterprise Energy Monitoring System to Support Building Commissioning and Overall Energy Efficiency by the Hyatt Hotels Corporation 

    E-Print Network [OSTI]

    Burke, B.; McBride, J.; Kimble, K.

    2005-01-01

    , barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings....

  9. Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

  10. Building for the Pacific Rim Countries. Energy-efficient building strategies for hot, humid climates

    SciTech Connect (OSTI)

    Sheinkopf, K.

    1991-09-01

    This book has been published by the Solar Energy Industries Association (SEIA), the US trade association of the solar thermal, photovoltaic, and passive solar manufacturers, distributors, and component suppliers. Its purpose is to help architects, builders, and developers construct energy-efficient homes in hot humid climates like the Pacific Rim Countries, and to allow occupants of these homes to enjoy enhanced comfort without reliance on mechanical air-conditioning systems. Two important factors are addressed in this book. First, the past few years have seen a tremendous increase in practical applications of new research. The current popularity of ceiling paddle fans, attic radiant barriers and natural daylighting attest to the importance of keeping up with the latest concepts in energy-reduction and comfort-awareness. Professionals who have been in the field for the past few years may be unaware of the latest research findings--some of which dramatically alter prior thinking on such subjects as natural ventilation or mechanical air conditioning. The second factor is the importance of site-specific characteristics, which greatly affect building strategies and designs. A thorough understanding of the climate is a prerequisite to good building design. Such factors as temperature, humidity, wind speed and direction, and solar radiation must be understood and properly integrated into the design for the home to be truly energy-efficient.

  11. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 3, THIRD QUARTER 2014 1709 A Survey of Energy Efficiency in Buildings and

    E-Print Network [OSTI]

    Jain, Raj

    consumption, making buildings intelligent and energy efficient will have huge impacts on the total CO2--Intelligent buildings, energy efficiency, micro- grids, building automation, sustainability, smart homes, smart phones efficiency in these buildings and microgrids usually refers to reducing the amount of energy required

  12. Energy Efficiency Trends in Residential and Commercial Buildings - August 2010

    SciTech Connect (OSTI)

    none,

    2010-08-01

    This report overviews trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption. It begins with an executive summary of the key findings found in the body of the report, so some of the data and charts are replicated in this section. Its intent is to provide in a concise place key data points and conclusions. The remainder of the report provides a specific profile of the construction industry and patterns of energy use followed by sections providing product and market insights and information on policy efforts, such as taxes and regulations, which are intended to influence building energy use. Information on voluntary programs is also offered.

  13. Identification of Energy Efficiency Opportunities through Building Data Analysis and Achieving Energy Savings through Improved Controls

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Taasevigen, Danny J.; Koran, Bill

    2014-09-04

    This chapter will highlight analysis techniques to identify energy efficiency opportunities to improve operations and controls. A free tool, Energy Charting and Metrics (ECAM), will be used to assist in the analysis of whole-building, sub-metered, and/or data from the building automation system (BAS). Appendix A describes the features of ECAM in more depth, and also provide instructions for downloading ECAM and all resources pertaining to using ECAM.

  14. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    period durations. Energy usage per square foot is discussedEUI), or annual energy use per square foot per year [kWh/sf/the cost per square foot of annual energy use is a valuable

  15. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    contracting. Metered Data Export energy data from a meterAnnual Data Inputs Export metered energy use from BAS or on-Metered Data Export weather and energy data from a meter

  16. An Experimental Investigation of Occupancy-Based Energy-Efficient Control of Commercial Building Indoor Climate

    E-Print Network [OSTI]

    Carloni, Luca

    An Experimental Investigation of Occupancy-Based Energy-Efficient Control of Commercial Building of the effect on indoor climate, we verify that the controller achieves the energy efficiency improvements to heating, ventilation, and air-conditioning (HVAC) systems [1]. Energy-efficient control of HVAC systems

  17. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    Chapter 8 Energy Monitoring and Targeting. 2004. GuideGuide to energy monitoring and targeting, with extensiveResources Canada. Monitoring and targeting techniques in

  18. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    interval data energy models: IPMVP Options B and C. 2008.measurement and verification (IPMVP). Baseline Energy Use (and Verification Protocol (IPMVP) presents a framework of

  19. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect (OSTI)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

  20. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    and social sustainability performance. The Technicalsustainability reporting. Longitudinal Benchmarking: By comparing current energy performance

  1. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    handbook/ Technical lighting reference that includes practical applications, and selected topics on controls, energy management, sustainability,

  2. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M; Kuruganti, Phani Teja

    2012-01-01

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  3. The potential and challenges of monitoring-supported energy efficiency improvement strategies in existing buildings 

    E-Print Network [OSTI]

    Schub, M.; Mahdavi, A.; Simonis, H.; Menzel, K.; Browne, D.

    2012-01-01

    The ongoing EU-supported CAMPUS 21 explores the energy efficiency potential of integrated security, control, and building management software. The main objective of the project is to compare the energy and indoor-environmental performance...

  4. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    water, and desired units conversions to get the energy andgenerated. You can apply unit conversion factors to convertsupply and return, and unit conversion factors. Heating

  5. RADON AND ITS DAUGHTERS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    of Radionu­ clide Contents and Radon Emanation Rates inD.L. Krinkel, and W.W. Nazaroff, Radon in Energy-EfficientStitt, and G.II. Zapalac, Radon Measurements and Emanation

  6. 2008 ACEEE Summer Study on Energy Efficiency in Buildings August 1722, 2008 Asilomar Conference Center Pacific Grove, California

    E-Print Network [OSTI]

    Kissock, Kelly

    2008 ACEEE Summer Study on Energy Efficiency in Buildings August 17­22, 2008 · Asilomar Conference Center · Pacific Grove, California 1 Targeting Energy Efficiency in Commercial Buildings Using Advanced energy use, prioritizes buildings for specific energy-efficiency retrofits, and tracks weather

  7. Apply: Funding Opportunity- Advancing Solutions to Improve Energy Efficiency of Commercial Buildings

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 20, 2015 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million for Funding Opportunity Announcement (FOA) DE-FOA-0001168, “Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings.”

  8. Building Energy Efficiency Policies (BEEP) Database | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: Energy

  9. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    SciTech Connect (OSTI)

    Finch, P.; Potes, A.

    2010-06-01

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  10. Retail Building Guide for Entrance Energy Efficiency Measures

    SciTech Connect (OSTI)

    Stein, J.; Kung, F.

    2012-03-01

    This booklet is based on the findings of an infiltration analysis for supermarkets and large retail buildings without refrigerated cases. It enables retail building managers and engineers to calculate the energy savings potential for vestibule additions for supermarkets; and bay door operation changes in large retail stores without refrigerated cases. Retail managers can use initial estimates to decide whether to engage vendors or contractors of vestibules for pricing or site-specific analyses, or to decide whether to test bay door operation changes in pilot stores, respectively.

  11. Energy Efficiency in State Buildings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |Tool for<

  12. Building on Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Two administration-led, industry-driven efforts marked milestones today. The first will put Americans to work on more than $2 billion in energy upgrades for federal buildings. The second will offer 30 million households and businesses more control over their energy bills. And together, these efforts will support an economy that’s built to last, one that makes use of every source of American energy – more efficiently.

  13. Proposed Training Plan to Improve Building Energy Efficiency in Vietnam

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd

    2013-01-01

    Vietnam has experienced fast growth in energy consumption in the past decade, with annual growth rate of over 12 percent. This is accompanied by the fast increase in commercial energy use, driven by rapid industrialization, expansion of motorized transport, and increasing energy use in residential and commercial buildings. Meanwhile, Vietnam is experiencing rapid urbanization at a rate of 3.4 percent per year; and the majority of the growth centered in and near major cities such as Hanoi and Ho Chi Minh City. This has resulted in a construction boom in Vietnam.

  14. ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementof EnergyQuality'Lean' System09ENERGYPlants |

  15. Control, Estimation and Optimization of Energy Efficient Buildings Jeff Borggaard , John A. Burns , Amit Surana , Lizette Zietsman

    E-Print Network [OSTI]

    Burns, John A.

    Control, Estimation and Optimization of Energy Efficient Buildings Jeff Borggaard , John A. Burns-- Commercial buildings are responsible for a sig- nificant fraction of the energy consumption and greenhouse efficient buildings can have a tremendous impact on energy cost and greenhouse gas emission. Buildings

  16. Energy Department Announces Building Energy Efficiency Investments in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofof EnergyPlants"OEEnergy Practices in 11

  17. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    good benchmark energy consumption data for buildings, and (total energy consumption Although the measured data arelimited data available for building energy consumption in

  18. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  19. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    SciTech Connect (OSTI)

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  20. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01

    to increase energy efficiency in buildings: Infonnationto increase energy efficiency in buildings: Informationto increase energy efficiency in buildings: Information

  1. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    SciTech Connect (OSTI)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  2. Field Analysis of Thermal Comfort in Two Energy Efficient Office Buildings in Malaysia 

    E-Print Network [OSTI]

    Qahtan, A. T.; Keumala, N.; Rao, S. P.; Samad, Z. A.

    2010-01-01

    with exception of an air movement in the workspace of both buildings. The result suggested workers? preferable condition. Keywords: Building Energy Efficiency; Thermal comfort; and Occupant Satisfaction. INTRODUCTION In a tropical climate... that mentioned earlier. The significance of this paper is that measuring the thermal comfort parameters supported by surveying the occupants? satisfaction in these two EE buildings would be as evaluation to upcoming EE buildings in tropical region. MALAYSIA...

  3. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    Appliance: Building 02 Datacenter. Pacific Gas and ElectricAppliance Building 11 Datacenter. Pacific Gas and Electric

  4. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    advanced commercial lighting products and less successful at increasing the number of whole-building, HVAC, and building envelope

  5. DOE/ NREL Build One of the World's Most Energy Efficient Office Spaces

    ScienceCinema (OSTI)

    None

    2013-05-29

    Technology ? from sophisticated computer modeling to advanced windows that actually open ? will help the newest building at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) be one of the world's most energy efficient offices. Scheduled to open this summer, the 222,000 square-foot RSF will house more than 800 staff and an energy efficient information technology data center. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  6. Energy Information Administration - Energy Efficiency, energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and...

  7. Building Energy Efficiency Standards Approved Default Cool Roof Performance Values for

    E-Print Network [OSTI]

    Building Energy Efficiency Standards Approved Default Cool Roof Performance Values for Low-Sloped Roofs That Use Aggregate As the Surface Layer Aggregate used as the surface layer of low-sloped roofs shall have the default cool roof properties

  8. Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT)- 2015 Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 12, 2015 This Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) 2015 FOA contributes to advancement in two core technological areas: non-vapor compression HVAC technologies and advanced vapor compression HVAC technologies.

  9. Norwegian National Program for Lifetime Commissioning and Energy Efficient Operation of Buildings 

    E-Print Network [OSTI]

    Novakovic, V.; Djuric, N.; Holst, J.; Frydenlund, F.

    2006-01-01

    The project “Life-Time Commissioning for Energy Efficient Operation of Buildings” is actually a network of industrial companies, private and public entities, and R&D organizations. The overall objective of the project is to contribute...

  10. Making It Happen: Achieving Energy Efficiency in Multi-Family Buildings Housing Low-Income Tenants 

    E-Print Network [OSTI]

    Haun, C. R.

    1985-01-01

    Saving energy in multi-family buildings is a comparatively easy task to accomplish in theory: engineering science has shown us how to reduce heatloss and air infiltration, how to balance systems and improve heating plant efficiency, and how...

  11. Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency 

    E-Print Network [OSTI]

    Zhu, H.

    2006-01-01

    The application of the variable refrigerant volume multi-zone air conditioning systems has met with mixed results since the publication of the Design Standard for Energy Efficiency of Public Buildings. This paper analyzes the characteristics...

  12. Review of EU airport energy interests and priorities with respect to ICT, energy efficiency and enhanced building operation 

    E-Print Network [OSTI]

    Costa, A.; Blanes, L. M.; Donnelly, C.; Keane, M. M.

    2012-01-01

    This paper gives an overview on EU airport energy interests and priorities with respect to ICT, energy efficiency and enhanced building operation. To achieve this objective the paper begins with an overview on airports role on energy consumption...

  13. Business Case for Energy Efficient Building Retrofit and Renovation |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at the EdgeBUILDINGS-TO-GRIDDepartmentanof

  14. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    value for many commercial buildings and data centers (RumseykWh). 1.3. Data center buildings Data centers provide aexhausted from the building and the data center was cooled

  15. Comparison of Control Strategies for Energy Efficient Building HVAC Systems

    E-Print Network [OSTI]

    Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2014-01-01

    transfer in rooms in the modelica buildings library. [18] A.Building models are first captured in Modelica [1]to leverage Modelica’s rich building component library and

  16. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  17. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    India, as both the LEED and GRIHA building labeling schemesgreen building labeling programs such as LEED, which haverelevant labeling systems:  India’s GRIHA and the LEED green

  18. 15% Above-Code Energy Efficiency Measures for Commercial Buildings in Texas 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.

    2007-01-01

    savings in new residential, commercial and industrial construction. The Laboratory has worked closely with code officials, energy raters, manufacturers, state officials and other stakeholders to develop cost effective energy efficiency measures... of Texas Subject: 15% Above-Code Energy Efficiency Measures for Commercial Buildings in Texas In the 79th Legislature (2005) the Energy Systems Laboratory was required to develop three alternative methods for achieving 15% above-code energy...

  19. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    on samples of commercial buildings data collected by theCommercial Buildings, Buildings Energy Data Group, LawrencePiette and Denise Flora Buildings Energy Data Group Lawrence

  20. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  1. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect (OSTI)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  2. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01

    Investments in Energy-efficient Building Retrofits. ”buildings and energy-efficient buildings, and they maintainof building systems. Energy Efficient Building: A building

  3. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01

    description No efficiency measures Up to 55% savings inuse in No efficiency measures Up to 55% savings in existinghomes: no efficiency measures; New homes: up to 40% savings

  4. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    SciTech Connect (OSTI)

    Vine, Edward

    2002-05-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements. The following lists suggest potential EERE-Buildings activities, grouped by whether EERE-Buildings would play a lead or supporting role.

  5. Residential Energy Efficiency Messaging | Department of Energy

    Office of Environmental Management (EM)

    Residential Energy Efficiency Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency...

  6. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    and renewable energy measures that might prove suitable to this building. The study explored two types

  7. DOE Announces Webinars on Energy Efficiency Competitions, Better Buildings

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pState Efficiency, Renewables InitiativesResearch

  8. Water Efficiency in Federal Buildings and Campuses | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington , DCWaste-to-EnergyAgency

  9. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    of the year for the energy data. W. CONSTRUCTION COST (1984Buildings, Buildings Energy Data Group, Lawrence Berkeleymost recent year of energy data available for the building.

  10. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    many new commercial buildings, energy performance and cost-commercial building energy performance and therefore use theunaware of his building's energy performance relative to

  11. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01

    in Operation. Energy and Buildings. 43(11): 3106-3111.and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program. Key

  12. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Building Performance Standards (EEBPS) are statewide minimum requirements that all new construction and additions to existing buildings must satisfy. Exceptions include...

  13. Nine Lessons Learned From a Green Building Testbed: a Networking and Energy Efficiency

    E-Print Network [OSTI]

    Jain, Raj

    consumption and 70% of total electricity consumption in the United States. They also contribute a huge part of more than one year. Some typical data related to electrical, heating, and cooling energy consumption--Buildings are significant contributors to global energy consumption and their energy efficiency is an important issue

  14. Inventory of U.S.-led International Activities on Building Energy Efficiency Initial Findings

    SciTech Connect (OSTI)

    Delgado, Alison; Evans, Meredydd

    2010-04-01

    Several U.S. Government agencies promote energy efficiency in buildings internationally. The types and scope of activities vary by agency. Those with the largest role include the U.S. Agency for International Development (USAID), the U.S. Department of State and the Environmental Protection Agency (EPA). Both USAID and the Department of State have a substantial presence overseas, which may present some complementarities with the Department of Energy’s efforts to reach out to other countries. Generally speaking, USAID focuses on capacity building and policy issues; the Department of State focuses on broad diplomatic efforts and some targeted grants in support of these efforts, and EPA has more targeted roles linked to ENERGY STAR appliances and a few other activities. Several additional agencies are also involved in trade-related efforts to promote energy efficiency in buildings. These include the Department of Commerce, the Export-Import Bank, the Overseas Private Investment Corporation and the Trade and Development Agency (TDA). This initial synthesis report is designed to summarize broad trends and activities relating to international cooperation on energy efficiency in buildings, which can help the U.S. Department of Energy (DOE) in developing its own strategy in this area. The Pacific Northwest National Laboratory will develop a more complete synthesis report later in 2010 as it populates a database on international projects on building energy efficiency.

  15. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2014-01-01

    for Conservation and Solar Energy, Office of Build- ings andsolar, and wind options for a given house, These algorithms include recent advances in build-

  16. Technology Prioritization: Transforming the U.S. Building Stock to Embrace Energy Efficiency

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Farese, Philip; Abramson, Alexis; Phelan, Patrick

    2013-01-01

    The U.S. Buildings sector is responsible for about 40% of the national energy expenditures. This is due in part to wasteful use of resources and limited considerations made for energy efficiency during the design and retrofit phases. Recent studies have indicated the potential for up to 30-50% energy savings in the U.S. buildings sector using currently available technologies. This paper discusses efforts to accelerate the transformation in the U.S. building energy efficiency sector using a new technology prioritization framework. The underlying analysis examines building energy use micro segments using the Energy Information Administration Annual Energy Outlook and other publically available information. The tool includes a stock-and-flow model to track stock vintage and efficiency levels with time. The tool can be used to investigate energy efficiency measures under a variety of scenarios and has a built-in energy accounting framework to prevent double counting of energy savings within any given portfolio. This tool is developed to inform decision making and estimate long term potential energy savings for different market adoption scenarios.

  17. Database Aids Building Owners and Operators in Energy-Efficiency...

    Energy Savers [EERE]

    (BPD). Currently, residential and commercial buildings account for approximately 70% of electricity consumption in the United States. One of the primary challenges to expanding...

  18. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01

    focused on combustion-generated indoor air pollution, namelyimpact of combustion-generated indoor air pollution on humanpollution sources exist inside buildings, notably sources associated with combustion (

  19. Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Better Buildings Challenge, Milwaukee has retrofitted the Milwaukee Central Library, including surveying and repairing dozens of steam traps in the basement to help cut...

  20. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2011-01-01

    provide energy efficiency equipment and building measuresresearch. Energy Efficiency in Buildings We also categorizetargeting energy efficiency in buildings include grants,

  1. SM Energy-Efficient

    E-Print Network [OSTI]

    SM 111 Energy-Efficient Energy-Efficient Ventilation for Apartment Buildings #12. These Guides provide clear and practical information on issues related to energy-efficient building retrofits

  2. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    metering - Energy monitoring and management systems targetedconstruction - Energy monitoring and management systems forEnergy monitoring, assessment, and management systems -

  3. Abstract--Current building designs are not energy-efficient enough due to many reasons. One of them is the centralized

    E-Print Network [OSTI]

    Jain, Raj

    1 Abstract--Current building designs are not energy-efficient enough due to many reasons. One Building, Energy Efficiency, Energy Policy, Distributed Policy Control, Smart Energy I. INTRODUCTION the energy efficiency in the buildings besides finding new clean-energy sources. Most of the buildings

  4. Building Energy Asset Score: Building Owners

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use.

  5. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2014-01-01

    1979, BUILDING ENERGY DATA, ANALYSIS AND DEMONSTRATION (Winkelmann • , • 4-iii Bui Energy Data Compi , Analysis, andReports The BuHding Energy Data Compilation, Analysis and

  6. Energy Efficiency and Sustainable Construction Standards for Public Buildings

    Broader source: Energy.gov [DOE]

    Major facility projects must include Georgia products such that not less than 10% of all building materials used in a project are harvested, extracted or manufactured in Georgia, where such...

  7. Survey of Energy Efficient Tracking and Localization Techniques in Buildings Using

    E-Print Network [OSTI]

    Wieringa, Roel

    in the energy consumption of the network itself can be achieved. The main goal of this paper is to provideSurvey of Energy Efficient Tracking and Localization Techniques in Buildings Using Optical network is used for data transport to and from rooms whereas wireless transceivers communicate

  8. Guide Specifications: AnOverlooked Avenue for Promoting Building Energy Efficiency

    E-Print Network [OSTI]

    Guide Specifications: AnOverlooked Avenue for Promoting Building Energy Efficiency Philip E opportunity from the energy policy community. Introduction When an architect or engineer is assigned to create into the bid documents for the given construction or renovation project, contractually binding the chosen

  9. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    tech hospitals use more energy per square foot but presentlyenergy intensity (energy used per square foot of facilitythermal units of energy on site per square foot of floor

  10. Building aggressively duty-cycled platforms to achieve energy efficiency

    E-Print Network [OSTI]

    Agarwal, Yuvraj

    2009-01-01

    Balakrishnan. Minimizing energy for wireless web access withoptimization for energy e?cient wireless embedded systems.time Detailed Energy Accounting for Wireless Sensor Nodes.

  11. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-01-01

    Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

  12. From the lab to the marketplace: Making America`s buildings more energy efficient

    SciTech Connect (OSTI)

    NONE

    1995-01-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for energy-efficiency studies of advanced building technologies. That investment has helped spawn a $2.4-billion US market for key products -- energy-efficient lighting and advanced window coatings -- and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 the authors estimate that the products of that investment will save consumers $16 billion annually. But LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. They analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. They develop planning and demand-management methodologies for electric and gas utilities. They identify technologies and analytical methods for improving human comfort and the quality of indoor air. They contribute to the information superhighway. They focus on the special problems and opportunities presented by energy use in the public sector. And they do all these things at the local, national, and international levels. At LBL, they are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. They also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  13. From the lab to the marketplace: Making America`s buildings more energy efficient

    SciTech Connect (OSTI)

    NONE

    1995-06-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for development of advanced energy-efficient building technologies, software, and standards. That investment has helped spawn a $2.4-billion U.S. market for key products-energy-efficient lighting and advanced window coatings-and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 we estimate that the products of that investment will save consumers $16 billion annually. LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. We analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. We develop planning and demand-management methodologies for electric and gas utilities. We identify technologies and analytical methods for improving human comfort and the quality of indoor air. We contribute to the information superhighway. We focus on the special problems and opportunities presented by energy use in the public sector. And we do all these things at the local, national, and international levels. At LBL, we are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. We also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  14. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Renewable Energy Incentives The  subsections  below  describe  India’India. The majority of such measures are for appliances, renewable energy (

  15. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    We see that the low energy buildings need not cost more thanto produce a fairly low energy building over a considerablefor feasible low-energy buildings. Most of the buildings we

  16. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    We see that the low energy buildings need not cost more thanincludes both very low energy buildings, and buildings thatrange shows the low-energy buildings at the left end, and

  17. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    as photovoltaics (PV) and solar water heaters, and directheat pumps, solar water heaters, and solar PV systems. Theshading measures, solar water heaters, and high efficiency

  18. REFERENCE APPENDICES For the 2013 Building Energy Efficiency Standards

    E-Print Network [OSTI]

    through cracks, gaps and openings in the envelope of a building, driven by wind pressure and the stack of cubic feet per hour per square foot per inch of mercury pressure difference. AIRFLOW ACROSS in the case of a heat pump). See Thermostatic Expansion Valves (TXV). AIR-TO-AIR HEAT EXCHANGER is a device

  19. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01

    DX Cooling Total Annual Energy Usage Peak Electric DemandDX Cooling Total Annual Energy Usage Scenario Supply/ ReturnDX Cooling Total Annual Energy Usage Peak Electric Demand

  20. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    to consumers, energy suppliers, builders, the environment,property owners and four energy suppliers. This group’s  CERT, requires domestic energy suppliers to save 293 Mt CO 2

  1. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    83 3.6. Best Energy Policy Practices in the EuropeanEuropean Union) 3.6. Best Energy Policy Practices in thethat are among the best low energy commercial (public)

  2. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY-EFFICIENT RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Berk, J.V.

    2011-01-01

    Modem RESIDENTIAL ENERGY CONSUMPTION DATA (1976) TOTAL 18.95HEATING COMMERCIAL ENERGY CONSUMPTION DATA (1976) TOTAL 10.3data on various active and pas- sive methods of reducing energy consumption

  3. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01

    less than current retail energy prices. Table 7 compares thenational average retail energy prices as of 2007. The datais well below the retail energy price both fuels in both

  4. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    Sathaye, J. (2009). India Energy Outlook: End Use Demand inies.lbl.gov/iespubs/india_energy_outlook.pdf de la Rue duRetrieved from USAID India - Energy Conservation and

  5. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01

    US DOE. 1998. Annual Energy Outlook 1999, with ProjectionsUS DOE. 2007b. Annual Energy Outlook 2007, with ProjectionsAdministration’s Annual Energy Outlook (AEO) 2007 Reference

  6. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    of common energy-related design elements. • Online databasecost & energy analysis of design elements. High Performancetechnologies and system design elements; the next section

  7. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01

    US EPA. 2008b. ENERGY STAR Dishwasher Savings Calculator [Savings only apply to dishwasher machine energy use, not hotLighting Clothes Washers Dishwashers Color Televisions

  8. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    SciTech Connect (OSTI)

    Belzer, David B.

    2009-04-03

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  9. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    equipment efficiency Air-side economizer control RoomSaving [kWh/m2] The air-side economizer produces the energyand winter. This air-side economizer is thus able to provide

  10. Technology Prioritization: Transforming the U.S. Building Stock to Embrace Energy Efficiency

    SciTech Connect (OSTI)

    2013-07-01

    This paper discusses the efforts to accelerate the transformation in the U.S. building energy efficiency sector using a new technology prioritization framework. The underlying analysis examines building energy use micro segments using the Energy Information Administration Annual Energy Outlook and other publically available information. The U.S. Department of Energy’s Building Technologies Office (BTO) has developed a prioritization tool in an effort to inform programmatic decision making based on the long-term national impact of different energy efficiency measures. The prioritization tool can be used to investigate energy efficiency measures under a variety of scenarios and has a built-in energy accounting framework to prevent double counting of energy savings within any given portfolio. This tool is developed to inform decision making and estimate long term potential energy savings for different market adoption scenarios. It provides an objective comparison of new and existing measures and is being used to inform decision making with respect to BTO’s portfolio of projects.

  11. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    and water heating demand as well as use of natural ventilation and lighting, energy recovery systems, waste heat,

  12. ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT (EECBG) - BETTER BUILDINGS NEIGHBORHOOD PROGRAM AT GREATER CINCINNATI ENERGY ALLIANCE Project Title: Home Performance with Energy Star® and Better Buildings Performance

    SciTech Connect (OSTI)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training Center, a program that was developed and funded by the Energy Alliance and housed at Cincinnati State Technical and Community College. Nearly 100 residential and commercial contractors currently participate in the Energy Alliance’s two major programs, which have together served over 2,800 residential and 100 commercial customers. Additionally, the Energy Alliance established loan programs for homeowners, nonprofits and commercial businesses. The GC-HELP program was established to provide up to ten year low interest, unsecured loans to homeowners to cover the energy efficiency products they purchased through the Energy Alliance approved contractor base. To date the Energy Alliance has financed over $1 million in energy efficiency loans for homeowners, without any loans written off. The nonprofit business community is offered five year, fixed-interest rate loans through the Building Communities Loan Fund of $250,000. Additionally, the Energy Alliance has developed GC-PACE, a commercial financing tool that enables buildings owners to finance their energy upgrades through voluntary property assessments deploying low-interest extended-term capital from the bond market. The Energy Alliance and its partners are actively evaluating additional market-based financing solutions.

  13. Smart Sensing, Estimation, and Prediction for Efficient Building Energy Management

    E-Print Network [OSTI]

    Chang, Yu-Han

    is accounted for in heating, ventilation, and air conditioning (HVAC) systems. Smart sensing and adaptive efficiency by continuously adapting to occupancy forecasts of each room. 1 Introduction Heating, ventilation the distribution of the new and existing sensors on the first floor of RGL. The BLEMS software will use

  14. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    from http://www.iea.org/weo/ IEA. (2011a, November).from http://www.iea.org/weo/ IEA. (2011b). Energy Statistics

  15. Project REED (Residential Energy Efficiency Design) is a Web-based building performance simulation tool

    E-Print Network [OSTI]

    ABSTRACT Project REED (Residential Energy Efficiency Design) is a Web-based building performance or kilowatts of elec- tricity. Their bottom line is money. REED is an easy-to-use, ratepayer-friendly web system. The simulation engine behind this new web site is SO- LAR-5, one of the nations most widely used

  16. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Gigučre, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  17. Interoperability of Computer Aided Design and Energy Performance Simulation to Improve Building Energy Efficiency and Performance 

    E-Print Network [OSTI]

    Chaisuparasmikul, P.

    2006-01-01

    The paper describes very significant novel interoperability and data modeling technology for existing building that maps a building information parametric model with an energy simulation model, establishing a seamless link between Computer Aided...

  18. International Comparison of Energy Labeling and Standards for Energy Efficient and Green Buildings 

    E-Print Network [OSTI]

    Hennicke, P.; Shrestha, S.; Schleicher, T.

    2011-01-01

    This paper discusses the approaches of the European Union, Germany and India to reduce GHG- emissions and mitigate climate change impacts from buildings through the establishment of energy performance standards and green building...

  19. Energy Efficiency Upgrades Help Build Better Neighborhoods | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment of EnergyDepartment of EnergyDepartment ofEnergy

  20. Energy Department Invests $14 Million in Innovative Building Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas | Department of EnergyAGENCY PLANDepartment

  1. Energy-Efficient Building Standards for State Facilities | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartment of EnergyJanuary 26,theresources

  2. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01

    practices into hospital green design guides. • Research topractices into hospital green design guides. Research toGreen Guide for Healthcare (gghc.org), a soon-to-be- completed advanced energy design

  3. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01

    of Energy. August. Arthur D. Little Inc. 1999. Opportunitiesby product type (Arthur D. Little Inc. 1993). E19) Savingsspeed operation from Arthur D. Little (1999), table 3-12.

  4. Improving energy efficiency in a pharmaceutical manufacturing environment -- office building

    E-Print Network [OSTI]

    Li, Wu, M. Eng Massachusetts Institute of Technology

    2009-01-01

    Reducing energy consumption without compromising the quality of products in a pharmaceutical manufacturing environment and maintaining the comfort of employees is of critical important in maintaining the financial viability ...

  5. Better Buildings Financing Energy Efficiency Retrofits in the Commercial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy| Department of EnergyBetterBetterSector --

  6. Students Develop Innovative Solutions for Energy Efficient Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE|EnergyDepartment

  7. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Pennycook, Steve

    Faced with rising fuel costs, building and home owners are looking for energy- efficient solutions penetration rates; validate models; and assist industry to develop new and more energy-efficient materials systems) resulting in affordable, moisture-durable products to increase energy efficiency. · ORNL

  8. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Pennycook, Steve

    Faced with rising fuel costs, building and home owners are looking for energy- efficient solutions rates; validate models; and assist industry to develop new and more energy-efficient materials-durable products to increase energy efficiency. · ORNL established test facilities to measure essential property

  9. Report: President's Energy Efficiency Contracting for Federal Buildings a

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7 Multiple<EnergyU.S.DRAFTProposalSuccess |

  10. LBNL High-Tech Buildings Energy Efficiency Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergyJoe OlenczKnow Your Energy Bill!LBNL High-tech

  11. Energy Efficiency Trends in Residential and Commercial Buildings - August

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |Tool for< Back EligibilityConstruction2010 |

  12. Building America Residential Energy Efficiency Technical Update Meeting:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De pEnergymeeting, The BestOctober 2011 | Department of2011

  13. Business Energy Efficiency Rebate for Existing Buildings | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at theEnergy State Government Multifamily

  14. Greensburg Implements High-Efficiency Building Codes to Achieve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings...

  15. Southeast Enertgy Efficiency Alliance's Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolid StateSelection GuideDepartmentof

  16. Building Energy-Efficient Schools in New Orleans: Lessons Learned |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of EnergyEmerging Technologies »Transparency

  17. Seize the Day - Using Building Milestones as Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretary Moniz's OpenEnergy

  18. Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy6-09.doc Microsoft WordBlendsMilwaukee

  19. The Challenge: Improving the Energy Efficiency of Buildings Across the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearchEnergy2Fall 2011

  20. Recommendations for 15% Above-Code Energy Efficiency Measures for Commercial Office Building 

    E-Print Network [OSTI]

    Cho, S.; Mukhopadhyay, J.; Culp, C.; Haberl, J.; Yazdani, B.

    2007-01-01

    FOR 15% ABOVE-CODE ENERGY EFFICIENCY MEASURES FOR COMMERCIAL OFFICE BUILDINGS Soolyeon Cho Graduate Research Assistant Jaya Mukhopadhyay Research Associate Charles Culp, Ph.D., P.E. Associate Director Jeff Haberl, Ph.D., P.E. Associate Director... Bahman Yazdani, P.E. Associate Director Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System ACKNOWLEDGEMENTS Faculty/Staff: Tom Fitzpatrick, Don Gilman, Mushtaq Ahmed, Betty Liu, Juan-Carlos Baltazar, Sherrie...

  1. Energy Efficiency Pilot Projects in Jaipur: Testing the Energy Conservation Building Code

    SciTech Connect (OSTI)

    Evans, Meredydd; Mathur, Jyotirmay; Yu, Sha

    2014-03-26

    The Malaviya National Institute of Technology (MNIT) in Jaipur, India is constructing two new buildings on its campus that allow it to test implementation of the Energy Conservation Building Code (ECBC), which Rajasthan made mandatory in 2011. PNNL has been working with MNIT to document progress on ECBC implementation in these buildings.

  2. Obama Administration Launches $130 Million Building Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 NewsORMAT NEVADA ORMATWhitePrograms inwithEffort |

  3. Driving Transformation to Energy Efficient Buildings:Policies and Actions |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the National ClimateDongyingOpen Energy Information

  4. Idaho Power - New Building Efficiency Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71

  5. Idaho Power - New Building Efficiency Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71Commercial Industrial Savings Category Lighting

  6. 'Extreme Makeover: Home Edition' Builds Efficiently | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n t S e c r e t1(TRIDEC) |

  7. Apply: Building Energy Efficiency Frontiers and Incubator Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC | Department of EnergyServices,and Capital(BENEFIT) -

  8. Better Buildings, Better Plants: Volvo Boosting Energy Efficiency at Truck

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC |Energy Advisor the fishworked with hundredsWebinar

  9. Energy Department, Volvo Partnership Builds More Efficient Trucks and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects |EnergyAll 50Batteriesits Kind Carbon

  10. Better Buildings Challenge is Expanding, Improving Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhenBethany Sparn, M.S. -Throughout America |

  11. Interdisciplinary research on Buildings in energy systems

    E-Print Network [OSTI]

    Zhao, Yuxiao

    issues are: Zero energy buildings: implementation processes, planning tools Energy efficient renovation of existing buildings Building owners and inhabitants: their role in creating energy efficiency. LocalInterdisciplinary research on Buildings in energy systems Local and regional energy systems

  12. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    Standard for Energy Efficiency of Public Buildings. EnergySummer Study on Energy Efficiency in Buildings August 12,for Energy Efficiency of Residential Buildings in Hot Summer

  13. Energy Efficiency in Commercial Buildings: Experiences and Results from the German funding Program SolarBau 

    E-Print Network [OSTI]

    Herkel, S.; Lohnert, G.; Voss, K.; Wagner, A.

    2004-01-01

    Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be ...

  14. New Funding Alternatives, Sources and Strategies To Create High-Performing, Energy Efficient Buildings 

    E-Print Network [OSTI]

    Flores, M.

    2012-01-01

    Action Planning ?What Do I Do Now?? New Funding Alternatives, Sources and Strategies To Create High-Performing, Energy Efficient Buildings October 9, 2012 Your Speaker Michael Flores Director, Southwest Region; McKinstry ? 20 years... and savings objectives; ? Explore lessons learned from a case study where the process from design to ongoing operations will be discussed. Agenda ? Overview ? Welcome and Introductions ? Background ? Financial Strategies o New Options...

  15. Energy Efficiency and Conservation Block Grant (EECBG)- Better Buildings Neighborhood Program Final Report

    SciTech Connect (OSTI)

    Brown, Donisha; Harris, Barbara; Blue, Cynthia; Gaskins, Charla

    2014-09-16

    The original BetterBuildings for Greensboro grant program included an outreach campaign to inform 100% of the Greensboro community about the benefits of reducing energy use; a plan to reduce energy consumption in at least 34% of the homes and 10% of the other buildings in the east Greensboro target area; and a plan to create and retain jobs in the energy conservation industry. Under the original program structure the City of Greensboro planned to partner with local and regional lenders to create a diversified portfolio of loan products to meet the needs of various income levels and building types. All participants would participate in the loan programs as a method of meeting the program’s 5 to1 private capital match/leverage requirements. In June 2011 the program was restructured to include partnerships with large commercial and multifamily projects, with these partners providing the greater portion of the required match/leverage. The geographic focus was revised to include reducing energy consumption across the entire City of Greensboro, targeting neighborhoods with high concentrations of low-moderate income households and aged housing stock. The community outreach component used a neighborhood-based approach to train community residents and volunteers to conduct door-to-door neighborhood sweeps; delivered high quality information on available program resources; helped residents to evaluate alternative energy efficiency measures and alternative financing sources; assisted with contractor selections and monitoring/evaluation of work; coordinated activities with BetterBuildings program partners; and collected data required by the Department of Energy. Additionally, HERO (Home Energy Response Officers) delivered intro packages (energy efficiency information and products) to thousands of households at the initial point of contact. A pilot program (Early Adopters) was offered from March 1, 2011 through June 30, 2011. The Early Adopters program was designed to offer immediate assistance to property owners ready and able to make their homes more energy efficient, by offering a rebate on their energy assessment and on the cost of upgrades installed. Eligible energy efficient upgrades were inclusive of basic level insulating and weather-stripping, HVAC system and water heater upgrades, to whole home upgrades that include the replacement of windows, doors and appliances. Renewable energy systems such as solar hot water systems were also eligible for the rebate program.

  16. MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    WP-84-04, Buildings Energy Data Group, Building Laboratory,Contact the Buildings Energy Data Group at Lawrence Berkeleymost recent year of energy data available for the building.

  17. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    energy efficiency. Intelligent Buildings, 3:43-46, 2011. InM. Bhandari. Comparison of Building Energy Use Data betweenand China, Energy and Buildings, 2013. Under reviewed. 5. T.

  18. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect (OSTI)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  19. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01

    Organization: Energy Efficiency Building Code (EEBC-92)INCREASE the ENERGY EFFICIENCY of BUILDINGS. Such standardsto increase energy efficiency in buildings: Infonnation

  20. China Energy Group - Sustainable Growth Through Energy Efficiency

    E-Print Network [OSTI]

    2006-01-01

    to: Buildings—working to promote energy-efficient buildingsand energy-efficient equipment used in buildings. Currentenergy-efficient residential and commercial/public buildings.

  1. Discussion of Problems in the Development of Building Energy Efficiency In China 

    E-Print Network [OSTI]

    Liu, Y.; Fu, X.; Luo, Q.

    2006-01-01

    In the context that Chinese energy shortage is beginning to emerge and China is constructing an economical society, much attention is paid to building energy consumption by the Chinese government and common people. Therefore, Building Energy...

  2. High-Performance Glazing for Energy-Efficient and Bird-Safe Buildings Objective: With the ultimate goal of reducing bird-window collisions, identify a short list

    E-Print Network [OSTI]

    Wolberg, George

    High-Performance Glazing for Energy-Efficient and Bird-Safe Buildings Objective: With the ultimate-- improving the energy efficiency of buildings, and preventing bird deaths. What brings them together energy-efficiency perspective, less glazing on buildings would be preferable. But it is unlikely that our

  3. Energy Efficiency Improvements to Wundar Hall, a Historic Building on the Concordia Campus, Milwaukee, Wisconsin

    SciTech Connect (OSTI)

    Karman, Nathan

    2012-11-29

    The Forest County Potawatomi Community (â??FCPCâ?ť or â??Communityâ?ť) implemented energy efficiency improvements to revitalize Wundar Hall, a 34,000 square foot (â??SFâ?ť) building that was formerly used as a dormitory and is listed on the National Registry of Historic Places, into an office building. Wundar Hall is the first of many architecturally and historically significant buildings that the Community hopes to renovate at the former Concordia College campus, property on the near west side of Milwaukee that was taken into trust for the Community by the United States on July 10, 1990 (collectively, the â??Concordia Trust Propertyâ?ť). As part of this project, which was conducted with assistance from the Department of Energyâ??s Tribal Energy Program (â??TEPâ?ť), the Community updated and/or replaced the building envelope, mechanical systems, the plumbing system, the electrical infrastructure, and building control systems. The project is expected to reduce the buildingâ??s natural gas consumption by 58% and the electricity consumption by 55%. In addition, the project was designed to act as a catalyst to further renovation of the Concordia Trust Property and the neighborhood. The City of Milwaukee has identified redevelopment of the Concordia Trust Property as a â??Catalytic Projectâ?ť for revitalizing the near west side. The Tribe envisions a revitalized, mixed-use campus of community services, education, and economic developmentâ??providing services to the Indian community and jobs to the neighborhood.

  4. EA-2020: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AD56)

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

  5. Review of Prior Commercial Building Energy Efficiency Retrofit Evaluation: A Report to Snohomish Public Utilities District

    SciTech Connect (OSTI)

    Price, Phillip

    2014-12-22

    Snohomish County Public Utilities District (the District or Snohomish PUD) provides electricity to about 325,000 customers in Snohomish County, Washington. The District has an incentive programs to encourage commercial customers to improve energy efficiency: the District partially reimburses the cost of approved retrofits if they provide a level of energy performance improvement that is specified by contract. In 2013 the District contracted with Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and Verification (M&V) practices the District uses to evaluate whether companies are meeting their contractual obligations. This work helps LBNL understand the challenges faced by real-world practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. (2013). The District selected a typical project for which they had already performed an evaluation. The present report includes the District's original evaluation as well as LBNL's review of their approach. The review is based on the document itself; on investigation of the load data and outdoor air temperature data from the building evaluated in the document; and on phone discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the building studied in the document the subject building, the original Snohomish PUD report will be referred to as the Evaluation, and this discussion by LBNL is called the Review.

  6. Recommendations for 15% Above-Code Energy Efficiency Measures on Implementing Houston Amendments to Multifamily Residential Buildings in Houston, Texas 

    E-Print Network [OSTI]

    Mukhopadhyay, Jaya; Liu, Zi; Malhotra, Mini; Kota, Sandeep; Blake, Sheila; Haberl, Jeff; Culp, Charles; Yazdani, Bahman

    2008-01-01

    FOR 15% ABOVE-CODE ENERGY EFFICIENCY MEASURES ON IMPLEMENTING HOUSTON AMENDMENTS TO MULTIFAMILY RESIDENTIAL BUILDINGS IN HOUSTON, TEXAS Jaya Mukhopadhyay 1 , Zi Liu 1 , Mini Malhotra 1 , Sandeep Kota 1 Sheila Blake 2 , Jeff Haberl 1 , Charles Culp...

  7. Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    Quick guide to increasing Federal office building water efficiency, water management planning, performing a water audit, calculating a water balance, and best management practices.

  8. Better Buildings Webinar: Making Utility Energy Efficiency Funds Work for You

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Better Buildings will host a webinar on innovative collaborations with utilities to bring big energy savings to their building portfolios and help reduce utility peak electricity demand.

  9. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Efficiency Commercial Buildings Commercial Buildings At an estimated cost of 38 billion a year, lighting represents the largest source of...

  10. Energy Department Issues Green Building Certification System...

    Office of Environmental Management (EM)

    Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification...

  11. This report was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, of the U.S. Department of

    E-Print Network [OSTI]

    LBNL-42182 This report was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, of the U.S. Department of Energy under Contract No. DE-AC03-76F, the Executive Committee of the International Energy Agency's Energy Conservation in Buildings and Community

  12. Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

    2012-01-01

    2009, the goal of net zero energy was reached. Referenceswas to make it a net zero-energy building. We obtained

  13. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    SciTech Connect (OSTI)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-03-28

    California has been using DOE-2 as the main building energy analysis tool in the development of building energy efficiency standards (Title 24) and the code compliance calculations. However, DOE-2.1E is a mature program that is no longer supported by LBNL on contract to the USDOE, or by any other public or private entity. With no more significant updates in the modeling capabilities of DOE-2.1E during recent years, DOE-2.1E lacks the ability to model, with the necessary accuracy, a number of building technologies that have the potential to reduce significantly the energy consumption of buildings in California. DOE-2's legacy software code makes it difficult and time consuming to add new or enhance existing modeling features in DOE-2. Therefore the USDOE proposed to develop a new tool, EnergyPlus, which is intended to replace DOE-2 as the next generation building simulation tool. EnergyPlus inherited most of the useful features from DOE-2 and BLAST, and more significantly added new modeling capabilities far beyond DOE-2, BLAST, and other simulations tools currently available. With California's net zero energy goals for new residential buildings in 2020 and for new commercial buildings in 2030, California needs to evaluate and promote currently available best practice and emerging technologies to significantly reduce energy use of buildings for space cooling and heating, ventilating, refrigerating, lighting, and water heating. The California Energy Commission (CEC) needs to adopt a new building energy simulation program for developing and maintaining future versions of Title 24. Therefore, EnergyPlus became a good candidate to CEC for its use in developing and complying with future Title 24 upgrades. In 2004, the Pacific Gas and Electric Company contracted with ArchitecturalEnergy Corporation (AEC), Taylor Engineering, and GARD Analytics to evaluate EnergyPlus in its ability to model those energy efficiency measures specified in both the residential and nonresidential Alternative Calculation Method (ACM) of the Title-24 Standards. The AEC team identified gaps between EnergyPlus modeling capabilities and the requirements of Title 24 and ACMs. AEC's evaluation was based on the 2005 version of Title 24 and ACMs and the version 1.2.1 of EnergyPlus released on October 1, 2004. AEC's evaluation is useful for understanding the functionality and technical merits of EnergyPlus for implementing the performance-based compliance methods described in the ACMs. However, it did not study the performance of EnergyPlus in actually making building energy simulations for both the standard and proposed building designs, as is required for any software program to be certified by the CEC for use in doing Title-24 compliance calculations. In 2005, CEC funded LBNL to evaluate the use of EnergyPlus for compliance calculations by comparing the ACM accuracy test runs between DOE-2.1E and EnergyPlus. LBNL team identified key technical issues that must be addressed before EnergyPlus can be considered by the CEC for use in developing future Nonresidential Title-24 Standards or as an ACM tool. With Title 24 being updated to the 2008 version (which adds new requirements to the standards and ACMs), and EnergyPlus having been through several update cycles from version 1.2.1 to 2.1, it becomes crucial to review and update the previously identified gaps of EnergyPlus for use in Title 24, and more importantly to close the gaps which would help pave the way for EnergyPlus to be adopted as a Title 24 compliance ACM. With this as the key driving force, CEC funded LBNL in 2008 through this PIER (Public Interest Energy Research) project with the overall technical goal to expand development of EnergyPlus to provide for its use in Title-24 standard compliance and by CEC staff.

  14. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    SciTech Connect (OSTI)

    Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

    2012-06-01

    Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

  15. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  16. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01

    www.institutebe.com/clean-energy-finance/clean-energy-Consultant (energy) Consultant (finance) Developer/Owner/may choose to self-finance energy efficiency improvements.

  17. Finding the Next Big Thing(s) in Building Energy Efficiency: HIT Catalyst and the Technology Demo Program

    Broader source: Energy.gov [DOE]

    Learn how the Department prioritizes high impact technologies (HITs) to advance energy efficiency. Hear from a Better Buildings program participant who is working with Department staff to test promising technologies in buildings. Learn what they are finding and how you can get involved.

  18. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    SciTech Connect (OSTI)

    Birru, Dagnachew [Philips Electronics North America Corporation, Andover, MA (United States); Wen, Yao-Jung [Philips Electronics North America Corporation, Andover, MA (United States); Rubinstein, Francis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Clear, Robert D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the developed control technology were evaluated and verified through both simulations and testbed implementations. Simulations coupling a DOE medium office reference building in EnergyPlus building simulation software and a prototype controller in Matlab were performed. During summer time in a mixed-humid climate zone, the simulations revealed reductions of 27% and 42% in electric lighting load and cooling load, respectively, when compared to an advanced base case with daylight dimming and blinds automatically tilted to block direct sun. Two single-room testbeds were established. The testbed at Philips Lighting business building (Rosemont, IL) was designed for quantifying energy performance of integrated controls. This particular implementation achieved 40% and 79% savings on lighting and HVAC energy, respectively, compared to a relatively simple base case operated on predefined schedules. While the resulting energy savings was very encouraging, it should be noted that there may be several caveats associated with it. 1) The test was run during late spring and early summer, and the savings numbers might not be directly used to extrapolate the annual energy savings. 2) Due to the needs for separate control and metering of the small-scale demonstrator within a large building, the HVAC system, hence the corresponding savings, did not represent a typical energy code-compliant design. 3) The light level in the control case was regulated at a particular setpoint, which was lower than then the full-on light level in the base case, and the savings resulted from tuning down the light level to the setpoint was not attributable to the contribution of the developed technology. The testbed at the Lawrence Berkeley National Laboratory (Berkeley, CA) specifically focused on glare control integration, and has demonstrated the feasibility and capability of the glare detection and prevention technique. While the short one-month test in this testbed provided a functional indication of the developed technology, and it would require at least a full solstice-to-solstice cycle to ruinously quan

  19. Energy Efficiency Services Sector: Workforce Education and Training Needs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2010-01-01

    management, energy efficiency, and energy conservationBuilding Energy Efficiency and Energy Auditing. EESSWeatherization, and Energy Efficiency and Conservation Block

  20. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  1. Energy Efficiency Services Sector: Workforce Education and Training Needs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2010-01-01

    the success of the building energy performance certificationand thermodynamics; building energy systems; performanceexperts. Building Performance and Energy Efficiency is an

  2. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01

    Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Office of the Building

  3. Energy Efficiency Services Sector: Workforce Education and Training Needs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2010-01-01

    and maintenance of energy-efficient buildings and equipmentand tradespeople on energy-efficient building solutions andunderstanding of energy-efficient building solutions. NEEA

  4. Potentials and policy implications of energy and material efficiency improvement

    E-Print Network [OSTI]

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    Summer Study on Energy Efficiency in Buildings Proceedings,Summer Study on Energy Efficiency in Buildings, pp. 1.76-Summer Study on Energy Efficiency in Buildings, Asilomar,

  5. Energy Efficiency Services Sector: Workforce Education and Training Needs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2010-01-01

    Center for Energy Efficiency and Building Science CertifiedCenter for Energy Efficiency and Building Science However,Center for Energy Efficiency and Building Science delivers

  6. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    the Massachusetts Energy Efficiency and Building ScienceStudy on Energy Efficiency in Buildings. American CouncilSummer Study on Energy Efficiency in Buildings. The United

  7. Bainbridge Energy Challenge. Energy efficiency and conservation block grant (EECBG) - Better buildings neighborhood program. Final Technical Report

    SciTech Connect (OSTI)

    Kraus, Yvonne X.

    2014-02-14

    RePower Bainbridge and Bremerton (RePower) is a residential energy-efficiency and conservation program designed to foster a sustainable, clean, and renewable energy economy. The program was a 3.5 year effort in the cities of Bainbridge Island and Bremerton, Washington, to conserve and reduce energy use, establish a trained home performance trade ally network, and create local jobs. RePower was funded through a $4.8 million grant from the US Department of Energy, Better Buildings Program. The grant’s performance period was August 1, 2010 through March 30, 2014.

  8. Chapter 5: Increasing Efficiency of Building Systems and Technologies | Building Energy Technology Roadmaps Supplemental Information

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to

  9. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01

    Consultants and energy service providers (including ESCOs—or service provider to evaluate energy and sustainabilitypoint of view of providers of energy efficiency services.

  10. Optimizing Building Energy Use Objective: Perform a comprehensive energy audit of a targeted New York City building,

    E-Print Network [OSTI]

    Wolberg, George

    Optimizing Building Energy Use Objective: Perform a comprehensive energy audit of a targeted New York City building, identify inefficiencies, recommend modifications to improve energy efficiency, electricity-generation method, and the energy efficiency of buildings. Building energy efficiency determines

  11. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Hurricane Katrina was the largest natural disaster in the United States, striking the Gulf Coast on August 29, 2005, and flooding 80% of New Orleans; to make matters worse, the city was flooded again only three weeks later by the effects of Hurricane Rita. Many of the buildings, including schools, were heavily damaged. The devastation of schools in New Orleans from the hurricanes was exacerbated by many years of deferred school maintenance. This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. The experiences of four new schools-Langston Hughes Elementary School, Andrew H. Wilson Elementary School (which was 50% new construction and 50% major renovation), L.B. Landry High School, and Lake Area High School-and one major renovation, Joseph A. Craig Elementary School-are described to help other school districts and design teams with their in-progress and future school building projects in hot-humid climates. Before Hurricane Katrina, New Orleans had 128 public schools. As part of the recovery planning, New Orleans Public Schools underwent an assessment and planning process to determine how many schools were needed and in what locations. Following a series of public town hall meetings and a district-wide comprehensive facility assessment, a Master Plan was developed, which outlined the renovation or construction of 85 schools throughout the city, which are expected to be completed by 2017. New Orleans Public Schools expects to build or renovate approximately eight schools each year over a 10-year period to achieve 21st century schools district-wide. Reconstruction costs are estimated at nearly $2 billion.

  12. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01

    performance indices for passive building evaluation. LBL hassavings for passive solar buildings," LBL-7886, Septemberpassive solar system analysis capabilities to the building

  13. Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects

    E-Print Network [OSTI]

    Sanders, Mark D.

    2014-01-01

    Study of Energy Efficiency in Buildings. ACEEE, Washington,3)Financing Your Energy Efficiency Projects Building Energywith  Commercial   Building  Energy  Efficiency   Provide  

  14. SEPTEMBER 2009 ENERGY EFFICIENCY &

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Summary Improving energy efficiency in buildings is central to combating climate change, with more thanSEPTEMBER 2009 GUIDE TO ENERGY EFFICIENCY & RENEWABLE ENERGY FINANCING DISTRICTS FOR LOCAL for Renewable and Sustainable Technology BPI Building Performance Institute CEAD Clean Energy Assessment

  15. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01

    Study on Energy Efficiency in Buildings. Kinter-Meyer,Study on Energy Efficiency in Buildings. LBNL Report #50733.Study on Energy Efficiency in Buildings. LBNL Report #48284.

  16. Energy Efficiency and Conservation Block Grant (EECBG): Better Buildings Neighborhood Program Final Report

    SciTech Connect (OSTI)

    Donnelly, Kat A.

    2014-01-10

    The Neighbor to Neighbor Energy Challenge (N2N) brought together a consortium of 14 leading clean energy rural, suburban, and low income communities throughout Connecticut. N2N was awarded $4.2 million from the U.S. Department of Energy (DOE) competitive BetterBuildings Neighborhood Program on August 10, 2010 to run a two-year pilot program (plus one year of transition and evaluation) (Award No. EMCBC- 00969-10). N2N tested innovative program models and hypotheses for improving Connecticut’s existing residential energy efficiency programs that are overseen by the ratepayer fund board and administered by CT utilities. N2N’s original goal was to engage 10 percent of households in participating communities to reduce their energy usage by 20 percent through energy upgrades and clean energy measures. N2N planned for customers to complete more comprehensive whole-home energy efficiency and clean energy measures and to achieve broader penetration than existing utility-administered regulated programs. Since this was an ARRA award, we report the following figures on job creation in Table 1. Since N2N is not continuing in its current form, we do not provide figures on job retention. Table 1 N2N Job Creation by Quarter Jobs Created 2010 Q4 6.65 2011 Q1 7.13 2011 Q2 4.98 2011 Q3 9.66 2011 Q4 5.43 2012 Q1 11.11 2012 Q2 6.85 2012 Q3 6.29 2012 Q4 6.77 2013 Q1 5.57 2013 Q2 8.35 2013 Q3 6.52 Total 85.31 The N2N team encountered several gaps in the existing efficiency program performance that hindered meeting N2N’s and DOE’s short-term program goals, as well as the State of Connecticut’s long-term energy, efficiency, and carbon reduction goals. However, despite the slow program start, N2N found evidence of increasing upgrade uptake rates over time, due to delayed customer action of one to two years from N2N introduction to completion of deeper household upgrades. Two main social/behavioral principles have contributed to driving deeper upgrades in CT: 1. Word of mouth, where people share their experience with others, which leads to others to take action; and 2. Self-herding, where people follow past behavior, which leads to deeper and deeper actions within individual households.

  17. ACEEE 2000 Summer Study on Energy Efficiency in Buildings, Efficiency and Sustainability, August 20-25, 2000, Asilomar Conference Center, Pacific Grove, CA.

    E-Print Network [OSTI]

    LBNL-46376 CD-423 ACEEE 2000 Summer Study on Energy Efficiency in Buildings, Efficiency and Sustainability, August 20-25, 2000, Asilomar Conference Center, Pacific Grove, CA. The research reported here, California 94720 July 2000 #12;- 1 - Innovation Adoption Processes for Third Party Property Management

  18. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect (OSTI)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  19. Presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, August 20-25, 2000 in Pacific Grove, CA, and published in the Proceedings.

    E-Print Network [OSTI]

    LBNL-46303 Presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, August 20 of Energy`s (DOE) Office of Building Equipment combined DOE-2 results for a large set of prototypical commercial and residential buildings with data from the Energy Information Administration (EIA) residential

  20. Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes

    E-Print Network [OSTI]

    Benenson, P.

    2011-01-01

    OF ENERGY CONSERVATION BUILDING CODES B. COST CALCULATIONScost calculations carries weight in California because the state EnergyCOST CALCULATIONS AS A BASIS FOR CODES Even small improvements in conservation design save energy, and

  1. Residential Buildings Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the...

  2. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    SciTech Connect (OSTI)

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  3. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01

    likelihood of investing in green design or energy efficienton the benefits of green design to commercial buildinginfluence the adoption of green design and energy efficiency

  4. Live Webinar on Better Buildings Case Competition: Energy Efficiency in the Restaurant Franchise Model Case Study

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "A Side of Savings: Energy Efficiency in the Restaurant Franchise Model Case Study."

  5. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01

    Energy. “Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

  6. Targeted Energy Efficiency Expert Evaluation Report: Neal Smith Federal Building, Des Moines, IA

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Goddard, James K.; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01

    This report summarizes the energy efficiency measures identified and implemented, and an analysis of the energy savings realized using low-cost/no-cost control system measures identified.

  7. Who should administer energy efficiency programs?

    E-Print Network [OSTI]

    Blumstein, Carl; Goldman, Charles; Barbose, Galen

    2003-01-01

    Study on Energy Efficiency in Buildings. Keating, K. , 2003.Summer Study on Energy Efficiency in Buildings. Kushler, M.Summer Study on Energy Efficiency in Buildings. York, D. and

  8. Comparison of Building Energy Modeling Programs: Building Loads

    E-Print Network [OSTI]

    LBNL-6034E Comparison of Building Energy Modeling Programs: Building Loads Dandan Zhu1 , Tianzhen Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U;Comparison of Building Energy Modeling Programs: Building Loads A joint effort between Lawrence Berkeley

  9. Administering Nonprofit Energy Efficiency Programs | Department...

    Energy Savers [EERE]

    Administering Nonprofit Energy Efficiency Programs Administering Nonprofit Energy Efficiency Programs Better Buildings Neighborhood Program Peer Exchange Call: Administering...

  10. Incorporating Behavior Change Efforts Into Energy Efficiency...

    Energy Savers [EERE]

    Change Efforts Into Energy Efficiency Programs Incorporating Behavior Change Efforts Into Energy Efficiency Programs Better Buildings Residential Network Program Sustainability...

  11. Coordinating Energy Efficiency with Other Disaster Resiliency...

    Energy Savers [EERE]

    Energy Efficiency with Other Disaster Resiliency Services Coordinating Energy Efficiency with Other Disaster Resiliency Services Better Buildings Residential Network Program...

  12. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Savers [EERE]

    Incorporating Energy Efficiency into Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program...

  13. Coordinating Energy Efficiency With Water Conservation Services...

    Energy Savers [EERE]

    Coordinating Energy Efficiency With Water Conservation Services Coordinating Energy Efficiency With Water Conservation Services Better Buildings Residential Network Program...

  14. Comparison of building energy use data between the United States and China

    E-Print Network [OSTI]

    Xia Ph.D., Jianjun

    2014-01-01

    Summer Study on Energy Efficiency in Buildings, 2002. [19]Summer Study on Energy Efficiency in Buildings, 2000. [18]Standard for Energy Efficiency of Public Buildings, Energy

  15. Greensburg Implements High-Efficiency Building Codes to Achieve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for incorpo- rating energy efficiency and renewable energy into building designs. The Energy Transition Initiative leverages the experiences of islands, states, and cities that...

  16. Review and Recommendations of Existing Methods and Tools for Building Energy Analysis: Subtask 2.4 for the Southern Energy Efficiency Center 

    E-Print Network [OSTI]

    Kim, Hyojin; Verdict, Malcolm; Haberl, Jeff S.

    2009-01-01

    The Southern Energy Efficiency Center (SEEC) was established to substantially increase the deployment of high-performance “beyond-code” buildings across the southern region of the U.S. It is funded by the U.S. Department ...

  17. Building Our Energy Future: Teaching Students the Significance...

    Office of Environmental Management (EM)

    Building Our Energy Future: Teaching Students the Significance of Energy Efficiency Building Our Energy Future: Teaching Students the Significance of Energy Efficiency April 2,...

  18. India’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with India

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd

    2010-06-01

    This report outlines India’s current activities and future plans in building energy efficiency R&D and deployment, and maps them with R&D activities under the Department of Energy’s Building Technologies Program. The assessment, conducted by the Pacific Northwest National Laboratory in FY10, reviews major R&D programs in India including programs under the 11th Five-Year Plan, programs under the NEF, R&D and other programs under state agencies and ongoing projects in major research institutions .

  19. Retrofit Options for Increasing Energy Efficiency in Office Buildings- Methodology Review 

    E-Print Network [OSTI]

    Pereira, N. C.

    2008-01-01

    Portuguese Buildings represent 35% of primary energy consumption in 2006, with non-residential sector representing almost half of this number globally and around 65% in Lisbon city. Expected to grow 5% yearly in this period, non...

  20. Energy efficient commercial buildings : a study of natural daylighting in the context of adaptive reuse

    E-Print Network [OSTI]

    Crowley, John Stephen

    1982-01-01

    Daylighting is a powerful design element which can have a dramatic impact on people's perception of space, physical and psychological well-being as well as a building's annual and daily energy requirements. Understanding ...

  1. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeffrey; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-01-01

    Summer Study on Energy Efficiency in Buildings. WashingtonSummer Study on Energy Efficiency in Buildings. WashingtonSummer Study on Energy Efficiency in Buildings. Washington

  2. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    E-Print Network [OSTI]

    Harris, Jeff

    2008-01-01

    E Summer Study on Energy Efficiency in Buildings. WashingtonE Summer Study on Energy Efficiency in Buildings. WashingtonStudy on Energy Efficiency in Buildings, American Council

  3. Energy Efficient Buildings and Appliances: From Berkeley Lab to the Marketplace (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Rosenfeld, Art [Commissioner, California Energy Commission

    2011-04-28

    Summer Lecture Series 2006: Art Rosenfeld, an appointee to the California Energy Commission and one of the architects of energy efficiency research at Berkeley Lab in the 1970s, discusses what it takes to shepherd innovative energy efficiency research from the lab to the real world.

  4. Recommendations for 15% Above ASHRAE 90.1-2007 Code-Compliant Building Energy Efficiency Measures for Small Office Buildings 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

    2012-01-01

    per 2009 IECC Section 501.2 15% Above-Code Analysis for Small Office, p.5 January 2012 Energy Systems Laboratory, Texas A&M University Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL...-19341 (Thornton et al. 2010) Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al. 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341...

  5. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01

    e-mail. [8] Peak Load Management Alliance, “Principles ofTable 2. Energy Efficiency, Daily Load Management and Demandefficiency, (2) daily peak load management and (3) dynamic,

  6. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This brochure presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita.

  7. Energy-Efficient Appliances: Office of Building Technology, State and Community Programs (BTS) Technology Fact Sheet

    SciTech Connect (OSTI)

    2001-08-01

    Fact sheet for homeowners and contractors that explains the energy savings potential of efficient appliances, how to purchase them, and how to maintain them.

  8. Alliance for Sustainable Colorado Renovation Raises Its Energy Performance to New Heights, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-03-01

    The Alliance for Sustainable Colorado (The Alliance) is a nonprofit organization aiming to transform sustainability from vision to reality. Part of its mission is to change the operating paradigms of commercial building design to make them more sustainable. Toward that end The Alliance uses its headquarters, The Alliance Center at 1536 Wynkoop Street in Denver, as a living laboratory, conductingpilot studies of innovative commercial-building-design solutions for using and generating energy.

  9. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01

    1 dehyde Adhesives Organics Paint Mercury, Organics Previousof paint, var- nish, pesticides, and various organicorganics emitted from common building materials such as adhesives, sealants, paints,

  10. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    heating is provided by district heating. The building isis heated from a district heating system that provides hotconverts the heat from district heating system to the hot

  11. The Department of Architectural Engineering is providing the technical leadership on the recently awarded Department of Energy Innovation Hub for Energy Efficient Buildings. This initiative was led on behalf of the

    E-Print Network [OSTI]

    Yener, Aylin

    awarded Department of Energy Innovation Hub for Energy Efficient Buildings. This initiative was led the building industry and radically improve the energy efficiency of building systems." See below, the Department should be playing a pivotal role in the development of the next generation of energy

  12. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01

    Solar thermal collectors are not widely used i n Japan, the total energy consumptionsolar shading for a l l openings. End-Use Energy Consumptionenergy consumption for cooling i n office buildings is greater than for heating; as a result, solar

  13. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01

    constructing a net zero-energy building to house the REECCountry Report on Building Energy Codes in India. Richland,2010. Mainstreaming Building Energy Efficiency Codes in

  14. Simulation-based assessment of the energy savings benefits of integrated control in office buildings

    E-Print Network [OSTI]

    Hong, T.

    2011-01-01

    Energy Efficiency and Renewable Energy, Office of BuildingEnergy Efficiency and Renewable Energy, Office of BuildingEnergy Efficiency and Renewable Energy, U.S. Department of

  15. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01

    and/or require energy efficiency in buildings during the 11to strengthen energy efficiency in buildings. This BuildingHao Bin. 2009. “Building Energy Efficiency Evaluation and

  16. Optimizing Distributed Energy Resources and Building Retrofits with the Strategic DER-CAModel

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    support for energy efficiency in buildings. COM ( 2013) 225support for energy efficiency in buildings. Commission Stafftowards energy efficiency in buildings than those obtained

  17. Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.

    E-Print Network [OSTI]

    Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

    2012-01-01

    such as the energy efficiency of building engineeringIEA, 2008, Energy efficiency requirements in building codes,motivating energy-efficiency in these buildings. 2 Direct

  18. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01

    2006. “Strengthening the Building Energy Efficiency (BEE)Summer Studies on Energy Efficiency in Buildings, Asilamor,energy efficiency improvement (-1.5%) and building mix (-

  19. Detailed Energy Data Collection for Miscellaneous and Electronic Loads in a Commercial Office Building

    E-Print Network [OSTI]

    Cheung, H.Y. Iris

    2014-01-01

    Study on Energy Efficiency in Buildings. Ed. : AmericanSummer Study on Energy Efficiency in Buildings in Asilomar,Summer Study on Energy Efficiency in Buildings Asilomar, CA,

  20. A Usability Study of a Social Media Prototype for Building Energy Feedback and Operations

    E-Print Network [OSTI]

    Lehrer, David R.; Vasudev, Janani; Kaam, Soazig

    2014-01-01

    © 2014 ACEEE Summer Study on Energy Efficiency in BuildingsSummer Study on Energy Efficiency in Buildings Froehlich,Study on Energy Efficiency in Buildings. Pacific Grove, CA.

  1. Building America Whole-House Solutions for Existing Homes: Group Home Energy Efficiency Retrofit for 30% Energy Savings (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This project studies the specification, implementation, and energy savings from an energy efficiency retrofit in a group home, with an energy savings goal of 30%.

  2. Building Energy Optimization Analysis Method (BEopt) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House...

  3. Energy Department Announces $5 Million for Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy Efficiency...

  4. Optimization of energy parameters in buildings

    E-Print Network [OSTI]

    Jain, Ruchi V

    2007-01-01

    When designing buildings, energy analysis is typically done after construction has been completed, but making the design decisions while keeping energy efficiency in mind, is one way to make energy-efficient buildings. The ...

  5. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy An Introduction to the 2010 Fuel Cell Pre a d t ade o a to educe Advancing Presidential Priorities Energy efficiency and renewable energy, cleanest, Recovery Act energy projectsfastest energy source ­ energy efficiency · Double renewable energy

  6. Building Energy Asset Score: Real Estate Managers

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use.

  7. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01

    Energy Efficiency and Renewable Energy, Office of BuildingEnergy Efficiency and Renewable Energy, Office of Building

  8. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    E-Print Network [OSTI]

    Mendes, Goncalo

    2014-01-01

    Study on Energy Efficiency in Buildings, Pacific Grove,Study on Energy Efficiency in Buildings, Pacific Grove,DOE), Energy Efficiency & Renewable Energy, Buildings Energy

  9. NREL: Continuum Magazine - Energy Efficient Window Coatings that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Efficient Buildings Stories Energy-Efficient Window Coatings that Please the Eye Net-Zero Building Technologies Create Substantial Energy Savings Building Better: Advanced...

  10. Energy Efficiency Strategies 

    E-Print Network [OSTI]

    Dillingham, G.

    2012-01-01

    IN THE ROOM • A BROAD-BASED CAMPAIGN FOR 30% • 2012 RESIDENTIAL AND COMMERCIAL IECC • THE MYRIAD BENEFITS • THE CHALLENGE: ADOPT, TRAIN, ENFORCE ESL-KT-13-12-30 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 COMMERCIAL BUILDING EFFICIENCY IS STAGNANT Commercial Building Energy Efficiency ESL-KT-13-12-30 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 AND, AFTER WORSENING LAST DECADE, HOME EFFICIENCY IS NOW SAME AS 1990s...

  11. National Residential Efficiency Measures Database - Building...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database - Building America Top Innovation National Residential Efficiency Measures Database - Building America Top Innovation Image of a...

  12. Performance-based methodology for the fire safe design of insulation materials in energy efficient buildings 

    E-Print Network [OSTI]

    Hidalgo-Medina, Juan P.

    2015-01-01

    quantifiable and acceptable fire safety levels for required energy efficiency targets is established. As a final remark, an application of the performance assessment methodology that introduces fire safety as a quantifiable variable is presented....

  13. An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates 

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    2006-01-01

    and exterior walls, and windows. A DOE-2 simulation model of a 2000/2001 IECC code-compliant house in Houston, Texas, was used for the analysis. The results demonstrated the effect of incremental changes in these properties on the building's energy use...

  14. Chapter 5: Increasing Efficiency of Building Systems and Technologies | Building Technologies Office Potential Energy Savings Analysis Supplemental Information

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk toRoadmaps Building Technologies

  15. To be presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, August 20-25, 2000, Pacific Grove, CA

    E-Print Network [OSTI]

    in commercial buildings, typically consuming nearly 40% of electric energy. By renovating older fluorescentLBNL-46009 L-220 To be presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, August 20-25, 2000, Pacific Grove, CA This work was supported by the Assistant Secretary for Energy

  16. Asian success stories in promoting energy efficiency in industry and building

    SciTech Connect (OSTI)

    Yang, Ming

    1996-12-31

    This article describes the program of the International Institute for Energy Conservation (IIEC), which has offices in Washington, Bangkok, Santiago, and London, in addition to staff in a number of other countries. The mission of this private organization is to promote the efficient use of energy as a tool for sustainable development by supporting the development of policies, technologies, and practices. Its focus is on energy efficiency, transportation systems, and renewable energy sources. Examples of specific program activities in Thailand, China, Philippines, Malaysia, Indonesia and Singapore are discussed.

  17. Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS

    SciTech Connect (OSTI)

    David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

    2008-05-31

    ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

  18. A Comparison of the 2003 and 2006 International Energy Conservation Codes to Determine the Potential Impact on Residential Building Energy Efficiency

    SciTech Connect (OSTI)

    Stovall, Therese K; Baxter, Van D

    2008-03-01

    The IECC was updated in 2006. As required in the Energy Conservation and Production Act of 1992, Title 3, DOE has a legislative requirement to "determine whether such revision would improve energy efficiency in residential buildings" within 12 months of the latest revision. This requirement is part of a three-year cycle of regular code updates. To meet this requirement, an independent review was completed using personnel experienced in building science but not involved in the code development process.

  19. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01

    pp. 596-598. Table 1. LEED credits in optimize energy55% Reduce Energy Costs – 60% LEED Points Table 2. Buildingand Environmental Design (LEED) rating, including the full

  20. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    Summer Study on Energy Efficiency in Buildings. pp. 8-249Summer Study on Energy Efficiency in Buildings. pp. 4-275 -Summer Study on Energy Efficiency in Buildings. pp. 8-170 -

  1. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01

    Summer Study on Energy Efficiency in Buildings, 4:351–366.Summer Study on Energy Efficiency in Buildings, 8:209–224.Summer Study on Energy Efficiency in Buildings, 10-196– 212.

  2. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    E-Print Network [OSTI]

    Vine, Edward

    2002-01-01

    resolved before air quality and energy officials can begin3 2. Air Quality Regulation and Energyinitiate. 2. Air Quality Regulation and Energy Efficiency

  3. ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2014-01-01

    efficiency, check water and air temperature settings,systems, as well as water- and air-source heat pumps.insulate the water heater, change the air filter on the

  4. Laying the Foundation for a More Energy Efficient Future: Reducing Climate Change through Green Building

    E-Print Network [OSTI]

    Mauzerall, Denise

    Laying the Foundation for a More Energy Efficient Future: Reducing Climate Change through Green approach focuses on the supply side and attempts to minimize the production of greenhouse gases through cleaner energy production. The other method looks at the demand side and tries to reduce the amount

  5. Collaboration and Consensus Building in States to Support Energy Efficiency as a Resource

    Broader source: Energy.gov [DOE]

    Today’s webcast is part of a 7-part series that was initially created for five states. You can see them here who have a cooperative agreement and funding with DOE under the State Energy Program. These states are all developing policy and program frameworks to support a greater investment in cost-effective energy efficiency over the long term.

  6. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

  7. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    SciTech Connect (OSTI)

    Carbary, Lawrence D.; Perkins, Laura L.; Serino, Roland; Preston, Bill; Kosny, Jan

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of 2012 compared to previous winters. This project achieved its goal of developing a system that is constructible, offers protection to the VIPs, and meets all performance targets established for the project.

  8. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  9. Energy Department Invests $6 Million to Support Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Commercial Building Efficiency Energy Department Invests 6 Million to Support Commercial Building Efficiency July 24, 2014 - 5:08pm Addthis The Energy Department today...

  10. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  11. Rating energy efficiency and sustainability in laboratories: Results and lessons from the Labs21 program

    E-Print Network [OSTI]

    Mathew, Paul; Sartor, Dale; van Geet, Otto; Reilly, Sue

    2004-01-01

    Study of Energy Efficiency in Buildings. ACEEE, WashingtonSummer Study of Energy Efficiency in Buildings. 4:29-40.Study of Energy Efficiency in Buildings. ACEEE, Washington

  12. Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition

    E-Print Network [OSTI]

    Wiel, Stephen; McMahon, James E.

    2005-01-01

    Study on Energy Efficiency in Buildings. American Council ofSummer Study on Energy Efficiency in Buildings. Asilomar,Study on Energy Efficiency in Buildings. American Council of

  13. Achieving Extreme Efficiency: How to get the job done when energy is extremely expensive and scarce

    E-Print Network [OSTI]

    Brown, Rich

    2013-01-01

    Summer Study on Energy Efficiency in Buildings. Washington,Summer Study on Energy Efficiency in Buildings. Washington,Summer Study on Energy Efficiency in Buildings. Washington,

  14. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01

    Summer Study on Energy Efficiency in Buildings. Availableof energy use and energy efficiency in buildings. Report No.

  15. Office of Energy Efficiency and Renewable Energy Fiscal Year...

    Energy Savers [EERE]

    Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Energy Saving Homes, Buildings, and Manufacturing Office of Energy Efficiency and Renewable...

  16. Energy Department Invests $6 Million to Increase Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Renewable Energy. "These low-energy building solutions will reduce air pollution and help building owners and operators save money on their operating costs...

  17. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01

    and C O Reduction i n District Heating and C o o l i n g . "Energy Efficiency o f District Heating and C o o l i n g byP o w e r Generation/District Heating and C o o l i n g

  18. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01

    and C O Reduction i n District Heating and C o o l i n g . "Energy Efficiency o f District Heating and C o o l i n g byi n Japan: cogeneration, P V , and district heating/cooling.

  19. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...

    Office of Environmental Management (EM)

    Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, &...

  20. EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings...

    Office of Environmental Management (EM)

    Energy-Saving Homes, Buildings, and Manufacturing EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings, and Manufacturing Office of Energy Efficiency and Renewable Energy...