Powered by Deep Web Technologies
Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Greenhouse Gas Emissions from Building and Operating Electric  

E-Print Network (OSTI)

Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado requires a life cycle perspective. This paper compares greenhouse gas (GHG) emissions from three renewable, and natural gas power plants is estimated for four time periods after construction. The assessment

Kammen, Daniel M.

2

Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas  

E-Print Network (OSTI)

This paper focuses on the estimate of electricity reduction and electric demand savings from the adoption energy codes for single-family residences in Texas, 2002-2009, corresponding increase in cnstruction costs and estimates of the statewide emissions reduction.

Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

2012-01-01T23:59:59.000Z

3

Buildings Energy Data Book: 6.4 Electric and Generic Quad Carbon Emissions  

Buildings Energy Data Book (EERE)

2 2 Electric Quad Average Carbon Dioxide Emissions with Average Utility Fuel Mix (Million Metric Tons) (1) Petroleum Natural Gas Coal Nuclear Renewable Total 2010 0.83 10.14 46.45 0.00 0.30 57.72 2011 0.00 0.21 0.00 0.00 0.00 0.21 2012 0.00 0.65 0.00 0.00 0.00 0.65 2013 0.00 0.16 0.00 0.00 0.00 0.16 2014 0.00 0.61 0.00 0.00 0.00 0.61 2015 0.00 1.04 0.00 0.00 0.00 1.04 2016 0.00 0.83 0.00 0.00 0.00 0.83 2017 0.00 0.58 0.00 0.00 0.00 0.58 2018 0.00 0.62 0.00 0.00 0.00 0.62 2019 0.00 0.70 0.00 0.00 0.00 0.70 2020 0.00 0.71 0.00 0.00 0.00 0.71 2021 0.00 0.76 0.00 0.00 0.00 0.76 2022 0.00 0.74 0.00 0.00 0.00 0.74 2023 0.00 0.60 0.00 0.00 0.00 0.60 2024 0.00 0.60 0.00 0.00 0.00 0.60 2025 0.00 0.43 0.00 0.00 0.00 0.43 2026 0.00 0.54 0.00 0.00 0.00 0.54 2027 0.00 0.63 0.00 0.00 0.00 0.63 2028 0.00 0.84 0.00 0.00 0.00 0.84 2029 0.00 1.05 0.00 0.00 0.00 1.05 2030 0.00 1.29 0.00 0.00 0.00 1.29 2031 0.00 1.46

4

electricity emission factors | OpenEI  

Open Energy Info (EERE)

emission factors emission factors Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

5

Hourly Energy Emission Factors for Electricity Generation in...  

Open Energy Info (EERE)

Hourly Energy Emission Factors for Electricity Generation in the United States

Emissions from energy use in buildings are usually estimated on an annual...

6

Buildings Energy Data Book: 3.4 Commercial Environmental Emissions  

Buildings Energy Data Book (EERE)

6 6 2009 Methane Emissions for U.S. Commercial Buildings Energy Production, by Fuel Type (1) Fuel Type Petroleum 0.5 Natural Gas 26.8 Coal 0.3 Wood 0.4 Electricity (2) 50.5 Total 78.5 Note(s): Source(s): MMT CO2 Equivalent 1) Sources of emissions include oil and gas production, processing, and distribution; coal mining; and utility and site combustion. Carbon Dioxide equivalent units are calculated by converting methane emissions to carbon dioxide emissions (methane's global warming potential is 23 times that of carbon dioxide). 2) Refers to emissions of electricity generators attributable to the buildings sector. EIA, Emissions of Greenhouse Gases in the U.S. 2009, Mar. 2011, Table 18, p. 37 for energy production emissions; EPA, Inventory of U.S. Greenhouse Gas

7

Choose building products that avoid toxic emissions  

U.S. Energy Information Administration (EIA)

Choose building products that avoid toxic emissions. ... (PVC or vinyl) products have a wide range of chlorine that ... and also the plasticizers in ...

8

Evaluate Greenhouse Gas Emissions Profile for Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:43am Addthis YOU ARE HERE Step 2 To identify the most cost-effective greenhouse gas (GHG) reduction strategies across a Federal agency's building portfolio, a Federal agency will need an understanding of building energy performance and the building characteristics that drive performance. The data required to support current Federal GHG reporting requirements (e.g., agency-wide fuel consumption, electricity use by zip code) are typically not sufficient to fully understand where the best opportunities for improvement are located. More detailed information about the building assets being managed-much of which may already be collected for other purposes-can help to inform where to direct investments.

9

Saving Electrical Energy in Commercial Buildings.  

E-Print Network (OSTI)

??With the commercial and institutional building sectors using approximately 29% and 34% of all electrical energy consumption in Canada and the United States, respectively, saving (more)

Case, Ryan

2012-01-01T23:59:59.000Z

10

CLEAN-Capacity Building and Training for Low Emissions Development...  

Open Energy Info (EERE)

CLEAN-Capacity Building and Training for Low Emissions Development Planning Jump to: navigation, search Tool Summary Name: CLEAN-Capacity Building and Training for Low Emissions...

11

Hourly Energy Emission Factors for Electricity Generation in the United  

Open Energy Info (EERE)

Hourly Energy Emission Factors for Electricity Generation in the United Hourly Energy Emission Factors for Electricity Generation in the United States Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. This project utilized GridViewTM, an electric grid dispatch software package, to estimate hourly emission factors for all of the eGRID subregions in the continental United States. These factors took into account electricity imports and exports

12

Modeling Distributed Electricity Generation in the NEMS Buildings Models  

Reports and Publications (EIA)

This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

Erin Boedecker

2011-01-25T23:59:59.000Z

13

Opt-E-Plus Software for Commercial Building Optimization; Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Commercial Building Optimization Electricity, Resources, & Building Systems Integration National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado...

14

Quantifying Changes in Building Electricity Use, with Application...  

NLE Websites -- All DOE Office Websites (Extended Search)

Changes in Building Electricity Use, with Application to Demand Response Title Quantifying Changes in Building Electricity Use, with Application to Demand Response Publication Type...

15

Smart buildings with electric vehicle interconnection as buffer...  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings with electric vehicle interconnection as buffer for local renewables? Title Smart buildings with electric vehicle interconnection as buffer for local renewables?...

16

DSM Electricity Savings Potential in the Buildings Sector in...  

NLE Websites -- All DOE Office Websites (Extended Search)

DSM Electricity Savings Potential in the Buildings Sector in APP Countries Title DSM Electricity Savings Potential in the Buildings Sector in APP Countries Publication Type Report...

17

build more efficient electrical grids, and  

NLE Websites -- All DOE Office Websites (Extended Search)

build more efficient electrical grids, and advance clean energy research build more efficient electrical grids, and advance clean energy research and development (R&D). The new action plan also places a greater emphasis on energy efficiency. Accomplishments to date under the CED include: (1) completing the final phase of the Weyburn-Midale Carbon Dioxide Monitoring and Storage Project, which focuses on best practices for the safe and permanent storage of carbon dioxide (CO 2

18

WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will be designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.

S.C. Khamamkar

2000-06-23T23:59:59.000Z

19

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

20

Source Energy and Emission Factors for Energy Use in Buildings (Revised)  

SciTech Connect

This document supports the other measurement procedures and all building energy-monitoring projects by providing methods to calculate the source energy and emissions from the energy measured at the building. Energy and emission factors typically account for the conversion inefficiencies at the power plant and the transmission and distribution losses from the power plant to the building. The energy and emission factors provided here also include the precombustion effects, which are the energy and emissions associated with extracting, processing, and delivering the primary fuels to the point of conversion in the electrical power plants or directly in the buildings.

Deru, M.; Torcellini, P.

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

22

Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

23

Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

2009-09-01T23:59:59.000Z

24

Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

2009-09-01T23:59:59.000Z

25

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network (OSTI)

Division Building / tariffs electricity and gas loads for afeed-in tariff -ZNEB Storage and DR constraints -electricity

Stadler, Michael

2011-01-01T23:59:59.000Z

26

DSM Electricity Savings Potential in the Buildings Sector in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Simulation Tools Sustainable Federal Operations Windows and Daylighting Electricity Grid Demand Response Distributed Energy Electricity Reliability Energy Analysis...

27

Building Technologies Office: High Efficiency, Low Emission Supermarket  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency, Low High Efficiency, Low Emission Supermarket Refrigeration Research Project to someone by E-mail Share Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Facebook Tweet about Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Twitter Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Google Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Delicious Rank Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Digg Find More places to share Building Technologies Office: High

28

The Potential to Reduce CO2 Emissions by Expanding End-Use Applications of Electricity  

Science Conference Proceedings (OSTI)

Depending on the sources of electricity production, the use of electricity can be a contributing factor to net CO2 emissions. What is less obvious is that using efficient end-use electric technologies has the potential save energy and decrease overall CO2 emissions substantially. The two main mechanisms for saving energy and reducing CO2 emissions with electric end-use technologies are (1) upgrading existing electric technologies, processes, and building energy systems; and (2) expanding end-use applica...

2009-03-30T23:59:59.000Z

29

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network (OSTI)

Outline global concept of microgrid and electric vehicle (services to a building microgrid produces technology neutral

Stadler, Michael

2011-01-01T23:59:59.000Z

30

Figure 37. Carbon dioxide emissions from electricity ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 37. Carbon dioxide emissions from electricity generation in three cases, 2005-2040 (million metric tons carbon dioxide ...

31

OpenEI - electricity emission factors  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4650 en Hourly Energy Emission Factors for Electricity Generation in the United States http:en.openei.orgdatasetsnode488...

32

Emission Impacts of Electric Vehicles  

E-Print Network (OSTI)

greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

1990-01-01T23:59:59.000Z

33

Emissions Trading, Electricity Industry Restructuring, and Investment in Pollution Abatement  

E-Print Network (OSTI)

E I A ) . "Status of Electricity Industry Restructuring." Electricity Industry Restructuring, andEmissions Trading, Electricity Industry Restructuring, and

Fowlie, Meredith

2005-01-01T23:59:59.000Z

34

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program October 7, 2013 - 10:48am Addthis When prioritizing building types and sites for evaluating greenhouse gas (GHG) emissions, Federal agencies should first determine which programs contribute the most to their total building greenhouse gas (GHG) emissions and focus their analysis on those programs. Using the total buildings energy use by program, these emissions profile can be calculated using the Federal Energy Management Program's Annual GHG and Sustainability Data Report site. In the example below, Agency ABC should focus on Programs B and C first because together they represent over 80% of building emissions. Agencies

35

UNDP-Low Emission Capacity Building Programme | Open Energy Information  

Open Energy Info (EERE)

Programme Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme Agency/Company /Organization United Nations Development Programme (UNDP), European Union Sector Climate, Energy, Land, Water Topics Low emission development planning Resource Type Training materials Website http://www.undp.org/climatestr References UNDP-Low Emission Capacity Building Programme[1] UNDP-Low Emission Capacity Building Programme Screenshot "This collaborative programme aims to strengthen technical and institutional capacities at the country level, while at the same time facilitating inclusion and coordination of the public and private sector in national initiatives addressing climate change. It does so by utilizing the

36

Plug in Electric Vehicle Interactions with a small office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug in Electric Vehicle Interactions with a small office Building: An Economic Analysis Using DER-CAM Title Plug in Electric Vehicle Interactions with a small office Building: An...

37

Benchmarking Buildings to Prioritize Sites for Emissions Analysis |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis October 7, 2013 - 10:54am Addthis YOU ARE HERE Step 2 When actual energy use by building type is known, benchmarking the performance of those buildings to industry averages can help establish those with greatest opportunities for GHG reduction. Energy intensity can be used as a basis for benchmarking by building type and can be calculated using actual energy use, representative buildings, or available average estimates from agency energy records. Energy intensity should be compared to industry averages, such as the Commercial Buildings Energy Consumption Survey (CBECS) or an agency specific metered sample by location. When a program has access to metered data or representative building data,

38

Trends in Building-Related Energy and Carbon Emissions  

U.S. Energy Information Administration (EIA)

An analysis of trends in energy consumption and energy-related carbon emissions in U.S. buildings, 1970-1998.

39

Actual Commercial Buildings Energy Use and Emissions and ...  

U.S. Energy Information Administration (EIA)

An analysis of trends in energy consumption and energy-related carbon emissions in U.S. buildings, 1970-1998.

40

Modeling the Capacity and Emissions Impacts of Reduced Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Title Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Publication Type Report...

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

42

Building Energy Software Tools Directory: EMISS  

NLE Websites -- All DOE Office Websites (Extended Search)

Three types of emission factors are currently included: carbon dioxide, sulfur dioxide, nitrous oxide. Emissions factors are specified separately for six different end-use...

43

Electric dipole emission by fullerenes and buckyonions  

E-Print Network (OSTI)

We study the rotation rates and electric dipole emission of hydrogenated icosahedral fullerenes (single and multishell) in various phases of the interstellar medium. Using the formalism of Draine and Lazarian for the rotational dynamics of these molecules in various astrophysical environments, we find effective rotation rates in the range 1-65 GHz with a trend toward lower rotational frequency as the radius of the molecule increases. Owing to the moderately polar nature of the C--H bond, hydrogenated fullerenes (fulleranes) are expected to have a net dipole moment and produce electric dipole radiation. Adopting the same size distribution proposed for fullerenes in the study of the UV extinction bump (2175 \\AA) we predict the dipole electric emission of mixtures of fulleranes for various levels of hydrogenation. We find that these molecules could be the carriers of the anomalous microwave emission recently detected by Watson et al. in the Perseus molecular complex.

Susana Iglesias-Groth

2005-09-15T23:59:59.000Z

44

Geothermal Electrical Production CO2 Emissions Study  

DOE Green Energy (OSTI)

Emission of ?greenhouse gases? into the environment has become an increasing concern. Deregulation of the electrical market will allow consumers to select power suppliers that utilize ?green power.? Geothermal power is classed as ?green power? and has lower emissions of carbon dioxide per kilowatt-hour of electricity than even the cleanest of fossil fuels, natural gas. However, previously published estimates of carbon dioxide emissions are relatively old and need revision. This study estimates that the average carbon dioxide emissions from geothermal and fossil fuel power plants are: geothermal 0.18 , coal 2.13, petroleum 1.56 , and natural gas 1.03 pounds of carbon dioxide per kilowatt-hour respectively.

K. K. Bloomfield (INEEL); J. N. Moore (Energy and Geoscience Institute)

1999-10-01T23:59:59.000Z

45

Analysis of electric vehicle interconnection with commercial building microgrids  

Science Conference Proceedings (OSTI)

The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

Stadler, Michael; Mendes, Goncalo; Marnay, Chris; M& #233; gel, Olivier; Lai, Judy

2011-04-01T23:59:59.000Z

46

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network (OSTI)

Energy Technologies Division Building / tariffs electricityOptions, Tariffs, and Building Analyzed Environmental Energyenergy management more effective stationary storage will be charged by PV, mobile only marginally results will depend on the considered region and tariff

Stadler, Michael

2011-01-01T23:59:59.000Z

47

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:45am Addthis YOU ARE HERE Step 2 Strategic planning for greenhouse gas (GHG) mitigation in buildings requires an understanding of a Federal agency's buildings portfolio, including which programs, building types, and sites contribute the most to the agency's emissions. The data described in Table 1 below will support this type of analysis. It is recommended that this information be collected at the agency and program level. Programs refer to major operating units within the agency where there is a significant degree of autonomy in planning and decision-making. In many cases, the type of data required for portfolio planning may already

48

Commercial Building Electricity Consumption: The Role of Structure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Electricity Consumption: The Role of Structure Quality, Management, and Contract Incentives Secondary menu About us Press room Contact Us Portfolio Manager...

49

Building a winning electric utility organization  

SciTech Connect

The key factor that will differentiate the winners and losers is the speed with which they build their skills and enhance their performance focus. Setting the {open_quote}right{close_quote} aspirations, then effectively managing the change process, will be critical for winning power companies. Historically, only certain dimensions of organizational performance have been critical to an electric utility`s financial success. As a result, utilities understandably focused on achieving high levels of customer satisfaction and reliability, excellent regulatory relationships, and safe and environmentally acceptable operations. However, as the power industry undergoes fundamental change, obtaining superior organizational performance will become much more crucial and difficult. Given the importance of meeting these organizational challenges head on, the authors believe CEOs can only address them by taking an important step back from day-to-day activities to define what high performance really means in the future competitive world and what steps should be taken to achieve their aspirations. To facilitate this rethink - which senior managers should view as a multiyear process - utilities need to do three things in an iterative way: (1) energize the transformation with the right performance aspirations. (2) Tailor a coherent change program to the company`s unique starting position. (3) Manage the change process to build a skill-based and performance-focused organization.

Farha, G.; Silverman, L. [McKinsey & Co., Washington, DC (United States)] [McKinsey & Co., Washington, DC (United States); Keough, K. [McKinsey & Co., Cleveland, OH (United States)] [McKinsey & Co., Cleveland, OH (United States)

1996-08-01T23:59:59.000Z

50

Measuring Miscellaneous Electrical Loads in Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

leading the effort to decipher MELs impacts on buildings Understanding and reducing the energy use of MELs is a significant problem. The buildings industry is working towards...

51

Buildings Energy Data Book: 3.4 Commercial Environmental Emissions  

Buildings Energy Data Book (EERE)

2 2 2010 Commercial Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Lighting 211.9 211.9 20.4% Space Heating 87.4 10.2 6.7 0.3 17.3 5.6 50.5 160.7 15.5% Space Cooling 2.3 149.1 151.3 14.6% Ventilation 95.2 95.2 9.2% Refrigeration 69.1 69.1 6.7% Electronics 46.4 46.4 4.5% Water Heating 23.2 2.0 2.0 16.2 41.4 4.0% Computers 37.7 37.7 3.6% Cooking 9.5 4.1 13.6 1.3% Other (4) 15.8 0.9 9.0 3.8 13.7 122.0 151.5 14.6% Adjust to SEDS (5) 36.2 18.4 18.4 2.8 57.3 5.5% Total 174.4 31.5 6.7 9.0 4.1 51.3 5.6 100% Note(s): Source(s): 805.0 1,036.3 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. Carbon emissions

52

Electricity Without CO2 Emissions: Assessing the Costs of Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson and Keith: Electricity without CO 2 ... 1 ELECTRICITY FROM FOSSIL FUELS WITHOUT CO 2 EMISSIONS: ASSESSING THE COSTS OF CARBON DIOXIDE CAPTURE AND SEQUESTRATION IN US...

53

Variability of building environmental assessment tools on evaluating carbon emissions  

Science Conference Proceedings (OSTI)

With an increasing importance of sustainability in construction, more and more clients and designers employ building environmental assessment (BEA) tools to evaluate the environmental friendliness of their building facilities, and one important aspect of evaluation in the BEA models is the assessment of carbon emissions. However, in the absence of any agreed framework for carbon auditing and benchmarking, the results generated by the BEA tools might vary significantly which could lead to confusion or misinterpretation on the carbon performance of a building. This study thus aims to unveil the properties of and the standard imposed by the current BEA models on evaluating the life cycle carbon emissions. The analyses cover the (i) weighting of energy efficiency and emission levels among various environmental performance indicators; (ii) building life cycle stages in which carbon is taken into consideration; (iii) objectiveness of assessment; (iv) baseline set for carbon assessment; (v) mechanism for benchmarking the emission level; and (v) limitations of the carbon assessment approaches. Results indicate that the current BEA schemes focus primarily on operational carbon instead of the emissions generated throughout the entire building life cycle. Besides, the baseline and benchmark for carbon evaluation vary significantly among the BEA tools based on the analytical results of a hypothetical building. The findings point to the needs for a more transparent framework for carbon auditing and benchmarking in BEA modeling. - Highlights: Black-Right-Pointing-Pointer Carbon emission evaluation in building environmental assessment schemes are studied. Black-Right-Pointing-Pointer Simulative carbon emission is modeled for building environmental assessment schemes. Black-Right-Pointing-Pointer Carbon assessments focus primarily on operational stage instead of entire lifecycle. Black-Right-Pointing-Pointer Baseline and benchmark of carbon assessment vary greatly among BEA schemes. Black-Right-Pointing-Pointer A more transparent and comprehensive framework for carbon assessment is required.

Ng, S. Thomas, E-mail: tstng@hkucc.hku.hk; Chen Yuan, E-mail: chenyuan4@gmail.com; Wong, James M.W., E-mail: jmwwong@hku.hk

2013-01-15T23:59:59.000Z

54

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

55

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

56

ElectricStorageinCaliforniasCommercialBuildings_cover  

NLE Websites -- All DOE Office Websites (Extended Search)

it as EMS emulator and the building can use the mobile storage and stationary storage for tariff-driven demand response. By using EVs connected to the buildings for energy...

57

Office Buildings: Market Analysis for Electricity Service Providers  

Science Conference Proceedings (OSTI)

Office buildings nationwide account for the greatest floor space and energy use of all commercial building types. To best serve and retain the loyalty of this important market, electric utilities need to understand the energy uses, priorities, and decision-making approaches of commercial building managers. This report assesses the office building energy market to provide a basic reference for utility program planners, marketing managers, and field representatives.

1997-04-16T23:59:59.000Z

58

Buildings Energy Data Book: 3.4 Commercial Environmental Emissions  

Buildings Energy Data Book (EERE)

5 5 2035 Commercial Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Lighting 179.6 179.6 15.5% Space Heating 87.3 6.7 6.6 0.4 13.7 5.5 25.5 132.0 11.4% Ventilation 100.7 100.7 8.7% Space Cooling 1.7 84.1 85.8 7.4% Electronics 72.3 72.3 6.2% Refrigeration 55.6 55.6 4.8% Water Heating 28.8 2.5 2.5 13.3 44.7 3.9% Computers 33.6 33.6 2.9% Cooking 11.9 3.4 15.2 1.3% Other (4) 42.8 1.0 9.8 4.2 14.9 227.3 285.0 24.6% Adjust to SEDS (5) 21.3 13.1 13.1 120.5 154.9 13.4% Total 193.8 23.3 6.6 9.8 4.6 44.3 5.5 100% Note(s): Source(s): 915.8 1,159.3 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. 2) Includes kerosene

59

Buildings Energy Data Book: 3.4 Commercial Environmental Emissions  

Buildings Energy Data Book (EERE)

4 4 2025 Commercial Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Lighting 171.2 171.2 16.1% Space Heating 89.4 7.7 6.3 0.4 14.3 5.5 25.7 135.0 12.7% Ventilation 94.4 94.4 8.9% Space Cooling 1.8 81.5 83.3 7.8% Electronics 63.8 63.8 6.0% Refrigeration 53.7 53.7 5.1% Computers 31.2 31.2 2.9% Water Heating 27.5 2.3 2.3 14.0 43.7 4.1% Cooking 11.0 3.5 14.5 1.4% Other (4) 25.3 0.9 9.3 3.8 14.0 177.4 216.8 20.4% Adjust to SEDS (5) 30.9 13.4 13.4 109.4 153.7 14.5% Total 185.8 24.3 6.3 9.3 4.2 44.0 5.5 100% Note(s): Source(s): 825.9 1,061.3 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. 2) Includes kerosene

60

Buildings Energy Data Book: 3.4 Commercial Environmental Emissions  

Buildings Energy Data Book (EERE)

3 3 2015 Commercial Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Lighting 160.0 160.0 16.6% Space Heating 89.9 9.0 6.2 0.3 15.5 5.5 26.4 137.3 14.2% Space Cooling 1.9 80.0 81.9 8.5% Ventilation 85.0 85.0 8.8% Refrigeration 55.8 55.8 5.8% Electronics 49.9 49.9 5.2% Water Heating 25.5 2.0 2.0 14.3 41.8 4.3% Computers 30.0 30.0 3.1% Cooking 10.2 3.6 13.8 1.4% Other (4) 17.6 0.9 8.6 3.5 12.9 128.6 159.2 16.5% Adjust to SEDS (5) 36.0 13.9 13.9 99.8 149.8 15.5% Total 181.2 25.8 6.2 8.6 3.8 44.4 5.5 100% Note(s): Source(s): 733.4 964.5 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. 2) Includes kerosene

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Extracting Operating Modes from Building Electrical Load Data: Preprint  

Science Conference Proceedings (OSTI)

Empirical techniques for characterizing electrical energy use now play a key role in reducing electricity consumption, particularly miscellaneous electrical loads, in buildings. Identifying device operating modes (mode extraction) creates a better understanding of both device and system behaviors. Using clustering to extract operating modes from electrical load data can provide valuable insights into device behavior and identify opportunities for energy savings. We present a fast and effective heuristic clustering method to identify and extract operating modes in electrical load data.

Frank, S.; Polese, L. G.; Rader, E.; Sheppy, M.; Smith, J.

2012-01-01T23:59:59.000Z

62

Building a 21st Century Electric Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building a 21st Century Electric Grid Building a 21st Century Electric Grid Building a 21st Century Electric Grid June 7, 2013 - 4:22pm Addthis Photo courtesy of the Pacific Northwest National Laboratory. Photo courtesy of the Pacific Northwest National Laboratory. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Nancy Sutley Chair, White House Council on Environmental Quality Sally Jewell Secretary, U.S. Department of the Interior Tom Vilsack Secretary, U.S. Department of Agriculture Editor's note: This article has been cross-posted from WhiteHouse.gov. As part of President Obama's initiative to make America a magnet for jobs by building a 21st century infrastructure, today he signed a Presidential Memorandum that will speed the modernization of the nation's electric grid. This will help make electricity more reliable, save consumers money

63

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

DOE Green Energy (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

64

Building Energy Software Tools Directory: Cymap Electrical  

NLE Websites -- All DOE Office Websites (Extended Search)

for building loads and regulation compliance. Low-voltage wiring design from the transformer through to final circuits with LVHV discrimination capabilities. Can export small...

65

Electric Storage in California's Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

complexity of the DER interactions at buildings also show that a reduction in stationary battery costs increases the local PV adoption, but can also increase the fossil based...

66

Energy Efficiency Indicators for High Electric-Load Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Indicators for High Electric-Load Buildings Speaker(s): Bernard Aebischer Date: February 6, 2003 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

67

File:Impacts of Regional Electricity Prices and Building Type...  

Open Energy Info (EERE)

History Share this page on Facebook icon Twitter icon File:Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial PV Systems NREL 2012.pdf...

68

Energy efficiency indicators for high electric-load buildings  

Science Conference Proceedings (OSTI)

Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

2003-06-01T23:59:59.000Z

69

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Other data, for example solar radiation, electricity tariff,and building energy loads Solar radiation profiles for PVload profile, citys solar radiation data, electricity and

Feng, Wei

2013-01-01T23:59:59.000Z

70

Using Whole-Building Electric Load Data in Continuous orRetro...  

NLE Websites -- All DOE Office Websites (Extended Search)

Whole-Building Electric Load Data in Continuous or Retro-Commissioning Title Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning Publication Type...

71

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network (OSTI)

for building electric and gas usage Overall building energyGas Emissions (CO2) Building total steam consumption (therm/(ft 2 -yr)) and peak demand Metering data for building electric and steam usage

Bailey, Trevor

2013-01-01T23:59:59.000Z

72

Electric Forklift Conversion Transforms Building Products Manufacturer  

Science Conference Proceedings (OSTI)

In the last six years, market acceptance of electric lift trucks has steadily increased. Advances in motor drive, battery, and charger technology have dramatically improved equipment performance and utility, and therefore industry acceptance even in demanding multi-shift operations. Roughly 64% of the total North American forklift market and more than 70% of the European Union lift truck market is now electric. For many applications, electric lift trucks offer equal or superior performance ...

2013-12-17T23:59:59.000Z

73

DOE Hydrogen Analysis Repository: Emissions Analysis of Electricity Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Analysis of Electricity Storage with Hydrogen Emissions Analysis of Electricity Storage with Hydrogen Project Summary Full Title: Emissions Analysis of Electricity Storage with Hydrogen Project ID: 269 Principal Investigator: Amgad Elgowainy Brief Description: Argonne National Laboratory examined the potential fuel cycle energy and emissions benefits of integrating hydrogen storage with renewable power generation. ANL also examined the fuel cycle energy use and emissions associated with alternative energy storage systems, including pumped hydro storage (PHS), compressed air energy storage (CAES), and vanadium-redox batteries (VRB). Keywords: Hydrogen; Emissions; Greenhouse gases (GHG); Energy storage; Life cycle analysis Performer Principal Investigator: Amgad Elgowainy Organization: Argonne National Laboratory (ANL)

74

Analysis of Electric Alternatives to Cogeneration in Commercial Buildings  

Science Conference Proceedings (OSTI)

High-efficiency and load-managed electric cooling and water heating technologies often provide a better rate of return for commercial building owners, with lower capital outlay and lower technical risk than cogeneration. Commercially available equipment typical of these electric technologies include high-efficiency chillers, thermal energy storage, heat recovery chillers, heat recovery heat pumps, and heat pump water heaters.

1989-05-01T23:59:59.000Z

75

Development of the Electricity Carbon Emission Factors for Russia | Open  

Open Energy Info (EERE)

the Electricity Carbon Emission Factors for Russia the Electricity Carbon Emission Factors for Russia Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Russia Agency/Company /Organization European Bank for Reconstruction and Development Sector Energy Focus Area Renewable Energy Topics GHG inventory Resource Type Publications Website http://www.lahmeyer.de/fileadm Country Russia Eastern Europe References Development of the Electricity Carbon Emission Factors for Russia[1] References ↑ "Development of the Electricity Carbon Emission Factors for Russia" Retrieved from "http://en.openei.org/w/index.php?title=Development_of_the_Electricity_Carbon_Emission_Factors_for_Russia&oldid=383164" Category: Programs What links here Related changes Special pages

76

Buildings Energy Data Book: 3.4 Commercial Environmental Emissions  

Buildings Energy Data Book (EERE)

1 1 Carbon Dioxide Emissions for U.S. Commercial Buildings, by Year (Million Metric Tons) (1) Commercial U.S. Site Growth Rate Growth Rate Com.% Com.% Fossil Electricity Total 2010-Year Total 2010-Year of Total U.S. of Total Global 1980 245 409 653 4,723 14% 3.5% 1981 226 427 653 4,601 14% 3.6% 1982 226 426 653 4,357 15% 3.6% 1983 226 434 659 4,332 15% 3.6% 1984 236 455 691 4,561 15% 3.6% 1985 217 477 695 4,559 15% 3.6% 1986 216 481 698 4,564 15% 3.5% 1987 220 503 723 4,714 15% 3.5% 1988 230 531 761 4,939 15% 3.6% 1989 226 543 769 4,983 15% 3.6% 1990 227 566 793 5,039 16% 3.7% 1991 228 567 794 4,996 16% 3.7% 1992 229 567 796 5,093 16% 3.7% 1993 226 593 819 5,185 16% 3.8% 1994 229 605 833 5,258 16% 3.8% 1995 231 620 851 5,314 16% 3.8% 1996 240 643 883 5,501 16% 3.9% 1997 240 686 926 5,575 17% 4.0% 1998 223 724 947 5,622 17% 4.1% 1999 226 735 960 5,682 17% 4.1% 2000 239 783 1,022 5,867 17% 4.3% 2001 230 797 1,027

77

Energy Efficiency Indicators for High Electric-Load Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Indicators for High Electric-Load Buildings Energy Efficiency Indicators for High Electric-Load Buildings Speaker(s): Bernard Aebischer Date: February 6, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare Energy per unit of floor area is not an adequate indictor for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed. Prerequisites in order to be able to use these indicators in energy efficiency programmes are discussed. The opportunity of an internationally coordinated research activity is also presented. Since 1999, Dr. Bernard Aebischer has served as a senior scientist at CEPE (Centre for Energy Policy and Economics) of the Swiss Federal Institutes of

78

Event:Low Emission Capacity Building Workshop | Open Energy Information  

Open Energy Info (EERE)

Event Event Edit with form History Facebook icon Twitter icon » Event:Low Emission Capacity Building Workshop Jump to: navigation, search Calendar.png Low Emission Capacity Building Workshop: on 2012/10/01 The workshop sets out to discuss technical and policy relevant issues related to GHG inventory systems, NAMAs, LEDS, MRV, and industrial mitigation actions. It will take place in Marrakech, Morocco from October, 1-4, 2012. The main objectives of the workshop are: Facilitate an exchange among participating Phase 2 countries on the context assessments and the ultimate scope-of-work of Programme projects Identify follow-up actions to assist countries with the implementation of their projects Identify technical assistance needs and training priorities. Event Details

79

Electricity, Resources, & Building Systems Integration Distributed Energy Publications  

E-Print Network (OSTI)

Consulting Services, LLC; Brett Oakleaf, Xcel Energy; Kenneth Wolf, Minnesota Public Utilities CommissionElectricity, Resources, & Building Systems Integration Center Distributed Energy Publications 2005 for a single phase high frequency AC microgrid, S. Chakraborty, M.D. Weiss and M.G. Simoes, IEEE Transaction

80

Economics of Electric Alternatives to Cogeneration in Commercial Buildings  

Science Conference Proceedings (OSTI)

High-efficiency electrical equipment often offers commercial building owners a higher rate of return than cogeneration, with much lower technical and financial risks. The rate of return for cogeneration systems proved much lower when using high-efficiency equipment rather than conventional equipment as the baseline in analyzing cogeneration economics.

1988-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Emissions Modeling for Electric Vehicles: Progress Report  

Science Conference Proceedings (OSTI)

There has been considerable debate and numerous publications comparing the emissions from alternative fuel vehicles with those of internal combustion engine vehicles. Considering the highly competitive nature of the automotive industry, the size of the automotive fuels markets, and intense regulatory scrutiny of emissions, there is no easy method of establishing agreement on all of the analytical factors involved in emissions analysis from vehicles. However, agreement on many of the factual parameters sh...

1999-12-09T23:59:59.000Z

82

Electric Vehicles, Hybrid Vehicles, and the California Zero Emission...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles, Hybrid Vehicles, and the California Zero Emission Mandate Speaker(s): Ron Chestnut Date: October 26, 2000 - 12:00pm Location: Bldg. 90 The California Air...

83

Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Camp Discovery Helps Camp Discovery Helps Kids Build an Electric Dune Buggy to someone by E-mail Share Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Facebook Tweet about Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Twitter Bookmark Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Google Bookmark Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Delicious Rank Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Digg Find More places to share Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on AddThis.com... Feb. 5, 2011 Camp Discovery Helps Kids Build an Electric Dune Buggy

84

Plug-in Electric Vehicle Interactions with a Small Office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM Title Plug-in Electric Vehicle Interactions with a Small Office Building: An...

85

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network (OSTI)

Smart buildings with electric vehicle interconnection as buffer for local renewables? Michael, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement and partly by NEC Laboratories America Inc. Smart buildings with electric vehicle interconnection as buffer

86

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

3 System Architecture 3.1 Building as a2.1 Energy Flows in Buildings . . . . . . . . 2.1.1 Electric2.3.2 Networking . . . . . . . . . . . . 2.4 Building Energy

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

87

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

SciTech Connect

Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

Garrett, Aaron [Jacksonville State University; New, Joshua Ryan [ORNL; Chandler, Theodore [Jacksonville State University

2013-01-01T23:59:59.000Z

88

CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING ELECTRICAL SYSTEM  

SciTech Connect

The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste handling building electrical system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

S.E. Salzman

1999-08-31T23:59:59.000Z

89

Avoided emissions from high penetration of photovoltaic electricity in the  

NLE Websites -- All DOE Office Websites (Extended Search)

emissions from high penetration of photovoltaic electricity in the emissions from high penetration of photovoltaic electricity in the United States Title Avoided emissions from high penetration of photovoltaic electricity in the United States Publication Type Journal Article Year of Publication 2012 Authors Zhai, Pei, Peter H. Larsen, Dev Millstein, Surabi Menon, and Eric R. Masanet Journal Energy Volume 47 Start Page 443 Date Published 2012 Abstract This study evaluates avoided emissions potential of CO2, SO2 and NOx assuming a 10% penetration level of photovoltaics (PV) in ten selected U.S. states. We estimate avoided emissions using an hourly energy system simulation model, EnergyPLAN. Avoided emissions vary significantly across the country-mainly due to three state-specific factors: the existing resource mix of power plants (power grid fuel mix), the emission intensity of existing fossil fuel power plants and the PV capacity factor within each state. The avoided emissions per solar PV capacity (g/W) - for ten U.S. states -ranged from 670 to 1500 for CO2, 0.01e7.80 for SO2 and 0.25e2.40 for NOx. In general, avoided emissions are likely to be higher in locations with 1) higher share of coal plants; 2) higher emission of existing fossil fuel plants; and 3) higher PV capacity factor. To further illustrate the quantitative relationship between avoided emissions and the three state-specific factors, we conducted a sensitivity analysis. Finally, we estimated the change in avoided emissions in a coal-intensive state by varying the operational constraints of fossil-fuel power plants. At the 10% penetration level avoided emissions were not constrained by the ramp rate limitations, but the minimum capacity requirement significantly affected the avoided emission estimates.

90

The Costs of Reducing Electricity Sector CO2 Emissions  

Science Conference Proceedings (OSTI)

This report presents a high-level analysis of some of the critical challenges associated with cutting United States electricity-sector CO2 emissions and an order of magnitude feeling for what it will cost to meet emission-reduction targets now under consideration. Three basic strategies to limit emissions are illustrated to give readers a basic understanding of the tradeoff between CO2 reductions and additional cost inherent in several generation choices. Regional power market system simulations are then...

2007-12-20T23:59:59.000Z

91

Plug-In Hybrid Electric Vehicle Environmental Analysis--Electric Sector Modeling of CO2 Emissions  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute has initiated a comprehensive collaborative study to quantify the environmental impacts of electric transportation, specifically with respect to plug-in hybrid electric vehicles (PHEVs). This technical update describes the adaptation of the EPRI electric sector model for the analysis of CO2 emissions from the charging on PHEVs on the electrical grid. A "PHEV Base Case" was developed using baseline assumptions from the "EPRI Base Case," a nominal set of key assumptio...

2006-11-29T23:59:59.000Z

92

Sustainable School Buildings: Some of the Latest Dutch Examples of Nearly zero Emissions Buildings  

E-Print Network (OSTI)

In the Netherlands with respect to sustainable educational building there is a continuous development going on from sustainable building, to Passive House schools, to nearly Zero Emission Buildings to even Energy positive buildings. The Dutch government started a special funding program to stimulate the innovation of high performance schools. Some of these schools were built as extreme sustainability friendly schools while also much attention was given to comfort and health aspects. Three of these new schools were investigated: two passive house schools and the first net ZEB designed school are analyzed, measured and their results were compared with 13 other recent but more traditional designed schools, as well as with schools from earlier research. The results showed that concerning Indoor Air Quality and thermal comfort the new environmental schools did not perform very well. This is a disappointing result which indicates that is necessary to pay enough attention to the basic functionalities of a school (health and comfortable indoor environment) instead of focusing too much on sustainability.

Zeiler, W.; Boxem, G.; Waard, M.

2012-01-01T23:59:59.000Z

93

Life cycle greenhouse gas emissions from geothermal electricity production  

Science Conference Proceedings (OSTI)

A life cycle analysis (LCA) is presented for greenhouse gas (GHG) emissions and fossil energy use associated with geothermal electricity production with a special focus on operational GHG emissions from hydrothermal flash and dry steam plants. The analysis includes results for both the plant and fuel cycle components of the total life cycle. The impact of recent changes to California's GHG reporting protocol for GHG emissions are discussed by comparing emission rate metrics derived from post and pre revision data sets. These metrics are running capacity weighted average GHG emission rates (g/kWh) and emission rate cumulative distribution functions. To complete our life cycle analysis plant cycle results were extracted from our previous work and added to fuel cycle results. The resulting life cycle fossil energy and greenhouse gas emissions values are compared among a range of fossil

2013-01-01T23:59:59.000Z

94

Connecting Your Solar Electric System to the Utility Grid: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

In recent years, the number of solar-powered homes connected to the local utility grid has increased dramatically. These''grid-connected'' buildings have solar electric panels or''modules'' that provide some or even most of their power, while still being connected to the local utility. This fact sheet provides information on connecting your solar electric system to the utility grid, including information on net metering.

Not Available

2002-07-01T23:59:59.000Z

95

Electrical modulation of emissivity S. Vassant,1  

E-Print Network (OSTI)

, it is difficult to develop an efficient light emitting diode because the spontaneous emission rate is proportional emitting diodes. Yet, incandescent sources are often the only option in the infrared (IR). Indeed tens of Hz. Hence, for many applications, incandescent light sources can- not compete with light

Paris-Sud XI, Université de

96

Positioning the electric utility to build information infrastructure  

SciTech Connect

In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

Not Available

1994-11-01T23:59:59.000Z

97

Table 11.5c Emissions From Energy Consumption for Electricity ...  

U.S. Energy Information Administration (EIA)

Notes: Data are for emissions from energy consumption for electricity generation and useful thermal output.

98

CLEAN-Capacity Building and Training for Low Emissions Development Planning  

Open Energy Info (EERE)

CLEAN-Capacity Building and Training for Low Emissions Development Planning CLEAN-Capacity Building and Training for Low Emissions Development Planning Jump to: navigation, search Tool Summary Name: CLEAN-Capacity Building and Training for Low Emissions Development Planning Agency/Company /Organization: CLEAN, National Renewable Energy Laboratory Sector: Climate, Energy, Land Topics: Low emission development planning Resource Type: Presentation, Training materials, Video, Webinar Cost: Free References: CLEAN Webinar[1] Webinar Pre sentations CLEAN PPT 5 20 2011 (2).pdf TNA Capacity Building- webinar CLEAN-24 May 2011 Final.pdf ESMAP-CLEAN 20110524.pdf Announcement The Coordinated Low Emissions Assistance Network (CLEAN) will be offering a free webinar on Low Emission Development Strategies (LEDS): Capacity Building and Training to explore activity design, lessons learned, future

99

Development of the Electricity Carbon Emission Factors for Ukraine | Open  

Open Energy Info (EERE)

Ukraine Ukraine Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Ukraine Agency/Company /Organization European Bank for Reconstruction and Development Sector Energy Topics GHG inventory, Policies/deployment programs, Co-benefits assessment, Pathways analysis Resource Type Publications Website http://www.lahmeyer.de/fileadm Country Ukraine UN Region Eastern Europe References Development of the Electricity Carbon Emission Factors for Ukraine[1] "The study project "Development of the Electricity Carbon Emission Factors for Ukraine" was assigned by the European Bank for Development and Reconstruction (EBRD) to the consultant Lahmeyer International with Perspective as subcontractor on 16 July 2009. It is a baseline study with the overall goal to calculate reliable carbon

100

Non-Intrusive Electric Load Monitoring in Commercial Buildings  

E-Print Network (OSTI)

Increased interest in optimal control, energy scorekeeping and fault detection for HVAC equipment in commercial buildings has focused attention on instrumentation required to obtain the desired data. In this paper we investigate what can be learned from measurements of electrical power at a single point, that of the electrical service for the entire HVAC system. This low-cost measurement has proved in field tests to be capable of detecting the power change when a piece of equipment turns on or off; detecting oscillating equipment power caused by poorly tuned controllers; and detecting suboptimal staging of multiple chillers. Detection of equipment start and stop transitions was strengthened by application of a nonlinear filter that determines the point of median power from a filtering window of user-selected width. A review of electric motor literature indicated that samples of electrical current taken at slightly faster than twice the 60 Hz fundamental can be used to detect several indicators of incipient motor failure. Tests were initiated to determine whether this technique can be applied to a number of motors on the same circuit.

Norford, L. K.; Mabey, N.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Argentina-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Argentina-EU-UNDP Low Emission Capacity Building Programme (LECBP) Argentina-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Argentina-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Secretariat of Environment and Sustainable Development (SESD), Secretariat of Industry Sector Climate, Energy Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Industry, - Industrial Processes

102

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

103

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

104

Total energy cycle emissions and energy use of electric vehicles  

DOE Green Energy (OSTI)

The purpose of this project is to provide estimates of changes in life cycle energy use and emissions that would occur with the introduction of EVs. The topics covered include a synopsis of the methodology used in the project, stages in the EV and conventional vehicle energy cycles, characterization of EVs by type and driving cycle, load analysis and capacity of the electric utility, analysis of the materials used for vehicle and battery, description of the total energy cycle analysis model, energy cycle primary energy resource consumption, greenhouse gas emissions, energy cycle emissions, and conclusions.

Singh, M.

1997-12-31T23:59:59.000Z

105

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network (OSTI)

in the Evolving Electricity Generation and Deliveryfor meeting building electricity and heat requirementswas funded by the Office of Electricity Delivery and Energy

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

106

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)  

SciTech Connect

Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

Not Available

2013-01-01T23:59:59.000Z

107

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network (OSTI)

Energy Technologies Division Building / tariffs electricityOptions, Tariffs, and Building Analyzed Environmental Energyenergy management more effective stationary storage will be charged by PV, mobile only marginally results will depend on the considered region and tariff

Stadler, Michael

2012-01-01T23:59:59.000Z

108

Electrically-Assisted Turbocharger Development for Performance and Emissions  

DOE Green Energy (OSTI)

Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachine has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.

Bailey, Milton

2000-08-20T23:59:59.000Z

109

Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

Not Available

2009-09-01T23:59:59.000Z

110

Plug-in Electric Vehicle Interactions with a Small Office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM Ilan Momber, Toms Gmez, Giri Venkataramanan, Michael Stadler, Sebastian...

111

Greater than the Sum of its Parts; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)  

Science Conference Proceedings (OSTI)

NREL's Electricity, Resources, and Building Systems Integration Center brings together a diverse group of experts performing grid integration and optimization R&D activities.

Not Available

2009-11-01T23:59:59.000Z

112

Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)  

SciTech Connect

Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

2009-11-01T23:59:59.000Z

113

Effects of low-emissivity glazings on energy use patterns in nonresidential daylighted buildings  

SciTech Connect

Fenestration is the most significant envelope design determinant of energy use in nonresidential buildings. This paper presents our assessment of energy use effects of low-emissivity (low-E) versus conventional glazings for a range of window-to-wall ratios in a daylighted office building, in representative hot and cold climates. Low-E glazings transmit ''cooler'' daylight than their conventional counterparts because, for a given visible transmittance, they reflect a much larger fraction of incident solar infrared radiation. We thus use the ratio of visible transmittance to shading coefficient, which we define as K/sub e/, to compare the effect of representative glazing characteristics on component and total-building energy use, peak electrical demand, and required cooling equipment sizes. It is concluded that insulated glazings with low-E coatings can provide lighting and cooling energy savings in both hot and cold climates. The most dramatic lighting, cooling, and total electricity energy savings are achieved for increases of K/sub e/ within the range of 0.5 to 1.0; higher K/sub e/s provide diminishing savings. The increased R-value of low-E insulated glass units provides significant benefits in cold climates and is not a liability in hot climates. Low-E glazings also help increase the mean radiant temperature of interior environments in winter and reduce it in summer, and provide greater architectural design freedom without adverse energy consequences. Further, the higher first costs of these glazings may be more than offset by savings from smaller cooling equipment, energy and peak-demand cost savings, long-term financial gains from better rentals, and increased productivity due to improved occupant comfort.

Sweitzer, G.; Arasteh, D.; Selkowitz, S.

1986-12-01T23:59:59.000Z

114

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network (OSTI)

with commercial building microgrids Michael Stadler, Gonalocommercial building microgrids *) Michael Stadler GonaloSVOW), http://der.lbl.gov/microgrids-lbnl/current-project-

Stadler, Michael

2011-01-01T23:59:59.000Z

115

Table 11.5c Emissions From Energy Consumption for Electricity ...  

U.S. Energy Information Administration (EIA)

Notes: - Data are for emissions from energy consumption for electricity generation and useful thermal output. - See Table 11.5b for electric power sector data.

116

Tariff-based analysis of commercial building electricity prices  

E-Print Network (OSTI)

4 Calculation of Electricity Prices 4.1 Averageaverage seasonal and annual electricity prices by region inbased annual average electricity price vs. annual energy

Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

2008-01-01T23:59:59.000Z

117

Tariff-based analysis of commercial building electricity prices  

E-Print Network (OSTI)

4 Calculation of Electricity Prices 4.1 Averageseasonal and annual electricity prices by region in c/kWh.based annual average electricity price vs. annual energy

Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

2008-01-01T23:59:59.000Z

118

Tariff-based analysis of commercial building electricity prices  

E-Print Network (OSTI)

customers. Here we use the electricity bill survey data fromcalculate a customer electricity bill requires two sets ofsame region. Monthly electricity bill data is available for

Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

2008-01-01T23:59:59.000Z

119

Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city  

SciTech Connect

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the Hestia Project, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

2012-08-15T23:59:59.000Z

120

Minimizing Building Electricity Costs in a Dynamic Power Market: Algorithms and Impact on Energy Conservation  

E-Print Network (OSTI)

Minimizing Building Electricity Costs in a Dynamic Power Market: Algorithms and Impact on Energy of Computing, The Hong Kong Polytechnic University, Hong Kong, P. R. China 2 Department of Electrical and the electricity bills nowa- days are leading to unprecedented costs. Electricity price is market-based and dynamic

Wang, Dan

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions from Hybrid Emissions from Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

122

Semiconductor light source with electrically tunable emission wavelength  

DOE Patents (OSTI)

A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

2011-01-25T23:59:59.000Z

123

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

Science Conference Proceedings (OSTI)

The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side management or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1.7 thousand TWh or 21percent of the 2030 projected base case electricity demand. Electricity savings potential ranges from a high of 38percent in India to a low of 9percent in Korea for the two sectors. Lighting, fans, and TV sets and lighting and refrigeration are the largest contributors to residential and commercial electricity savings respectively. This work presents a first estimates of the savings potential of DSM programs in APP countries. While the resulting estimates are based on detailed end-use data, it is worth keeping in mind that more work is needed to overcome limitation in data at this time of the project.

McNeil, MIchael; Letschert, Virginie; Shen, Bo; Sathaye, Jayant; de la Ru du Can, Stephane

2011-01-12T23:59:59.000Z

124

EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open Energy  

Open Energy Info (EERE)

EU-UNDP Low Emission Capacity Building Programme (LECBP) EU-UNDP Low Emission Capacity Building Programme (LECBP) (Redirected from UNDP/EC-China-Climate Change Capacity Building Program) Jump to: navigation, search Name EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

125

Review of Electricity Generation Technology Lifecycle GHG Emissions  

Science Conference Proceedings (OSTI)

This paper presents and discusses results from a selection of published cross-technology assessments and two recent meta-analyses evaluating life-cycle greenhouse gas emissions from different electricity generation technologies. Differences in life-cycle GHG estimates reflect differing assessment methodologies, plant and equipment construction practices, power plant conversion efficiencies, power plant size and operating characteristics, practices in fuel preparation and transport, and system boundary as...

2010-01-29T23:59:59.000Z

126

Total energy cycle energy use and emissions of electric vehicles.  

SciTech Connect

A total energy cycle analysis (TECA) of electric vehicles (EV) was recently completed. The EV energy cycle includes production and transport of fuels used in power plants to generate electricity, electricity generation, EV operation, and vehicle and battery manufacture. This paper summarizes the key assumptions and results of the EVTECA. The total energy requirements of EVS me estimated to be 24-35% lower than those of the conventional, gasoline-fueled vehicles they replace, while the reductions in total oil use are even greater: 55-85%. Greenhouse gases (GHG) are 24-37% lower with EVs. EVs reduce total emissions of several criteria air pollutants (VOC, CO, and NO{sub x}) but increase total emissions of others (SO{sub x}, TSP, and lead) over the total energy cycle. Regional emissions are generally reduced with EVs, except possibly SO{sub x}. The limitations of the EVTECA are discussed, and its results are compared with those of other evaluations of EVs. In general, many of the results (particularly the oil use, GHG, VOC, CO, SO{sub x}, and lead results) of the analysis are consistent with those of other evaluations.

Singh, M. K.

1999-04-29T23:59:59.000Z

127

Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems  

DOE Green Energy (OSTI)

To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

Ong, S.; Campbell, C.; Clark, N.

2012-12-01T23:59:59.000Z

128

Plug-in electric vehicles as dispersed energy storage interactions with a smart office building  

Science Conference Proceedings (OSTI)

Renewable energy resources (RESs) with plug-in electric vehicles (PEVs) are being gradually accepted by society for their low carbon emission merits. However

Qian Dai; Shanxu Duan; Tao Cai; Changsong Chen

2013-01-01T23:59:59.000Z

129

Gas emissions from dairy cow and fattening pig buildings.  

E-Print Network (OSTI)

??The objective of this research is to contribute to the knowledge concerning the abatement of gas emissions from livestock production. Investigations regarding the choice of (more)

Ngwabie, Ngwa Martin

2011-01-01T23:59:59.000Z

130

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

131

Rapid Assessment of City Emissions (RACE) for Low Carbon Cities...  

Open Energy Info (EERE)

Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Jump to: navigation, search Name Rapid Assessment of City Emissions (RACE) for...

132

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network (OSTI)

buildings x) in nine climate zones x) hospitals, colleges,in nine different climate zones and three major utility

Stadler, Michael

2011-01-01T23:59:59.000Z

133

Table 2.11 Commercial Buildings Electricity Consumption by End ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. Coal. ... Refrigeration: Office Equipment: Computers: Other 1: Total: ...

134

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

2 gm/mifor the mid-size electric car. All the emissions areemissions for the mid-size electric cars vary from about Isize. In the case of electric cars, the efficiency standard

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

135

Federal, state and utility roles in reducing new building greenhouse gas emissions  

SciTech Connect

This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

Johnson, J.A.; Shankle, D. [Pacific Northwest Lab., Richland, WA (United States); Boulin, J. [USDOE, Washington, DC (United States)

1995-03-01T23:59:59.000Z

136

Trinidad and Tobago-EU-UNDP Low Emission Capacity Building Programme  

Open Energy Info (EERE)

Trinidad and Tobago-EU-UNDP Low Emission Capacity Building Programme Trinidad and Tobago-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Trinidad and Tobago-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

137

Uganda-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Uganda-EU-UNDP Low Emission Capacity Building Programme (LECBP) Uganda-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Uganda-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

138

Moldova-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Moldova-EU-UNDP Low Emission Capacity Building Programme (LECBP) Moldova-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Moldova-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

139

Thailand-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Thailand-EU-UNDP Low Emission Capacity Building Programme (LECBP) Thailand-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Thailand-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

140

Mexico-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Mexico-EU-UNDP Low Emission Capacity Building Programme (LECBP) Mexico-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Mexico-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Peru-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open Energy  

Open Energy Info (EERE)

Peru-EU-UNDP Low Emission Capacity Building Programme (LECBP) Peru-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Peru-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

142

Bhutan-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Bhutan-EU-UNDP Low Emission Capacity Building Programme (LECBP) Bhutan-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Bhutan-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

143

Tanzania-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Tanzania-EU-UNDP Low Emission Capacity Building Programme (LECBP) Tanzania-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Tanzania-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

144

Vietnam-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Vietnam-EU-UNDP Low Emission Capacity Building Programme (LECBP) Vietnam-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Vietnam-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

145

Chile-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Chile-EU-UNDP Low Emission Capacity Building Programme (LECBP) Chile-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Chile-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

146

Philippines-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Philippines-EU-UNDP Low Emission Capacity Building Programme (LECBP) Philippines-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Philippines-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

147

Ecuador-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Ecuador-EU-UNDP Low Emission Capacity Building Programme (LECBP) Ecuador-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Ecuador-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

148

Egypt-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Egypt-EU-UNDP Low Emission Capacity Building Programme (LECBP) Egypt-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Egypt-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

149

Colombia-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Colombia-EU-UNDP Low Emission Capacity Building Programme (LECBP) Colombia-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Colombia-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

150

Malaysia-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Malaysia-EU-UNDP Low Emission Capacity Building Programme (LECBP) Malaysia-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Malaysia-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

151

Zambia-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Zambia-EU-UNDP Low Emission Capacity Building Programme (LECBP) Zambia-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Zambia-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

152

Morocco-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Morocco-EU-UNDP Low Emission Capacity Building Programme (LECBP) Morocco-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Morocco-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

153

Kenya-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

Kenya-EU-UNDP Low Emission Capacity Building Programme (LECBP) Kenya-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Kenya-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

154

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on AddThis.com... More in this section...

155

Analysis of electricity consumption profiles in public buildings with dimensionality reduction techniques  

Science Conference Proceedings (OSTI)

The analysis of the daily electricity consumption profile of a building and its correlation with environmental factors makes it possible to examine and estimate its electricity demand. As an alternative to the traditional correlation analysis, a new ... Keywords: Dimensionality reduction, Electricity consumption profiles, Energy efficiency, Information visualization

Antonio MorN, Juan J. Fuertes, Miguel A. Prada, SerafN Alonso, Pablo Barrientos, Ignacio DAz, Manuel DomNguez

2013-09-01T23:59:59.000Z

156

NETL: News Release - More Electricity, Lower Emissions from Lignite Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

25, 2004 25, 2004 More Electricity, Lower Emissions from Lignite Plants Are Goals of New Clean Coal Project Fuel Enhancement System Expected to Boost Generating Capacities WASHINGTON, DC - Secretary of Energy Spencer Abraham today announced the testing of the Lignite Fuel Enhancement System, a new process that could dramatically reduce air emissions from certain coal-based power plants while boosting overall generating capacity. The project, conducted by Great River Energy, is expected to boost the generating capacity and efficiency of power plants that burn high-moisture lignite coal, thereby reducing air pollutants and greenhouse gases. The new technology uses waste heat to dry nearly a quarter of the moisture in the coal before it is fed into the power plant boiler.

157

The impact of electric vehicles on CO[sub 2] emissions  

DOE Green Energy (OSTI)

A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T. (Little (Arthur D.), Inc., Cambridge, MA (United States))

1992-05-01T23:59:59.000Z

158

The impact of electric vehicles on CO{sub 2} emissions. Final report  

DOE Green Energy (OSTI)

A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective.

Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T. [Little (Arthur D.), Inc., Cambridge, MA (United States)

1992-05-01T23:59:59.000Z

159

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

2009-08-10T23:59:59.000Z

160

Table 2.11 Commercial Buildings Electricity Consumption by End ...  

U.S. Energy Information Administration (EIA)

Refrigeration: Office Equipment: Computers: Other 1: Total: All Buildings. 167: 481: 436: 88: 1,340: 24: 381: 69: 156: 418: 3,559: ... "Commercial ...

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

SciTech Connect

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-08-01T23:59:59.000Z

162

Next-generation building energy management systems and implications for electricity markets.  

SciTech Connect

The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A. (Mathematics and Computer Science); (Citizens Utility Board); (BuildingIQ Pty Ltd, Australia); (PJM Interconnection LLC)

2011-08-11T23:59:59.000Z

163

Building Energy Software Tools Directory: Cepenergy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis of the Energy Matrix (Electricity, Water, Fuel), and CO2 emissions in buildings. Energy Problems, Saving and Optimizing. Tool of Management for Energy leakage. Culture and...

164

Quantifying Changes in Building Electricity Use, with Application to Demand Response  

Science Conference Proceedings (OSTI)

We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

2010-11-17T23:59:59.000Z

165

Solar electric buildings: An overview of today`s applications  

DOE Green Energy (OSTI)

This brochure presents a broad look at photovoltaic-powered buildings. It includes residential and commercial systems, both stand-alone and connected to utility power, that are located in urban, near-urban, and rural settings across the country. As photovoltaic systems for buildings, such as those shown here, represent one of the strongest near-term markets.

NONE

1996-02-01T23:59:59.000Z

166

Tariff-based analysis of commercial building electricity prices  

E-Print Network (OSTI)

the Wholesale Market Edison Electric Institute, ElectricCo Southern California Edison Co State NC FL FL GA GA GA WVCode Company Name Boston Edison Co Central Vermont Pub Serv

Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

2008-01-01T23:59:59.000Z

167

Monitoring of Electrical End-Use Loads in Commercial Buildings  

E-Print Network (OSTI)

Southern California Edison is currently conducting a program to collect end-use metered data from commercial buildings in its service area. The data will provide actual measurements of end-use loads and will be used in research and in designing energy management programs oriented toward end-use applications. The focus of the program is on five major types of commercial buildings: offices, grocery stores, restaurants, retail stores, and warehouses. End-use metering equipment is installed at about 50 buildings, distributed among these five types. The buildings selected have average demands of 100 to 300 kW. The metered end-uses vary among building types and include HVAC, lighting, refrigeration. plug loads, and cooking. Procedures have been custom-designed to facilitate collection and validation of the end-use load data. For example, the Load Profile Viewer is a PC-based software program for reviewing and validating the end-use load data.

Martinez, M.; Alereza, T.; Mort, D.

1988-01-01T23:59:59.000Z

168

Tariff-based analysis of commercial building electricity prices  

E-Print Network (OSTI)

4.2 E?ective Marginal Prices . . . . . . . . . . . . . . . .Demand Prices . . . . . . . . . . . . . . . . . . . . . .4 Calculation of Electricity Prices 4.1 Average

Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

2008-01-01T23:59:59.000Z

169

Tariff-based analysis of commercial building electricity prices  

E-Print Network (OSTI)

electricity prices developed for residential AC were criticized by a number of stakeholders, who argued that retail rates

Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

2008-01-01T23:59:59.000Z

170

Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network (OSTI)

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

171

Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning  

SciTech Connect

Whole-building electric load data can often reveal problems with building equipment or operations. In this paper, we present methods for analyzing 15-minute-interval electric load data. These methods allow building operators, energy managers, and commissioning agents to better understand a building's electricity consumption over time and to compare it to other buildings, helping them to 'ask the right questions' to discover opportunities for electricity waste elimination, energy efficiency, peak load management, and demand response. For example: Does the building use too much energy at night, or on hot days, or in the early evening? Knowing the answer to questions like these can help with retro-commissioning or continuous commissioning. The methods discussed here can also be used to assess how building energy performance varies with time. Comparing electric load before and after fixing equipment or changing operations can help verify that the fixes have the intended effect on energy consumption. Analysis methods discussed in this paper include: ways to graphically represent electric load data; the definition of various parameters that characterize facility electricity loads; and a regression-based electricity load model that accounts for both time of week and outdoor air temperature. The methods are illustrated by applying them to data from commercial buildings. We demonstrate the ability to recognize changes in building operation, and to quantify changes in energy performance. Some key findings are: 1) Plotting time series electric load data is useful for understanding electricity consumption patterns and changes to those patterns, but results may be misleading if data from different time intervals are not weather-normalized. 2) Parameter plots can highlight key features of electric load data and may be easier to interpret than plots of time series data themselves. 3) A time-of-week indicator variable (as compared to time-of-day and day-of-week indicator variables) improves the accuracy of regression models of electric load. 4) A piecewise linear and continuous outdoor air temperature dependence can be derived without the use of a change-point model (which would add complexity to the modeling algorithm) or assumptions about when structural changes occur (which could introduce inaccuracy). 5) A model that includes time-of-week and temperature dependence can be used for weather normalization and can determine whether the building is unusually temperature-sensitive, which can indicate problems with HVAC operation.

Price, Phillip N.; Mathieu, Johanna L.; Kiliccote, Sila; Piette, Mary Ann

2011-07-01T23:59:59.000Z

172

Monitoring of electrical end-use loads in commercial buildings  

Science Conference Proceedings (OSTI)

A California utility is currently conducting a program to collect end-use metered data from commercial buildings in its service area. The data will provide actual measurements of end-use loads and will be used in research and in designing energy management programs oriented toward end-use applications. The focus of the program is on five major types of commercial buildings: offices, grocery stores, restaurants, retail stores, and warehouses. End-use metering equipment is installed at about 50 buildings selected have average demands of 100kW to 300 kW. The metered end-uses vary among building types and include HVAC, lighting, refrigeration, plug loads, and cooking. Procedures have been custom-designed to facilitate collection and validation of the end-use load data. PC-based software programs have been developed for reviewing and validating the end-sue load data and for generating reports.

Martinez, M. (Southern California Edison, CA (US)); Alereza, T.; Mort, D. (ADM Associates, Sacramento, CA (US))

1989-01-01T23:59:59.000Z

173

Solar electric buildings: An overview of today`s applications  

DOE Green Energy (OSTI)

This brochure presents a broad look at photovoltaic-powered buildings. It includes residential and commercial systems, both stand-alone and connected to utility power, that are located in urban, near-urban, and rural settings around the world. As photovoltaic (PV) technology continues to improve and costs drop, opportunities for PV will multiply. PV systems for buildings, such as those shown here, represent one of the strongest near-term markets.

NONE

1997-02-01T23:59:59.000Z

174

Kids at Camp Discovery Bond Over Building Electric Vehicle | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kids at Camp Discovery Bond Over Building Electric Vehicle Kids at Camp Discovery Bond Over Building Electric Vehicle Kids at Camp Discovery Bond Over Building Electric Vehicle August 13, 2010 - 11:30am Addthis Campers at Camp Discovery put the finishing touches on a newly assembled electric vehicle they built to learn more about EV technology while sharing their experiences with battling cancer. | Photo courtesy of Craig Egan Campers at Camp Discovery put the finishing touches on a newly assembled electric vehicle they built to learn more about EV technology while sharing their experiences with battling cancer. | Photo courtesy of Craig Egan Joshua DeLung Each year, about 150 kids gather during the summer at Camp Discovery in Kerrville, Texas, to learn new things and have fun. But this isn't an ordinary summer camp - the attendees, ages seven to 16, all have been

175

Kids at Camp Discovery Bond Over Building Electric Vehicle | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kids at Camp Discovery Bond Over Building Electric Vehicle Kids at Camp Discovery Bond Over Building Electric Vehicle Kids at Camp Discovery Bond Over Building Electric Vehicle August 13, 2010 - 11:30am Addthis Campers at Camp Discovery put the finishing touches on a newly assembled electric vehicle they built to learn more about EV technology while sharing their experiences with battling cancer. | Photo courtesy of Craig Egan Campers at Camp Discovery put the finishing touches on a newly assembled electric vehicle they built to learn more about EV technology while sharing their experiences with battling cancer. | Photo courtesy of Craig Egan Joshua DeLung Each year, about 150 kids gather during the summer at Camp Discovery in Kerrville, Texas, to learn new things and have fun. But this isn't an ordinary summer camp - the attendees, ages seven to 16, all have been

176

buildings | OpenEI  

Open Energy Info (EERE)

buildings buildings Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2

177

The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids  

E-Print Network (OSTI)

building has a peak electricity demand of 373 kW, and yearlyWinter (Nov. Apr. ) )Electricity electricity demandelectricity demand (US$/kWh) (US$/kW) (US$/kWh) (US $/kW)

Stadler, Michael

2010-01-01T23:59:59.000Z

178

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission...  

Buildings Energy Data Book (EERE)

Conventional Wind Solar Thermal and Photovoltaic Wood and Wood Derived Fuels Geothermal Other Biomass Pumped Storage Other Total Source(s): EIA, Electric Power Annual 2010,...

179

State Air Emission Regulations That Affect Electric Power Producers (Update) (released in AEO2006)  

Reports and Publications (EIA)

Several States have recently enacted air emission regulations that will affect the electricity generation sector. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

Information Center

2006-02-01T23:59:59.000Z

180

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

China Environmental Energy Technologies Division 2012 ACEEEsuitable building energy technologies in different regionssuitable building energy technologies for different building

Feng, Wei

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

of Public Buildings. Energy and Buildings (41), 426435.and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

182

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

as buildings energy load profile, citys solar radiationthe buildings energy load profiles. The annual energythe buildings energy load profiles. The Chinese residential

Feng, Wei

2013-01-01T23:59:59.000Z

183

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

fuel distribution, powerplantand refinery emissions -- areemissions fromoil refineries and electrical powerplants. Inproduction of the fuel at the refinery, the distribution of

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

184

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic  

E-Print Network (OSTI)

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation Jul 2010, Minneapolis MNis MN 1 Abstract--It is generally believed that plug-in electric vehicles

185

Table 11.5b Emissions From Energy Consumption for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a ...

186

Emissions Trading, Electricity Industry Restructuring, and Investment in Pollution Abatement  

E-Print Network (OSTI)

Economy of State-Level Electricity Restructuring. Resources109-129. [15] Bushnell, J. "Electricity Resource Adequacy:Version 1.0, 1999b. [33] Electricity for Identification

Fowlie, Meredith

2005-01-01T23:59:59.000Z

187

Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network (OSTI)

National Engineer- an electric car practical with existingN. (1987) The BMW electric car--current devel- for electricinfrastructure for electric cars. TRRL Report LR812.

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

188

Electrical Energy Conservation and Peak Demand Reduction Potential for Buildings in Texas: Preliminary Results  

E-Print Network (OSTI)

This paper presents preliminary results of a study of electrical energy conservation and peak demand reduction potential for the building sector in Texas. Starting from 1980 building stocks and energy use characteristics, technical conservation potentials were calculated relative to frozen energy efficiency stock growth over the 1980-2000 period. The application of conservation supply methodology to Texas utilities is outlined, and then the energy use and peak demand savings, and their associated costs, are calculated using a prototypical building technique. Representative results are presented, for residential and commercial building types, as conservation supply curves for several end use categories; complete results of the study are presented in Ref. 1.

Hunn, B. D.; Baughman, M. L.; Silver, S. C.; Rosenfeld, A. H.; Akbari, H.

1985-01-01T23:59:59.000Z

189

Democratic Republic of Congo-EU-UNDP Low Emission Capacity Building  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Democratic Republic of Congo-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Democratic Republic of Congo-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

190

Lebanon-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Lebanon-EU-UNDP Low Emission Capacity Building Programme (LECBP) Jump to: navigation, search Name Lebanon-EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

191

Event:CLEAN Webinar - Capacity Building and Training for Low Emissions  

Open Energy Info (EERE)

Event Event Edit with form History Facebook icon Twitter icon » Event:CLEAN Webinar - Capacity Building and Training for Low Emissions Development Planning Webinar Jump to: navigation, search Calendar.png CLEAN Webinar - LEDS Capacity Building and Training: 13:30-15:00 GMT on 2011/05/24 This webinar will explore design, lessons learned, needs and opportunities to support low emissions development planning (LEDS, TNAs, NAMAs, etc.). Short presentations from MAIN, UNEP-Risoe on TNAs, ESMAP World Bank and the Colombian Ministry of Environment will be followed by a participant discussion on these topics. Event Details Name CLEAN Webinar - LEDS Capacity Building and Training Date 2011/05/24 Time 13:30-15:00 GMT Location Online Tags CLEAN, LEDS Ret Like Like You like this.Sign Up to see what your friends like.

192

Emission Cuts Realities Electricity Generation Cost and CO2 emissions projections for different electricity generation options for Australia to 2050 By  

E-Print Network (OSTI)

Five options for cutting CO2 emissions from electricity generation in Australia are compared with a Business as Usual ? option over the period 2010 to 2050. The six options comprise combinations of coal, gas, nuclear, wind and solar thermal technologies. The conclusions: The nuclear option reduces CO2 emissions the most, is the only option that can be built quickly enough to make the deep emissions cuts required, and is the least cost of the options that can cut emissions sustainably. Solar thermal and wind power are the highest cost of the options considered. The cost of avoiding emissions is lowest with nuclear and highest with solar and wind power.

Peter Lang

2010-01-01T23:59:59.000Z

193

Innovative Control of Electric Heat in Multifamily Buildings  

E-Print Network (OSTI)

This paper describes the application of web-based wireless technology for control of electric heating in a large multifamily housing complex. The control system architecture and components are described. A web-based application enables remote monitoring of temperature, electric usage and control of peak demand through a temperature-based duty-cycling algorithm developed specifically for the application. Installed costs and energy savings are discussed. A 16% energy-use reduction was confirmed through the first heating season of operation. The response of occupants and management to changes in temperature regime has been a critical aspect of system start-up and commissioning.

Lempereur, D.; Bobker, M.

2004-01-01T23:59:59.000Z

194

Energy and economic efficiency alternatives for electric lighting in commercial buildings  

SciTech Connect

This report investigates current efficient alternatives for replacing or supplementing electric lighting systems in commercial buildings. Criteria for establishing the economic attractiveness of various lighting alternatives are defined and the effect of future changes in building lighting on utility capacity. The report focuses on the energy savings potential, economic efficiency, and energy demand reduction of three categories of lighting alternatives: (1) use of a renewable resource (daylighting) to replace or supplement electric lighting; (2) use of task/ambient lighting in lieu of overhead task lighting; and (3) equipment changes to improve lighting energy efficiency. The results indicate that all three categories offer opportunities to reduce lighting energy use in commercial buildings. Further, reducing lighting energy causes a reduction in cooling energy use and cooling capacity while increasing heating energy use. It does not typically increase heating capacity because the use of lighting in the building does not offset the need for peak heating at night.

Robbins, C.L.; Hunter K.C.; Carlisle, N.

1985-10-01T23:59:59.000Z

195

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

196

Electricity price impacts of alternative Greenhouse gas emission cap-and-trade programs  

SciTech Connect

Limits on greenhouse gas emissions would raise the prices of the goods and services that require such emissions for their production, including electricity. Looking at a variety of emission limit cases and scenarios for selling or allocating allowances to load-serving entities, the authors estimate how the burden of greenhouse gas limits are likely to be distributed among electricity consumers in different states. (author)

Edelston, Bruce; Armstrong, Dave; Kirsch, Laurence D.; Morey, Mathew J.

2009-07-15T23:59:59.000Z

197

Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

2009-10-01T23:59:59.000Z

198

A performance standards approach to reducing CO{sub 2} emissions from electric power plants  

Science Conference Proceedings (OSTI)

The CO{sub 2} emission performance standard policies outlined in this paper could complement a cap-and-trade program that puts a price on carbon and serve to significantly reduce the CO{sub 2} emissions from coal use for electricity generation. Emission performance standards have a long history in the United States and have been successfully used to control emissions of various air pollutants from electric generators. This paper explores the rationale for using emission performance standards and describes the various types of performance standard policies. Emission performance standards that address CO{sub 2} emissions could promote the deployment of carbon capture and storage technology coupled with new and existing coal-fueled electric power plants. 28 refs., 4 figs., 4 tabs.

Rubin, E.S. [Carnegie Mellon University, Pittsburgh, PA (United States)

2009-06-15T23:59:59.000Z

199

Alternative Fuels Data Center: Low Emission Vehicle Electricity...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel...

200

Methodology of CO{sub 2} emission evaluation in the life cycle of office building facades  

SciTech Connect

The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO{sub 2} emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO{sub 2} is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. - Highlights: Black-Right-Pointing-Pointer We develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. Black-Right-Pointing-Pointer This methodology is based in LCA. Black-Right-Pointing-Pointer We use an uncertainty analysis to verify the accuracy of the results attained. Black-Right-Pointing-Pointer We study three typologies of facades. Black-Right-Pointing-Pointer Facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle.

Taborianski, Vanessa Montoro; Prado, Racine T.A., E-mail: racine.prado@poli.usp.br

2012-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z

202

The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids  

E-Print Network (OSTI)

electricity and gas load profiles based on the Californiamatches the building load profile, the shaving potentialclosely follow the load profile, and therefore, PV panels

Stadler, Michael

2010-01-01T23:59:59.000Z

203

Economic model predictive control for building energy systems.  

E-Print Network (OSTI)

??In the United States, buildings account for nearly three quarters of electricity consumption and about 40% of greenhouse gas emissions. The heating, ventilation and air-conditioning (more)

Ma, Jingran

2012-01-01T23:59:59.000Z

204

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

205

Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs  

E-Print Network (OSTI)

with 85% ethanol EIA ­ Energy Information Administration EVSE ­ Electric vehicle supply equipment gPlug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size to get this thesis finished. #12;iv Intentionally blank #12;v Abstract Plug-in hybrid electric vehicles

206

EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open Energy  

Open Energy Info (EERE)

(LECBP) (LECBP) Jump to: navigation, search Name EU-UNDP Low Emission Capacity Building Programme (LECBP) Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE), Australian Agency for International Development (AusAID) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Forestry, Geothermal, Goods and Materials, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind Topics Background analysis, Baseline projection, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment

207

Analyzing the effect of the longwave emissivity and solar reflectance of building envelopes on energy-saving in buildings in various climates  

Science Conference Proceedings (OSTI)

A dynamic computer simulation is carried out in the climates of 35 cities distributed around the world. The variation of the annual air-conditioning energy loads due to changes in the longwave emissivity and the solar reflectance of the building envelopes is studied to find the most appropriate exterior building finishes in various climates (including a tropical climate, a subtropical climate, a mountain plateau climate, a frigid-temperate climate and a temperate climate). Both the longwave emissivity and the solar reflectance are set from 0.1 to 0.9 with an interval of 0.1 in the simulation. The annual air-conditioning energy loads trends of each city are listed in a chart. The results show that both the longwave emissivity and the solar reflectance of building envelopes play significant roles in energy-saving for buildings. In tropical climates, the optical parameters of the building exterior surface affect the building energy-saving most significantly. In the mountain plateau climates and the subarctic climates, the impacts on energy-saving in buildings due to changes in the longwave emissivity and the solar reflectance are still considerable, but in the temperate continental climates and the temperate maritime climates, only limited effects are seen. (author)

Shi, Zhiyang; Zhang, Xiong [Key Laboratory of Advanced Civil Engineering Materials of Education Ministry, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2011-01-15T23:59:59.000Z

208

Introduction to the OR Forum Article: Modeling the Impacts of Electricity Tariffs on Plug-in Hybrid Electric Vehicle Charging, Costs, and Emissions by Ramteen Sioshansi  

Science Conference Proceedings (OSTI)

Comment on Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions by Ramteen Sieshansi. Keywords: energy, environment, plug-in hybrid electric vehicles, pricing

Edieal J. Pinker

2012-05-01T23:59:59.000Z

209

Using Environmental Emissions Permit Prices to Raise Electricity Prices: Evidence from the California Electricity Market  

E-Print Network (OSTI)

Permit Prices to Raise Electricity Prices: Evidence from thePermit Prices to Raise Electricity Prices: Evidence from thehigher wholesale electricity prices, during the third and

Kolstad, Jonathan; Wolak, Frank

2003-01-01T23:59:59.000Z

210

Abstract--We present new approaches for building yearly and seasonal models for 5-minute ahead electricity load  

E-Print Network (OSTI)

electricity load forecasting. They are evaluated using two full years of Australian electricity load data. We first analyze the cyclic nature of the electricity load and show that the autocorrelation function to building a single yearly model. I. INTRODUCTION PREDICTING the future electricity demand, also called

Koprinska, Irena

211

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

212

Building Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Equipment Building Technologies Deployment System/Building Integration Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy consumption of the nation's buildings and resulting carbon emissions is essential to achieving a sustainable clean energy future. To address the enormous challenge, Oak Ridge National Laboratory is focused on helping develop new building technologies, whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations in all of these areas.

213

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

This consumer fact sheet provides an overview of battery power for residential solar electric systems, including sizing, estimating costs, purchasing, and performing maintenance.

Not Available

2002-10-01T23:59:59.000Z

214

Use of Electrical Resistivity and Acoustic Emission to Monitor ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Ceramic Matrix Composites. Presentation Title, Use of Electrical Resistivity and...

215

Emission Factors Handbook: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Plants  

Science Conference Proceedings (OSTI)

The "Emission Factors Handbook" provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and Department of Energy (DOE) field measurements conducted at over 50 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2002-04-10T23:59:59.000Z

216

commercial buildings | OpenEI  

Open Energy Info (EERE)

buildings buildings Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2

217

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

DOE Green Energy (OSTI)

Some conclusions from this presentation are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions because stationary storage is available 24 hours a day for energy management - it's more effective; (3) stationary storage will be charged by PV, mobile only marginally; and (4) results will depend on the considered region and tariff. Final research work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

Stadler, Michael; Cardoso, Goncalo; DeForest, Nicholas; Donadee, Jon; Gomez, Tomaz; Lai, Judy; Marnay, Chris; Megel, Olivier; Mendes, Goncalo; Siddiqui, Afzal

2011-05-01T23:59:59.000Z

218

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Chinese cities and climate zones. To optimize each buildingare shown in the building climate zone map in Figure 1. Theon the following factors: Climate zones and building energy

Feng, Wei

2013-01-01T23:59:59.000Z

219

Table 11.5a Emissions From Energy Consumption for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and ...

220

Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)  

SciTech Connect

This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

Heath, G.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network (OSTI)

energy assessment." Energy and Buildings 41: 1263-1268.Canada, and USA, Energy and Buildings 36, no. 12 (Decemberlow energy buildings, Energy and Buildings 42, no. 6 (June

Aden, Nathaniel

2010-01-01T23:59:59.000Z

222

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

426435. LBNL. (2012). Distributed Energy Resources CustomerATIONAL L ABORATORY Building Distributed Energy Performanceemployer. Building Distributed Energy Performance

Feng, Wei

2013-01-01T23:59:59.000Z

223

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

solar radiation, electricity tariff, technology costs, andfor PV assessment Electricity tariff Natural gas tariffPerformance Tariff Electricity tariff (summer season) and

Feng, Wei

2013-01-01T23:59:59.000Z

224

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",2008,2039,2000,1971,1892,109...

225

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",194,205,206,216,200,251,...

226

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Texas" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",484,494,510,562,511,578,620...

227

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",343,340,385,429,377,399,...

228

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",99,103,107,108,97,111,10...

229

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",760,723,765,812,770,518...

230

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

United States" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",14281,14240,14060,1...

231

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",165,161,155,177,187,174,...

232

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",57,58,67,67,65,50,73,5...

233

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",1169,1151,1149,1126,...

234

Table 7. Electric Power Industry Emissions Estimates, 1990 Through...  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",293,304,281,207,217,194...

235

Determining the effects on residential electricity prices and carbon emissions of electricity market restructuring in Alberta.  

E-Print Network (OSTI)

??When electricity restructuring initiatives were introduced in Alberta, and finalized with the institution of retail electricity market competition in 2001, it was argued that the (more)

Jahangir, Junaid Bin

2011-01-01T23:59:59.000Z

236

Non-Road Electric Vehicle Emissions: Analysis and Recommendations  

Science Conference Proceedings (OSTI)

Energy security and quality of life in the United States and around the globe are dependent upon the reduction of air pollution, petroleum dependency, and developing a solution to global warming. Non-road transportation equipment offers an opportunity to support this quality of life objective with a reduction in emissions through electrification. Private sector initiatives and regulatory agencies have begun to focus on non-road vehicles and equipment. This emission source category, which was largely unre...

2003-08-18T23:59:59.000Z

237

Long-Run Equilibrium Modeling of Emissions Allowance Allocation Systems in Electric Power Markets  

Science Conference Proceedings (OSTI)

Carbon dioxide allowance trading systems for electricity generators are in place in the European Union and in several U.S. states. An important question in the design of such systems is how allowances are to be initially allocated: by auction, by giving ... Keywords: Equilibrium programming, economics, electricity and emissions markets, model properties and applications

Jinye Zhao; Benjamin F. Hobbs; Jong-Shi Pang

2010-05-01T23:59:59.000Z

238

OpenEI - buildings  

Open Energy Info (EERE)

Hourly Energy Emission Hourly Energy Emission Factors for Electricity Generation in the United States http://en.openei.org/datasets/node/488 Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers.  Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions.  Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. 

License

239

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

240

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

DOE Green Energy (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

242

Effects of the European Union Emissions Trading Scheme on Electricity Prices  

Science Conference Proceedings (OSTI)

Any emissions trading program to deal with carbon emissions in the United States is likely to draw heavily on precedents in the path-breaking program in Europe the European Union Emissions Trading Scheme ("EU ETS"). This paper considers the effects of the EU ETS on electricity prices, a topic that has come to the fore recently in the context of rising CO2 prices and concomitant rises in electricity prices in many European markets. Indeed, various proposals have been put forth by governments and private g...

2005-12-22T23:59:59.000Z

243

Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry  

SciTech Connect

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-04-01T23:59:59.000Z

244

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions 1015325 Final Report, July 2007 Each of the ... scenarios showed significant Greenhouse Gas reductions due to PHEV fleet penetration ... ... PHEVs adoption results in significant reduction in the consumption of petroleum fuels. ' ' DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING

245

Estimating carbon emissions avoided by electricity generation and efficiency projects: A standardized method (MAGPWR)  

SciTech Connect

This paper describes a standardized method for establishing a multi-project baseline for a power system. The method provides an approximation of the generating sources that are expected to operate on the margin in the future for a given electricity system. It is most suitable for small-scale electricity generation and electricity efficiency improvement projects. It allows estimation of one or more carbon emissions factors that represent the emissions avoided by projects, striking a balance between simplicity of use and the desire for accuracy in granting carbon credits.

Meyers, S.; Marnay, C.; Schumacher, K.; Sathaye, J.

2000-07-01T23:59:59.000Z

246

Emission spectroscopy for the study of electric propulsion plasmas  

E-Print Network (OSTI)

Typical electric propulsion devices rely on the acceleration of highly ionized plasmas to produce thrust at specific impulses unattainable with state-of-the-art chemical systems. This thesis examines the use of a miniaturized ...

Matlock, Taylor Scott

2009-01-01T23:59:59.000Z

247

Experimental and computational studies of electric thruster plasma radiation emission  

E-Print Network (OSTI)

Electric thrusters are being developed for in-space propulsion needs of spacecraft as their higher specific impulse enables a significant reduction in the required propellant mass and allows longer duration missions. Over ...

elik, Murat, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

248

Electric Generating and Transmission Facilities Emissions Management (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section details responsibilities of the Iowa Utility Board, including the policies for electricity rate-making for the state of Iowa, certification of natural gas providers, and other policies...

249

Electricity-use Feedback in the Commercial Sector: Examining the Potential for Building Occupant Behavior Change  

Science Conference Proceedings (OSTI)

Feedback technologies to encourage behavior change have been explored in the residential sector for the past three decades, but the savings potential of using feedback strategies in the commercial sector, which represents over one quarter of US electricity sales, has yet to be adequately explored. Although a number of building load control technologies that include some form of feedback provision have existed for some years, they generally target technical staff. The focus of this report is to understand...

2010-12-13T23:59:59.000Z

250

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

251

Issues in emissions testing of hybrid electric vehicles.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

252

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

driving range under electric power and cost. Under currentKamment, et al. , 2007; Electric Power Research Institute,emission reductions (Electric Power Research Institute,

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

253

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

EnergyPlus (DOE, 2011). The energy usage intensity is shownResidential Building Site Energy Usage Intensity in ChinaGas Residen>al Building Energy Usage Intensity Comparison

Feng, Wei

2013-01-01T23:59:59.000Z

254

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Usage Intensity Comparison City The retail prototype building is an internal load dominated model in which lighting,

Feng, Wei

2013-01-01T23:59:59.000Z

255

Energy Demand and Emissions in Building in China: Scenarios and Policy Options  

E-Print Network (OSTI)

Recent rapid growth of energy use in China exerts great pressure on the energy supply and environment. This study provides scenarios of future energy development in buildings, including urban residential, rural residential and service sectors (not including transport), taking into account the most up-to-date data and recent policy discussions that will affect future economic, population, and energy supply trends. To understand the role of policy options including technology options and countermeasures, two scenarios were defined, which represent the range of plausible futures for energy development in buildings. This is also part of an energy and emission scenario study for the IPAC (Integrated Policy Assessment Model for China) modeling team. The results from quantitative analysis show that energy demand in buildings in China could increase quickly, as high as 666 million in 2030. However, policies and technologies could contribute a lot to energy demand savings, which could be 28% energy savings compared with the baseline scenario. There is still space for further energy savings if more advanced technologies could be fully diffused.

Kejun, J.; Xiulian, H.

2006-01-01T23:59:59.000Z

256

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

Fridley, David G.

2008-01-01T23:59:59.000Z

257

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

in the construction and decommissioning of buildings. Thisin the construction and decommissioning of buildings. Thesethe building, and the decommissioning or demolition of the

Fridley, David G.

2008-01-01T23:59:59.000Z

258

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

construction, Energy and Buildings 20: 205217. Chau 2007.management in China, Energy and Buildings (forthcoming).addition to operational energy, buildings embody the energy

Fridley, David G.

2008-01-01T23:59:59.000Z

259

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

260

Emissions of greenhouse gases from the use of transportation fuels and electricity  

SciTech Connect

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. (California Univ., Davis, CA (United States))

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Financing arrangements and industrial organisation for new nuclear build in electricity markets  

E-Print Network (OSTI)

of the Finnish and French plants under construction , but rising fossil fuel and CO2 prices are reviving interest in nuclear power. A potential nuclear power renaissance in liberalised electricity markets will face a number of hurdles associated... with the CO2 price in Europe. The attractiveness of carbon free technologies such as nuclear plant for a power producer is reinforced by the additional cost placed on fossil fuel generation technologies by climate policies and CO2 emissions pricing...

Finon, Dominique; Roques, Fabien A

262

202-328-5000 www.rff.orgDesigning Renewable Electricity Policies to Reduce Emissions  

E-Print Network (OSTI)

A variety of renewable electricity policies to promote investment in wind, solar, and other types of renewable generators exist across the United States. The federal renewable energy investment tax credit, the federal renewable energy production tax credit, and state renewable portfolio standards are among the most notable. Whether the benefits of promoting new technology and reducing pollution emissions from the power sector justify these policies costs has been the subject of considerable debate. We argue in this paper that the debate is misguided because it does not consider two important interactions between renewable electricity generators and the rest of the power system. First, the value of electricity from a renewable generators depends on the generation and investment it displaces. Second, a large increase in renewable generation can reduce electricity prices, increasing consumption and emissions from fossil generators, and offsetting some of the environmental benefits of the policies. Two policy conclusions follow. First, existing renewable electricity policies can be redesigned to promote investment in the highest-value generators, which can greatly reduce the cost of achieving a given emissions reduction. Second, subsidies financed out of general tax revenue reduce emissions less than subsidies financed by charges to electricity consumers.

Reduce Emissions; Harrison Fell; Joshua Linn; Clayton Munnings

2012-01-01T23:59:59.000Z

263

Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-tracable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

2006-05-23T23:59:59.000Z

264

Calculation of Nox Emissions Reductions from Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-traceable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J.; Culp, C.; Gilman, D.; Baltazar-Cervantes, J. C.; Yazdani, B.; Fitzpatrick, T.; Muns, S.; Verdict, M.

2004-01-01T23:59:59.000Z

265

Estimation of Annual Reductions of NOx Emissions in ERCOT for the HB3693 Electricity Savings Goals  

E-Print Network (OSTI)

Increasing the level of energy efficiency in Texas, as proposed by House Bill 3693, an Act related to energy demand, energy load, energy efficiency incentives, energy programs and energy performance measures, would reduce the amount of electricity demanded from Texas utilities. Since approximately eighty-eight percent of electricity generated in Texas is from plants powered by fossil fuels, such as coal and natural gas, this decrease would also reduce the air pollution that would otherwise be associated with burning these fuels. This report presents the potential emission reductions of nitrogen oxides (NOx) that would occur in the Electric Reliability Council of Texas (ERCOT) region if new energy efficiency targets for investor owned utilities are established for 2010 and 2015. These energy efficiency targets are the subject of a feasibility study as prescribed by Texas House Bill 3693. This report describes the details of the methodology, data and assumptions used, and presents the results of the analysis. The total energy savings targets for utilities within ERCOT are 745,710 megawatt-hours (MWh) by 2010 under the 30 percent reduction of growth scenario and 1,788,953 MWh by 2015 under the 50 percent reduction of growth scenario. The total projected annual NOx emissions reductions from these electricity savings are 191 tons in 2010 and 453 tons in 2015, or converting the annual totals into average daily avoided emissions totals, 0.5 tons per day by 2010 and 1.25 tons per day by 2015. The average avoided emission rate is approximately 0.51 pounds (lb) of NOx reduced per MWh of electricity savings. While House Bill 3693 is an Act related to energy and does not target emissions levels, the energy efficiency improvements would achieve air pollution benefits that could positively affect air quality and human health. The emissions reductions projected to result in 2010 and 2015 are comparable to the Texas Emission Reduction Program (TERP) Energy-Efficiency Grants Program, which does target emission reductions and estimated 2005 annual NOx emissions reductions of about 89 tons. While the projected emissions reductions are small compared to the total emission reductions needed to bring the states non-attainment areas into attainment of the national ambient air quality standards for ozone, they can be a part of an overall strategy to reduce emissions and improve human health in Texas.

Diem, Art; Mulholland, Denise; Yarbrough, James; Baltazar, Juan Carlos; Im, Piljae; Haberl, Jeff

2008-12-01T23:59:59.000Z

266

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

267

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

with factors such as energy tariff and incentive policies.energy services requirements, usage patterns, tariffs, andelectricity tariff structure and the buildings energy load

Feng, Wei

2013-01-01T23:59:59.000Z

268

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

Science Conference Proceedings (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

269

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates in

Mills, Evan

2009-07-16T23:59:59.000Z

270

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

271

Data Visualization for Quality-Check Purposes of Monitored Electricity Consumption in All Office Buildings in the ESL Database  

E-Print Network (OSTI)

This report comprises an effort to visualize the monitored electricity consumption in all office buildings (not including the office buildings comprising other functions as classrooms and laboratories, for instance) in the ESL database. This data visualization, basically long-term and short-term time series plots serves as a preliminary quality check of the data available. A preliminary inspection of the data was performed, by viewing the channels to provide a clear identification of creep, missing data gaps, turned-off periods, and sudden big changes that suggest changes in the building operation or an addition to the building.

Sreshthaputra, A.; Abushakra, B.; Haberl, J. S.; Claridge, D. E.

2000-01-01T23:59:59.000Z

272

Electricity Load and Carbon Dioxide Emissions: Effects of a Carbon Price in the Short Term  

Science Conference Proceedings (OSTI)

acceptable levels will require a dramatic de-carbonization of the electric generation sector in the U.S. One increasingly discussed way to meet this policy goal is to put an explicit price on carbon emissions, either through a tax or a trading scheme. ...

Adam Newcomer; Seth Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan

2008-01-01T23:59:59.000Z

273

The electrical conductivity and soft photon emissivity of the QCD plasma  

E-Print Network (OSTI)

The electrical conductivity in the hot phase of the QCD plasma is extracted from a quenched lattice measurement of the Euclidean time vector correlator for 1.5 conductivity, and the closely related soft photon emissivity of the QCD plasma, are then extracted from a fit to the Fourier transform of the temporal vector correlator.

Sourendu Gupta

2003-01-09T23:59:59.000Z

274

Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998  

Reports and Publications (EIA)

The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

Information Center

1999-10-15T23:59:59.000Z

275

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

Science Conference Proceedings (OSTI)

Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

2011-08-16T23:59:59.000Z

276

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

Case Study: Supermarket Commissioning with an Emphasis onNational Conference on Building Commissioning, May 18-20,Building Enclosure Commissioning: What's the Big Deal?"

Mills, Evan

2010-01-01T23:59:59.000Z

277

The potential for avoided emissions from photovoltaic electricity in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

potential potential for avoided emissions from photovoltaic electricity in the United States Pei Zhai a, * , Peter Larsen a, b , Dev Millstein a , Surabi Menon a , Eric Masanet c a Energy Analysis and Environmental Impacts Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA b Management Science & Engineering Department, Stanford University, Stanford, CA, USA c McCormick School of Engineering, Northwestern University, Evanston, IL, USA a r t i c l e i n f o Article history: Received 29 April 2012 Accepted 16 August 2012 Available online 29 September 2012 Keywords: Photovoltaics Emissions Energy model United States a b s t r a c t This study evaluates avoided emissions potential of CO 2 , SO 2 and NO x assuming a 10% penetration level of photovoltaics (PV) in ten selected U.S. states. We estimate avoided emissions using an hourly energy system simulation model, EnergyPLAN. Avoided

278

Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys  

Science Conference Proceedings (OSTI)

This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

Belzer, David B.

2004-09-04T23:59:59.000Z

279

Short run effects of a price on carbon dioxide emissions from U.S. electric generators  

Science Conference Proceedings (OSTI)

The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

2008-05-01T23:59:59.000Z

280

Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State  

Science Conference Proceedings (OSTI)

Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

2005-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Towards A Design Environment For Buildingintegrated Energy Systems: The Integration Of Electrical Power Flow Modelling With Building Simulation  

E-Print Network (OSTI)

.................................................................................................................................... xi Chapter 1 - Buildings Energy and Environment ..................................................................... 1 1.1 Energy Use within Buildings............................................................................................1 1.1.1 Environmental Implications.......................................................................................2 1.1.2 Economic Implications ..............................................................................................3 1.2 The Means of Reducing Energy Consumption..................................................................4 1.2.1 Energy End-Use Reduction........................................................................................4 1.2.2 Reducing High-Grade Energy Usage .........................................................................5 1.2.3 Electrical Energy Displa...

Nicolas James Kelly; Building Simulation; Nicolas James; Kelly B. Eng; M. Sc

1998-01-01T23:59:59.000Z

282

Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)  

Reports and Publications (EIA)

Several States have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the States and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected States include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

Information Center

2005-02-01T23:59:59.000Z

283

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

E-Print Network (OSTI)

and Industrial Facilities to Dynamic Electricity Pricesand Industrial Facilities to Dynamic Electricity Prices

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

284

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

Science Conference Proceedings (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

285

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

How would air quality and greenhouse gas emissions be affected if significant numbers of Americans drove cars that were fueled by the power grid? A recently completed assessment conducted by the Electric Power Research Institute and the Natural Resources Defense Council made a detailed study of the question looking at a variety of scenarios involving the U.S. fleet of power generation and its fleet of light-duty and medium-duty cars and trucks.The study focused on plug-in hybrid electric vehicles (PHEVs)...

2007-07-23T23:59:59.000Z

286

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Compliance Regulations Resource Center About Building Energy Codes U.S. Energy Consumption by Sector (2011) Source: U.S. Energy Information Administration, Annual Energy Review According to the U.S. Energy Information Administration's Electric Power Annual, U.S. residential and commercial buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in significant cost savings in both the private and public sectors of the U.S. economy. Efficient buildings reduce power demand and have less of an environmental impact. The Purpose of Building Energy Codes Energy codes and standards set minimum efficiency requirements for new and renovated buildings, assuring reductions in energy use and emissions over

287

Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity Meta-Analysis of Estimates of Life Cycle GHG Emissions from Electricity Generation Technologies Speaker(s): Garvin Heath Date: April 11, 2011 - 10:00am Location: 90-3075 Seminar Host/Point of Contact: Eric Masanet One barrier to the full support and deployment of alternative energy systems and the development of a sustainable energy policy is the lack of robust conclusions about the life cycle environmental impacts of energy technologies. A significant number of life cycle assessments (LCA) of energy technologies have been published, far greater than many are aware. However, there is a view held by many decision-makers that the state of the science in LCA of energy technologies is inconclusive because of perceived and real variability and uncertainty in published estimates of life cycle

288

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network (OSTI)

maintenance, and decommissioning. Building and supportingoperations, and decommissioning. Over the following fourtransportation, use, and decommissioning during each phase

Aden, Nathaniel

2010-01-01T23:59:59.000Z

289

Quantifying Changes in Building Electricity Use, with Application to Demand Response  

E-Print Network (OSTI)

build- ings, Journal of Solar Energy Engineering, vol. 120,buildings, Journal of Solar Energy Engineering, vol. 120,modeling, Journal of Solar Energy Engineering, vol. 120, p.

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

290

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

LCA can help determine environmental burdens from "cradle LCA can help determine environmental burdens from "cradle to grave" and facilitate more consistent comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity generation technologies are generally less than those from fossil fuel-based technologies, based on evidence assembled by this project. Further, the proportion of GHG emissions from each life cycle stage differs by technology. For fossil-fueled technologies, fuel combustion during operation of the facility emits the vast majority of GHGs. For nuclear and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy Systems

291

Penetration and air-emission-reduction benefits of solar technologies in the electric utilities  

DOE Green Energy (OSTI)

The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

Sutherland, R.J.

1981-01-01T23:59:59.000Z

292

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

water heating Technologies Electric heater Gas boilerCoal Boiler Small cogen Stove District heating Heat pumpElectric water heater Gas boiler Coal Boiler Small cogen Oil

Fridley, David G.

2008-01-01T23:59:59.000Z

293

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S  

SciTech Connect

This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-11-01T23:59:59.000Z

294

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

owned integrated hydro electricity utilities prevail,s Loading Order for Electricity Resources”, Staff Report,International Developments in Electricity Demand Management

McNeil, MIchael

2011-01-01T23:59:59.000Z

295

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

Standards to Projected Electricity Price in the ResidentialStandards to Marginal Electricity Price in the CommercialStandards to Projected Electricity Price in the Residential

McNeil, MIchael

2011-01-01T23:59:59.000Z

296

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

Annexes Tables Table 1. Electricity Tariffs per Country andsuch as time-of-use electricity tariffs that create largeshows national average electricity tariffs per APP country.

McNeil, MIchael

2011-01-01T23:59:59.000Z

297

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

of Maharashtra State Electricity Distribution Co Ltd.”,Maharashtra state electricity distribution company recentlyCCE Electricity Price Exhaust Fan for Air Distribution (0.5

McNeil, MIchael

2011-01-01T23:59:59.000Z

298

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

that growth in electricity demand in developed countriesof displacement of electricity demand by heat- activatedmeets all of its electricity demand via utility purchases

Stadler, Michael

2008-01-01T23:59:59.000Z

299

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

Developments in Electricity Demand Management – Lessons24 Table 4. Electricity Demand Projections, Energy and3. APP Base Case Electricity Demand Forecast –Residential

McNeil, MIchael

2011-01-01T23:59:59.000Z

300

The role of building technologies in reducing and controlling peak electricity demand  

E-Print Network (OSTI)

AND CONTROLLING PEAK ELECTRICITY DEMAND Jonathan Koomey* andData to Improve Electricity Demand ForecastsFinal Report.further research. Electricity demand varies constantly. At

Koomey, Jonathan; Brown, Richard E.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Investigation and Analysis of Energy Consumption and Cost of Electric Air Conditioning Systems in Civil Buildings in Changsha  

E-Print Network (OSTI)

We investigated 40 typical air conditioned buildings in Changsha in 2005, including 15 hotel buildings, 6 commercial buildings, 5 office buildings, 6 hospital buildings and 8 synthesis buildings. On this basis we analyze the relation between types of cold and heat sources and the HVAC area of the buildings. Meanwhile the economical and feasible types of cold and heat sources are pointed out, i.e., oil boilers and gas boilers for heat source, and centrifugal and screw water chillers for cold source based on the electric refrigeration. Among the heat sources, the prospect of gas boilers is better. In addition, the air source heat pump depends heavily on whether some crucial issues such as frost can be solved during its application. The water-source heat pump will likely be applied. Based on the analysis of energy consumption and energy bills, we determine the feasible measures for energy conservation including the aspects of design, operation and management. Among them, special attention should be paid to energy metering and running time of air conditioning systems in civil buildings in Changsha.

Xie, D.; Chen, J.; Zhang, G.; Zhang, Q.

2006-01-01T23:59:59.000Z

302

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

and refrigeration mechanics and installers; 80,000 electrical and electronics repairers for commercial and industrial

Mills, Evan

2010-01-01T23:59:59.000Z

303

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

304

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

1 1 Buildings Share of U.S. Electricity Consumption/Sales (Percent) Buildings Delivered Total | Total Industry Transportation Total (10^15 Btu) 1980 | 60.9% 38.9% 0.2% 100% | 7.15 1981 | 61.4% 38.5% 0.1% 100% | 7.33 1982 | 64.1% 35.7% 0.2% 100% | 7.12 1983 | 63.8% 36.1% 0.2% 100% | 7.34 1984 | 63.2% 36.7% 0.2% 100% | 7.80 1985 | 63.8% 36.0% 0.2% 100% | 7.93 1986 | 64.8% 35.1% 0.2% 100% | 8.08 1987 | 64.9% 34.9% 0.2% 100% | 8.38 1988 | 65.0% 34.8% 0.2% 100% | 8.80 1989 | 64.8% 35.0% 0.2% 100% | 9.03 1990 | 65.0% 34.9% 0.2% 100% | 9.26 1991 | 65.6% 34.3% 0.2% 100% | 9.42 1992 | 64.6% 35.2% 0.2% 100% | 9.43 1993 | 65.7% 34.1% 0.2% 100% | 9.76 1994 | 65.5% 34.3% 0.2% 100% | 10.01 1995 | 66.2% 33.6% 0.2% 100% | 10.28 1996 | 66.5% 33.3% 0.2% 100% | 10.58 1997 | 66.8% 33.0% 0.2% 100% | 10.73 1998 | 67.6% 32.2% 0.2% 100% | 11.14 1999 | 67.9% 32.0% 0.2% 100% | 11.30 2000 | 68.7% 31.1% 0.2% 100% | 11.67 2001 | 70.5% 29.4% 0.2% 100% |

305

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

306

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network (OSTI)

buildings among various climate zones, though results datasummer, cold winter" climate zone according to survey databuilding LCA model uses climate zone inputs to calculate

Aden, Nathaniel

2010-01-01T23:59:59.000Z

307

Primary and secondary emissions from green building materials : large chamber experiments.  

E-Print Network (OSTI)

??Indoor sources of air pollution generate a large fraction of overall human exposure to airborne pollutants. Materials used in buildings have been shown to be (more)

Gall, Elliott Tyler

2010-01-01T23:59:59.000Z

308

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various countries and US cities  

SciTech Connect

Past studies have shown that use of electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled internal-combustion-engine vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, the authors estimate greenhouse gas emission reductions for EVs, including these important aspects. They select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the US) and analyze greenhouse emission impacts of EVs in each city or country. These selected cities and countries have distinct differences in electric power-plant fuel mixes. They also select six driving cycles developed around the world. They choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Thus, the city- or country-specific vehicle energy consumption estimates reflect effects of both vehicle driving cycles and electric power-plant mixes. Finally, they estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and power-plant and vehicle operations. They estimate that relative to GVs, EVs reduce greenhouse gas emissions in all selected US cities and countries.

Wang, M.Q.; Marr, W.W. (Argonne National Lab., IL (United States). Center for Transportation Research)

1994-09-01T23:59:59.000Z

309

Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning  

E-Print Network (OSTI)

in ContinuousorRetro?Commissioning PhillipN. Price,Conference on Building Commissioning: August 10-12, 2011Conference on Building Commissioning: August 10-12, 2011

Price, Phillip N.

2012-01-01T23:59:59.000Z

310

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Analyzed distribution of vehicles by last trip ending time for each region Generated PHEVs load profiles PSAT were adjusted to on-road values for this analysis PHEV miles driven by grid electricity and onWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad

311

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

Science Conference Proceedings (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

312

Building-level occupancy data to improve ARIMA-based electricity use forecasts  

Science Conference Proceedings (OSTI)

The energy use of an office building is likely to correlate with the number of occupants, and thus knowing occupancy levels should improve energy use forecasts. To gather data related to total building occupancy, wireless sensors were installed in a ... Keywords: energy forecast, occupancy, office buildings, sensors

Guy R. Newsham; Benjamin J. Birt

2010-11-01T23:59:59.000Z

313

CO sub 2 emissions from coal-fired and solar electric power plants  

DOE Green Energy (OSTI)

This report presents estimates of the lifetime carbon dioxide emissions from coal-fired, photovoltaic, and solar thermal electric power plants in the United States. These CO{sub 2} estimates are based on a net energy analysis derived from both operational systems and detailed design studies. It appears that energy conservation measures and shifting from fossil to renewable energy sources have significant long-term potential to reduce carbon dioxide production caused by energy generation and thus mitigate global warming. The implications of these results for a national energy policy are discussed. 40 refs., 8 figs., 23 tabs.

Keith, F.; Norton, P.; Brown, D.

1990-05-01T23:59:59.000Z

314

Livscykelanalys fr koldioxidutslpp frn flerbostadshus; Life Cycle Analysis of Carbon Dioxide Emissions from Residential Buildings.  

E-Print Network (OSTI)

?? Today, about 15 to 20 percent of Swedens total emission of carbon dioxide can be traced to the household sector. By examining apartment blocks (more)

Palmborg, Sofia

2013-01-01T23:59:59.000Z

315

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

316

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

by heat activated absorption cooling, direct-fired naturalsince electric cooling loads can be offset by the absorptioncooling loads: utility purchases of electricity, on-site generation of electricity, absorption

Stadler, Michael

2008-01-01T23:59:59.000Z

317

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

Building Technologies Program Website Building Technologies Program Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Technologies Program Website Focus Area: Energy Efficiency Topics: Best Practices Website: www1.eere.energy.gov/buildings/index.html Equivalent URI: cleanenergysolutions.org/content/building-technologies-program-website Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Building Codes,Appliance & Equipment Standards and Required Labeling" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

318

sulfur dioxide emissions | OpenEI  

Open Energy Info (EERE)

sulfur dioxide emissions sulfur dioxide emissions Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

319

PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES  

Science Conference Proceedings (OSTI)

The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicles large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95F) and low (20F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95F, 75F, and 20F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300400C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

Seidman, M.R.; Markel, T.

2008-01-01T23:59:59.000Z

320

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

6 6 Cost of an Electric Quad Used in the Buildings Sector ($2010 Billion) Residential Commercial Buildings Sector 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 11.82 11.82 11.82 11.94 11.68 11.82 10.59 10.83 10.70 11.41 11.58 11.48 11.68 11.33 11.51 11.49 10.77 11.15 11.71 11.67 11.69 11.72 11.52 11.63 10.57 9.76 10.19 10.55 9.73 10.16 11.16 10.35 10.78 10.68 9.90 10.31 10.42 9.48 9.97 10.16 9.20 9.70 10.57 9.73 10.17 10.48 9.62 10.07 9.54 8.46 9.01 9.24 8.11 8.68 9.92 8.97 9.47 9.85 8.78 9.33 9.16 8.44 8.81 9.32 8.58 8.96 9.15 8.16 8.66 9.46 8.64 9.05 10.27 9.34 9.82 10.24 9.27 9.76 9.28 8.48 8.89 9.56 8.77 9.18 11.92 10.52 11.25 11.83 10.40 11.14 10.61 9.76 10.19 10.86 9.60 10.25 11.90 10.08

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

payback time versus building size Project costs and energyPayback time (commissioning cost/annual energy savings) lessenergy payback time of 41 years, while the proper allocation of costs and

Mills, Evan

2010-01-01T23:59:59.000Z

322

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

cases. In the alternative case, space cooling sees a shiftAlternative Case Table 8 Office Buildings: Space CoolingCooling Tables 4-10 detail the assumptions of technology change for each end use between the reference and alternative

Fridley, David G.

2008-01-01T23:59:59.000Z

323

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

and E. Jeannette. 2004. Xcel Energys RecommissioningLong and Crowe 2008a). Xcel Energy had a similar target inFor example, the 2003 Xcel Energy program excluded buildings

Mills, Evan

2010-01-01T23:59:59.000Z

324

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

Architecture for Localized Electrical Energy Reduction, Generation, and Sharing) [46] is the smart-grid

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

325

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network (OSTI)

Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

326

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

DOE Green Energy (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

327

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network (OSTI)

SVOW), http://der.lbl.gov/microgrids-lbnl/current-project-to commercial building microgrids, 2nd European Conference2009, Special Issue on Microgrids and Energy Management,

Stadler, Michael

2012-01-01T23:59:59.000Z

328

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

2003. Hatziargyriou, N. et al. , Microgrids, An Overview ofand Operation of Microgrids in Commercial Buildings, IEEEsuccessful deployment of microgrids will depend heavily on

Stadler, Michael

2008-01-01T23:59:59.000Z

329

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

Desktop usage is also highly correlated with lighting loads.usage, as one might expect since most o?ce buildings do not adjust lighting

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

330

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

E-Print Network (OSTI)

modeling, Journal of Solar Energy Engineering, vol. 120,buildings, Journal of Solar Energy Engineering, vol. 120,t savings, Journal of Solar Energy Engineering, vol. 120,

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

331

Emission Factors Handbook Addendum 2: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Power Plan ts  

Science Conference Proceedings (OSTI)

This handbook provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and U.S. Department of Energy (DOE) field measurements conducted at 51 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2000-12-22T23:59:59.000Z

332

Greenhouse Gas Mitigation Planning for Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings October 7, 2013 - 10:29am Addthis Energy use in buildings represents the single largest source of greenhouse gas (GHG) emissions in the Federal sector. Buildings can contribute to Scope 1 emissions from direct stationary combustion sources; Scope 2 from indirect electricity, heat, or steam purchases; and Scope 3 emissions from transmission and distribution losses. Also see Use Renewable Energy in Buildings for Greenhouse Gas Mitigation. Step 1: Assess Agency Size Changes Step 2: Evaluate Emissions Profile Step 3: Evaluate Reduction Strategies Step 4: Estimate Implementation Costs Step 5: Prioritize Strategies Helpful Data and Tools See GHG planning data and tools for buildings.

333

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building technology; concretes; durability; effective medium theory; electrical conductivity; interfacial zone; mortar; percolation; fluid flow; sand ...

334

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

parameters, i.e. , the electricity tariff structure. Due toenergy loads, 2 electricity and natural gas tariff structureelectricity ($/kWh) demand ($/kW) Natural Gas $/kWh fixed ($/day) Sources: PG&E commercial tariffs,

Stadler, Michael

2008-01-01T23:59:59.000Z

335

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

electricity ($/kWh) demand ($/kW) Natural Gas $/kWh fixed (electricity ($/kWh) demand ($/kW) Natural Gas $/kWh fixed (demand via utility purchases and burns natural gas to meet

Stadler, Michael

2008-01-01T23:59:59.000Z

336

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

Electricity Restructuring by State in the US US States Restructuration Alabama Not Active Alaska Not Active Colorado

McNeil, MIchael

2011-01-01T23:59:59.000Z

337

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

boilers Ranges & ovens Pool heaters Direct heating equipmentOvens Standby Washing Machines Televisions Space Cooling Electric Water Heating

McNeil, MIchael

2011-01-01T23:59:59.000Z

338

City of Asheville - Efficiency Standards for City Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asheville - Efficiency Standards for City Buildings Asheville - Efficiency Standards for City Buildings City of Asheville - Efficiency Standards for City Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider City of Asheville In April 2007, the Asheville City Council adopted carbon emission reduction goals and set LEED standards for new city buildings. The council committed to reducing carbon emissions by 2% per year until the city reaches an 80%

339

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Systems, forthcoming 2008. Microgrid Symposium. Held atand carbon emissions, a microgrids distributed energyIn this paper, a microgrid is defined as a cluster of

Stadler, Michael

2008-01-01T23:59:59.000Z

340

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

5 5 2010 Impacts of Saving an Electric Quad (1) Utility Average-Sized Aggregate Number of Units Fuel Input Utility Unit (MW) to Provide the Fuel's Share Plant Fuel Type Shares (%) in 2010 of the Electric Quad (2) Coal 49% 36 Petroleum 1% 96 Natural Gas 19% 141 Nuclear 22% 3 Renewable (3) 10% 184 Total 100% 460 Note(s): Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2; and EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2 for consumption and Table A8 for electricity supply. 245 17 85 1,026 22 1) This table displays the breakdown of electric power plants that could be eliminated by saving an electric quad, in exact proportion to the actual primary fuel shares for electricity produced nationwide in 2010. Use this table to estimate the avoided capacity implied by saving one

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Air- Vehicle Air- Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range Preprint September 2000 * NREL/CP-540-28960 R. Farrington and J. Rugh To Be Presented at the Earth Technologies Forum Washington, D.C. October 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

342

Water efficiency in buildings: assessment of its impact on energy efficiency and reducing GHG emissions  

Science Conference Proceedings (OSTI)

Nowadays humanity uses about 50% of existing drinking-water, but in the next 15 years this percentage will reach 75%. Consequently, hydric stress risk will rise significantly across the entire planet. Accordingly, several countries will have to apply ... Keywords: GHG emissions, efficient water devices, energy efficiency, hydric efficiency

A. Silva-Afonso; F. Rodrigues; C. Pimentel-Rodrigues

2011-02-01T23:59:59.000Z

343

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Cost-benefit Analysis of Plug-in Hybrid Electric Vehicle Technology, National Renewable EnergyCost and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

344

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

345

Regulatory Impediments to Neighborhood Electric Vehicles: Safety Standards and Zero-Emission Vehicle Rules  

E-Print Network (OSTI)

to Neighborhood Electric Vehicles: Safety Standardsand Zero-to Neighborhood Electric Vehicles: Safety Standards andto Neighborhood Electric Vehicles: Safety Standards and

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

346

Regulatory Impediments to Neighborhood Electric Vehicles: Safety Standards and Zero-Emission Vehicle Rules  

E-Print Network (OSTI)

to Neighborhood Electric Vehicles: Safety Standardsand Zero-to Neighborhood Electric Vehicles: Safety Standards andto Neighborhood Electric Vehicles: Safety Standards and

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

2001-01-01T23:59:59.000Z

347

Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements  

E-Print Network (OSTI)

National Engineer- an electric car practical with existingN. (1987) The BMW electric car--current devel- for electricinfrastructure for electric cars. TRRL Report LR812.

DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

1989-01-01T23:59:59.000Z

348

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

Impacts of Reduced Electricity Demand. Part 1. MethodologyImpacts of Reduced Electricity Demand. Part 1. MethodologyFigure 3: Commercial electricity demand with and without the

Coughlin, Katie

2013-01-01T23:59:59.000Z

349

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

build an open appliance power signature database, which willdevice in a database, such as its type of appliance, wherebased on appliance type and stores the results in a database

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

350

Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)  

Reports and Publications (EIA)

Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use

Information Center

2007-03-11T23:59:59.000Z

351

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities  

SciTech Connect

Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

Wang, M.Q.; Marr, W.W.

1994-02-10T23:59:59.000Z

352

Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes  

SciTech Connect

This research plan describes the overall scope of system research that is needed to reduce miscellaneous electrical loads (MEL) in future net zero energy homes.

Barley, C. D.; Haley, C.; Anderson, R.; Pratsch, L.

2008-11-01T23:59:59.000Z

353

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

demand changes impact the electric power sector. Figure 2:for electricity on the electric power sector as a whole. Thedemand changes impact the electric power sector. We refer to

Coughlin, Katie

2013-01-01T23:59:59.000Z

354

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

the EPA for interstate trade of electricity is based on theto the electricity generators, who can then trade credits

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

355

The Open Source Stochastic Building Simulation Tool SLBM and Its Capabilities to Capture Uncertainty of Policymaking in the U.S. Building Sector  

E-Print Network (OSTI)

CA, USA applied and change the service demand. An example ofUSA Figure 9. Total US Commercial Building Sector Electricity Demand (USA For the frequently discussed carbon cap approach, the carbon emissions as well as energy demand

Stadler, Michael

2009-01-01T23:59:59.000Z

356

Evaluating the Potential to Develop New Greenhouse Gas Emission Offsets on Electricity Transmission System Rights-of-Way  

Science Conference Proceedings (OSTI)

This report is a final deliverable for a research project conceived and supported by EPRI. This project explored the potential technical feasibility of developing greenhouse gas (GHG) emissions offsets by implementing enhanced Integrated Vegetation Management (IVM) to enhance management of biomass vegetation growing on high-voltage electricity ...

2013-03-30T23:59:59.000Z

357

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

Modeling the Capacity and Emissions Impacts of Reducedpurposes. Modeling the Capacity and Emissions Impacts ofFigure 2: Comparison of capacity projections from AEO2011

Coughlin, Katie

2013-01-01T23:59:59.000Z

358

General Electric Company design review manual, commercial buildings. National Solar Demonstration Program  

DOE Green Energy (OSTI)

This manual is intended to serve as a guide to the Solar Energy Division of ERDA for preparing instructions for and evaluating the proposals resulting from the issuance of Program Opportunity Notices (PON's) for Commercial Buildings. The manual is meant to amplify Program Opportunity Notice DSE-75-2, with respect to site, building, and system selection and evaluation. The manual contains two major sections, one addressing the project concept and the other the design features. The project concept section provides for a description and evaluation of the site, the commercial building, the system application, the system predicted performance, and the long term economics of the application. The projects could be screened using the information from this section alone. Projects that remain acceptable can be further evaluated through design considerations as outlined in the second section. (WDM)

None

1976-06-01T23:59:59.000Z

359

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in...

360

NREL: Electricity Integration Research - Electricity, Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity, Resources, and Building Systems Integration Center NREL's Electricity, Resources, and Building Systems Integration Center brings together diverse groups of experts...

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs and Emissions Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Technical Report NREL/TP-640-41410 May 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Prepared under Task No. WR61.2001 Technical Report NREL/TP-640-41410 May 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

362

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA)

Trade and Reliability; All Reports See all Electricity Reports State Electricity Profiles. ... Electric Power Industry Emissions Estimates, 1990 Through 2010:

363

An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building  

E-Print Network (OSTI)

With the increased use of building energy simulation programs, calibration of simulated data to measured data has been recognized as an important factor in substantiating how well the model fits a real building. Model calibration to measured monthly utility data has been utilized for many years. Recently, efforts have reported calibrated models at the hourly level. Most of the previous methods have relied on very simple comparisons including bar charts, monthly percent difference time-series graphs, and x-y scatter plots. A few advanced methods have been proposed as well which include carpet plots and comparative 3-D time-series plots. Unfortunately, at hourly levels of calibration, many of the traditional graphical calibration techniques become overwhelmed with data and suffer from data overlap. In order to improve upon previously established techniques, this thesis presents new calibration methods including temperature binned box-whisker-mean analysis to improve x-y scatter plots, 24-hour weather-daytype box-whisker-mean graphs to show hourly temperature-dependent energy use profiles, and 52-week box-whisker-mean plots to display long-term trends. In addition to the graphical calibration techniques, other methods are also used including indoor temperature calibration to improve thermostat schedules and architectural rendering as a means of verifying the building envelope dimensions and shading placement. Several statistical methods are also reviewed for their appropriateness including percent difference, mean bias error (MBE), and the coefficient of variation of the root mean squared error. Results are presented using a case study building located in Washington, D.C. In the case study building, nine months of hourly whole-building electricity data and site-specific weather data were measured and used with the DOE-2. 1D building simulation program to test the new techniques. Use of the new calibration procedures were able to produce a MBE of-0.7% and a CV(RMSE) of 23. 1 % which compare favorably with the most accurate hourly neural network models.

Bou-Saada, Tarek Edmond

1994-01-01T23:59:59.000Z

364

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

investment; 3. a low storage and PV price run; 4. to assessFigure 5. Low Storage and PV Price (run 3) Diurnal Heat6. Low storage and PV Price (run 3) Diurnal Electricity

Stadler, Michael

2008-01-01T23:59:59.000Z

365

Building a wireless mesh networked real-time electricity metering system in an MIT dormitory  

E-Print Network (OSTI)

A competitive, closed-loop information feedback system of wireless electricity meters was designed, tested, and implemented in seven MIT dormitory rooms. The meters utilized Allegro Hall Effect current sensors as well as ...

Oehlerking, Austin L

2009-01-01T23:59:59.000Z

366

Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)  

SciTech Connect

Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

2009-11-01T23:59:59.000Z

367

A State Regulatory Perspective; New Building, Old Motors, and Marginal Electricity Generation  

E-Print Network (OSTI)

Electricity consumption in Texas is expected to grow at 3.2 percent annually for the next ten years. Utility demand management activities, if effective, may reduce that expected rate of growth. Residential cooling, commercial lighting and cooling, and industrial drive power represent large and growing end uses of electricity in Texas. Designing effective conservation programs requires cooperation among a variety of groups with varying perspectives.

Treadway, N.

1987-01-01T23:59:59.000Z

368

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for thefactors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

369

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

E-Print Network (OSTI)

draft). Estimating Carbon Dioxide Emission Factors for theemissions factors for calculating the combined net carbon dioxide

2002-01-01T23:59:59.000Z

370

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of veh

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

371

202-328-5000 www.rff.orgAllowance Allocation in a CO2 Emissions Cap-and-Trade Program for the Electricity Sector in California  

E-Print Network (OSTI)

The regulation of greenhouse gas emissions from the electricity sector within a cap-and-trade system poses significant policy questions about how to allocate tradable emission allowances. Allocation conveys tremendous value and can have efficiency consequences. This research uses simulation modeling for the electricity sector to examine different approaches to allocation under a cap-and-trade program in California. The decision affects prices and other aspects of the electricity sector, as well as implications for the overall cost of climate policy. An important issue is the opportunity for emission reductions in California to be offset by emission increases in neighboring regions that supply electricity to the state. The amount of emission leakage (i.e. an increase in CO2 emissions outside of California as a result of the program) varies with the regulatory design of the program.

Karen Palmer Dallas Burtraw; Karen Palmer; Dallas Burtraw; Anthony Paul

2009-01-01T23:59:59.000Z

372

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

OF TECHNOLOGIES FOR HYBRID-ELECTRIC VEHICLES 4.1EnginesG.H. , SIMPLEV: Simple Electric Vehicle Simulation Program-G.H, SIMPLEV: Simple Electric Vehicle Simulation Program-

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

373

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

OF TECHNOLOGIES FOR HYBRID-ELECTRIC VEHICLES 4.1Engines13. Burke, A.F. , Hybrid/Electric Vehicle Design Options andOperation for Hybrid/Electric Vehicles, SAE Paper 930042,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

374

Food Sales Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings, though they comprised only 1 percent of commercial floorspace. Their total energy intensity was the third highest of all the building types, and their electricity...

375

Buildings Energy Data Book: 6.4 Electric and Generic Quad Carbon...  

Buildings Energy Data Book (EERE)

2,311 2031 2,331 2032 2,346 2033 2,362 2034 2,374 2035 2,383 Source(s): EIA, Emissions of Green House Gases in the United States 2009, February 2011 for 1990-2009; EIA, Annual...

376

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

whose electricity consumption remains stable over the year,electricity generation and fuel consumption for both the 1990 and 1999 test years,

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

377

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

DOE Green Energy (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

378

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

DOE Green Energy (OSTI)

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

379

Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport  

Open Energy Info (EERE)

Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Jump to: navigation, search Name Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Agency/Company /Organization Clean Air Asia, Chreod Ltd. Partner Asian Development Bank (ADB), Ministry of Planning Sector Land Focus Area Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Land Use, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, GHG inventory, Low emission development planning, -LEDS, Market analysis, Pathways analysis, Policies/deployment programs Website http://cleanairinitiative.org/

380

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

Transactions on Electrical Power 2009, Special Issue onTransactions on Electrical Power 2009, Special Issue onTransactions on Electrical Power 2009, Special Issue on

Stadler, Michael

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Conference on Clean Electrical Power, Capri, Italy, 9 - 10and regulatory issues in the electrical power sector.loads, other electrical power generation, electrical

Momber, Ilan

2010-01-01T23:59:59.000Z

382

Table 6a. Total Electricity Consumption per Effective Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

383

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

purl/928425-QjHANA/. DOE EERE. 2013. Building Technologiesfor nearly a decade (DOE EERE 2013). 1 The goal of the

Coughlin, Katie

2013-01-01T23:59:59.000Z

384

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 U.S. Electric Power Sector Cumulative Power Plant Additions Needed to Meet Future Electricity Demand (1) Typical New Number of New Power Plants to Meet Demand Electric Generator Plant Capacity (MW) 2015 2020 2025 2030 2035 Coal Steam 1,300 7 8 8 8 8 Combined Cycle 540 28 29 43 79 130 Combustion Turbine/Diesel 148 62 105 174 250 284 Nuclear Power 2,236 1 3 3 3 4 Pumped Storage 147 (2) 0 0 0 0 0 Fuel Cells 10 0 0 0 0 0 Conventional Hydropower 20 (2) 20 47 81 125 185 Geothermal 50 9 26 41 62 81 Municipal Solid Waste 50 1 1 1 1 1 Wood and Other Biomass 50 5 5 5 5 6 Solar Thermal 100 9 9 9 9 9 Solar Photovoltaic 150 11 11 13 23 52 Wind 100 123 124 153 182 262 Total 277 372 538 760 1,041 Distributed Generation 148 (3) Note(s): Source(s): 1) Cumulative additions after Dec. 31, 2010. 2) Based on current stock average capacity. 3) Combustion turbine/diesel data used.

385

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

386

Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles  

SciTech Connect

This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

2011-01-01T23:59:59.000Z

387

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

388

The USDOE Forrestal Building Lighting Retrofit: Preliminary Analysis of Electricity Savings  

E-Print Network (OSTI)

In September of 1993 a 36,832 fixture lighting retrofit was completed at the United States Department of Energy Forrestal complex in Washington, D.C. This retrofit represents DOE's largest project to date that utilizes a Shared Energy Savings (SES) agreement as authorized under Public Law 99-272. As DOE's first major SES contract, it was important that every aspect of this project serve as the cornerstone of DOE's Federal Relighting Initiative, including the careful measurement of the electricity and thermal energy savings.

Haberl, J. S.; Bou-Saada, T. E.; Vajda, E. J.; Shincovich, M.; D'Angelo III, L.; Harris, L.

1994-01-01T23:59:59.000Z

389

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

utilities in 1999. Coal prices are from the Coal Quarterlyaverage price to electric utilities of coal by sulfur

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

390

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

6.1 Electric Utility Energy Consumption 6.1 Electric Utility Energy Consumption 6.2 Electricity Generation, Transmission, and Distribution 6.3 Natural Gas Production and Distribution 6.4 Electric and Generic Quad Carbon Emissions 6.5 Public Benefit Funds/System Benefit Funds 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 6 focuses on the U.S. energy supply. Sections 6.1 and 6.2 contain data on electric utilities, including generation capacity, primary fuel consumption, transmission and distribution losses, and electricity prices. Section 6.3 addresses the production, consumption, and storage of natural gas and petroleum. Section 6.4 covers emissions from the utility sector. Section 6.5 provides data on how utilities spend public and system benefit funds. The main points from this chapter are summarized below:

391

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

7 7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68 Advanced Nuclear 2236 5275 11795 Municipal Solid Waste 50 8237 412 Conventional Hydropower (3) 500 2221 1111 Wind 100 2409 241 Stock Plant Type 2010 2015 2020 2025 2030 2035 Fossil Fuel Steam Heat Rate (Btu/kWh) Nuclear Energy Heat Rate (Btu/kWh) Note(s): Source(s): 1) Plant use of electricity is included in heat rate calculations; however, transmission and distribution losses of the electric grid are excluded.

392

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

3 3 Electric Capacity Factors, by Year and Fuel Type (1) Conventional Coal Petroleum Natural Gas Nuclear Hydroelectric Solar/PV Wind Total 1990 59% 17% 23% 66% 45% 13% 18% 46% 1991 59% 18% 22% 70% 43% 17% 18% 46% 1992 59% 14% 22% 71% 38% 13% 18% 45% 1993 61% 16% 21% 70% 41% 16% 19% 46% 1994 61% 15% 22% 74% 38% 17% 23% 46% 1995 62% 11% 22% 77% 45% 17% 21% 47% 1996 65% 11% 19% 76% 52% 18% 22% 48% 1997 66% 13% 20% 72% 51% 17% 23% 48% 1998 67% 20% 23% 79% 47% 17% 20% 50% 1999 67% 20% 22% 85% 46% 15% 23% 51% 2000 70% 18% 22% 88% 40% 15% 27% 51% 2001 68% 20% 21% 89% 31% 16% 20% 48% 2002 69% 16% 18% 90% 38% 16% 27% 46% 2003 71% 21% 14% 88% 40% 15% 21% 44% 2004 71% 22% 16% 90% 39% 17% 25% 44% 2005 72% 22% 17% 89% 40% 15% 23% 45% 2006 71% 11% 19% 90% 42% 14% 27% 45% 2007 72% 12% 21% 92% 36% 14% 24% 45% 2008 71% 8% 20% 91% 37% 18% 26% 44% 2009 63% 7% 21% 90% 40% 16% 25% 42% 2010 (2) 65% 6% 23% 91% 37% 17% 29% 43% Note(s): Source(s) 1) EIA defines capacity factor to be "the ratio of the electrical energy produced by a generating unit for the period of time considered to the

393

The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids  

E-Print Network (OSTI)

N. et al. , (2007), Microgrids, An Overview of Ongoingto commercial building microgrids Michael Stadler, Ilanto commercial building microgrids 1 Michael Stadler a,b) ,

Stadler, Michael

2010-01-01T23:59:59.000Z

394

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

RFG Running Hot Soak Diurnal CNG :Diesel Fuels Emissions RFGwith compressednatural gas (CNG),the hydrocarbontaitpipemethanol, natural gas (CNG),and hydrogen. As noted above,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

395

Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants  

Reports and Publications (EIA)

This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies

J. Alan Beamon

2001-10-01T23:59:59.000Z

396

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

Energy Data Report; emissions from imports calculated using U.S.source of energy in the Southwest U.S. Thus, imports from

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

397

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

E-Print Network (OSTI)

Energy Data Report; emissions from imports calculated using U.S.source of energy in the Southwest U.S. Thus, imports from

2002-01-01T23:59:59.000Z

398

Simulation of radio emission from air showers in atmospheric electric fields  

E-Print Network (OSTI)

emission is driven by the geomagnetic ?eld. When the showerand driven by the geomagnetic ?eld. The good angularmagnetic ?eld, causing the geomagnetic radiation to almost

Buitink, S.

2010-01-01T23:59:59.000Z

399

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

2 2 Net Internal Demand, Capacity Resources, and Capacity Margins in the Contiguous United States (GW) Net Internal Capacity Capacity Demand (1) Resources (2) Margin (3) 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Note(s): Source(s): 778.5 980.3 20.6% 1) Net internal demand represents the system demand that is planned for by the electric power industry`s reliability authority and is equal to internal demand less direct control load management and interruptible demand. Direct control load management: Customer demand that can be interrupted at the time of the seasonal peak by direct control of the system operator by interrupting power supply to individual appliances or equipment on customer premises. This type of control usually reduces the demand of residential customers. Interruptible demand: Customer

400

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

Momber, Ilan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridL ABORATORY Plug-in Electric Vehicle Interactions with a

Momber, Ilan

2010-01-01T23:59:59.000Z

402

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

utilities, the electricity tariff has time-of-use (TOU)Tariffs The California nursing home purchases both electricity andpurchase electricity from the utility at the tariff rate or

Stadler, Michael

2010-01-01T23:59:59.000Z

403

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

404

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

economy and emissions of the Toyota and Honda Hybrid Cars (of the Toyota and Honda Hybrid Cars (2003) Vehicle Trans. /is uncertain. Hybrid-electric passenger cars are currently

Burke, Andy

2004-01-01T23:59:59.000Z

405

Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project, July 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Review of Independent Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project July 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ......................................................................................................................................1 2.0 Scope .........................................................................................................................................1 3.0 Background ...............................................................................................................................2

406

Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project, July 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Review of Independent Review of Electrical System Configuration Management and Design Change Control at the Savannah River Site, Waste Solidification Building Project July 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ......................................................................................................................................1 2.0 Scope .........................................................................................................................................1 3.0 Background ...............................................................................................................................2

407

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

5 5 U.S. Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Coal Steam Other Fossil Combine Cycle Combustion Turbine Nuclear Pumped Total 1980 0.0 1981 0.0 1982 0.0 1983 0.0 1984 0.0 1985 0.0 1986 0.0 1987 0.0 1988 0.0 1989 18.1 1990 19.5 1991 18.4 1992 21.2 1993 21.1 1994 21.2 1995 21.4 1996 21.1 1997 19.3 1998 19.5 1999 19.6 2000 19.5 2001 19.7 2002 20.4 2003 20.5 2004 20.8 2005 21.3 2006 21.5 2007 21.9 2008 21.9 2009 22.2 2010 22.2 2011 22.2 2012 22.2 2013 22.2 2014 22.2 2015 22.2 2016 22.2 2017 22.2 2018 22.2 2019 22.2 2020 22.2 2021 22.2 2022 22.2 2023 22.2 2024 22.2 2025 22.2 2026 22.2 2027 22.2 2028 22.2 2029 22.2 285.6 87.9 211.3 161.19 114.7 882.9 285.6 87.9 205.3 159.30 114.7 875.0 285.6 88.6 201.8 159.01 114.7 871.8 285.6 88.9 199.6 158.22 114.7 869.2 285.6 89.0 194.5 154.88 114.7 860.8 285.6 89.0 191.9 153.01 113.9 855.6 285.6 89.0 189.2 150.00 113.2

408

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

9 9 2009 Peak Load and Capacity Margin, Summer and Winter by NERC Region (MW) NERC Region Capacity Margin Capacity Margin TRE 16.7% 19.1% FRCC 6.0% 2.0% MRO (U.S.) 24.6% 26.8% NPCC (U.S.) 29.1% 43.2% RFC 25.2% 33.3% SERC 24.6% 26.2% SPP 16.4% 34.6% WECC 19.4% 29.6% U.S. TOTAL 22.2% 28.5% Note(s): Source(s): 128,245 109,565 725,958 668,818 1) Summer Demand includes the months of June, July, August, and September. 2) Winter Demand includes December of the previous year and January-March of the current year. 3) Capacity Margin is the amount of unused available capability of an electric power system at peak load as a percentage of net capacity resources. Net Capacity Resources: Utility- and IPP-owned generating capacity that is existing or in various stages of planning or construction, less inoperable capacity, plus planned capacity purchases from other resources, less planned

409

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 U.S. Electricity Net Generation, by Plant Type (Billion kWh) Renewables Growth Rate Hydr(1) Oth(2) Total CHP (3) Tot.(4) 2010-year 1980 276 6 282 N.A. 1981 261 6 267 N.A. 1982 309 5 314 N.A. 1983 332 6 339 N.A. 1984 321 9 330 N.A. 1985 281 11 292 N.A. 1986 291 12 302 N.A. 1987 250 12 262 N.A. 1988 223 12 235 N.A. 1989 269 28 297 42 1990 290 35 324 61 1991 286 38 324 72 1992 250 40 290 91 1993 278 42 320 108 1994 254 42 296 123 1995 305 39 345 141 1996 341 41 382 147 1997 351 41 392 148 1998 318 42 360 154 1999 315 44 359 155 2000 271 45 316 165 2001 214 39 253 170 2002 260 44 304 194 2003 272 45 317 196 2004 265 49 314 184 2005 267 53 320 180 2006 286 62 349 165 2007 246 71 317 177 2008 253 94 347 167 2009 272 113 384 159 2010 289 100 390 165 2011 296 172 468 159 2012 296 148 444 161 2013 297 172 469 158 2014 297 186 483 161 2015 297 197 494 160 2016 297 207 504 160 2017 297 212 510 161 2018 298 224 522 161 2019 298 230 528 161 2020 298 246 544 161 2021

410

Noise emissions from new electric options: Coal conversion and on?site generation  

Science Conference Proceedings (OSTI)

Two alternatives being considered for reducing the use of imported petroleum are the reconversion of oil?fired electric power plants

Allan M. Teplitzky

1981-01-01T23:59:59.000Z

411

X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure  

Science Conference Proceedings (OSTI)

This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor; Kostyrya, Igor D. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); Ma Hao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

2012-12-15T23:59:59.000Z

412

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

DOE Green Energy (OSTI)

County-average hydrogen values are calculated for the part 2, 1999 Information Collection Request (ICR) coal-quality data, published by the U.S. Environmental Protection Agency. These data are used together with estimated, county-average moisture values to calculate average net heating values for coal produced in U.S. counties. Finally, 10 draft maps of the contiguous U.S. showing the potential uncontrolled sulfur, chlorine and mercury emissions of coal by U.S. county-of-origin, as well as expected mercury emissions calculated for existing emission control technologies, are presented and discussed.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2004-07-31T23:59:59.000Z

413

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

6 6 U.S. Renewable Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Conv. Hydropower Geothermal Municipal Solid Waste Biomass Solar Thermal Solar PV Wind 1980 81.7 0.9 0.0 0.1 0.0 N.A. N.A. 1981 82.4 0.9 0.0 0.1 0.0 N.A. 0.0 1982 83.0 1.0 0.0 0.1 0.0 N.A. 0.0 1983 83.9 1.2 0.0 0.2 0.0 N.A. 0.0 1984 85.3 1.2 0.0 0.3 0.0 N.A. 0.0 1985 88.9 1.6 0.2 0.2 0.0 N.A. 0.0 1986 89.3 1.6 0.2 0.2 0.0 N.A. 0.0 1987 89.7 1.5 0.2 0.2 0.0 N.A. 0.0 1988 90.3 1.7 0.2 0.2 0.0 N.A. 0.0 1989 73.6 2.6 1.7 1.1 0.2 N.A. 1.5 1990 73.3 2.7 2.1 1.2 0.3 N.A. 1.8 1991 75.4 2.6 2.5 1.3 0.3 N.A. 1.9 1992 74.2 2.9 2.5 1.4 0.3 N.A. 1.8 1993 76.8 2.9 2.6 1.5 0.3 N.A. 1.8 1994 76.9 3.0 2.7 1.7 0.3 N.A. 1.7 1995 77.4 3.0 3.0 1.8 0.3 N.A. 1.7 1996 75.3 2.9 2.9 1.7 0.3 N.A. 1.7 1997 78.3 2.9 2.9 1.8 0.3 N.A. 1.6 1998 78.0 2.9 3.0 1.8 0.3 N.A. 1.7 1999 78.3 2.8 3.0 1.8 0.4 N.A. 2.3 2000 78.2 2.8 3.3 1.7 0.4 N.A. 2.4 2001 77.9 2.2

414

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book (EERE)

4 4 Electric Conversion Factors and Transmission and Distribution (T&D) Losses Average Utility Average Utility Growth Rate Delivery Efficiency (1, 2) Delivery Ratio (Btu/kWh) (2, 3) (2010-year) 1980 29.4% 1981 29.9% 1982 29.7% 1983 29.8% 1984 30.5% 1985 30.4% 1986 30.8% 1987 31.1% 1988 31.1% 1989 30.2% 1990 30.3% 1991 30.5% 1992 30.7% 1993 30.6% 1994 30.9% 1995 30.7% 1996 30.7% 1997 30.8% 1998 30.7% 1999 30.6% 2000 30.7% 2001 31.1% 2002 31.1% 2003 31.3% 2004 31.3% 2005 31.5% 2006 31.7% 2007 31.8% 2008 31.8% 2009 32.2% 2010 32.3% 2011 32.1% 2012 32.4% 2013 32.7% 2014 33.0% 2015 33.1% 2016 33.2% 2017 33.1% 2018 33.1% 2019 33.1% 2020 33.1% 2021 33.2% 2022 33.2% 2023 33.2% 2024 33.2% 2025 33.1% 2026 33.2% 2027 33.3% 2028 33.4% 10,218 0.2% 10,294 0.2% 10,266 0.2% 10,247 0.2% 10,277 0.2% 10,291 0.2% 10,281 0.2% 10,300 0.3% 10,301 0.3% 10,282 0.3% 10,292 0.4% 10,310 0.4% 10,305

415

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

E STIMATES OF EMISSIONS FACTORS FOR ALCOHOL FUEL PRODUCTIONOF EMISSIONS FACTORS FOR ALCOHOL FUEL PRODUCTION PLANTS A.

Delucchi, Mark

2003-01-01T23:59:59.000Z

416

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Petroleum","*","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

417

PNNL EERE Program: Building Technologies Program (Overview)  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, Energy Efficiency and Renewable Energy Program Laboratory, Energy Efficiency and Renewable Energy Program Home Program Areas Contacts Related Sites Energy Directorate PNNL Home Security & Privacy PNNL Buildings Program Overview PNNL Buildings Portfolio Science Foundation EE & Demand Response High-Performance Sustainable Design Codes and Standards Overcoming Market Barriers Analysis and Planning Key Buildings Projects Contacts Publications & Presentations PNNL Buildings Program Buildings account for about 40 percent of our nation's energy use. That's 72 percent of U.S. electricity and 55 percent of natural gas, resulting in 39 percent of U.S. carbon dioxide emissions and a range of other negative environmental impacts. The buildings sciences team at Pacific Northwest National Laboratory (PNNL) is committed to dramatically improving the

418

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 U.S. Electricity Generation Input Fuel Consumption (Quadrillion Btu) Renewables Growth Rate Hydro. Oth(2) Total Nuclear Other (3) Total 2010-Year 1980 2.87 0.06 2.92 2.74 (1) 24.32 1981 2.72 0.06 2.79 3.01 (1) 24.49 1982 3.23 0.05 3.29 3.13 (1) 23.95 1983 3.49 0.07 3.56 3.20 (1) 24.60 1984 3.35 0.09 3.44 3.55 (1) 25.59 1985 2.94 0.11 3.05 4.08 (1) 26.09 1986 3.04 0.12 3.16 4.38 (1) 26.22 1987 2.60 0.13 2.73 4.75 (1) 26.94 1988 2.30 0.12 2.43 5.59 (1) 28.27 1989 2.81 0.41 3.22 5.60 (1) 29.88 1990 3.01 0.51 3.52 6.10 (1) 30.51 1991 2.98 0.56 3.54 6.42 (1) 30.87 1992 2.59 0.60 3.19 6.48 (1) 30.74 1993 2.86 0.62 3.48 6.41 (1) 31.86 1994 2.62 0.63 3.26 6.69 (1) 32.41 1995 3.15 0.60 3.75 7.08 (1) 33.50 1996 3.53 0.63 4.15 7.09 (1) 34.50 1997 3.58 0.64 4.22 6.60 (1) 34.90 1998 3.24 0.63 3.87 7.07 (1) 36.24 1999 3.22 0.66 3.87 7.61 (1) 36.99 2000 2.77 0.66 3.43 7.86 (1) 38.08 2001 2.21 0.55 2.76 8.03 (1) 37.25

419

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 U.S. Electricity Generation Input Fuel Shares (Percent) Renewables Natural Gas Petroleum Coal Hydro. Oth(2) Total Nuclear Other (3) Total 1980 15.7% 10.8% 50.2% 11.8% 0.2% 12.1% 11.3% (1) 100% 1981 15.4% 9.0% 51.8% 11.2% 0.3% 11.4% 12.3% (1) 100% 1982 13.9% 6.6% 52.6% 13.6% 0.2% 13.8% 13.1% (1) 100% 1983 12.2% 6.3% 53.9% 14.3% 0.3% 14.6% 13.1% (1) 100% 1984 12.6% 5.1% 54.9% 13.2% 0.4% 13.5% 14.0% (1) 100% 1985 12.1% 4.2% 56.2% 11.3% 0.4% 11.8% 15.7% (1) 100% 1986 10.2% 5.6% 55.3% 11.7% 0.5% 12.1% 16.8% (1) 100% 1987 10.9% 4.7% 56.5% 9.7% 0.5% 10.2% 17.8% (1) 100% 1988 9.5% 5.6% 56.5% 8.2% 0.4% 8.6% 19.9% (1) 100% 1989 10.5% 5.7% 54.2% 9.4% 1.4% 10.8% 18.8% (1) 100% 1990 10.7% 4.2% 53.4% 9.9% 1.7% 11.6% 20.0% (1) 100% 1991 11.0% 3.9% 52.8% 9.7% 1.8% 11.5% 20.9% (1) 100% 1992 11.5% 3.2% 53.7% 8.4% 2.0% 10.4% 21.1% (1) 100% 1993 11.1% 3.5% 54.2% 9.0% 2.0% 11.0% 20.2% (1) 100% 1994 12.4% 3.3% 53.5%

420

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Buildings Stock Load Control  

E-Print Network (OSTI)

Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and curtail peak demand. This research focuses on electricity demand control by applying some strategies in existing building to reduce it during the extreme climate period. The first part of this paper presents the objectives of the study: ? to restrict the startup polluting manufacturing units (power station), ? to limit the environmental impacts (greenhouse emission), ? to reduce the transport and distribution electricity infrastructures The second part presents the approach used to rise the objectives : ? To aggregat the individual loads and to analyze the impact of different strategies from load shedding to reduce peak power demand by: ? Developing models of tertiary buildings stocks (Schools, offices, Shops, hotels); ? Making simulations for different load shedding strategies to calculate potential peak power saving. The third part is dedicated to the description of the developed models: An assembly of the various blocks of the library of simbad and simulink permit to model building. Finally the last part prensents the study results: Graphs and tables to see the load shedding strategies impacts.

Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

2006-01-01T23:59:59.000Z

422

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

2009, Special Issue on Microgrids and Energy Management 3.of Commercial-Building Microgrids, IEEE Transactions on2009, Special Issue on Microgrids and Energy Management 15.

Stadler, Michael

2010-01-01T23:59:59.000Z

423

Electric  

U.S. Energy Information Administration (EIA)

Average Retail Price of Electricity to ... Period Residential Commercial Industrial ... or usage falling within specified limits by rate ...

424

State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated 2002  

Reports and Publications (EIA)

This report documents the preparation of updated state-level electricity coefficients for carbon dioxide (CO ), methane (CH ), and nitrous oxide (N O), which represent a three-year weighted average for 1998-2000.

Information Center

2002-04-01T23:59:59.000Z

425

The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity  

E-Print Network (OSTI)

EIA) long-term crude oil price forecast makes net mit-with electricity prices doubled and oil prices at $100 perflows away from foreign oil imports toward domestic pur-

Williams, J.H.

2013-01-01T23:59:59.000Z

426

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.  

E-Print Network (OSTI)

electricity consumption for the end-use in the current yearelectricity consumption for this end-use in the current yearelectricity consumption for this end-use in the current year

Coughlin, Katie

2013-01-01T23:59:59.000Z

427

Buildings Energy Data Book: 1.4 Environmental Data  

Buildings Energy Data Book (EERE)

1 1 EPA Criteria Pollutant Emissions Coefficients (Million Short Tons/Delivered Quadrillion Btu, unless otherwise noted) All Buildings | SO2 0.402 0.042 | 0.130 NOx 0.164 0.063 | 0.053 CO 0.057 0.283 | 0.018 Note(s): Source(s): Electricity Electricity (1) Site Fossil Fuel (2) (per primary quad) (1) 1) Emissions of SO2 are 28% lower for 2002 than 1994 estimates since Phase II of the 1990 Clean Air Act Amendments began in 2000. Buildings energy consumption related SO2 emissions dropped 65% from 1994 to 2011. 2) Includes natural gas, petroleum liquid fuels, coal, and wood. EPA, 1970-2010 National Emissions Inventory, Average Annual Emissions, All Criteria Pollutants, October 2012; and EIA, Annual Energy Outlook 2011 Early Release, Jan. 2012, Summary Reference Case Tables, Table A2, p. 3-5 for energy consumption

428

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

Science Conference Proceedings (OSTI)

Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-01-31T23:59:59.000Z

429

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Oregon's 1999 electric utility restructuring legislation requires electricity companies and electric service suppliers to disclose details regarding their fuel mix and emissions of electric...

430

Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis  

E-Print Network (OSTI)

Building 1512s electricity bill on its current directof Building 1512s electricity bill on its current directBuilding 1512s electricity bill on its current direct

Bailey, Owen C.; Marnay, Chris

2005-01-01T23:59:59.000Z

431

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

of using plug-in hybrid electric vehicle battery packs forImpacts of Plug-In Hybrid Electric Vehicles on RegionalDispatched Plug-in Hybrid Electric Vehicles, National

Momber, Ilan

2010-01-01T23:59:59.000Z

432

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Generation and thermal output; Electric power plants generating capacity;

433

Electric Transportation Policy Analysis  

Science Conference Proceedings (OSTI)

The California Zero Emission Vehicle (ZEV) Program requires the largest automotive manufacturers to build zero- and low-emitting vehicles in three categories: "Gold" (battery electric and fuel cell vehicles), "Silver" (hybrids, plug-in hybrids, natural gas, and other advanced technology clean vehicles), and "Bronze" (very low emitting conventional vehicles). The Gold category of ZEVs is the most costly and technically difficult to produce.

2007-12-19T23:59:59.000Z

434

Building Energy Codes Program: National Benefits Assessment, 1992-2040 |  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: National Benefits Assessment, 1992-2040 Program: National Benefits Assessment, 1992-2040 Commercial and residential buildings account for approximately 41% of all energy consumption and 72% of electricity usage in the United States. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, assuring reductions in energy use and greenhouse gas emissions over the life of buildings. The U.S. Department of Energy (DOE), through the Building Energy Codes Program (BECP or the Program), supports the improvement of energy efficiency in buildings. BECP periodically assesses the impacts of its activities by estimating historical and projected energy savings, consumer savings, and avoided emissions. The Pacific Northwest National Laboratory (PNNL) conducted the

435

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

N. Zhou (2007), Distributed Generation with Heat RecoveryCO 2 emissions, distributed generation, energy management,1]. Although thermal distributed generation (DG) units are

Stadler, Michael

2010-01-01T23:59:59.000Z

436

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",98,77,78,74,86,103,96,98,104,97,79,86,93,84,84,87,84,83,83,76,67 " Petroleum","*","*","*","*","*","*",1,1,1,"*",1,21,16,"*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","-","-","*","*","*","*","*"

437

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",54,46,53,52,57,69,71,75,74,67,63,57,46,46,35,28,28,24,20,17,15 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

438

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Utah" Utah" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",29,26,27,30,27,30,30,30,30,28,31,32,30,32,34,31,34,25,22,30,25 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

439

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",93,89,92,90,98,88,86,92,91,84,82,85,83,70,59,58,59,59,55,43,45 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

440

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",6,3,6,6,5,3,3,3,3,3,3,1,3,3,4,2,2,4,3,1,3 " Petroleum","*","*","*","-","-","*","*","*","*","*","*","*","*","-","-","-","-","-","-","-","-" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",113,117,119,122,129,113,113,118,96,72,68,66,64,63,55,48,45,51,44,33,33 " Petroleum","*","*","*","*",1,1,"*","*","*","*","*",1,"*","*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

442

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",28,30,29,28,30,32,15,24,22,24,13,13,23,11,13,10,11,8,12,11,12 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","-","-","-","-","-","-","-","-","-","-","*","*","-","*","-","-","-","-","-","-","-"

443

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",133,172,133,134,139,191,162,162,178,174,139,142,128,128,137,125,119,125,124,121,116 " Petroleum",1,1,1,1,"*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","*","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-"

444

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",7,10,15,14,15,6,6,7,13,16,13,16,11,12,12,11,8,13,10,10,14 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

445

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

ENERGY USAGE, AND GREENHOUSE EMISSIONS GAS 4. ASSESSMENT ANDgas consumption (miles per gallon or Wh mile) of a vehicle, calculation of the fuel usageGas from Biomass from Solar Carbon Dioxide Table 2: [gin ~mlsslons~-~iJfr Usage

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

446

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Petroleum",2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

447

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",48,49,51,47,48,46,48,45,45,44,48,45,45,47,49,48,8,8,8,7,7 " Petroleum",1,1,1,1,1,"*","*","*","*","*","*",4,"*","*","*","*","*","*","*","*","-" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

448

Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction  

Science Conference Proceedings (OSTI)

Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

Malikopoulos, Andreas [ORNL

2013-01-01T23:59:59.000Z

449

Modeling Electric Vehicle Benefits Connected to Smart Grids  

DOE Green Energy (OSTI)

Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; Mgel, Olivier; Siddiqui, Afzal

2011-07-01T23:59:59.000Z

450

Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Electricity is an essential part of modern life. The Energy Department is working to create technology solutions that will reduce our energy use and save Americans money.

451

Effect of real-time electricity pricing on renewable generators and system emissions  

E-Print Network (OSTI)

Real-time retail pricing (RTP) of electricity, in which the retail price is allowed to vary with very little time delay in response to changes in the marginal cost of generation, offers expected short-run and long-run ...

Connolly, Jeremiah P. (Jeremiah Peter)

2008-01-01T23:59:59.000Z

452

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Montana" Montana" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",16,18,20,18,19,33,18,21,22,23,22,28,18,16,19,18,18,20,18,19,19 " Petroleum","*","*","*","*","*",2,19,2,2,2,24,26,3,2,2,2,2,2,3,3,2 " Natural Gas","*","*","-","-","-","*","*","*","*","*","*","-","-","-","-","-","-","-","-","-","-" " Other Gases","-","-","-","-","-","-","-","-","-","-","-","*","-","-","-","-","-","-","-","-","-"

453

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",91,98,100,106,115,89,86,106,100,102,92,87,89,87,87,82,81,65,62,58,65 " Petroleum",3,"*",40,111,114,61,58,64,66,62,60,79,61,83,20,19,17,13,15,26,48 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

454

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" Jersey" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",63,52,50,51,46,53,61,67,56,58,73,45,44,46,47,63,55,45,35,11,14 " Petroleum",9,7,4,4,5,6,5,4,5,4,5,3,2,3,2,2,1,1,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

455

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",38,38,31,38,35,35,35,34,35,22,34,30,28,32,33,29,28,32,32,16,13 " Petroleum",41,12,43,43,43,34,33,32,6,6,4,6,4,4,2,2,2,2,"*","*","*" " Natural Gas","*","*","*","*","*","-","*","-","-","-","-","*","*","-","-","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","-","-","*","*","*","*","*","*","*","*","*","*","-"

456

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Petroleum",2,1,1,1,2,1,1,"*",1,1,1,1,1,"*","*",1,"*","*","*","*",1 " Other Renewables1","-","-","-","-","-","*","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Total",2,1,1,1,2,1,1,"*",1,1,1,1,1,"*","*",1,"*","*","*","*",1

457

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",32,32,35,33,25,26,28,26,26,24,28,5,2,3,2,3,3,3,1,2,2 " Petroleum",46,17,26,28,47,89,95,98,96,111,94,34,66,13,18,21,21,18,1,1,"*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

458

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",876,970,1000,949,990,572,630,636,631,648,568,618,478,506,446,438,427,353,286,167,105 " Petroleum",1,1,"*","*","*",1,1,1,"*","*",1,3,1,"*","*",1,1,1,"*","*","*" " Natural Gas","*","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","-","-","-"

459

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",845,801,806,777,761,655,751,842,830,732,484,402,367,369,384,351,308,301,344,237,231 " Petroleum",4,6,5,4,11,4,6,2,15,24,15,7,1,4,2,1,"*",1,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","-","-","*","*","*","*","*","*","*","*"

460

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",436,474,491,425,416,391,421,465,461,417,379,270,260,240,236,205,197,192,196,160,108 " Petroleum",168,200,182,235,227,194,220,213,325,296,221,265,185,213,193,190,117,116,58,43,32 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana" Indiana" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",1273,1330,1136,1155,1138,843,894,936,912,881,818,732,715,741,795,801,757,661,554,383,385 " Petroleum",3,3,1,"*","*",2,6,4,5,3,2,3,2,1,"*","*","*","*","*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

462

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",95,83,96,114,117,88,92,100,95,98,93,70,83,83,86,82,80,78,76,60,52 " Petroleum","*","*","*","*","*","*","*","*","*","*",15,17,14,27,17,15,10,7,6,"*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

463

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",485,483,488,520,488,503,553,537,543,515,483,435,417,425,385,428,430,423,335,262,194 " Petroleum",1,2,1,1,1,1,2,2,4,3,2,2,1,1,1,1,1,1,1,1,1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

464

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa" Iowa" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",182,203,190,198,180,166,155,153,173,155,155,139,134,138,135,135,131,134,149,90,104 " Petroleum","*","*","*",6,11,11,5,8,7,5,2,1,1,1,1,1,1,1,5,2,4 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","-","-","-","-","-","-","*","*","*","-","-","-","-","*","*","*"

465

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",818,791,810,892,812,613,583,607,567,597,530,486,428,474,460,445,380,336,307,225,241 " Petroleum","*","*","*","*","*","*","*","*","*","*","*","*",16,7,5,9,8,8,7,4,5 " Natural Gas","-","-","-","-","-","-","-","-","-","*","*","*","*","-","-","*","*","*","*","*","*"

466

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",14,9,9,9,10,13,12,13,13,8,11,4,4,2,2,2,2,2,2,2,2 " Petroleum",4,2,"*","*","*",3,4,4,4,4,3,4,3,3,2,2,2,2,1,1,1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-",1,1,"*","*","-","-","-","-","-","-","-","-","*","*","*","*"

467

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",241,216,221,228,212,208,228,231,247,237,238,235,241,248,261,258,256,252,222,194,43 " Petroleum",26,31,23,30,29,9,10,12,24,30,14,11,8,14,13,16,12,12,1,1,"*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

468

New Technology for America`s Electric Power Industry. Emissions reduction in gas turbines  

DOE Green Energy (OSTI)

Argonne National Laboratory is examining alternatives to straight natural gas firing. Research has shown that the addition of certain catalytic agents, such as in hydrogen co-firing, shows promise. When hydrogen co-firing is used in tandem with steam injection, a decrease in both CO and NO{sub x} emissions has been observed. In-process hydrogen production and premixing with the natural gas fuel are also being explored.

NONE

1995-04-01T23:59:59.000Z

469

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",91,95,85,70,64,72,63,72,64,64,63,55,53,48,41,43,36,38,38,30,34 " Petroleum",120,123,105,67,52,48,36,62,83,56,42,40,31,34,35,33,13,13,6,3,1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

470

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal","*","*",2,3,3,4,4,4,4,3,11,1,2,1,1,1,1,1,2,2,1 " Petroleum",35,26,26,19,17,35,39,39,42,41,39,24,20,21,22,20,21,21,20,21,15 " Other Gases","-","-","-","-","-","-","*","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*"

471

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",363,368,339,356,386,353,372,399,411,369,360,336,325,335,322,329,315,325,329,267,229 " Petroleum",16,14,10,13,15,22,20,19,24,25,21,26,24,24,24,26,6,23,13,15,17 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","-","*","-","-","-","-","*","*","-","-","*","-","-","-","*","*"

472

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",721,677,620,437,487,316,334,289,274,240,194,218,224,255,265,266,253,251,253,234,232 " Petroleum",3,4,4,5,6,4,1,1,1,6,18,18,11,2,3,7,6,6,"*",1,"*" " Natural Gas","*","*","-","*","*","*","-","-","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","-","-","*","-","*","-","-","-","-","-","-","-","-","-","*","-"

473

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",96,89,86,81,70,75,86,70,71,71,80,63,60,62,62,60,69,62,60,36,49 " Petroleum",11,5,6,48,14,2,15,33,67,41,38,64,1,12,16,8,3,2,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Gases","-","-","-","-","-","-","-","-","-","-","-","-","-","*","*","-","*","-","-","-","-"

474

Zero emission coal: a future source of clean electric power and hydrogen  

DOE Green Energy (OSTI)

The pairing of two novel technologies may permit coal energy to satisfy a dramatically increasing world energy demand for the next few hundred years. This can be done while virtually eliminating not only airborne SO{sub x}, NO{sub x}, mercury and particulate emissions, but also the main greenhouse gas, carbon dioxide (CO{sub 2}). The Zero Emission Coal Alliance, a collaboration of approximately 20 international industrial and government entities is investigating these concepts with the objective of completing the first pilot plant within 5 years. Paradoxically, climate change was not the overriding consideration that drove the development of these inventions. The more important consideration was that, if world carbon use continues to accelerate at rates even close to those in the last century, carbon from fossil fuels will overwhelm the natural CO{sub 2} sinks. In this view, the 'Kyoto' objectives are almost meaningless and misdirect enormous resources - both human and financial. If a world population of 10 billion reaches a standard of living comaprable, on the average, to that of the US in 2000 (with similar carbon use), then world yearly CO{sub 2} emissions will be ten times their current level. Carbon (in the form of coal) is our most important energy resource. The Challenge is to find sustainable ways of using it.

Ziock, H. J. (Hans-Joachim)

2001-01-01T23:59:59.000Z

475

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

thermal collectors, absorption chillers, and passive/demand-the electrical peak via an absorption chiller. When coolingwaste heat for absorption chillers is considered. Finally,

Stadler, Michael

2010-01-01T23:59:59.000Z

476

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network (OSTI)

customer load profiles, energy tariff structures, and fuelenergy services in the building, the local economic environment, e.g. utility tariffs,

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

477

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

and P. Chapman, Using Microgrids as a Path Towards Smartof Commercial Building Microgrids, IEEE Transactions onsources and sinks, or microgrids. In prior research, many

Momber, Ilan

2010-01-01T23:59:59.000Z

478

Benchmarking Distributed Generation Cost of Electricity and Characterization of Green House Gas Emission  

Science Conference Proceedings (OSTI)

Understanding the economic competitiveness and green house gas (GHG) footprint of all energy supply-side options has been identified by EPRI advisors as a key priority. This project benchmarks the cost of electricity and characterizes the GHG footprint of distributed generation (DG) options in various applications. DG technologies include small gas turbines, spark-ignited and diesel internal combustion engines, micro turbines, several types of fuel cells, Stirling engines, and photovoltaic systems.

2009-03-26T23:59:59.000Z

479

Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization  

Science Conference Proceedings (OSTI)

Published scientific literature contains many studies estimating life cycle greenhouse gas (GHG) emissions of residential and utility-scale solar photovoltaics (PVs). Despite the volume of published work, variability in results hinders generalized conclusions. Most variance between studies can be attributed to differences in methods and assumptions. To clarify the published results for use in decision making and other analyses, we conduct a meta-analysis of existing studies, harmonizing key performance characteristics to produce more comparable and consistently derived results. Screening 397 life cycle assessments (LCAs) relevant to PVs yielded 13 studies on crystalline silicon (c-Si) that met minimum standards of quality, transparency, and relevance. Prior to harmonization, the median of 42 estimates of life cycle GHG emissions from those 13 LCAs was 57 grams carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with an interquartile range (IQR) of 44 to 73. After harmonizing key performance characteristics, irradiation of 1,700 kilowatt-hours per square meter per year (kWh/m{sup 2}/yr); system lifetime of 30 years; module efficiency of 13.2% or 14.0%, depending on module type; and a performance ratio of 0.75 or 0.80, depending on installation, the median estimate decreased to 45 and the IQR tightened to 39 to 49. The median estimate and variability were reduced compared to published estimates mainly because of higher average assumptions for irradiation and system lifetime. For the sample of studies evaluated, harmonization effectively reduced variability, providing a clearer synopsis of the life cycle GHG emissions from c-Si PVs. The literature used in this harmonization neither covers all possible c-Si installations nor represents the distribution of deployed or manufactured c-Si PVs.

Hsu, D. D.; O'Donoughue, P.; Fthenakis, V.; Heath, G. A.; Kim, H. C.; Sawyer, P.; Choi, J. K.; Turney, D. E.

2012-04-01T23:59:59.000Z

480

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",11,11,9,8,9,10,10,11,6,1,19,11,5,3,3,3,3,2,3,1,1 " Petroleum",40,38,25,20,16,12,26,37,40,39,26,22,6,5,4,5,3,3,1,"*",1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other1",1,1,1,1,"*",4,5,5,5,5,6,"*","*","*","*","*","*","*","*","*","*"

Note: This page contains sample records for the topic "buildings electricity emission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas" Arkansas" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",67,64,64,60,66,76,88,79,70,72,69,68,64,65,71,60,66,65,66,62,61 " Petroleum","*","*","*","*","*",1,1,"*",1,1,2,4,1,2,3,1,1,1,"*","*","*" " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-",12,13,13,13,13,13,12,12,13,13,36,15,16,11,12,12

482

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Maine" Maine" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",5,4,4,4,4,4,4,4,3,2,6,1,1,1,2,2,2,2,1,"*","*" " Petroleum",39,34,8,8,7,26,27,30,38,40,25,21,10,9,9,11,7,11,6,4,2 " Natural Gas","-","-","-","-","-","-","-","-","-","-","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-",11,11,12,12,12,12,7,10,9,9,9,8,8,19,28,9

483

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire" Hampshire" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",37,30,39,36,34,37,37,45,36,36,42,40,35,30,34,37,35,36,33,29,33 " Petroleum",23,13,12,11,11,11,9,9,16,16,5,5,5,21,17,9,2,3,1,1,1 " Natural Gas","-","-","-","-","-","-","-","-","-","-","*","-","-","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-","*","*","*","*","*","*",1,"*",1,1,"*","*","*","*","*","*"

484

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas" Kansas" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",77,69,60,64,65,90,105,98,107,105,102,103,113,119,104,112,98,102,85,46,40 " Petroleum",1,"*","*",1,"*",1,1,1,"*",2,3,6,5,9,8,12,3,3,2,1,1 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Total",78,69,60,64,65,90,106,99,107,107,106,109,118,128,112,124,101,105,87,47,41

485

Table 7. Electric Power Industry Emissions Estimates, 1990 Through 2010 (Thousan  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Emission Type",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Sulfur Dioxide" " Coal",805,728,719,649,528,462,452,486,497,490,488,479,495,517,524,583,619,617,481,247,211 " Petroleum",13,15,4,6,4,28,31,34,40,38,39,47,36,42,33,35,37,36,29,24,28 " Natural Gas","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*","*" " Other Renewables1","-","-","-","-","-",39,41,34,33,33,32,31,31,27,27,27,29,28,25,24,25

486

Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector  

E-Print Network (OSTI)

NE allocation is used. The allocation results in accelerated construction and operation of combined cycle gas turbines and thus lower CO2 emissions. For our given set of input parameters, the results for uniform-benchmark or fuel-specific benchmark... allocation on activities in Phase I is explicitly prohibited by the EU Directive, some MSs update allocations using fuel-specific benchmarks (FSB) where the benchmark is set higher for coal-fired plants than for gas-fired plants. Here, we assess the impact...

Neuhoff, Karsten; Keats, Kim; Sato, Misato

487

Long-Run Equilibrium Modeling of Alternative Emissions Allowance Allocation Systems in Electric Power Markets  

E-Print Network (OSTI)

periods: T = 20 periods per year, each Ht = 438 hours in length Demands: dt(pt) = at ? btpt, with at = 500t and bt = t/2 Nonpower emission: eNP (pe) = 0 Generator types: i = 1 (coal steam), 2 (natural gas-fired combined cycle), and 3 (natural gas... -fired combustion turbine) Minimal generation: CAP1 = 0 MW, CAP2 = 0 MW, and CAP3 = 0 MW Marginal costs: MC1 = 20 $/MWh, MC2 = 40 $/MWh, and MC3 = 80 $/MWh Investment costs: F1 = 120, 000 $/MW/yr, F2 = 75, 000 $/MW/yr, and F3 = 50, 000 $/MW/yr Firms...

Schulkin, Jinye Z; Hobbs, Benjamin F; Pang, Jong-Shi

488

Integrated Analysis of Fuel, Technology and Emission Allowance Markets: Electric Utility Responses to the Clean Air Act Amendments o f 1990  

Science Conference Proceedings (OSTI)

This report provides a detailed analysis of the strategic responses of the electric utility industry to the Clean Air Act Amendments of 1990. The study analyzes the competitive interactions between fuel switc