Powered by Deep Web Technologies
Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

2

Federal Buildings Supplemental Survey - Index Page  

Annual Energy Outlook 2012 (EIA)

3 Federal Buildings 1993 Federal Buildings Supplemental Survey Overview Full Report Tables Energy usage and energy costs, by building characteristics, for federally-owned buildings...

3

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

4

Federal Buildings Supplemental Survey -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Survey > Overview Survey > Overview Overview Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line Highlights on Federal Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the Government. Extensive analysis of the data was not conducted because this report represents the 881 responding buildings (buildings for which interviews were completed) and cannot be used to generalize about Federal buildings in each region. Crosstabulations of the data from the 881 buildings are provided in the Detailed Tables section.

5

Building Technologies Residential Survey  

SciTech Connect

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

6

Federal Buildings Supplemental Survey 1993  

SciTech Connect

The Energy Information Administration (EIA) of the US Department of Energy (DOE) is mandated by Congress to be the agency that collects, analyzes, and disseminates impartial, comprehensive data about energy including the volume consumed, its customers, and the purposes for which it is used. The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE`s Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP`s specifications; therefore, these data do not statistically represent all Federal buildings in the country. The purpose of the FBSS was threefold: (1) to understand the characteristics of Federal buildings and their energy use; (2) to provide a baseline in these three Federal regions to measure future energy use in Federal buildings as required in EPACT; and (3) to compare building characteristics and energy use with the data collected in the CBECS.

NONE

1995-11-01T23:59:59.000Z

7

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

8

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

9

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

10

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

11

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

12

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

(92) (92) Distribution Category UC-950 Commercial Buildings Characteristics 1992 April 1994 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The Energy Information Administration (EIA) prepared this publication under the general direction of W. Calvin Kilgore, Director of the Office of Energy Markets and End Use (202-586-1617). The project was directed by Lynda T. Carlson, Director of the Energy End Use and Integrated Statistics Division (EEUISD) (202-586-1112) and Nancy L. Leach, Chief

13

1992 Commercial Buildings Characteristics -- Overview/Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Overview Overview Overview Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace By Census Region divider line Executive Summary Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

14

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace by Census Region, 1992 The following 70 tables present extensive cross-tabulations of commercial buildings characteristics. These data are from the Buildings Characteristics Survey portion of the 1992 CBECS. The "Quick-Reference Guide," indicates the major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row and Column Factor." The Glossary contains the definitions of the terms used in the tables. See the preceding "At A Glance" section for highlights of the detailed tables. Table Organization

15

Building Energy Codes Survey Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Program Codes Program Building Energy Codes Survey Tool The following surveys are available: No available surveys Please contact ( webmaster@energycode.pnl.gov ) for further assistance. English Albanian Arabic Basque Belarusian Bosnian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional; Hong Kong) Chinese (Traditional; Taiwan) Croatian Czech Danish Dutch Dutch Informal English Estonian Finnish French Galician German German informal Greek Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Italian (formal) Japanese Korean Latvian Lithuanian Macedonian Malay Maltese Norwegian (Bokmal) Norwegian (Nynorsk) Persian Polish Portuguese Portuguese (Brazilian) Punjabi Romanian Russian Serbian Sinhala Slovak Slovenian Spanish Spanish (Mexico) Swedish Thai Turkish Urdu Vietnamese Welsh

16

1999 Commercial Buildings Characteristics--Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Principal Building Activities Principal Building Activities Principal Building Activities Three of the four activities that dominated commercial floorspace-office, warehouse and storage, and mercantile-dominated the distribution of buildings (Figure 1). Each of these three activity categories included more than 600,000 buildings, while no other building activity had more than a half-million buildings and only service buildings exceeded 350,000 buildings. Detailed tables Figure 1. Distribution of Buildings by Principal Building Activity, 1999 Figure 1. Distribution of Buildings by Principal Building Activity, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey

17

Federal Buildings Supplemental Survey 1993  

U.S. Energy Information Administration (EIA) Indexed Site

mobile homes and trailers, even if they housed commercial activity; and oil storage tanks. (See Commercial Building and Nonresidential Building.) Building Envelope or Shell...

18

Overview of Commercial Buildings, 2003 - Major Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Major Characteristics of All Commercial Buildings in 2003 Major Characteristics of All Commercial Buildings in 2003 CBECS data are used to answer basic questions about the commercial buildings sector, such as: What types are there? How large are they? How old are they? and Where are they? Results from the 2003 CBECS show that: The commercial buildings sector is not dominated by a single building type. Office buildings, the most common type of commercial building, account for 17 percent of buildings, floorspace, and energy consumed. Commercial buildings range widely in size and smaller buildings are much more numerous than larger buildings. The smallest buildings (1,001 to 5,000 square feet) account for 53 percent of buildings, but consume only 11 percent of total energy. The largest buildings (those larger than 500,000 square feet)

19

Commercial Buildings Characteristics 1995 - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

>Commercial Buildings Home > 1995 Characteristics Data 1995 Data Executive Summary Table of Contents Overview to Detailed Tables Detailed Tables 1995 national and Census region...

20

Federal Buildings Supplemental Survey -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Overview > Publication and Tables Overview > Publication and Tables Publication and Tables Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS buildings and floorspace by selected agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Separater Bar Separater Bar You have the option of downloading the entire report or selected sections of the report. Full Report - Federal Buildings Supplemental Survey, 1993 (file size 1.15 MB) pages: 183 Selected Sections Main Text (file size 161,775 bytes) pages: 17. - Requires Adobe Acrobat Reader Contacts Preface Contents Introduction At a Glance Highlights on Federal Buildings Detailed Tables Appendices Appendix A. How the Survey Was Conducted (file size 45,191 bytes) pages: 8.

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &  

Gasoline and Diesel Fuel Update (EIA)

How Will Buildings Be Selected for the 2012 CBECS? How Will Buildings Be Selected for the 2012 CBECS? Background and Overview Did You Know? In the CBECS, commercial refers to any structure that is neither residential, manufacturing/ industrial, nor agricultural. Building refers to a structure that is totally enclosed by walls that extend from the foundation to the roof. Data collection for the 2012 Commercial Buildings Energy Consumption Survey (CBECS) will begin in April 2013, collecting data for reference year 2012. The goal of the CBECS is to provide basic statistical information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings. The 2003 CBECS estimated that there were 4.9 million commercial buildings in the US. Because it would be completely impractical and prohibitively

22

Federal Buildings Supplemental Survey--Public Use Files  

U.S. Energy Information Administration (EIA) Indexed Site

What is FBSS? What is FBSS? WHAT IS FBSS? The Federal Buildings Supplemental Survey (FBSS) was conducted in 1993 by the Energy Information Administration (EIA) in conjunction with the Department of Energy's Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. OFEMP requested that the FBSS provide building-level energy-related characteristics for a special sample of commercial buildings owned by the Federal government. This special sample met the following OFEMP-specified criteria: (1) Federal buildings from different areas of the country - Federal Regions 3, 6, and 9; Fewer sample buildings from Department of Defense (DOD) -- sample selection ratio of 1:10 for DOD buildings in each Federal Region; and

23

1999 Commercial Buildings Characteristics--Year Constructed  

U.S. Energy Information Administration (EIA) Indexed Site

Year Constructed Year Constructed Year Constructed More than one-third (37 percent) of the floorspace in commercial buildings was constructed since 1980 and more than one-half (55 percent) after 1969 (Figure 1). Less than one-third of floorspace was constructed before 1960. Detailed tables Figure 1. Distribution of Floorspace by Year Constructed, 1999 Figure 1. Distribution of Floorspace by Year Constructed, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Overall, relatively more buildings than floorspace were represented in the older age categories and more floorspace than buildings in the newer categories (see graphical comparison) because older buildings were smaller than more recently constructed buildings (Figure 2). Buildings constructed prior to 1960 were 11,700 square feet in size on average while those constructed after 1959 were 37 percent larger at 16,000 square feet per building.

24

1999 Commercial Buildings Characteristics--CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of CBECS Building Types Description of CBECS Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the sub-categories were combined into the more general categories that are found in the detailed tables. These categories are consistent with prior years.

25

Energy Characteristics and Energy Consumed in Large Hospital Buildings in  

Gasoline and Diesel Fuel Update (EIA)

Energy Characteristics and Energy Consumed in Large Hospital Buildings in Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Hospitals consume large amounts of energy because of how they are run and the many people that use them. They are open 24 hours a day; thousands of employees, patients, and visitors occupy the buildings daily; and sophisticated heating, ventilation, and air conditioning (HVAC) systems control the temperatures and air flow. In addition, many energy intensive activities occur in these buildings: laundry, medical and lab equipment use, sterilization, computer and server use, food service, and refrigeration. The 2003 Commercial Building Energy Consumption Survey (CBECS) data showed

26

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

and find out about new information products and services. Contact: Martha Johnson, Survey Manager (martha.johnson@eia.doe.gov) World Wide Web: http:www.eia.doe.gov...

27

Commercial Buildings Characteristics 1992 - Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics Data > Publication and Tables Buildings Characteristics Data > Publication and Tables Publication and Tables Percent of Buildings and Floorspace by Census Region, 1992 figure on percent of building and floorspace by census region, 1992 separater bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. You have the option of downloading the entire report or selected sections of the report. Full Report - Commercial Buildings Characteristics, 1992 with only selected tables (file size 1.34 MB) pages: 157 Selected Sections: Main Text (file size 883,980 bytes) pages: 28, includes the following: Contacts Contents Executive Summary Introduction Background Organization of the report

28

Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables  

Reports and Publications (EIA)

The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

2008-01-01T23:59:59.000Z

29

Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables  

Energy.gov (U.S. Department of Energy (DOE))

Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

30

1999 Commercial Buildings Characteristics--Trends in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace The addition of commercial buildings and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty years of CBECS. Each year more buildings are added to the sector (new construction or conversion of pre-existing buildings to commercial activity) than are removed (demolition or conversion to non-commercial activity). The definition for the commercial buildings population was changed for the 1995 CBECS which resulted in a slightly smaller buildings population and accounts for the data break in both Figures 1 and 2 (see report "Trends in the Commercial Buildings Sector" for complete details). Figure 1. Total Commercial Buildings, 1979 to 1999

31

1999 Commercial Buildings Characteristics--Disaggregated Principal Building  

U.S. Energy Information Administration (EIA) Indexed Site

Disaggregated Principal Building Activities Disaggregated Principal Building Activities Disaggregated Principal Building Activities The 1999 CBECS collected information for 20 general building activities. Five of the activities were aggregated and data for 16 activities are displayed in the detailed tables. Within the aggregated warehouse and storage category, nonrefrigerated warehouses greatly exceeded refrigerated warehouses both in amount of floorspace and number of buildings (compare Figure 1 with Figure 2). Within the mercantile category, the number of retail buildings greatly exceeded strip shopping buildings which, in turn, greatly exceeded enclosed shopping malls (Figure 2). The amount of mercantile floorspace was more evenly distributed (Figure 1) because of differences in average building size-enclosed malls were largest and retail buildings the smallest.

32

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

8 8 2003 Average Commercial Building Floorspace, by Principal Building Type and Vintage Building Type 1959 or Prior 1960 to 1989 1990 to 2003 All Education 27.5 26.9 21.7 25.6 Food Sales N.A. N.A. N.A. 5.6 Food Service 6.4 4.4 5.0 5.6 Health Care 18.5 37.1 N.A. 24.5 Inpatient N.A. 243.6 N.A. 238.1 Outpatient N.A. 11.3 11.6 10.4 Lodging 9.9 36.1 36.0 35.9 Retail (Other Than Mall) 6.2 9.3 17.5 9.7 Office 12.4 16.4 14.2 14.8 Public Assembly 13.0 13.8 17.3 14.2 Public Order and Safety N.A. N.A. N.A. 15.4 Religious Worship 8.7 9.6 15.6 10.1 Service 6.1 6.5 6.8 6.5 Warehouse and Storage 19.7 17.2 15.4 16.9 Other N.A. N.A. N.A. 22.0 Vacant N.A. N.A. N.A. 14.1 Source(s): Average Floorspace/Building (thousand SF) EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, June 2006, Table B8, p. 63-69, and Table B9, p. 70-76

33

Power Signatures as Characteristics of Commercial and Related Buildings  

E-Print Network (OSTI)

This paper proposes the use of "power signatures" as an important concept for building energy analysis. Power signatures are considered to contain "energy or power characteristics" of a building. Developing relationships between energy...

MacDonald, M.

1988-01-01T23:59:59.000Z

34

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Building Type Definitions Building Type Definitions In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 and 2003 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined

35

STIL2 Swedish Office Buildings Survey | OpenEI  

Open Energy Info (EERE)

STIL2 Swedish Office Buildings Survey STIL2 Swedish Office Buildings Survey Dataset Summary Description The STIL2 project has performed a survey of high performance office buildings in Sweden to provide energy efficiency data for non-residential premises. The data covers energy use from years 2005-2007. Each column identifies an office building with a unique identifier. Source Swedish Energy Agency Date Released April 09th, 2010 (4 years ago) Date Updated April 09th, 2010 (4 years ago) Keywords buildings efficiency Data application/vnd.ms-excel icon Offices_Sweden_-20100409.xls (xls, 1.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

36

A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures  

SciTech Connect

The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

NONE

1998-10-01T23:59:59.000Z

37

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Survey Background and Technical Information Survey Background and Technical Information Survey Background The commercial sector encompasses a vast range of building types-service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as certain buildings that would not be considered "commercial" in a traditional economic sense, such as public and private schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with

38

CBECS 1993 - Federal Buildings Supplement Survey - Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Publication > Detailed Tables Publication > Detailed Tables Detailed Tables Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. Divider Line You have the option of downloading the entire set of tables or selected tables by data item. Full Set of Tables - Federal Buildings Supplemental Survey, 1993 (file size 770,290 bytes) pages: 123 Detailed Table Information (file size 45,044 bytes) pages: 7, includes:

39

Residential Energy Consumption Survey: Housing Characteristics,  

Gasoline and Diesel Fuel Update (EIA)

tni tni Residential Energy Consumption Survey: Housing Characteristics, 1981 Energy Information Administration Washington. D.C August 1983 T86T -UJ9AO9 aiji uuojj pasenojnd uaaq (OdO) i|oii)/v\ suoijdijosqns o; Ajdde jou saop aoiiou :e|ON asBa|d 'pjBo^sod at|j noA j| 3Sj| Suiije'Lu vi3 3M1 uo ;u!Buuaj o^sn o} }i ujnja> isnoi nox 'pJBOisod iuB»jodoi! UB aABL) pjnons hoA '}s\\ BujUBUJ VI3 9L|} uo ajB noA|| 'MaiAaj jsij SUJMBUJ suouBOjiqnd |BnuuBS}j BUJ -jonpuoo Sj (vi3) uoijej^siujuupv UOIJBLUJOIUI Afijau^ agj 'uoiieinBaj iuaoiujaAOQ Aq pajmbaj sv 30HON 02-13 maoj aapao ay 05. pa^oajjp aq pus siuamnooa jo 0088-353 (303) S8SOZ "D'Q 'uoiSu-pqsBtt T rao°H 50 UOT^BOLIOJUI

40

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

2 2 Principal Commercial Building Types, as of 2003 (Percent of Total Floorspace) (1) Office 17% 17% 19% Mercantile 16% 14% 18% Retail 6% 9% 5% Enclosed & Strip Malls 10% 4% 13% Education 14% 8% 11% Warehouse and Storage 14% 12% 7% Lodging 7% 3% 7% Service 6% 13% 4% Public Assembly 5% 6% 5% Religious Worship 5% 8% 2% Health Care 4% 3% 8% Inpatient 3% 0% 6% Outpatient 2% 2% 2% Food Sales 2% 5% 5% Food Service 2% 6% 6% Public Order and Safety 2% 1% 2% Other 2% 2% 4% Vacant 4% 4% 1% Total 100% 100% 100% Note(s): Source(s): Total Floorspace Total Buildings Primary Energy Consumption 1) For primary energy intensities by building type, see Table 3.1.13. Total CBECS 2003 commercial building floorspace is 71.7 billion SF. EIA, 2003 Commercial Buildings Energy Consumption Survey: Consumption and Expenditures Tables, Oct. 2006, Table C1A

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Label Building Natural Gas Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS)  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Usage Form Natural Gas Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may choose to mark

42

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Commercial Floorspace and Number of Buildings, by Year 1980 50.9 (1) N.A. 3.1 (3) 1990 64.3 N.A. 4.5 (3) 2000 (4) 68.5 N.A. 4.7 (5) 2008 78.8 15% N.A. 2010 81.1 26% N.A. 2015 84.1 34% N.A. 2020 89.2 43% N.A. 2025 93.9 52% N.A. 2030 98.2 60% N.A. 2035 103.0 68% N.A. Note(s): Source(s): EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127-128 for 2000 floorspace; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A5, p. 11-12 for 2008-2035 floorspace; EIA Commercial Building Characteristics 1989, June 1991, Table A4, p. 17 for 1990 number of buildings; EIA, Commercial Building Characteristics 1999, Aug. 2002, Table 3 for 1999 number of buildings and floorspace; and EIA, Buildings and Energy in the 1980s, June 1995, Table 2.1, p. 23 for number of buildings in 1980.

43

INDEPENDENT VERIFICATION REVIEW AND SURVEY of the Argonne National Laboratory Building 301 Footprint  

SciTech Connect

INDEPENDENT VERIFICATION REVIEW AND SURVEY of the Argonne National Laboratory Building 301 Footprint, Argonne Illinois 5061-SR-01-0

E.N. Bailey

2010-05-26T23:59:59.000Z

44

An overview of building morphological characteristics derived from 3D building databases.  

SciTech Connect

Varying levels of urban canopy parameterizations are frequently employed in atmospheric transport and dispersion codes in order to better account for the urban effect on the meteorology and diffusion. Many of these urban parameterizations need building-related parameters as input. Derivation of these building parameters has often relied on in situ 'measurements', a time-consuming and expensive process. Recently, 3D building databases have become more common for major cities worldwide and provide the hope of a more efficient route to obtaining building statistics. In this paper, we give an overview of computations we have performed for obtaining building morphological characteristics from 3D building databases for several southwestern US cities, including Los Angeles, Salt Lake City, and Phoenix.

Brown, M. J. (Michael J.); Burian, S. J. (Steven J.); Linger, S. P. (Steve P.); Velugubantla, S. P. (Srinivas, P.); Ratti, Carlo

2002-01-01T23:59:59.000Z

45

Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go Commercial BuildingsAvailable formats PDF Modeling Distributed Generation in the Buildings Sectors Released: August 29, 2013 This report focuses on how EIA models residential and commercial sector distributed generation, including combined heat and power, for the Annual Energy Outlook. PDF Distributed Generation System Characteristics and Costs in the Buildings Sector Released: August 7, 2013 EIA works with technology experts to project the cost and performance of future residential and commercial sector photovoltaic (PV) and small wind installations rather than developing technology projections in-house. These reports have always been available by request. By providing the reports

46

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

47

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

48

Microsoft Word - Building Energy Codes Survey Report GEO _2_.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Building & Energy Codes Building & Energy Codes Survey Results Prepared by the Governor's Energy Offi ce July 2009 The Governor's Energy Offi ce 1580 Logan Street, Suite 100 Denver, CO 80203 www.colorado.gov/energy (303) 866-2100 Executive Summary Colorado Governor Bill Ritter, Jr., issued an Executive Order on April 16, 2007, re-creating the Governor's Office of Energy Management and Conservation as the Governor's Energy Office (GEO). The GEO's mission is to lead Colorado to a New Energy Economy by advancing energy efficiency and renewable, clean energy resources. The New Energy Economy embraces energy conservation as an important component in our energy future, yet requires a broader mission to meet the goals of expanding renewable and clean energy resources and opportunities for the state's economy, environment and energy

49

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Relationship of CBECS Coverage to EIA Supply Surveys Relationship of CBECS Coverage to EIA Supply Surveys The primary purpose of the CBECS is to collect accurate statistics of energy consumption by individual buildings. EIA also collects data on total energy supply (sales). For the information on sales totals, a different reporting system is used for each fuel and the boundaries between the different sectors (e.g., residential, commercial, industrial) are drawn differently for each fuel. Background EIA sales data on the different fuels are compiled in individual fuel reports. Annual electricity sales data are currently collected on Form EIA-861, "Annual Electric Utility Report," which is sent to all electric utilities in the United States. Supply data for natural gas are collected on Form EIA-176, "Annual Report of Natural and Supplemental Gas

50

Buildings Energy Data Book: 4.2 Federal Buildings and Facilities Characteristics  

Buildings Energy Data Book (EERE)

2 Federal Buildings and Facilities Characteristics 2 Federal Buildings and Facilities Characteristics March 2012 4.2.1 Federal Building Gross Floorspace, by Year and Agency Fiscal Year Agency FY 1985 3.37 DOD 63% FY 1986 3.38 USPS 10% FY 1987 3.40 GSA 6% FY 1988 3.23 VA 5% FY 1989 3.30 DOE 3% FY 1990 3.40 Other 13% FY 1991 3.21 Total 100% FY 1992 3.20 FY 1993 3.20 FY 1994 3.11 FY 1995 3.04 FY 1996 3.03 FY 1997 3.02 FY 1998 3.07 FY 1999 3.07 FY 2000 3.06 FY 2001 3.07 FY 2002 3.03 FY 2003 3.04 FY 2004 2.97 FY 2005 2.96 FY 2006 3.10 FY 2007 3.01 Note(s): Source(s): 2007 Percent of Floorspace (10^9 SF) Total Floorspace The Federal Government owns/operates over 500,000 buildings, including 422,000 housing structures (for the military) and 51,000 nonresidential buildings. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table 1, p. 13; DOE/FEMP, Annual Report to Congress on FEMP, Nov. 2008, Table

51

REPORT OF SURVEY OF OAK RIDGE BUILDING 3597 HOT STORAGE GARDEN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING 3597 HOT STORAGE GARDEN U.S. Department of Energy Office of Environmental Management & Office of Science Report of Survey of Oak Ridge Building 3597 Hot Storage Garden...

52

STIL2 Swedish Office Buildings Survey - Datasets - OpenEI Datasets  

Open Energy Info (EERE)

performed a survey of high performance office buildings in Sweden to provide energy efficiency data for non-residential premises.HTMLREMOVED The data covers energy use from...

53

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Characteristics of a Typical Single-Family Home (1) Year Built | Building Equipment Fuel Age (5) Occupants 3 | Space Heating Natural Gas 12 Floorspace | Water Heating Natural Gas 8 Heated Floorspace (SF) 1,934 | Space Cooling 8 Cooled Floorspace (SF) 1,495 | Garage 2-Car | Stories 1 | Appliances Size Age (5) Foundation Concrete Slab | Refrigerator 19 Cubic Feet 8 Total Rooms (2) 6 | Clothes Dryer Bedrooms 3 | Clothes Washer Other Rooms 3 | Range/Oven Full Bathroom 2 | Microwave Oven Half Bathroom 0 | Dishwasher Windows | Color Televisions 3 Area (3) 222 | Ceiling Fans 3 Number (4) 15 | Computer 2 Type Double-Pane | Printer Insulation: Well or Adequate | Note(s): Source(s): 2-Door Top and Bottom Electric Top-Loading Electric 1) This is a weighted-average house that has combined characteristics of the Nation's stock homes. Although the population of homes with

54

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

‹ Consumption & Efficiency ‹ Consumption & Efficiency Commercial Buildings Energy Consumption Survey (CBECS) Glossary › FAQS › Overview Data 2003 1999 1995 1992 Previous Analysis & Projections Maps U. S. Census Regions and Divisions U. S. Climate Zones for 2003 CBECS U. S. Climate Zones for 1979-1999 CBECS How are U.S. Climate Zones defined? U. S. Census Regions and Divisions: U.S. Census Regions and Divisions Map U. S. Climate Zones for 2003 CBECS: U.S. Census Regions and Divisions Map U. S. Climate Zones for 1979-1999 CBECS: U.S. Census Regions and Divisions Map How are U.S. Climate Zones defined? The CBECS climate zones are groups of climate divisions, as defined by the National Oceanic and Atmospheric Administration (NOAA), which are regions within a state that are as climatically homogeneous as possible. Each NOAA

55

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

56

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 3, THIRD QUARTER 2014 1709 A Survey of Energy Efficiency in Buildings and  

E-Print Network (OSTI)

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 3, THIRD QUARTER 2014 1709 A Survey of Energy) and the provider-side (smart grids). Hence, combining energy efficiency and networking perspectives, in this paper Efficiency in Buildings and Microgrids using Networking Technologies Jianli Pan, Student Member, IEEE, Raj

Jain, Raj

57

Energy Survey and Energy Savings in an Office Building with Aid of Building Software.  

E-Print Network (OSTI)

?? Simulation is one of the best Analytical tools for Building Research .Energy Efficient Buildings are of great concern which is gaining importance steeply in (more)

Lu, Yinghao

2008-01-01T23:59:59.000Z

58

Report of Survey of Oak Ridge Building 3597 Hot Storage Garden | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building 3597 Hot Storage Garden Building 3597 Hot Storage Garden Report of Survey of Oak Ridge Building 3597 Hot Storage Garden The purpose of this document is to report the results of a survey conducted at the Hot Storage Garden facility (identified as "Building" 3597) on the Y-12 Plant property at the Oak Ridge Site. The survey was conducted during the week of 11/15/99. The primary purpose of the survey is to identify facility conditions and to define the characterization, stabilization, and material/waste/equipment removal (if any) requirements that need to be met to transfer responsibility for the facility from the Office of Science (SC) to the Office of Environmental Management (EM). Additionally, estimated post stabilization surveillance and maintenance (S&M) activities and costs are

59

Report of Survey of Oak Ridge Building 3597 Hot Storage Garden | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building 3597 Hot Storage Garden Building 3597 Hot Storage Garden Report of Survey of Oak Ridge Building 3597 Hot Storage Garden The purpose of this document is to report the results of a survey conducted at the Hot Storage Garden facility (identified as "Building" 3597) on the Y-12 Plant property at the Oak Ridge Site. The survey was conducted during the week of 11/15/99. The primary purpose of the survey is to identify facility conditions and to define the characterization, stabilization, and material/waste/equipment removal (if any) requirements that need to be met to transfer responsibility for the facility from the Office of Science (SC) to the Office of Environmental Management (EM). Additionally, estimated post stabilization surveillance and maintenance (S&M) activities and costs are

60

1999 Commercial Buildings Characteristics--Energy Sources and End Uses  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Sources and End Uses Energy Sources and End Uses Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Energy Sources and End Uses CBECS collects information that is used to answer questions about the use of energy in the commercial buildings sector. Questions such as: What kind of energy sources are used? What is energy used for? and What kinds of equipment use energy? Energy Sources Nearly all commercial buildings used at least one source of energy for some end use (Figure 1). Electricity was the most commonly used energy source in commercial buildings (94 percent of buildings comprising 98 percent of commercial floorspace). More than half of commercial buildings (57 percent) and two-thirds of commercial floorspace (68 percent) were served by natural gas. Three sources-fuel oil, district heat, and district chilled water-when used, were used more often in larger buildings.

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example, a third of the large office buildings constructed today will survive 92 years later. EIA, Assumptions for the Annual Energy Outlook 2011, July 2011, Table 5.2, p. 40; EIA, Model Documentation Report: Commercial Sector 'Demand Module of the National Energy Modeling System, May 2010, p. 30-35; and PNNL, Memorandum: New Construction in the Annual Energy Outlook 2003, Apr. 24,

62

Commercial Buildings Energy Consumption Survey (CBECS) Public Use Data  

Gasoline and Diesel Fuel Update (EIA)

CBECS Public Use Data CBECS Public Use Data CBECS Public Use Data Public Use Files: yellow indicator arrow 2003 CBECS | yellow indicator arrow 1999 CBECS | yellow indicator arrow 1995 CBECS | yellow indicator arrow 1992 CBECS The Public Use Files are microdata files that contain more than 5,000 records, representing commercial buildings from the 50 States and the District of Columbia. Each record corresponds to a single responding, in-scope sampled building and contains information for that building about the building size, year constructed, types of energy used, energy-using equipment, conservation features, energy consumption and expenditures, and the amount of energy used for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other end uses.

63

Building a Successful Communications Program Based on the Needs and Characteristics of the Affected Communities - 13152  

SciTech Connect

Over 200 local residents streamed through the doors of the Port Hope Lions Centre to see the detailed plans for the historic low-level radioactive waste clean-up project about to take place in their community. The event had a congenial atmosphere as people walked through the hall taking in rows of display panels that explained each element of the project, asked questions of project staff stationed around the room and chatted with friends and neighbours over light refreshments. Later that year, the results of the Port Hope Area Initiative (PHAI) 10. annual public attitude survey revealed an all-time high in community awareness of the project (94%) and the highest levels of confidence (84%) recorded since surveying began. Today, as the PHAI transitions from a decade of scientific and technical studies to implementation, the success of its communications program - as evidenced by the above examples - offers room for cautious encouragement. The PHAI has spent the past 10 years developing relationships with the southern Ontario communities of Port Hope and Port Granby in preparation for Canada's largest low-level radioactive waste environmental restoration project. These relationships have been built around a strong understanding of the communities' individual needs and characteristics and on the PHAI's efforts to consider and respond to these needs. The successes of the past, as well as the lessons learned, will inform the next stage of communications as the projects move into waste excavation and transportation and building of the long-term waste management facilities. (authors)

Herod, Judy; Mahabir, Alexandra; Holmes, Sandy [Atomic Energy of Canada Limited, Port Hope, ON, L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, Port Hope, ON, L1A 3S4 (Canada)

2013-07-01T23:59:59.000Z

64

1999 Commercial Buildings Characteristics--Conservation Features and  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Features and Practices Conservation Features and Practices Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Conservation Features and Practices The 1999 CBECS collected information about HVAC (heating, ventilation, and air-conditioning) system, building shell, and lighting conservation features and practices plus information on off-hour reduction of end-use equipment. In general, commercial buildings that were larger than average were more likely to have used these conservation features or measures. Detailed tables HVAC Conservation Features and Practices Among HVAC conservation features and practices, commercial buildings owners and managers widely performed maintenance on their HVAC systems (Figure 1). Approximately the same percentage of buildings and floorspace were served by other HVAC conservation features.

65

Efficiency characteristic of building integrated photovoltaics as a shading device  

Science Journals Connector (OSTI)

A building-integrated photovoltaic system (BIPV) has been operated over 1 year in the Samsung Institute of Engineering & Construction Technology (SIECT) in Korea. The PV cells are mounted on the south facade and on the roof of the SIECT in the Giheung area. Special care was taken in the building design to have the PV modules shade the building in the summer, so as to reduce cooling loads, while at the same time allowing solar energy to enter the building during the heating season, and providing daylight. This paper gives a 1 year analysis of the system performance, evaluation of the system efficiency and the power output, taking into account the weather conditions. As a part of certain design compromises, that took into account, aesthetic, safety, and cost considerations, non-optimal tilt angles and occasional shading of the PV modules made the efficiency of PV system lower than the peak rating of the cells. The yearly average efficiency of the sunshade solar panel is 9.2% (average over 28.6C surface temperature), with a minimum of 3.6% (average over 27.9C surface temperature) in June and a maximum of 20.2% (average over 19.5C surface temperature) in December.

Seung-Ho Yoo; Eun-Tack Lee

2002-01-01T23:59:59.000Z

66

1999 CBECS Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey, or CBECS, covers a wide variety of building types—office buildings, shopping malls, hospitals, churches, and fire stations, to name just a few. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial. For an overview of definitions and examples of the CBECS building types, see Description of Building Types. Compare Activities by... Number of Buildings Building size Employees Building Age Energy Conservation Number of Computers Electricity Generation Capability

67

RADIOLOGICAL SURVEY OF THE GUN FORGING MACHINE BUILDING ITHACA GUN COMPANY  

Office of Legacy Management (LM)

SURVEY SURVEY OF THE GUN FORGING MACHINE BUILDING ITHACA GUN COMPANY ITHACA, NEW YORK T. J. VITKUS AND J. L. PAYNE Prepared for the Office of Erivironmental Restoration U.S.' Department of Energy ORISE 95/K-1 3 RADIOLOGICAL SURVEY OF THE GUN FORGING MACHINE BUILDING ITHACA GUN COMPANY ITHACA, NEW YORK Prepared by T. J. Vi&us and J. L. Payne Environme& Survey and Site Assessment Program Envirotiental and Health Sciences Group Oak Ridge Institute for Science and Education Oak Ridge, Tennessee 37831-0117 Prepared for the U.S. Department of Energy Offke of Environmental Restoration FINAL REPORT OCTOBER 1995 This report is based on work performed under contract number DE-AC05-760R00033 with the U.S. Department of Energy. .I I I I I I I I 1 I I I ' I

68

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels................................................................................................... 145 Table C6. Expenditures by Census Region for Sum of Major Fuels......................... 150 Table C7. Consumption and Gross Energy Intensity by Building Size for Sum of

69

Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Commercial Building Benchmarks DOE Commercial Building Benchmarks New Construction Energy Use Intensities (EUIs) [kBtu/ft 2 /yr] May 5, 2009 Miami Houston Phoenix Atlanta Los Angeles Las Vegas San Francisco Baltimore Albuquerque Seattle Chicago Denver Minneapolis Helena Duluth Fairbanks 2003 CBECS Avg. Climate Zone 1A 2A 2B 3A 3B 3B 3C 4A 4B 4C 5A 5B 6A 6B 7 8 Large Office 39 42 40 39 32 40 34 43 39 37 43 38 47 44 49 62 99 Medium Office 38 44 42 44 35 41 40 51 43 46 53 47 59 54 62 82 94 Small Office 46 48 49 46 36 44 38 53 47 47 61 52 70 62 77 110 80 Warehouse 15 15 15 16 14 16 14 18 17 16 21 20 26 23 27 43 48 Stand-alone Retail 48 46 46 41 34 41 35 45 42 40 48 45 54 51 61 88 70 Strip Mall 46 44 44 44 35 43 38 48 45 42 51 47 60 55 66 99 110 Primary School 65 71 69 69 57 65 71 78 68 65 85 74 99 88 107 147 68

70

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

71

Survey and Analysis of Weather Data for Building Energy Simulations Mahabir Bhandari, Som Shrestha, Joshua New  

E-Print Network (OSTI)

Page 1 Survey and Analysis of Weather Data for Building Energy Simulations Mahabir Bhandari, Som data plays an important role in this calibration process and projected energy savings. It would; relative humidity; direct, diffuse and horizontal solar radiation; and wind speed are statistically

Wang, Xiaorui "Ray"

72

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Characteristics of Lighting Types Characteristics of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lm/W). Lamps with a higher efficacy value are more energy efficient. Average Rated Life The average rated life of a particular type of lamp is defined by the number of hours when 50 percent of a large sample of that type of lamp has failed. Color Rendering Index (CRI) The CRI is a measurement of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are typically used in office and living environments. Correlated Color Temperature (CCT) The CCT is an indicator of the "warmth" or "coolness" of the color

73

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

74

Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof  

SciTech Connect

Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

2009-10-15T23:59:59.000Z

75

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Number of Households and Buildings, Floorspace, and Household Size, by Year 1980 80 N.A. 227 2.9 1981 83 N.A. 229 2.8 1982 84 N.A. 232 2.8 1983 85 N.A. 234 2.8 1984 86 N.A. 236 2.7 1985 88 N.A. 238 2.7 1986 89 N.A. 240 2.7 1987 91 N.A. 242 2.7 1988 92 N.A. 244 2.7 1989 93 N.A. 247 2.6 1990 94 N.A. 250 2.6 1991 95 N.A. 253 2.7 1992 96 N.A. 257 2.7 1993 98 N.A. 260 2.7 1994 99 N.A. 263 2.7 1995 100 N.A. 266 2.7 1996 101 N.A. 269 2.7 1997 102 N.A. 273 2.7 1998 104 N.A. 276 2.7 1999 105 N.A. 279 2.7 2000 106 N.A. 282 2.7 2001 107 2% 285 2.7 2002 105 3% 288 2.7 2003 106 5% 290 2.8 2004 107 7% 293 2.7 2005 109 9% 296 2.7 2006 110 11% 299 2.7 2007 110 12% 302 2.7 2008 111 13% 304 2.8 2009 111 13% 307 2.8 2010 114 14% 310 2.7 2011 115 14% 313 2.7 2012 116 15% 316 2.7 2013 117 16% 319 2.7 2014 118 17% 322 2.7 2015 119 18% 326 2.7 2016 120 19% 329 2.7 2017 122 21% 332 2.7 2018 123 22% 335 2.7 2019 125 23% 338 2.7 2020 126 25% 341 2.7 2021 127 26% 345

76

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

3 3 Share of Total U.S. Households, by Census Region, Division, and Vintage, as of 2005 Prior to 1950 to 1970 to 1980 to 1990 to 2000 to Region 1950 1969 1979 1989 1999 2005 Northeast 6.7% 5.2% 2.4% 2.1% 1.3% 0.8% 18.5% New England 2.1% 1.2% 0.5% 0.5% 0.3% 0.3% 4.9% Middle Atlantic 4.6% 4.0% 1.9% 1.6% 1.0% 0.5% 13.6% Midwest 5.7% 5.8% 3.6% 2.5% 3.7% 1.7% 23.0% East North Central 4.3% 3.9% 2.7% 1.8% 2.1% 1.1% 16.0% West North Central 1.4% 1.9% 0.9% 0.7% 1.6% 0.6% 7.1% South 4.0% 6.9% 6.4% 7.5% 7.5% 4.3% 36.6% South Atlantic 2.0% 3.4% 3.5% 4.2% 4.3% 2.2% 17.4% East South Central 0.9% 1.3% 0.9% 1.0% 1.3% 0.7% 6.2% West South Central 1.2% 2.3% 4.7% 2.2% 1.8% 1.4% 13.6% West 3.4% 4.6% 4.5% 4.6% 3.1% 1.5% 21.8% Mountain 0.7% 1.2% 1.3% 1.5% 1.3% 0.9% 6.8% Pacific 2.8% 3.4% 3.3% 3.1% 1.8% 0.6% 15.0% United States 19.9% 22.5% 17.0% 16.7% 15.6% 8.3% 100% Source(s): All Vintages EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC10

77

2007 CBECS Large Hospital Building Methodology Report  

Gasoline and Diesel Fuel Update (EIA)

Methodology Report Main Report | Methodology Report Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Data Collection The data in the Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 report and accompanying tables were collected in the 2007 round of the Commercial Buildings Energy Consumption Survey (CBECS). CBECS is a quadrennial survey is conducted by the Energy Information Administration (EIA) to provide basic statistical information about energy consumption and expenditures in United States commercial buildings and information about energy-related characteristics of these buildings. The survey was conducted in two phases, the Building Characteristics Survey and the Energy Supplier Survey. The Building Characteristics Survey collects information about selected

78

Revised?Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, California  

SciTech Connect

During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box.

W. C. Adams

2007-12-07T23:59:59.000Z

79

Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, CA  

SciTech Connect

During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box.

W. C. Adams

2007-12-07T23:59:59.000Z

80

Commercial Buildings Energy Consumption Survey (CBECS) - Data - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample". Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates should not be considered as finite point estimates, but as estimates with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building indicator groups based on species characteristics can improve conservation planning  

E-Print Network (OSTI)

is in identifying important areas for the conservation of biodiversity. As networks of areas encompassing biodiversity to select networks of areas for conservation? In the literature, reliable indicator groupsBuilding indicator groups based on species characteristics can improve conservation planning

Manne, Lisa

82

Measurement and Analysis of the Error Characteristics of an InBuilding Wireless Network  

E-Print Network (OSTI)

on fiber or electrical connections have excellent error characteris­ tics but that wireless networksMeasurement and Analysis of the Error Characteristics of an In­Building Wireless Network David fdavide,prsg@cs.cmu.edu Abstract There is general belief that networks based on wireless technolo­ gies

Eckhardt, Dave

83

Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada  

SciTech Connect

This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or clean, building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, Final Status Survey Plan for Corrective Action Unit 117 Pluto Disassembly Facility, Building 2201) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one of three categories: Class 1, Class 2 or Class 3 (a fourth category is a Non-Impacted Class which in the case of Building 2201 only pertained to exterior surfaces of the building.) The majority of the rooms were determined to fall in the less restrictive Class 3 category, however, Rooms 102, 104, 106, and 107 were identified as containing Class 1 and 2 areas. Building 2201 was divided into survey units and surveyed following the requirements of the Final Status Survey Plan for each particular class. As each survey unit was completed and documented, the survey results were evaluated. Each sample (static measurement) with units of counts per minute (cpm) was corrected for the appropriate background and converted to a value with units of dpm/100 cm2. With a surface contamination value in the appropriate units, it was compared to the surface contamination limits, or in this case the derived concentration guideline level (DCGLw). The appropriate statistical test (sign test) was then performed. If the survey unit was statistically determined to be below the DCGLw, then the survey unit passed and the null hypothesis (that the survey unit is above limits) was rejected. If the survey unit was equal to or below the critical value in the sign test, the null hypothesis was not rejected. This process was performed for all survey units within Building 2201. A total of thirty-three Class 1, four Class 2, and one Class 3 survey units were developed, surveyed, and evaluated. All survey units successfully passed the statistical test. Building 2201 meets the release criteria commensurate with the Waste Acceptance Criteria (for radiological purposes) of the U10C landfill permit residing within NNSS boundaries. Based on the thorough statistical sampling and scanning of the buildings interior, Building 2201 may be considered radiologically clean, or free of contamination.

Jeremy Gwin and Douglas Frenette

2010-09-30T23:59:59.000Z

84

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Full Report Full Report Energy Information Administration > Commercial Buildings Energy Consumption Survey > Overview of Commercial Buildings Overview of Commercial Buildings, 2003 Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: ● total nearly 4.9 million buildings ● comprise more than 71.6 billion square feet of floorspace ● consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) ●

85

Results of the independent verification survey at the Old Betatron Building, Granite City, Illinois  

SciTech Connect

A team from the Measurement Applications and Development Group, Oak Ridge National Laboratory (ORNL), conducted an independent verification of the radiological condition of the Old Betatron Building, Granite City, Illinois, at the request of the Department of Energy in June of 1993. The building is owned by the National Steel Corporation. The contamination present resulted from the handling of uranium slabs of metal during the time the betatron facility was used to x-ray the slabs for metallurgical defects. The designation survey did not characterize the entire floor space because of obstructing equipment and debris. Therefore, prior to remediation by Bechtel National, Incorporated (BNI), a thorough characterization of the floor was conducted, and the results were immediately conveyed to on-site staff of BNI. An independent verification assessment was also performed after the cleanup activities were performed under the direction of BNI. The process of characterization, remediation, and verification was accomplished within a five-day period. Based on results of the independent verification assessment, the Old Betatron Building was determined to meet the DOE radiological guidelines for unrestricted use.

Murray, M.E.; Brown, K.S.

1994-07-01T23:59:59.000Z

86

Fire load: Survey data, recent standards, and probabilistic models for office buildings  

Science Journals Connector (OSTI)

Abstract To enable a probabilistic performance-based approach to fire design, probabilistic models to represent the fire load are needed. Such probabilistic models are presented in this paper for office buildings. First, a literature review of recent fire load density surveys is presented. These surveys indicate a large range of fire load density values, and strong correlation between fire load density, compartment area, and use. However, current codes and standards (such as Eurocode and a recent publication of NFPA 557) that are used to estimate fire load density do not account for these variables and specify constant values. Based on survey data, a Bayesian probability approach is used to develop probabilistic models to predict the fire load density in office buildings (one for light-weight use and one for heavy-weight use). The models consider the size of the compartment and the office room use (general office, library, storage, etc.). The proposed models correlate well to the data and have a better fit than that obtained, using the Eurocode and NFPA 557. The proposed models for fire load density are then used to develop probabilistic models for the maximum fire temperature in a given compartment. Several scenarios with different floor areas and openings are defined and the fire load models developed in this paper are used to investigate the range of possible maximum fire temperatures and their corresponding probabilities. It is found that the proposed maximum temperature model results in a range of temperatures that correlates well with the test data and the Refined Tanaka Method proposed by a recent SFPE standard. It is shown that both the fire load density and the maximum temperature probabilistic models are well suited for application in a probabilistic performance-based approach to fire design.

Negar Elhami Khorasani; Maria Garlock; Paolo Gardoni

2014-01-01T23:59:59.000Z

87

What School Buildings Can Teach Us: Post-Occupancy Evaluation Surveys in K-12 Learning Environments  

E-Print Network (OSTI)

environmental quality in green buildings. In Proceedings ofResearch Group. 2004. Green Building White Paper Research.6. 23 Heerwagen, J. (2000). Green buildings, organizational

Baker, L.

2011-01-01T23:59:59.000Z

88

Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey  

E-Print Network (OSTI)

ambient Proceedings of Healthy Buildings 2006, Lisbon,Vol.and operation of healthy buildings Introduction Indoor airdatabase Proceedings of Healthy Buildings 2006, Lisbon,Vol.

Huizenga, C; Abbaszadeh, S.; Zagreus, Leah; Arens, Edward A

2006-01-01T23:59:59.000Z

89

What School Buildings Can Teach Us: Post-Occupancy Evaluation Surveys in K-12 Learning Environments  

E-Print Network (OSTI)

with indoor environmental quality in green buildings.In Proceedings of Healthy Buildings (Vol. 3, pp. 365370).Bernstein, Tobie, 2003. Building Healthy, High Performance

Baker, L.

2011-01-01T23:59:59.000Z

90

Commercial Buildings Energy Consumption Survey (CBECS) - Data - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

CBECS Terminology CBECS Terminology NOTE: This glossary is specific to the 1999 and 2003 Commercial Buildings Energy Consumption Surveys (CBECS). CBECS glossaries for prior years can be found in the appendices of past CBECS reports. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Account Classification: The method in which suppliers of electricity, natural gas, or fuel oil classify and bill their customers. Commonly used account classifications are "Commercial," "Industrial," and "Residential." Suppliers' definitions of these terms vary from supplier to supplier and from the definitions used in CBECS. In addition, the same customer may be classified differently by each of its energy suppliers. Activities with Large Amounts of Hot Water: An energy-related space

91

DOE/EIA-0318/1 Nonresidential Buildings Energy Consumption Survey:  

U.S. Energy Information Administration (EIA) Indexed Site

/1 /1 Nonresidential Buildings Energy Consumption Survey: 1979 Consumption and Expenditures D! Part I: Natural Gas and Electricity March 1983 Energy Information Administration Washington, D.C. 1111? This publication is available from the Superintendent of Documents, U.S. Government Printing Office |GPO). Make check or money order payable to the Superintendent of Documents. You may send your order to the U.S. Government Printing Office or the National Energy Information Center. GPO prices are subject to change without advance notice. An order form is enclosed for your convenience. StockNumber: 061-003-00298-6 Price: $9.50 Questions on energy statistics and the availability of other EIA publications and orders for EIA publications available for sale from the Government Printing Office may be directed to the National Energy Information Center.

92

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2003 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2003 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed

93

Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois  

SciTech Connect

Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratorys Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007).

W. C. Adams

2007-05-25T23:59:59.000Z

94

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

95

Airflow Characteristics of Direct-Type Kitchen Hood Systems in High-Rise Apartment Buildings  

E-Print Network (OSTI)

, Samsung C&T, South Korea 2 Introduction ? Today?s high-rise apartment buildings exhibit high degree of air-tightness. ? They are also subjected to stack effect and seasonal, unpredictable, wind pressure variations. ? Therefore, it is questionable... characteristics for alt0 16 32CMH 0Pa 42CMH 0Pa 74CMH 16Pa 477CMH 984CMH 355CMH 815CMH 173CMH 26Pa 0CMH 0CMH 0CMH 54CMH 0Pa 158CMH 1Pa 35CMH 0Pa 74CMH 18Pa (a)?On?3rd?floor?at?12:00,?Jan?1st 1.5m/s North 50CMH 1Pa 23CMH 0Pa 75CMH 18Pa...

Park, M.

2011-01-01T23:59:59.000Z

96

Energy Information Administration (EIA)- About the Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

About the Commercial Buildings Energy Consumption Survey About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, their energy-related building characteristics, and their energy consumption and expenditures. Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential, industrial, or agricultural, so they include building types that might not traditionally be considered "commercial," such as schools, correctional institutions, and buildings used for religious worship. The CBECS was first conducted in 1979; the tenth, and most recent survey, will be fielded starting in April 2013 to provide data for calendar year

97

Results of the radiological survey at the New Betatron Building, Granite City Steel facility, Granite City, Illinois (GSG002)  

SciTech Connect

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the New Betatron Building, located in the South Plant facility of Granite City Steel Division, 1417 State Street, Granite City, Illinois. The survey was performed in August 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, as a result of work done for the Atomic Energy Commission (AEC) from 1958 to 1966. The survey included a surface gamma scan of the ground surface outdoors near the building, the floor and walls in all accessible areas inside the building, and the roof; measurement of beta-gamma dose rates, alpha radiation levels, and removable alpha and beta-gamma activity levels at selected locations inside the building and on the roof; and radionuclide analysis of outdoor soil samples and indoor samples of shield-wall fill material land debris. Analysis of soil, shield-wall fill material, debris, and smear samples showed no residual {sup 238}U attributable to former AEC-supported operations at this site. None of the indoor or outdoor gamma exposure rate measurements were elevated above DOE guidelines. The slight elevations in gamma levels found outdoors and on the roof over the shield wall are typical of naturally occurring radioactive substances present in coal ash and cinders in the fill material surrounding the building and in concrete and cinders used in constuction of the shield wall. The slightly elevated gamma levels measured at soil sampling locations can be attributed to the presence of naturally occurring radionuclides. In all samples, {sup 226}Ra and {sup 238}U appeared to be in equilibrium, indicating that these radionuclides were of natural origin and not derived from former AEC activities at this site.

Murray, M.E.; Uziel, M.S.

1992-01-01T23:59:59.000Z

98

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

99

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

The Energy Index for Commercial Buildings The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results yield national totals for commercial buildings. For more information on CBECS, visit EIA's website. Location Census Division View Map New England West North Central West South Central Middle Atlantic South Atlantic Mountain East North Central East South Central Pacific

100

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

102

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

103

A literature survey on measuring energy usage for miscellaneous electric loads in offices and commercial buildings  

Science Journals Connector (OSTI)

Abstract This paper presents the current state of the art regarding work performed related to the electric energy consumption for Information and Communication Technologies (ICTs) and Miscellaneous Electric Loads (MELs), in office and commercial buildings. Techniques used for measuring the energy consumption of office plug loads, and efforts for saving energy by using this equipment more rationally and efficiently are identified and categorized. Popular methods and techniques for energy metering are discussed, together with efforts to classify and benchmark office equipment. Our study reveals that many issues are still open in this domain, including more accurate, diverse and meaningful energy audits for longer time periods, taking into account device profiles, occupant behavior and environmental context. Finally, there is a need for a global consensus on benchmarking and performance metrics, as well as a need for a coordinated worldwide activity for gathering, sharing, analyzing, visualizing and exposing all the silos of information relating to plug loads in offices and commercial buildings.

Andreas Kamilaris; Balaji Kalluri; Sekhar Kondepudi; Tham Kwok Wai

2014-01-01T23:59:59.000Z

104

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

105

A Survey of High Performance Office Buildings in the United States  

E-Print Network (OSTI)

Insulation, PV providing 28% of total energy use 2 Deru et al. (2005) BigHorn Home Improvement Center Cool & Dry Silverthorne, CO Commercial office, Industrial, Retail 2000 1 44,400 ASHRAE 90.1 - 2001 DOE-2 Simulation 40 35 Wall Insulation, Solar... control and improved Indoor Air Quality (IAQ); therefore, it should be a good choice for hot and humid climates. However, there is still a need for additional demonstrations for its application to the office buildings in hot and humid climates...

Cho, S.; Haberl, J. S.

2006-01-01T23:59:59.000Z

106

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

107

Using text analysis to listen to building users.  

E-Print Network (OSTI)

Proceedings of the Healthy Buildings Conference, Lisbon.Survey, Proceedings of Healthy Buildings 2006, Lisbon. Vol.

Moezzi, Mithra; Goins, John

2010-01-01T23:59:59.000Z

108

Overview of Commercial Buildings, 2003 - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) consumed 36 percent of energy for space heating and 21 percent for lighting (Figure 2) The CBECS is a national-level sample survey conducted quadrennially of buildings greater than 1,000 square feet in size that devote more than 50

109

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

110

Types of Lighting in Commercial Buildings - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

111

Facilities management: the development of a model for building condition assessment surveys conducted at Fort Riley, Kansas  

E-Print Network (OSTI)

of inspection condition criteria and scoring for each sub-component (by visual inspection techniques) . The system was used by multiple inspectors to assess the buildings at Fort Riley. The inspectors received training in the system scoring and methodology...

Riblett, Carl Olin

2012-06-07T23:59:59.000Z

112

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

113

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

114

FINAL REPORT INDEPENDENT VERIFICATION SURVEY SUMMARY AND RESULTS FOR THE ARGONNE NATIONAL LABORATORY BUILDING 330 PROJECT FOOTPRINT, ARGONNE, ILLINOIS  

SciTech Connect

ORISE conducted onsite verification activities of the Building 330 project footprint during the period of June 6 through June 7, 2011. The verification activities included technical reviews of project documents, visual inspections, radiation surface scans, and sampling and analysis. The draft verification report was issued in July 2011 with findings and recommendations. The contractor performed additional evaluations and remediation.

ERIKA N. BAILEY

2012-02-29T23:59:59.000Z

115

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

116

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

117

The Characteristics and Training of Professionals in Cancer Prevention and Control: A Survey of the American Society for Preventive Oncology  

Science Journals Connector (OSTI)

...their career needs using an electronic survey. From 380 valid email...staff provided a list of electronic mail addresses for people...In: Kugushev A, editor. Fundamentals of biostatistics, 4th ed...their career needs using an electronic survey. From 380 valid email...

Shine Chang; Diana S.M. Buist; Mary Reid; Mary Beth Terry; and Amy Trentham-Dietz

2004-07-01T23:59:59.000Z

118

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

119

Farm Buildings in Britain  

Science Journals Connector (OSTI)

... the Government does not think that a case has been established for a Government farm buildings research centre, but the Agricultural Research Council is undertaking a survey of farm ... research centre, but the Agricultural Research Council is undertaking a survey of farm buildings in Great Britain and is issuing a bibliography of research publications on the subject. ...

1961-07-29T23:59:59.000Z

120

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Lighting in Commercial Buildings Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

122

Worldwide Status of Energy Standards for Buildings - Appendices  

E-Print Network (OSTI)

for NON-RESIDENTIAL BUILDINGS. This survey has been designedtypes of energy standards for buildings. Please respond asI: GENERAL OVERVIEW OF BUILDING ENERGY STANDARDS Does your

Janda, K.B.

2008-01-01T23:59:59.000Z

123

Introduction to the Buildings Sector Module of SEDS  

E-Print Network (OSTI)

Ma. CBECS, Commercial Building Energy Consumption Survey,R. , and Lai, J. A Buildings Module for the Stochasticon Energy Efficiency in Buildings, August 17 22, 2008,

DeForest, Nicholas

2011-01-01T23:59:59.000Z

124

A Look at Principal Building Activities in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial Buildings Home> Special Topics > 1995 Principal Home > Commercial Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public Assembly Public Order and Safety Warehouse and Storage Vacant Other Summary Comparison Table (All Activities) More information on the: Commercial Buildings Energy Consumption Survey A Look at ... Principal Building Activities in the Commercial Buildings Energy Consumption Survey (CBECS) When you look at a city skyline, most of the buildings you see are commercial buildings. In the CBECS, commercial buildings include office buildings, shopping malls, hospitals, churches, and many other types of buildings. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial.

125

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

126

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

127

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Consumption Survey (CBECS) > Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 and 2003 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

128

Energy End-Use Intensities in Commercial Buildings1992 -- Overview/End-Use  

U.S. Energy Information Administration (EIA) Indexed Site

> Overview > Overview 1992 Energy End-Use Intensities Overview Energy Consumption by End Use, 1992 Figure on Energy Consumption By End Use, 1992 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1992 Commercial Buildings Energy Consumption Survey. End-Use Estimation Methodology The end-use estimates had two main sources: (1) survey data collected by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The CBECS provided data on building characteristics and total energy consumption (i.e., for all end uses) for a national sample of commercial buildings. Using data collected by the CBECS, the FEDS engineering modules were used to produce estimates of energy consumption by end use. The FEDS engineering estimates were then statistically adjusted to match the CBECS total energy consumption.

129

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of Building Types Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

130

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lighting in Commercial Buildings - Full Report Types of Lighting in Commercial Buildings - Full Report file:///C|/mydocs/CBECS%20analysis/CBECS%20lighting/lighting_pdf.html[4/28/2009 9:20:44 AM] Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the

131

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

132

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

133

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

134

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

135

Building 32 35 Building 36  

E-Print Network (OSTI)

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

136

Trends in Commercial Buildings--Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial > Commercial Buildings Home > Special Home > Commercial > Commercial Buildings Home > Special Reports > Trends in Commercial Buildings Trends: Buildings and Floorspace Energy Consumption and Energy Sources Overview: The Commercial Buildings Energy Consumption Survey (CBECS) Trends in the Commercial Buildings Sector Since 1978, the Energy Information Administration has collected basic statistical information from three of the major end-use sectors— residential, and industrial— periodic energy consumption surveys. Each survey is a snapshot of how energy is used in the year of the survey; the series of surveys in each sector reveals the trends in energy use for the sector. Introduction The Commercial Buildings Energy Consumption Survey (CBECS) collects data from a sample of buildings representative of the commercial buildings

137

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

138

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

359 25.2 Food Service ... 285 Q Q 40 218 1,353 Q Q 220 981 23.2 Health Care ... 105 Q Q 6 92 2,333 Q Q 234 2,066 23.5 Lodging...

139

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

47 Q 30.6 Food Service ... 285 274 Q 146 Q Q Q 101 Q 18.5 Health Care ... 105 105 19 27 20 4 23 32 Q 33.4 Lodging...

140

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2012 (EIA)

Q Q Q Q Q 30.2 Food Service ... 285 285 285 184 Q Q Q 82 Q 19.4 Health Care ... 105 105 105 51 18 4 2 Q Q 26.8 Lodging...

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

142

Health Care Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Health Care Health Care Characteristics by Activity... Health Care Health care buildings are those used as diagnostic and treatment facilities for both inpatient and outpatient care. Doctor's and dentist's offices are considered health care if they use any type of diagnostic medical equipment and office if they do not. Skilled nursing or other residential care buildings are categorized as lodging. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Health Care Buildings... Health care buildings in the South tended to be smaller and were more numerous than those in other regions of the country. Buildings on health care complexes tended to be newer than those not on multibuilding facilities. The median age for buildings on health care complexes was 9.5 years, compared to 29.5 years for health care buildings not on a multibuilding facility.

143

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

144

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network (OSTI)

quality survey. In: Healthy Buildings 2006. Lisbon,In: Proceedings of Healthy Buildings 2006. Lisbon, Portugal:as ventilation varies. In: Healthy Buildings 2012. Brisbane,

Mendell, Mark J.

2014-01-01T23:59:59.000Z

145

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings Trend—Detail Commercial Floorspace Trend—Detail Background: Adjustment to data Trends in Buildings and Floorspace Each year buildings are added to and removed from the commercial buildings sector. Buildings are added by new construction or conversion of existing buildings from noncommercial to commercial activity. Buildings are removed by demolition or conversion from commercial to noncommercial activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the United States; by 1992, the number increased 27 percent to 4.8 million (an average annual increase of 1.8%) (Figure 1). In 1995, the estimated number declined to 4.6 million buildings, but it is unlikely that there was an actual decline in the number of buildings. To understand the apparent decline, two factors should be considered—the change in the way that the target population of commercial buildings was defined in 1995 and the uncertainty of estimates from sample surveys:

146

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

147

Inequalities in reported cancer patient experience by sociodemographic characteristic and cancer site: Evidence from respondents to the English Cancer Patient Experience Survey  

E-Print Network (OSTI)

practitioner consultations before hospital referral for cancer: findings from the 2010 National Cancer Patient Experience Survey in England. Lancet Oncol, 13, 353-65. Macmillan Cancer Support 2012-2013. Cancer Patient Experience Survey: Insight Report...

Saunders, Catherine L.; Abel, Gary A.; Lyratzopoulos, Georgios

2014-01-01T23:59:59.000Z

148

The GP Patient Survey for use in primary care in the National Health Service in the UK - development and psychometric characteristics  

E-Print Network (OSTI)

Abstract Background The UK National GP Patient Survey is one of the largest ever survey programmes of patients registered to receive primary health care, inviting five million respondents to report their experience of NHS primary healthcare...

Campbell, John; Smith, Patten; Nissen, Sonja; Bower, Peter; Elliott, Marc; Roland, Martin

2009-08-22T23:59:59.000Z

149

A study of the characteristics of natural light in selected buildings designed by Le Corbusier, Louis I. Kahn and Tadao Ando  

E-Print Network (OSTI)

.................................................................. 6 2.1 Historical Perspectives on Natural Light Inside the Buildings ... 6 2.1.1 Pre-Industrial Architecture........................................... 8 2.1.1.1 Egypt ............................................................. 9... type during the Early Christian architecture was one of the prominent forms that came to be associated with a particular building type, religious in this case. It was an attempt at improvisation with the timber trusses replacing the roman concrete...

Gill, Sukhtej Singh

2009-06-02T23:59:59.000Z

150

Residential Energy Consumption Survey (RECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1997 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous 1997 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing Characteristics Consumption & Expenditures Microdata Methodology Housing Characteristics Tables Table Titles (Released: February 2004) Entire Section Percents Tables: HC1 Housing Unit Characteristics, Million U.S. Households PDF PDF NOTE: As of 10/31/01, numbers in the "Housing Units" TABLES section for stub item: "Number of Floors in Apartment Buildings" were REVISED. These numbers will differ from the numbers in the published report. Tables: HC2 Household Characteristics, Million U.S. Households PDF PDF Tables: HC3 Space Heating, Million U.S. Households PDF PDF Tables: HC4 Air-Conditioning, Million U.S. Households PDF PDF Tables: HC5 Appliances, Million U.S. Households PDF PDF

151

LATTICES IN HYPERBOLIC BUILDINGS ANNE THOMAS  

E-Print Network (OSTI)

LATTICES IN HYPERBOLIC BUILDINGS ANNE THOMAS Introduction This survey is intended as a brief introduction to the theory of hyperbolic buildings and their lattices. Hyperbolic buildings are negatively of these buildings and the lattices in their automorphism groups involves a fascinating mixture of techniques from

Sydney, University of

152

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

153

building load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

154

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

155

Building Performance Database Analysis Tools  

Energy.gov (U.S. Department of Energy (DOE))

The BPD statistically analyzes the energy performance and physical and operational characteristics of real commercial and residential buildings. The Buildings Performance Database offers two primary methods to analyze building performance data. These are Explore, which allows users to browse a single dataset within the BPD, and Compare, which allowed users to compare multiple datasets within the BPD side-by-side.

156

Using Building Commissioning to Improve Performance in State Buildings  

E-Print Network (OSTI)

reports the results of a recent survey of members of the National Association of State Facility Administrators (NASFA) on their use and understanding of commissioning for new construction and existing buildings. The results of two commissioning case...

Haasl, T.; Wilkinson, R.

1998-01-01T23:59:59.000Z

157

Housing characteristics 1993  

SciTech Connect

This report, Housing Characteristics 1993, presents statistics about the energy-related characteristics of US households. These data were collected in the 1993 Residential Energy Consumption Survey (RECS) -- the ninth in a series of nationwide energy consumption surveys conducted since 1978 by the Energy Information Administration of the US Department of Energy. Over 7 thousand households were surveyed, representing 97 million households nationwide. A second report, to be released in late 1995, will present statistics on residential energy consumption and expenditures.

NONE

1995-06-01T23:59:59.000Z

158

Research on Building Energy Consumption Situation in Shanghai  

E-Print Network (OSTI)

for building energy-saving. REFERENCES [1] Weiding Long. A consider on strategy of building energy-saving in China. HV&AC, 2005, (35):1-8.(In Chinese) [2] Energy Information Administration, Commercial Buildings Energy Consumption Survey. http: //www... for building energy-saving. REFERENCES [1] Weiding Long. A consider on strategy of building energy-saving in China. HV&AC, 2005, (35):1-8.(In Chinese) [2] Energy Information Administration, Commercial Buildings Energy Consumption Survey. http: //www...

Yang, X.; Tan, H.

2006-01-01T23:59:59.000Z

159

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

160

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy end-use intensities in commercial buildings  

SciTech Connect

This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

Not Available

1994-09-01T23:59:59.000Z

162

Barriers to the adoption of energy-saving technologies in the building sector: A survey study of Jing-jin-tang, China  

Science Journals Connector (OSTI)

Abstract The building sector of China currently consumes 20% of the total energy consumption. Studies on barriers to the adoption of building energy-saving technologies are of great significance on implementing policies related to achieving energy-saving goals. This paper studied 15 barriers with the aid of information collected through questionnaires and semi-structured interviews. The respondents were 135 employees working in the Jing-jin-tang area. Based on the results of the factor analysis, the barriers were categorized into five groups: attitudes of stakeholders, policies and regulations, auxiliary resources, profitability, and adaptability of the technologies. Analysis of the entire sample showed that the stakeholders reluctance to use was the largest barrier, followed by high initial investment and low profitability. Further analysis showed that the occupation and designation of the respondents and the size of the enterprises that they served influenced their perspectives on the barriers. It was found that architects attributed more importance to the adoption of energy-saving technologies than contractors; barriers confronted by employees of large enterprises and small enterprises were different; managers perceived weaker barriers than frontline employees and were more optimistic about the prospect of building energy-saving technologies. Finally, policy recommendations were proposed based on these in-depth and targeted analyses.

Ping Du; Li-Qun Zheng; Bai-Chen Xie; Arjun Mahalingam

2014-01-01T23:59:59.000Z

163

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years December 20, 2013 Gas furnace efficiency has large implications for residential natural gas use December 5, 2013 EIA publishes state fact sheets on residential energy consumption and characteristics August 19, 2013 All 48 related articles › Other End Use Surveys Commercial Buildings - CBECS Manufacturing - MECS Transportation About the RECS EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage

164

Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility...  

Office of Environmental Management (EM)

Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 The...

165

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

166

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network (OSTI)

'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAYBUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

167

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

168

Homepage | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Save the Date! May 7-9, 2014 For the first time, Better Buildings Challenge Partners, Better Buildings Alliance members, and Better Buildings Better Plants Partners will be coming together for the U.S. Department of Energy's annual Better Buildings Summit. Learn more about this distinguished conference. Real-time Energy Management: Improving Energy Efficiency Every 15 Minutes Organizations traditionally rely on monthly utility bills to track whole-building energy use and to benchmark against previous year's usage or other buildings. Tracking energy use at a more granular level can help isolate usage issues and correct them more quickly. Register here. Take the Food Service Energy and Water Survey Complete the survey to help develop an ENERGY STAR 1-100 score for

169

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was slightly above average. Lodging buildings were one of the few...

170

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

171

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 › CBECS Status November 20, 2013 CBECS field data collection completed The active field data collection phase of the 2012 CBECS ended last week. In the next month, home office staff at Westat (the CBECS survey contractor) will continue to work on open cases via telephone interviews. With over 200 interviewers deployed across the U.S. starting in mid-April 2013, the 2012 CBECS was the largest field collection in the 30-year history of CBECS. Westat has been transmitting cases to EIA every few weeks since May, and the data editing phase here at EIA is making good progress. We are on track to publish the first characteristics results in late April or early May.

172

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

E-Print Network (OSTI)

the US EIA Commercial Buildings Energy Consumption Survey (2: US commercial building stock energy consumption and floorof time varying energy consumption in the US commercial

Coffey, Brian

2010-01-01T23:59:59.000Z

173

Public Order and Safety Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Order and Safety Order and Safety Characteristics by Activity... Public Order and Safety Public order buildings are those used for the preservation of law and order or public safety. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Order and Safety Buildings... Volunteer fire stations tend not to be government owned, which probably explains why 33 percent of public order and safety buildings were not owned by Federal, state, or local governments. Only 7 percent of all public order and safety buildings were constructed in the 1990's. The Northeast Census region had a high concentration of public order and safety buildings—43 percent of these buildings are in the Northeast (while the Northeast region contained only 9 percent of all commercial buildings).

174

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per and lower energy usage was reviewed. This factor is contained in the adopted Green Building Code Section 9 for the May 5, 2010 California Energy Commission business meeting. Thank you. John LaTorra Building Inspection

175

The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample  

Science Journals Connector (OSTI)

We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20TypeIa supernovae (SNeIa) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNeIa were discovered over the redshift interval 0.623 z z = 1, thereby nearly doubling the statistical weight of HST-discovered SNeIa beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SNIa luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNeIa. Adding these SNe improves the best combined constraint on dark-energy density, ?DE(z), at redshifts 1.0 z ? = 0.729 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = 1.013+0.068 0.073 (68% CL). Curvature is constrained to ?0.7% in the owCDM model and to ?2% in a model in which dark energy is allowed to vary with parameters w 0 and wa . Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNeIa. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

N. Suzuki; D. Rubin; C. Lidman; G. Aldering; R. Amanullah; K. Barbary; L. F. Barrientos; J. Botyanszki; M. Brodwin; N. Connolly; K. S. Dawson; A. Dey; M. Doi; M. Donahue; S. Deustua; P. Eisenhardt; E. Ellingson; L. Faccioli; V. Fadeyev; H. K. Fakhouri; A. S. Fruchter; D. G. Gilbank; M. D. Gladders; G. Goldhaber; A. H. Gonzalez; A. Goobar; A. Gude; T. Hattori; H. Hoekstra; E. Hsiao; X. Huang; Y. Ihara; M. J. Jee; D. Johnston; N. Kashikawa; B. Koester; K. Konishi; M. Kowalski; E. V. Linder; L. Lubin; J. Melbourne; J. Meyers; T. Morokuma; F. Munshi; C. Mullis; T. Oda; N. Panagia; S. Perlmutter; M. Postman; T. Pritchard; J. Rhodes; P. Ripoche; P. Rosati; D. J. Schlegel; A. Spadafora; S. A. Stanford; V. Stanishev; D. Stern; M. Strovink; N. Takanashi; K. Tokita; M. Wagner; L. Wang; N. Yasuda; H. K. C. Yee; The Supernova Cosmology Project

2012-01-01T23:59:59.000Z

176

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

177

Building-integrated photovoltaics  

SciTech Connect

This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

NONE

1993-01-01T23:59:59.000Z

178

THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE  

SciTech Connect

We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density, {rho}{sub DE}(z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat {Lambda}CDM universe, we find {Omega}{sub {Lambda}} = 0.729 {+-} 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = -1.013{sup +0.068}{sub -0.073} (68% CL). Curvature is constrained to {approx}0.7% in the owCDM model and to {approx}2% in a model in which dark energy is allowed to vary with parameters w{sub 0} and w{sub a} . Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.

Suzuki, N.; Rubin, D.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K. [E.O. Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lidman, C. [Australian Astronomical Observatory, Epping, NSW 1710 (Australia); Amanullah, R.; Botyanszki, J. [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Barrientos, L. F. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Brodwin, M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Connolly, N. [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Dawson, K. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dey, A. [National Optical Astronomy Observatory, Tucson, AZ 85726-6732 (United States); Doi, M. [Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Deustua, S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Eisenhardt, P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ellingson, E. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Fadeyev, V., E-mail: nsuzuki@lbl.gov, E-mail: rubind@berkeley.edu, E-mail: clidman@aao.gov.au [Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA 94064 (United States); Collaboration: Supernova Cosmology Project; and others

2012-02-10T23:59:59.000Z

179

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

180

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

182

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

183

Sustainable Buildings  

Science Journals Connector (OSTI)

The construction and real estate sectors are in a state of change: ... operated differently, i.e. more sustainably. Sustainable building means to build intelligently: the focus ... comprehensive quality concept t...

Christine Lemaitre

2012-01-01T23:59:59.000Z

184

Building technologies  

SciTech Connect

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

185

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

186

Analysis of Building Envelope Construction in 2003 CBECS  

SciTech Connect

The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOEs Reference Buildings .

Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

2007-06-01T23:59:59.000Z

187

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

188

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

189

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

190

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

191

Building America Building Science Education Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Science Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take...

192

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

193

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

194

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

195

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

196

Building Name BuildingAbbr  

E-Print Network (OSTI)

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

197

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

198

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

199

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

200

Survey Background and Technical Information on CBECS  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Background and Technical Information Survey Background and Technical Information Survey Background and Technical Information Survey Background The commercial sector encompasses a vast range of building types- service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as certain buildings that would not be considered "commercial" in a traditional economic sense, such as public and private schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The 2003 CBECS was the eighth survey in the series begun in 1979. From 1979 to 1986, the survey was known as the Nonresidential Buildings Energy Consumption Survey, or NBECS.

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Detecting and tracing building occupants to optimize process control  

E-Print Network (OSTI)

in office buildings: results of a large indoor environmental quality survey, Proceedings Healthy Buildings, Lisbon Khoury, H., & Kamat, V. (2009). Evaluation of position tracking technologies for user localization in indoor construction environments...

Zeiler,W.; Labeodan,T.; Boxem,G.

2014-01-01T23:59:59.000Z

202

Buildings Database  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

203

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

204

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

205

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

206

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

207

CBECS - Buildings and Energy in the 1980's - Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980 Residential Energy Consumption Survey and...

208

Historic Building Renovations  

Energy.gov (U.S. Department of Energy (DOE))

When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

209

Building Stones  

E-Print Network (OSTI)

Ancient Egyptian limestone quarries: A petrological survey.pp. 195 - 212. 2001 Ancient quarries near Amarna. Egyptian36 - 38. 2010 An early Roman quarry for anhydrite and gypsum

2012-01-01T23:59:59.000Z

210

Farm Buildings  

Science Journals Connector (OSTI)

... is intended to guide the American farmer and agricultural student in designing and constructing farm buildings. It is stated that farm ... . It is stated that farm buildings have had their most rapid development in America in the years since 1910. Prior ...

1923-03-24T23:59:59.000Z

211

Detection of buildings through multivariate analysis of spectral, textural, and shape based features Thomas Knudsen National Survey and Cadastre DK, Geodetic Office, Rentemestervej 8, DK-2400 Copenhagen NV, thk@kms.dk  

E-Print Network (OSTI)

- proximate position (AP) of the building to be registered. In the present work, we develop a method detection algorithm is utilized; the first part discriminates buildings from background by thresholding for further work is now to get a more reliable evaluation of the exist- ing buildings, allowing us to decide

212

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

213

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

214

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

215

Trends in Commercial Buildings--Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Commercial Home > Trends in Commercial Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The Commercial Buildings Energy Consumption Survey The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of buildings that would not be considered “commercial” in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction.

216

The Dark Energy Survey (DES) is a next genera6on op6cal survey aimed at understanding the expansion rate of the universe using four complementary  

E-Print Network (OSTI)

The Dark Energy Survey (DES) is a next genera6on op6cal survey aimed of the project will be described. ! Dark Energy Survey Camera! http is building the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel

Wechsler, Risa H.

217

Architecture and Environmental Building Design  

E-Print Network (OSTI)

1 56% 2% 7% 2% 5% 28% Architecture and Environmental Building Design 33% response rate Full Seeking Employment as of the date they completed the survey- 27% 69% 19% 12% Landscape Architecture 46" Architecture, Master of Architecture (M.Arch) Fulltime Employment Amanda Levete Architects, Design, Part II

Plotkin, Joshua B.

218

Building America Residential Buildings Energy Efficiency Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

219

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers (EERE)

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

220

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Better Buildings  

E-Print Network (OSTI)

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

222

1995 Buildings in 80's  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Energy Information Administration Home Page Residential Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Energy Information Administration Home Page Home > Energy Users > Residential Home > 1995 Buildings in 80's 1995 Building in 80's Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980 Residential Energy Consumption Survey and Form EIA-871 of the 1989 Commercial Buildings Energy Consumption Survey. Adobe Acrabat Reader NOTE: To View and/or Print PDF's (requires Adobe Acrobat Reader) - Download Acrobat Reader for viewing PDF files If you experience any difficulties, visit our Technical Frequently Asked Questions. You have the option of downloading the entire report or selected sections of the report.

223

Photovoltaic micro-grid in a remote village in India: Survey based identification of socio-economic and other characteristics affecting connectivity with micro-grid  

Science Journals Connector (OSTI)

Abstract Load prediction is an essential component of the planning process of decentralized electricity supply systems based on micro-grids. However, accurate demand forecasting is a challenging task particularly for rural electrification projects. In this paper, actual operational data of a PV based micro-grid system in Sagar Island of India are analyzed in order to understand the role of different factors affecting households' connectivity, their electricity consumption and potential demands, thereby proposing an approach for planning (and designing) a micro-grid based decentralized electricity supply system. The analysis shows that potential demands for electricity within (as well as outside of) the current reach of the micro-grid are high and future expansion of the system would be effective by taking a 'phased approach of rural electrification. The analysis also shows that households with certain socio-economic characteristics have higher probability for connecting with the micro-grid and the relationship can be used to predict additional load requirements in case of grid extensions. Few recommendations for enhancing the connectivity further are also included in the discussion section of the paper.

Toru Kobayakawa; Tara C. Kandpal

2014-01-01T23:59:59.000Z

224

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

Kinney, Satkartar; Piette, Mary Ann

2003-07-01T23:59:59.000Z

225

Archive Reference Buildings by Building Type: Warehouse  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

226

Archive Reference Buildings by Building Type: Supermarket  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

227

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lights > Lit Floorspace In Lit Buildings Types of Lights > Lit Floorspace In Lit Buildings Lit Floorspace in Lit Buildings To analyze the use of different kinds of lighting equipment with data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), building floorspace can be described in three different ways: total floorspace in all buildings; total floorspace in lit buildings; and total lit floorspace in buildings. The latter two measures of floorspace with lighting differ because not all of the floorspace in lit buildings is illuminated (see Table 1): Table 1: Floorspace Denominators Used To Analyze Lighting Equipment Usage (Million Square Feet) 1995 CBECS Total Floorspace in All Buildings: 58, 772 1995 CBECS Total Floorspace in Lit Buildings: 56, 261 1995 CBECS Total Lit Floorspace in Buildings: 50, 303

228

MODELLING CONSUMER PREFERENCES AND TECHNOLOGICAL CHANGE: SURVEY OF ATTITUDES TO  

E-Print Network (OSTI)

with increased market penetration ("the neighbour effect"). Through the use of a national survey and the building.3.2 Estimating the private discount rate............................................................ 17 2

229

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type.

230

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE))

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

231

Building Scale DC Microgrids  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

232

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE))

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

233

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE))

Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

234

Building Energy Data Exchange Specification (BEDES) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Building Energy Data Exchange Specification Commercial Buildings » Building Energy Data Exchange Specification (BEDES) Building Energy Data Exchange Specification (BEDES) The Building Energy Data Exchange Specification (BEDES, pronounced "beads" or /bi:ds/) is designed to support analysis of the measured energy performance of commercial, multifamily, and residential buildings, by providing a common data format, definitions, and an exchange protocol for building characteristics, efficiency measures, and energy use. Challenge One of the primary challenges to expanding the building energy efficiency retrofit market is the lack of empirical data on the energy performance and physical and operational characteristics of commercial, multifamily, and residential buildings. This makes it difficult for building-level

235

Influence of factors unrelated to environmental quality on occupant satisfaction in LEED and non-LEED certified buildings  

E-Print Network (OSTI)

survey. Proceedings of Healthy Buildings 2006;III:393-7. [9]Proceedings of Healthy Buildings 2006;III:365-70. [10]Conference on Healthy Buildings 2012. [20] Frontczak M,

Schiavon, Stefano; Altomonte, Sergio

2014-01-01T23:59:59.000Z

236

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

237

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

238

Buildings Performance Database (BPD)- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

The overall goal of the Buildings Performance Database (BPD) is to provide public access to high-quality building characteristics and energy consumption data to incentivize, analyze, and validate energy efficiency investments.

239

CBECS Building Types | Open Energy Information  

Open Energy Info (EERE)

CBECS Building Types CBECS Building Types Jump to: navigation, search The list below contains the Building Type classifications, also known as Principal Building Activity, established by the Commercial Buildings Energy Consumption Survey (CBECS) performed by the U.S. Energy Information Administration (EIA)[1]. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Enclosed and Strip Malls) Mercantile (Retail Other Than Mall) Office Other Public Assembly Public Order and Safety Religious Worship Service Vacant Warehouse and Storage References ↑ EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http://en.openei.org/w/index.php?title=CBECS_Building_Types&oldid=270205" What links here Related changes

240

Pounding and impact of base isolated buildings due to earthquakes  

E-Print Network (OSTI)

.3. Base isolation in both adjacent buildings.....................................................72 5. SUMMARY AND CONCLUSION.........................................................................85 5.1. Summary and scope of study... ..............................................................................................................................138 viii LIST OF TABLES TABLE Page 1.1 Survey of earlier research on pounding of buildings...............................................5 3.1 Adjacent building configurations used in this study...

Agarwal, Vivek Kumar

2005-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development of a California commercial building benchmarking database  

SciTech Connect

Building energy benchmarking is a useful starting point for commercial building owners and operators to target energy savings opportunities. There are a number of tools and methods for benchmarking energy use. Benchmarking based on regional data can provides more relevant information for California buildings than national tools such as Energy Star. This paper discusses issues related to benchmarking commercial building energy use and the development of Cal-Arch, a building energy benchmarking database for California. Currently Cal-Arch uses existing survey data from California's Commercial End Use Survey (CEUS), a largely underutilized wealth of information collected by California's major utilities. Doe's Commercial Building Energy Consumption Survey (CBECS) is used by a similar tool, Arch, and by a number of other benchmarking tools. Future versions of Arch/Cal-Arch will utilize additional data sources including modeled data and individual buildings to expand the database.

Kinney, Satkartar; Piette, Mary Ann

2002-05-17T23:59:59.000Z

242

Hidden buildings  

Science Journals Connector (OSTI)

... to charge to research grants a portion of the costs of constructing and financing new buildings. What this means is that institutions confident that their researchers would be well supported ... that institutions confident that their researchers would be well supported have

1991-11-28T23:59:59.000Z

243

b39.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings All Lit Buildings Energy Information Administration 1999 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables 121 Incandescent Standard...

244

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

Energy Star Ratings Using Building Occupancy CharacteristicsDefaults and Whole Building Energy Use Intensity andCalifornia CEUS Office Buildings (n=109) C-6 % of Cal-Arch

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

245

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

246

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

247

Commercial Building Energy Asset Scoring Tool Application Programming Interface  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Building Energy Asset Scoring Tool Commercial Building Energy Asset Scoring Tool Application Programming Interface NORA WANG GEOFF ELLIOTT JUSTIN ALMQUIST EDWARD ELLIS Pacific Northwest National Laboratory JUNE 14, 2013 Commercial Building Energy Asset Score Energy asset score evaluates the as- built physical characteristics of a building Energy Asset Score and its overall energy efficiency, independent of occupancy and operational choices. The physical characteristics include Building envelope (window, wall, roof) HVAC systems (heating, cooling, air distribution) Lighting system (luminaire and lighting control systems) Service hot water system Other major energy-using equipment (e.g. commercial refrigerator, commercial kitchen appliances, etc.) Building energy use is affected by many factors.

248

Survey Statisticians  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Statisticians Survey Statisticians The U.S.Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Survey Statistician, who measures the amounts of energy produced and consumed in the United States. Responsibilities: Survey Statisticians perform or participate in one or more of the following important functions: * Design energy surveys by writing questions, creating layouts and testing questions for clarity and accuracy. * Conduct energy surveys to include sending out and tracking survey responses, editing and analyzing data submis- sions and communicating with respondents to verify data.

249

Building Performance Simulation  

E-Print Network (OSTI)

of Three Building Energy Modeling Programs:andD. Zhu. Buildingenergymodelingprogramscomparison:Comparison of building energy modeling programs: HVAC

Hong, Tianzhen

2014-01-01T23:59:59.000Z

250

Building Performance Simulation  

E-Print Network (OSTI)

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

251

Building Energy Modeling  

Energy.gov (U.S. Department of Energy (DOE))

Building energy simulationphysics-based calculation of building energy consumptionis a multi-use tool for building energy efficiency.

252

Building Performance Simulation  

E-Print Network (OSTI)

Y (2008). DeSTAn integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeSTAn integrated building simulation toolkit,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

253

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

254

Residential and commercial buildings data book: Third edition  

SciTech Connect

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

1988-02-01T23:59:59.000Z

255

Digital Surveying Directional Surveying Specialists | Open Energy  

Open Energy Info (EERE)

Digital Surveying Directional Surveying Specialists Digital Surveying Directional Surveying Specialists Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Digital Surveying Directional Surveying Specialists Author Directional Surveying Specialists Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Digital Surveying Directional Surveying Specialists Citation Directional Surveying Specialists. Digital Surveying Directional Surveying Specialists [Internet]. 2012. [cited 2013/10/08]. Available from: http://www.digitalsurveying.co.za/services/geophysical-borehole-surveying/overview/optical-televiewer/ Retrieved from "http://en.openei.org/w/index.php?title=Digital_Surveying_Directional_Surveying_Specialists&oldid=690244"

256

Buildings and Energy in the 80's -- Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980 Residential Energy Consumption Survey and Form EIA-871 of the 1989 Commercial Buildings Energy Consumption Survey. This report introduces several innovations in energy data reporting that complement the previously published triennial reports of the Residential Energy Consumption Survey (RECS) and the Commercial Buildings Energy Consumption Survey (CBECS). (1) Both residential and commercial sector buildings data are presented together in the report. Common units of analysis, the residential or commercial building and floorspace, are used to facilitate comparison.17 (2) Unlike the triennial RECS and CBECS that

257

Sensor Characteristics Reference Guide  

SciTech Connect

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

258

Energy management systems for commercial buildings. Final report  

SciTech Connect

Increasing costs of energy and the development of lower cost microelectronics have created a growing market for energy management systems applied to commercial buildings. This report examines the spectrum of EMS available and how they are used in different types of commercial buildings. An informal survey of 197 commercial building owners provided additional information on EMS installed and the energy savings attributed to those systems. Evaluations were performed to identify types of EMS appropriate to specific types of commercial buildings.

Woody, A.W.

1986-02-01T23:59:59.000Z

259

White Ranch Wetlands Biological Survey  

E-Print Network (OSTI)

White Ranch Wetlands Biological Survey and Permanent Vegetation Monitoring Plots Prepared for: U Services Building Colorado State University Fort Collins, CO 80523 March 1998 #12;WHITE RANCH WETLANDS assessment of the White Ranch wetlands. In addition we set up permanent plots along transects to collect

260

Robotic Surveying  

SciTech Connect

ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine-actuated functions to be controlled by an onboard computer. The computer-controlled Speedrower was developed at Carnegie Mellon University to automate agricultural harvesting. Harvesting tasks require the vehicle to cover a field using minimally overlapping rows at slow speeds in a similar manner to geophysical data acquisition. The Speedrower had demonstrated its ability to perform as it had already logged hundreds of acres of autonomous harvesting. This project is the first use of autonomous robotic technology on a large-scale for geophysical surveying.

Suzy Cantor-McKinney; Michael Kruzic

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

2007 CBECS Large Hospital Building FAQs  

Gasoline and Diesel Fuel Update (EIA)

FAQs Main Report | Methodology | FAQ | FAQs Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 How were the data collected for this study? These data were collected with the 2007 Commercial Building Energy Consumption Survey (CBECS). See the 2007 CBECS Large Hospital Building Methodology Report for details. Why are you publishing estimates only for large hospitals and not the rest of the commercial building population? A majority of the 2007 CBECS buildings were sampled from a frame that used a less expensive experimental method to update the 2003 frame for new construction. After careful analysis, EIA determined that the buildings sampled from this experimental frame were not representative of the commercial building population and therefore the 2007 CBECS sample as a

262

A Look at Education Buildings - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Home: A Look at CBECS Building Activities How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they on multibuilding complexes? How do they use energy and how much does it cost? How do they use electricity? How do they use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) EDUCATION BUILDINGS There were an estimated 309,000 education buildings in the U.S. in 1995. Number of Buildings In the Commercial Buildings Energy Consumption Survey (CBECS), education buildings include those that are used for academic or technical classroom instruction. They include preschools, elementary schools, middle or junior high schools, high schools, vocational schools, and college or university classrooms.

263

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

264

Model Building  

E-Print Network (OSTI)

In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly seen at HERA.

Paul H. Frampton

1997-06-03T23:59:59.000Z

265

Buildings Performance Database | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database Buildings Performance Database Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV Source Department of Energy's Buildings Performance Database Date Released July 09th, 2012 (2 years ago) Date Updated Unknown Keywords Buildings Performance Database Dayton Electricity Gainesville Natural Gas open data Residential Data application/zip icon BPD Dayton and Gainesville Residential csv files in a zip file (zip, 2.8 MiB) text/csv icon BPD Dayton and Gainesville Residential Building Characteristics data (csv, 1.4 MiB) text/csv icon BPD Dayton and Gainesville Residential data headers (csv, 5.8 KiB)

266

Building America Analysis Spreadsheets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America Analysis Spreadsheets America Analysis Spreadsheets Building America Analysis Spreadsheets The Building America Analysis Spreadsheets are companions to the House Simulation Protocols, and can assist with many of the calculations and look-up tables found in the report. The spreadsheets provide the set of standard operating conditions-including hourly and monthly profiles for occupancy, lighting, appliances, and miscellaneous electric loads (MELs)-developed by Building America to objectively compare energy use before and after a retrofit, and against a Benchmark new construction building. Building America analysts may also find the spreadsheets useful for documenting and comparing building characteristics for the Building America projects (pre-retrofit vs. post-retrofit, or new construction test

267

Building Energy Software Tools Directory: ISOVER Energi  

NLE Websites -- All DOE Office Websites (Extended Search)

ISOVER Energi ISOVER Energi ISOVER Energi logo Calculates: U-value, for constructions with and without thermal bridges; total heat loss for buildings; and energy demand for buildings. ISOVER Energi compares heat loss to the heat loss frame in the Danish Building Regulations. The energy demand is compared to the energy frame in the Danish Building Regulations. Furthermore ISOVER Energi calculates the profitability of activities e.g. retrofit, renewing of windows, to improve the energy performance of existing buildings. The profitability is compared to the criteria in the Danish Building Regulations. Access to databases with characteristics for common building materials and with linear heat losses for typical solutions for connections. The database facility is planned to be enlarged with databases for windows, boilers,

268

Achieving acoustical satisfaction in a green building  

Science Journals Connector (OSTI)

The Carnegie Institutions Global Ecology Research Center at Stanford University has garnered many accolades including the AIAs Excellence in SustainabilityAward. This building incorporates many green and energy?saving design features mechanical systems and materials. The occupants of this facility have given it high marks in U.C. Berkeleys Center for the Built Environments (CBE) survey of buildings. Staff at the Global Ecology Research Center are shown to be more satisfied with their acoustical environment than occupants of other green buildings surveyed by CBE. Measured acoustical data for speech privacy in open plan and enclosed conference rooms will be presented along with descriptions of acoustical design attributes for the building.

2006-01-01T23:59:59.000Z

269

The following organizations recognize that the Commercial Buildings Energy Consu  

U.S. Energy Information Administration (EIA) Indexed Site

following organizations recognize that the Commercial Buildings Energy Consumption Survey (CBECS) following organizations recognize that the Commercial Buildings Energy Consumption Survey (CBECS) provides critically important information to support programs related to energy efficiency in commercial buildings in the United States. These organizations strongly encourage participation in the 2012 CBECS. A.I.D. Development Group American Council for an Energy-Efficient Economy (ACEEE) American Hotel & Lodging Association American Society of Civil Engineers (ASCE) American Society of Interior Designers (ASID) APPA, "Leadership in Educational Facilities" Architecture 2030 ASHRAE Boston Properties Brandywine Realty Trust Building Owners and Managers Association (BOMA) International CannonDesign Cassidy Turley Center for Environmental Innovation in Roofing

270

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

271

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

272

A Look at Office Buildings - Index  

U.S. Energy Information Administration (EIA) Indexed Site

Office Office Home: A Look at CBECS Building Activities How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they on multibuilding complexes? How do they use energy and how much does it cost? How do they use electricity? How do they use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) OFFICE BUILDINGS There were an estimated 705,000 office buildings in the U.S. in 1995. Number of Buildings In the Commercial Buildings Energy Consumption Survey (CBECS), office buildings include buildings used for general office space, professional offices, and administrative offices. For example, an office may be a computer center, bank, consultant's office, law office, or medical office. An office building may also be part of a campus or complex, such as an administrative building on a college campus. (See Description of Building Types on the main CBECS page for a more detailed description.)

273

Building and Buildings, Scotland: Draft Building Standards (Scotland) Regulations, 1961  

E-Print Network (OSTI)

These regulations, made under the Building (Scotland) Act, 1959, prescribe standards for buildings for the purposes of Part II of that Act. The matters in relation to which standards have been prescribed are described in ...

Her Majesty's Stationary Office

1961-01-01T23:59:59.000Z

274

Benchmarking Buildings to Prioritize Sites for Emissions Analysis |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis Benchmarking Buildings to Prioritize Sites for Emissions Analysis October 7, 2013 - 10:54am Addthis YOU ARE HERE Step 2 When actual energy use by building type is known, benchmarking the performance of those buildings to industry averages can help establish those with greatest opportunities for GHG reduction. Energy intensity can be used as a basis for benchmarking by building type and can be calculated using actual energy use, representative buildings, or available average estimates from agency energy records. Energy intensity should be compared to industry averages, such as the Commercial Buildings Energy Consumption Survey (CBECS) or an agency specific metered sample by location. When a program has access to metered data or representative building data,

275

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

276

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

277

Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures  

Energy.gov (U.S. Department of Energy (DOE))

This webinar, presented by research team Fraunhofer Center for Sustainable Energy Systems (CSE), reviewed basic physical characteristics and thermal properties of phase change materials (PCMs) and provided guidance on how to effectively apply PCMs in buildings in the United States.

278

Climate Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Employee Operations Employee Climate Survey March 2009 Acknowledgements The Berkeley Lab Survey Team consisted of the following: Jim Krupnick, Sponsor Vera Potapenko, Project Lead Karen Ramorino, Project Manager Chris Paquette, MOR Associates Alexis Bywater, MOR Associates MOR Associates, an external consulting firm, acted as project manager for this effort, analyzing the data and preparing this report. MOR Associates specializes in continuous improve- ment, strategic thinking and leadership development. MOR Associates has conducted a number of large-scale surveys for organizations in higher education, including MIT, Stanford, the University of Chicago, and others. MOR Associates, Inc. 462 Main Street, Suite 300 Watertown, MA 02472 tel: 617.924.4501

279

Buildings Performance Database Analysis Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Buildings Commercial Buildings » Buildings Performance Database » Buildings Performance Database Analysis Tools Buildings Performance Database Analysis Tools The Buildings Performance Database will offer four analysis tools for exploring building data and forecasting financial and energy savings: a Peer Group Tool, a Retrofit Analysis Tool, a Data Table Tool, and a Financial Forecasting Tool. Available now: Peer Group Tool The Peer Group Tool allows users to peruse the BPD, define peer groups, and analyze their performance. Users can create Peer Groups by filtering the dataset based on parameters such as building type, location, floor area, age, occupancy, and system characteristics such as lighting and HVAC type. The graphs show the energy performance distribution of those

280

Material quantities in building structures and their environmental impact  

E-Print Network (OSTI)

Improved operational energy efficiency has increased the percentage of embodied energy in the total life cycle of building structures. Despite a growing interest in this field, practitioners lack a comprehensive survey of ...

De Wolf, Catherine (Catherine Elvire Lieve)

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

282

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

283

Buildings without energy bills  

Science Journals Connector (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

284

Academic Buildings Student & Admin.  

E-Print Network (OSTI)

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

285

Historic Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Building Renovations Historic Building Renovations Historic Building Renovations October 16, 2013 - 4:52pm Addthis Renewable Energy Options for Historical Building Renovations Photovoltaics (PV) Solar Water Heating Geothermal Heat Pumps Biomass Heating When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

286

Building Technologies Office: Subscribe to Building America Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

287

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network (OSTI)

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: Buildingof comparing three Building Energy Modeling Programs (BEMPs)

Zhu, Dandan

2014-01-01T23:59:59.000Z

288

Building Technologies Research and  

E-Print Network (OSTI)

Building Technologies Research and Integration Center Breaking new ground in energy efficiency #12;Building Technologies Research To enjoy a sustainable energy and environmental future, America must these enormous challenges. Today, through the Building Technologies and Research Integration Center (BTRIC

Oak Ridge National Laboratory

289

Building Performance Simulation  

E-Print Network (OSTI)

low energy buildings, with site EUI of 40 or lowerbuildings in the US (EUI of 90 kBtu/ft). Thisthe bubble represents the EUI. These buildings were

Hong, Tianzhen

2014-01-01T23:59:59.000Z

290

Building Energy Software Tools Directory: Tools by Country - Canada  

NLE Websites -- All DOE Office Websites (Extended Search)

Canada Canada A C D E F H I M P R S V Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. CATALOGUE windows, fenestration, product information, thermal characteristics Free software. DAYSIM annual daylight simulations, electric lighting energy use, lighting controls Free software. Software has been updated. EE4 CBIP whole building performance, building incentives Free software. Software has been updated. EE4 CODE standards and code compliance, whole building energy performance Free software. Software has been updated. Energy Profile Tool benchmarking, energy efficiency screening, end-use energy analysis, building performance analysis, utility programs ENERPASS

291

"Building Energy Data Exchange Specification"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification" Building Energy Data Exchange Specification" "Version 2.3" "application/vnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships. " "BEDES is used for the DOE Building Performance Database (BPD) as well as the Standard Energy Efficiency Disclosure (SEED) platform, as shown below. Note that SEED includes additional fields that are outside BPD scope (e.g. property address and auditor contact information)."

292

Building a Molecule Building Structures in Moe  

E-Print Network (OSTI)

14 Chapter 3 Building a Molecule #12;15 Building Structures in Moe Dorzolamide Exercise 1 #12;16 Open the Molecule Builder · Open the Molecule Builder panel using MOE | Edit | Build | Molecule, the chiral center will be either R or S, and one of the two will be highlighted in green. The green

Fischer, Wolfgang

293

Buildings and Energy in the 80's -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

's > Overview 's > Overview Overview Total Residential and Commercial Primary Consumption by Type of Building Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980 Residential Energy Consumption Survey and Form EIA-871 of the 1989 Commercial Buildings Energy Consumption Survey. divider line Introduction The Energy Information Administration (EIA) collects data on energy consumption, expenditures, and other energy-related topics in the major energy-consuming sectors of the U.S. economy. The residential and commercial sectors are two major sectors that many energy analysts like to consider together, as energy use is primarily related to the building shell and the stock of energy-consuming goods within the shell in these sectors. EIA conducts separate surveys for the two sectors, the Residential Energy Consumption Survey (RECS) and the Commercial Buildings Energy Consumption Survey (CBECS).1 Prior to the first CBECS, there was a very poor understanding of the complexities of energy use in commercial buildings, or the amount of energy consumed in the commercial sector. This report summarizes and synthesizes energy data that were collected by these two surveys during the 1980’s, when major changes in energy policy were implemented following the energy crisis decade of the 1970’s.

294

Building on a Base: Applying Physics Education  

E-Print Network (OSTI)

Building on a Base: Applying Physics Education Research to Physics Teaching S.J. Pollock CU Boulder Concept Inventory (FCI) R. Hake, "...A six-thousand-student survey..." AJP 66, 64-74 (`98). = post. Pre R. App. Pre R. Care. Pre Math Pre Effort Pre Skept. Pre Overall Post Indep. Post Coher. Post Conc

Colorado at Boulder, University of

295

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

296

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

297

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

298

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

299

Building Performance Simulation  

E-Print Network (OSTI)

LEEDNCCertifiedBuildings (courtesyNewBuildingInstitute) Figure3MeasuredEnergyUseIntensitiesofBig?BoxRetailsinUSandCanada(

Hong, Tianzhen

2014-01-01T23:59:59.000Z

300

GSA Building Energy Strategy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rapid Building Assessments Green Button 12 Remote Building Analytics Platform First Fuel Dashboard 13 Data Center Ronald Reagan Detail Summary First Fuel Analysis 14...

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar buildings. Overview: The Solar Buildings Program  

SciTech Connect

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

302

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

303

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

304

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

305

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

306

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

307

Building Green in Greensburg: Business Incubator Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

308

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

309

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

How does EIA estimate energy consumption and end uses in U.S. homes? How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. This information is combined with data from energy suppliers to these homes to estimate energy costs and usage for heating, cooling, appliances and other end uses â€" information critical to meeting future energy demand and improving efficiency and building design. RECS uses a multi-stage area probability design to select sample methodology figure A multi-stage area probability design ensures the selection

310

About the Buildings Performance Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » About the Commercial Buildings » Buildings Performance Database » About the Buildings Performance Database About the Buildings Performance Database "Upgrading the energy efficiency of America's buildings is one of the fastest, easiest, and cheapest ways to save money, cut down on harmful pollution, and create good jobs right now." -President Obama Open data has fueled entrepreneurship and transformed fields such as weather, GPS and health. Yet in the energy efficiency market, one of the primary challenges is the lack of empirical data demonstrating the relationship between building characteristics and energy performance. Rigorous performance risk assessments of potential energy efficiency measures could support better decision-making among building owners and

311

A Look at Commercial Buildings in 1995  

U.S. Energy Information Administration (EIA) Indexed Site

site. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page site. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > A Look at Commercial Buildings in 1995 “A Look at Commercial Buildings in 1995: Characteristics, Energy Consumption, and Energy Expenditures” The report can be downloaded in its entirety, or in sections (all in PDF format): Full report (includes all detailed tables; 402 pages, 5.7 MB) Contents: At A Glance (4 pages, 315 KB) Chapters 1 through 5 (61 pages, 363 KB) 1. Overview 2. Major Characteristics of Commercial Buildings 3. End Uses, Energy Sources, and Energy Consumption 4. End-Use Equipment and Energy Conservation 5. Detailed Tables (introductory text) How to Read the Tables Categories of Data in the Tables

312

Commercial Building Partnerships Replication and Diffusion  

SciTech Connect

This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners replication efforts of technologies and approaches used in the CBP project to the rest of the organizations building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

2013-09-16T23:59:59.000Z

313

Residential and commercial buildings data book. Second edition  

SciTech Connect

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

314

Better Buildings Neighborhood Program  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

315

Building Technology MSc Programme  

E-Print Network (OSTI)

of this programme is on the design of innovative and sustainable building components and their integration

Langendoen, Koen

316

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

317

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

318

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

319

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

320

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BNL | Baryonic Oscillation Spectroscopic Survey (BOSS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Baryonic Oscillation Spectroscopic Survey (BOSS) Baryonic Oscillation Spectroscopic Survey (BOSS) sloan telescope The 2.5-meter Sloan telescope in New Mexico Mapping the Luminous Universe How are galaxies clustered together? What is fueling the accelerating expansion of the universe? Just what is dark energy? These are the big questions that scientists working at the Baryon Oscillation Spectroscopic Survey (BOSS) are asking. Brookhaven National Lab is a member of BOSS, the largest of the four surveys that make up the Sloan Digital Sky Survey III, which maps the sky over the Northern Hemisphere with New Mexico's 2.5-meter Sloan telescope in an attempt to define dark energy and measure its effects. Building on the legacy of the Sloan Digital Sky Survey (SDSS) and SDSS-II, the SDSS-III collaboration is working to map the Milky Way, search

322

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

323

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

324

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

325

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

326

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

327

DOE - Better Building  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

328

REPORT OF SURVEY OF OAK RIDGE ISOTOPE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAK RIDGE ISOTOPE OAK RIDGE ISOTOPE ENRICHMENT (CALUTRON) FACILITY BUILDING 9204-3 U.S. Department of Energy Office of Environmental Management & Office of Nuclear Energy Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 FINAL May 8, 2000 Contents 1. Introduction 1.1 Purpose 1.2 Facility Description 1.3 Organization Representatives 1.4 Survey Participants 2. Summary, Conclusions & Recommendations 2.1 Transfer Considerations 2.2 Post-Transfer EM Path Forward & Management Risk 3. Survey Results 4. Stabilization and Other Actions Required for Transfer 5. Surveillance & Maintenance After Transfer 6. Other Transfer Details 7. Attachments and References Appendix A - Detailed Survey Notes

329

Fact Sheet- Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Neighborhood Program.

330

John Anderson Campus UNIVERSITY BUILDINGS  

E-Print Network (OSTI)

John Anderson Campus UNIVERSITY BUILDINGS 1 McCance Building 2 Collins Building 3 Livingstone Tower 4 Accommodation Office 5 Graham Hills Building 6 Turnbull Building 7 Royal College Building 8 Students' Union 9 Centre for Sport & Recreation 10 St Paul's Building/Chaplaincy 11 Thomas Graham Building

Mottram, Nigel

331

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

332

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

333

Building America Update - August 9, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 9, 2013 August 9, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Building America Supports Home for Life * As the nation's baby boomers are entering retirement age, a recent AARP survey shows that nearly 70% would like to remain in their homes. Hanley Wood's Home for Life website and virtual tour uses universal design principles to help aging boomers transform a classic family home into a convenient, energy-efficient, and low-maintenance home. An all-star team of experts-including Building America- contributes expertise in remodeling design, construction;

334

Types of Lighting in Commercial Buildings - Changes  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Lighting Changes in Lighting The percentage of commercial buildings with lighting was unchanged between 1995 and 2003; however, three lighting types did show change in usage. Compact fluorescent lamps and halogen lamps showed a significant increase between 1995 and 2003 while the use of incandescent lights declined. The lighting questions in the 1995, 1999, and 2003 CBECS questionnaires were virtually identical which facilitates comparison across survey years. The use of compact fluorescent lamps more than doubled, from just under 10 percent of lit buildings to more than 20 percent (Figure 17 and Table 5). The use of halogen lamps nearly doubled, from 7 percent to 13 percent of lit buildings. Use of incandescent lights was the only lighting type to decline; their use dropped from 59 percent to just over one-half of lit buildings.

335

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

336

Building Green in Greensburg: City Hall Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

337

Building America Webinar: High Performance Building Enclosures...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

used to improve energy performance of building envelopes while dealing with issues like ice damming during exterior "overcoat" insulation retrofits? How can deep energy retrofits...

338

Influence of factors unrelated to environmental quality on occupant satisfaction in LEED and non-LEED certified buildings  

E-Print Network (OSTI)

have better indoor environments? New evidence. BuildingIEQ parameters for each non-environmental factor and theira Web-based indoor environmental quality survey. Indoor Air

Schiavon, Stefano; Altomonte, Sergio

2014-01-01T23:59:59.000Z

339

A Boiler Plant Energy Efficiency and Load Balancing Survey  

E-Print Network (OSTI)

Daily energy use data was used to perform an energy efficiency survey of a medium-sized university boiler plant. The physical plant operates centralized mechanical plants to provide both chilled water and steam for building conditioning. Steam...

Nutter, D. W.; Murphy, D. R.

340

NREL's Field Data Repository Supports Accurate Home Energy Analysis (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Data Field Data Repository Supports Accurate Home Energy Analysis The Residential Buildings Research Group at the National Renewable Energy Laboratory (NREL) has developed a repository of research-level residential building characteristics and historical energy use data to support ongoing efforts to improve the accuracy of residential energy analysis tools and the efficiency of energy assessment processes. The Field Data Repository currently includes data collected from historical programs where residential building characteristics (building geometry, insulation levels, equipment types, etc.), generally collected through energy audits, have been connected to measured energy use. With an emphasis on older homes, the repository contains datasets from Home Energy Rating System

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

342

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

343

Database Aids Building Owners and Operators in Energy-Efficiency Project Decision Making  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE's Buildings Performance Database, launched in June 2013, provides access to empirical data on the actual energy performance, as well as physical and operational characteristics of commercial and residential buildings.

344

A Look at Food Service Buildings - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Food Service Food Service Home: A Look at CBECS Building Activities How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? How do they use energy and how much does it cost? How do they use electricity? How do they use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) FOOD SERVICE BUILDINGS There were an estimated 285,000 food service buildings in the U.S. in 1995. Number of Buildings In the Commercial Buildings Energy Consumption Survey (CBECS), food service buildings are those used for the preparation and sale of food and beverages for consumption; they include buildings such as fast food establishments, full service restaurants, caterers, cafeterias, diners, and bars.

345

A Look at Retail and Service Buildings - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Retail and Services Retail and Services Home: A Look at CBECS Building Activities How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? How do they use energy and how much does it cost? How do they use electricity? How do they use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) RETAIL AND SERVICE BUILDINGS There were an estimated 1,289,000 retail and service buildings in the U.S. in 1995. Number of Buildings In the Commercial Buildings Energy Consumption Survey (CBECS), information is collected separately for service buildings, enclosed malls, strip shopping centers, and retail buildings other than malls. In most CBECS publications, these types are all grouped into one category; where possible, this profile will look at each of these separately.

346

Kyiv institutional buildings sector energy efficiency program: Technical assessment  

SciTech Connect

The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

1997-08-01T23:59:59.000Z

347

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy A B C D E F G H I L M N O P R S T U Z Tool Applications Free Recently Updated AEPS System Planning electrical system, renewable energy system, planning and design software, modeling, simulation, energy usage, system performance, financial analysis, solar, wind, hydro, behavior characteristics, usage profiles, generation load storage calculations, on-grid, off-grid, residential, commercial, system sizing, utility rate plans, rate comparison, utility costs, energy savings Software has been updated. Archelios PRO Photovoltaic simulation, 3D design, economics results BlueSol PV system sizing, PV system simulation, grid-connected PV systems, electrical components, shading, economic analysis. COMFIE energy performance, design, retrofit, residential buildings, commercial buildings, passive solar Software has been updated.

348

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

8 8 2003 Lighting Consumption and Energy Intensities, by Commercial Building Type Annual Lighting Building Type Education 14% 33.1 8.4% 3.4 Food Sales 2% 13.5 3.4% 10.8 Food Service 2% 12.3 3.1% 7.4 Health Care 5% 30.8 7.8% 9.7 Inpatient 3% 22.3 5.7% 11.8 Outpatient 2% 8.2 2.1% 6.6 Lodging 7% 36.3 9.3% 7.1 Mercantile 16% 90.3 23.0% 8.1 Retail (Other Than Mall) 6% 32.5 8.3% 7.5 Enclosed and Strip Malls 10% 57.7 14.7% 8.4 Office 18% 82.4 21.0% 6.8 Public Assembly 6% 7.9 2.0% 2.1 Public Order and Safety 2% 5.3 1.3% 4.8 Religious Worship 5% 5.0 1.3% 1.3 Service 6% 18.5 4.7% 4.6 Warehouse and Storage 13% 38.7 9.9% 3.8 Other 2% 17.3 4.4% 10.0 Vacant 1% 1.2 0.3% 0.5 Total (1) 392.4 100% Source(s): Percent of Total Total Annual Lighting Lighted Floorspace Energy (billion KWh) End-Use Intensity (kWh/SF) EIA, 2003 Commericial Buildings Energy Consumption Survey Characteristics and End-Uses, Oct. 2006 and Sept. 2008, Table A1 and Table E1A

349

Balancing Hydronic Systems in Multifamily Buildings  

SciTech Connect

In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

Ruch, R.; Ludwig, P.; Maurer, T.

2014-07-01T23:59:59.000Z

350

Atlanta Survey  

U.S. Energy Information Administration (EIA) Indexed Site

Profile of Motor-Vehicle Fleets in Atlanta 1994 Profile of Motor-Vehicle Fleets in Atlanta 1994 Assessing the Market for Alternative-Fuel Vehicles 13 Data Tables for Private Fleets There are two types of tables. One type provides counts of the number of fleets that fall into various categories of data. The other provides counts of the number of vehicles by characteristics. Where only fleet data are provided instead of vehicle data, it means that particular questionnaire item was asked at the fleet level only. Vehicle questions were recorded by type of vehicle not by individual vehicle. Table 1. Number of Private Fleets in Atlanta by Fleet Size and Selected Characteristics Fleet Size (number of vehicles) Selected Characteristics Total 6 to 19 20 to 49 50 or More Total Number of Fleets . . . . . . . . . . . . . . . 3,589

351

Commercial Building Energy Asset Score Features | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Score Score Features Commercial Building Energy Asset Score Features The Asset Scoring Tool evaluates buildings by use type. The initial version of the Asset Scoring Tool included: office, school, retail, and unrefrigerated warehouse buildings. Phase II currently under development, which will be used for the 2013 Pilot, includes library, lodging, multi-family housing, and courthouse buildings, as well as mixed-use types of buildings that incorporate Phase I and II. You can enter small and large commercial buildings, and an Asset Score will be equally applicable to new and existing buildings. Inputs You can enter these building characteristics: General information-number of floors, footprint dimension, orientation, and use type Envelope components-roof, exterior wall, and floor types and

352

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

353

FOREST CENTRE STORAGE BUILDING  

E-Print Network (OSTI)

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE BUILDING A&S BUILDING EXTENSIO N P7 P5.1 P5 P2 P3.1 P3.2 P6 P8 P4 P2 P2 P4 P8 P2.4 PARKING MAP GRENFELL

deYoung, Brad

354

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

355

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

356

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

357

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

358

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

359

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

360

Reference Buildings by Building Type: Strip mall | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strip mall Reference Buildings by Building Type: Strip mall In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes...

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Reference Buildings by Building Type: Large Hotel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hotel Reference Buildings by Building Type: Large Hotel In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the...

362

DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Strong: Building FORTIFIED Homes Part II DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED Homes Part II Watch the video or view the presentation slides below...

363

Building Green in Greensburg: Business Incubator Building | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Business Incubator Building Building Green in Greensburg: Business Incubator Building This poster highlights energy efficiency, renewable energy, and sustainable features of the...

364

Apply: Funding Opportunity- Buildings University Innovators and Leaders Development (BUILD)  

Energy.gov (U.S. Department of Energy (DOE))

The Building Technologies Office (BTO)s Emerging Technologies Program has announced the availability of up to $1 million for the Buildings University Innovators and Leaders Development (BUILD)...

365

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

366

Building operating systems services: An architecture for programmable buildings.  

E-Print Network (OSTI)

7.3.2 Building Performance Analysis . . . . . . 7.4 RelatedWork 2.1 Building Physical Design . . . . . . . . . .3.2.6 Building Applications . . . . . . . . . . .

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

367

Reflection Survey (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey (Nannini, 1986) Reflection Survey (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Reflection Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes "seismic analyses" - no indication of active/passive, reflection/refraction, etc. ---> "On the contrary, in areas with little or no volcanic activity, assumptions on the nature, size and characteristics of the source of the thermal anomaly are generally much more difficult and hypothetical. In these circumstances, some useful data can be obtained from accurate seismic analyses, together with a seismotectonic and geodynamic

368

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

369

Macallen Building Condominiums  

Boston, MA The Macallen Building, a 140-unit condominium building in South Boston, was designed to incorporate green design as a way of marketing a green lifestyle while at the same time increasing revenue from the project.

370

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

371

Lockheed Building 157  

Sunnyvale, CA In 1983, Lockheed Missiles and Space Company, Inc. (now Lockheed Martin) moved 2,700 engineers and support staff from an older office building on the Lockheed campus into the new Building 157.

372

Better Buildings Federal Award  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis.

373

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

374

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

375

Special Building Renovations  

Energy.gov (U.S. Department of Energy (DOE))

A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

376

Grid-Responsive Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S.-India Joint Center for Building Energy Research and Development (CBERD) conducts energy efficiency research and development with a focus on integrating information technology with building controls and physical systems for commercial/high-rise residential units.

377

Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings  

SciTech Connect

2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.

Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

2010-06-01T23:59:59.000Z

378

Sustainable Building Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Buildings & Campuses Sustainable Building Contacts Sustainable Building Contacts For more information about sustainable buildings and campuses, contact: Sarah Jensen...

379

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

380

Buildings Performance Database Overview  

Energy.gov (U.S. Department of Energy (DOE))

Buildings Performance Database Overview, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

382

Buildings Sector Working Group  

Annual Energy Outlook 2012 (EIA)

heating, cooking, lighting, and refrigeration * Hurdle rates - Update using latest Johnson Controls reports regarding commercial investment decisions * ENERGY STAR buildings -...

383

HEEP CENTER Building # 1502  

E-Print Network (OSTI)

1 HEEP CENTER Building # 1502 EMERGENCY EVACUATION PLAN Prepared by: Harry Cralle and Mark Wright a building. Examples of such occasions include: smoke/fire, gas leak, bomb threat. Pre-planning and rehearsal are effective ways to ensure that building occupants recognize the evacuation alarm and know how to respond

Tomberlin, Jeff

384

Digital Planetaria: Building Bridges  

E-Print Network (OSTI)

Digital Planetaria: Building Bridges Building Bridges Between Institutions, Universities Group Goals & Objectives: The goal of the Building Bridges focus group was to create a framework applications and dreaming about their potential in the digital dome environment. #12;L to R, Back to front

Collar, Juan I.

385

Link Building Martin Olsen  

E-Print Network (OSTI)

Link Building Martin Olsen PhD Dissertation Department of Computer Science Aarhus University Denmark #12;#12;Link Building A Dissertation Presented to the Faculty of Science of Aarhus University The Computational Complexity of Link Building Proc. Computing and Combinatorics, 14th Annual International

386

BROOKHAVENNATIONAL LABORATORY Building 510  

E-Print Network (OSTI)

BROOKHAVENNATIONAL LABORATORY Building 510 P.O. Box 5000 Upton, NY 11973-5000 Phone 631 344 in C-AD buildings. Work Planning and Control for Experiments The intent of this agreement is to ensure or modification work on experiments performed by Physics personnel or guests in C-AD buildings. The Collider

Homes, Christopher C.

387

Bioengineering/ Engineering Building,  

E-Print Network (OSTI)

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction Roble Hall 'CO NNO R LN Skilling HEPL South Green Earth Sciences Mitchell Earth Sciences Moore Materials Rsrch. Durand David Packard Elect. Eng. Paul G. Allen Building Godzilla Thornton Center Bambi Roble Gym e

Bogyo, Matthew

388

Bioengineering/ Engineering Building,  

E-Print Network (OSTI)

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction HFD HFD HFD GALVEZST CAPISTRANOW BOWDOIN LN L VIAORTEGA VIAPALOU O 'CO NNO R LN Skilling HEPL South Green Earth Building Godzilla Thornton Center Bambi Roble Gym e Cypress Hall Cedar Hall Cogen Facility Tresidder Union

Bogyo, Matthew

389

The Economics of Green Building  

E-Print Network (OSTI)

Environment Quality in Green Buildings: A Review," Nationalof Popular Attention to Green Building Notes: Sources:2007 - 2009 panel of green buildings and nearby control

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

390

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

391

Hybrid Model for Building Performance Diagnosis and Optimal Control  

E-Print Network (OSTI)

and two capacitances, is used to simulate building envelope whose parameters are determined in frequency domain using the theoretical frequency characteristics of the envelope. Internal mass is represented by a 2R2C thermal network model, which consists...

Wang, S.; Xu, X.

2003-01-01T23:59:59.000Z

392

Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design  

E-Print Network (OSTI)

Building characteristics Country Australia Canada Finland Italy Ventilation Air- Non air- Unknown system conditioned conditioned Operable Yes No Unknown windows LEED

Frontczak, Monika; Schiavon, Stefano; Goins, John; Arens, Edward A; Zhang, Hui Ph.D; Wargocki, Pawel

2012-01-01T23:59:59.000Z

393

Sweden Building Data | Open Energy Information  

Open Energy Info (EERE)

For several years now, the Swedish Energy Agency has been working, under For several years now, the Swedish Energy Agency has been working, under the name of the STIL2 project, to improve the general level of awareness and knowledge of how energy is used in non-residential premises, and of how it can used more efficiently. Each year, the Agency carries out detailed surveys of energy use in about 150 representative buildings. So far, this has covered energy use in offices, schools and healthcare premises over the years 2005-2007. In addition to comparison of performance between these years, results are also compared with a similar investigation from 1990. The emphasis of the work of the STIL2 investigation is on the use of electricity. The results are based on random selection, by Statistics Sweden (SCB), of buildings throughout the country. The results of the surveys that are then

394

Archive Reference Buildings by Building Type: Stand-alone retail  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

395

Archive Reference Buildings by Building Type: Strip mall  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

396

Archive Reference Buildings by Building Type: Secondary school  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

397

Archive Reference Buildings by Building Type: Small office  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

398

Archive Reference Buildings by Building Type: Fast food  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

399

Archive Reference Buildings by Building Type: Primary school  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

400

Building Technologies Office: Sensor Suitcase for Small Commercial Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Suitcase for Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project to someone by E-mail Share Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Facebook Tweet about Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Twitter Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Google Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Delicious Rank Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Digg

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chapter 3: Building Siting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

402

NREL: Buildings Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

403

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

404

Better Buildings Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kristen Taddonio DOE/EERE/BTO/Commercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce building energy use by 50 percent, saving ~$2.2 trillion in energy-related costs. CBI Program Goals: New Buildings - Demonstrate 50% cost-effective savings at a convincing scale by 2020 (EISA 2007) - Demonstrate 100% cost-effective savings at a convincing scale by 2030 (EISA 2007) Existing Buildings

405

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

406

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

407

Building Energy Software Tools Directory: AWDABPT  

NLE Websites -- All DOE Office Websites (Extended Search)

AWDABPT AWDABPT AWDABPT logo Provides dynamic temperature simulation of 1- to 15- room buildings, shelters, and cabinets over the course of 20 days. Useful for accommodation of heat dissipating equipment. Cooling or power plant failure and later restoration can be simulated. Includes indicative external bush/forest fire mode. Screen Shots Keywords building temperature simulation, thermal performance Validation/Testing The Help document includes graphs that show estimated versus measured temperatures. It is freely available for download via the Website. Expertise Required Understanding of building thermal characteristics, conductivity, U-value, heat capacity, latent heat. Users Old DOS version - several. Current version - one, in Australia. Audience Building designers requiring estimates of room temperatures within

408

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

409

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The City of Atlanta has committed 16 million square feet of public and private space to substantive upgrades as part of the Better Buildings Challenge. Credit: iStockphoto The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts.

410

Building America FY14 Projects by Building Type  

Energy.gov (U.S. Department of Energy (DOE))

This table lists U.S. Department of Energy Building America FY14 research projects by building type.

411

Methodology for Validating Building Energy Analysis Simulations  

SciTech Connect

The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

2008-04-01T23:59:59.000Z

412

A Survey: Indoor Air Quality in Schools  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 A Survey: Indoor Air Quality in Schools We recently undertook a survey and critical review of the published literature on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, particularly those in the state of California. The survey's objectives included identifying the most commonly reported building-related health symptoms involving schools, and assembling and evaluating existing measurement data on key indoor air pollutants most likely to be related to these symptoms. The review also summarizes existing measurements of ventilation rates in schools and information on the causes of IAQ and health problems in schools. Most of the literature we reviewed (more than 450 articles and reports) dealt with complaint or problem schools. Among the papers were

413

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

414

Building Data Visualization  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Building Data Visualization contour plot Figure 1: Contour plot showing the various operating stages of occupancy sensors described in the case study. Data visualization for buildings is the display of a rich set of variables and parameters that managers can use to verify the energy savings of energy- efficient technology and identify malfunctions in building equipment or problems with operating strategies. Effective data visualization depends on having graphic presentation formats that reveal the phenomena relevant to the building's performance. A research project at the Center for Building Science is aimed at developing data visualization techniques for improved building management. Buildings with energy management control systems as well as dedicated monitoring equipment in the

415

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

416

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network (OSTI)

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

417

Towards an improved architectural quality of building integrated solar thermal systems (BIST)  

Science Journals Connector (OSTI)

Architectural integration is a major issue in the development and spreading of solar thermal technologies. Yet the architectural quality of most existing building integrated solar thermal systems (BIST) is quite poor, which often discourages potential new users. In this paper, the results of a large web survey on architectural quality, addressed to more than 170 European architects and other building professionals are presented and commented. Integration criteria and design guidelines established and confirmed through the analysis of these results are proposed. Subsequently, a novel methodology to design future solar thermal collectors systems suited to building integration is described, showing a new range of design possibilities. The methodology focuses on the essential teamwork between architects and engineers to ensure both energy efficiency and architectural integrability, while playing with the formal characteristics of the collectors (size, shape, colour, etc.). Finally a practical example of such a design process conducted within the European project SOLABS is given; the resulting collector is described, and integration simulations are presented.

MariaCristina Munari Probst; Christian Roecker

2007-01-01T23:59:59.000Z

418

A Look at Health Care Buildings - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Health Care Health Care Home: A Look at CBECS Building Activities How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they on multibuilding complexes? How do they use energy and how much does it cost? How do they use electricity? How do they use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) HEALTH CARE BUILDINGS There were an estimated 105,000 health care buildings in the U.S. in 1995. Number of Buildings In the Commercial Buildings Energy Consumption Survey (CBECS), information for health care buildings is collected for both inpatient and outpatient health care, although these two categories are combined in most CBECS publications. This site provides further detail on these two categories.

419

Mainstreaming Building Energy Efficiency Codes in Developing Countries:  

Open Energy Info (EERE)

Mainstreaming Building Energy Efficiency Codes in Developing Countries: Mainstreaming Building Energy Efficiency Codes in Developing Countries: Global Experiences and Lessons from Early Adopters Jump to: navigation, search Tool Summary Name: Mainstreaming Building Energy Efficiency Codes in Developing Countries: Global Experiences and Lessons from Early Adopters Agency/Company /Organization: World Bank Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.ecn.nl/fileadmin/ecn/units/bs/IEC/LCDS_presentation_082010.pdf Mainstreaming Building Energy Efficiency Codes in Developing Countries: Global Experiences and Lessons from Early Adopters Screenshot References: Building Energy Efficiency[1] Summary "This report summarizes the findings of an extensive literature survey of

420

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities,  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial Buildings Energy Consumption Survey (CBECS). They also provide estimates of energy consumption and intensities adjusted for the effect of weather on heating, cooling, and ventilation energy use. Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF bullet By Principal Building Activity (Table 1a) html Table 1a excel table 1a. pdf table 1a. Weather-Adjusted by Principal Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b.

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Property:Building/Boundaries | Open Energy Information  

Open Energy Info (EERE)

Boundaries Boundaries Jump to: navigation, search This is a property of type String. Boundaries Pages using the property "Building/Boundaries" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Several buildings + Sweden Building 05K0002 + Part of a building + Sweden Building 05K0003 + One building + Sweden Building 05K0004 + One building + Sweden Building 05K0005 + One building + Sweden Building 05K0006 + Several buildings + Sweden Building 05K0007 + One building + Sweden Building 05K0008 + One building + Sweden Building 05K0009 + One building + Sweden Building 05K0010 + One building + Sweden Building 05K0011 + One building + Sweden Building 05K0012 + One building + Sweden Building 05K0013 + One building + Sweden Building 05K0014 + One building +

422

Evaluate Greenhouse Gas Emissions Profile for Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:43am Addthis YOU ARE HERE Step 2 To identify the most cost-effective greenhouse gas (GHG) reduction strategies across a Federal agency's building portfolio, a Federal agency will need an understanding of building energy performance and the building characteristics that drive performance. The data required to support current Federal GHG reporting requirements (e.g., agency-wide fuel consumption, electricity use by zip code) are typically not sufficient to fully understand where the best opportunities for improvement are located. More detailed information about the building assets being managed-much of which may already be collected for other purposes-can help to inform where to direct investments.

423

Commercial Building Asset Rating Program  

Energy.gov (U.S. Department of Energy (DOE))

Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

424

Saving Energy in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is for the Building Technologies program webinar titled Saving Energy in Multifamily Buildings delivered on July 25, 2011.

425

International Energy Agency instrumented facilities survey for solar assisted low energy dwellings  

SciTech Connect

Compiled are surveys outlining the instrumentation of 38 active and passive solar projects in 9 countries (Denmark, Italy, Japan, Netherlands, Sweden, Switzerland, United Kingdom, United States, and West Germany). After the surveys themselves are presented, the data are rearranged to compare answers from similar survey questions for each of the projects. These questions address building, solar system and instrumentation descriptions and meteorological, solar system and building system instrumentatation capabilities. (LEW)

none,

1982-02-01T23:59:59.000Z

426

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

427

Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isotope Enrichment (Calutron) Isotope Enrichment (Calutron) Facility Building 9204-3 Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 The purpose of this document is to report the results of a survey conducted at the Isotope Enrichment Facility (IEF, Calutron, Building 9204-3) on the Y-12 Plant property at the Oak Ridge Site. The survey was conducted during the week of November 29, 1999. The primary purpose of the survey is to identify facility conditions and to define the characterization, stabilization, and material/waste/equipment removal (if any) requirements that need to be met to transfer responsibility for the facility from the Office of Nuclear Energy (NE) to the Office of Environmental Management (EM). Additionally, estimated post stabilization surveillance and maintenance (S&M) activities and costs are

428

New York City - Green Building Requirements for Municipal Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

429

Buildings and Energy in the 80's -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Publication and Tables Publication and Tables Publication and Tables Total Residential and Commercial Primary Consumption by Type of Building Figure on total residential and commercial primary consumption by type of building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980 Residential Energy Consumption Survey and Form EIA-871 of the 1989 Commercial Buildings Energy Consumption Survey. Divider Bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. Divider Bar You have the option of downloading the entire report or selected sections of the report. Full Report (without tables) - Buildings and Energy in the 80's (file size .93 MB) pages: 104

430

Building America Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet)  

SciTech Connect

In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

Not Available

2014-09-01T23:59:59.000Z

431

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Project lnfonnation Project Title: New Drilling Location in Section 29 Date: 12-10-2009 DOE Code: 6730.020.78002 Contractor Code: 8067-371 Project Lead: Mark Duletsky Project Overview The project will involve excavating 3-4 backhoe pits to a depth of about 8 feet to observe soil characteristics 1. What are the environmental impacts? in the vicinity of our planned reserve pit excavation area. 2. What is the legal location? NE 1/4, SE 1/4, Sec. 29. T39N. R78W. Natrona County, Wyoming 3. What is the duration of the project? 4. What major equipment will be used 1 day if any (work over rig, drilling rig, etc.)? Backhoe The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

432

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

433

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More. News DOE Publishes Petition of CSA Group for Classification as a Nationally

434

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Keep Up To Date Read the Better Buildings Network View newsletter. The Network View is an e-newsletter that provides information on the newly launched Better Buildings Residential Network. The Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to build upon the many successes of the Better Buildings Neighborhood Program. Read the latest issue. Through the Better Buildings Neighborhood Program, communities across the country are improving neighborhoods, creating jobs, and increasing access to energy savings in homes and businesses. Following are some of the news-making innovations and results that Better Buildings Neighborhood Program partners are achieving. Latest DOE News and Blog Posts

435

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

436

Building Technologies Office: Building-Level Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

437

Commercial Building Partnership  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

438

Commercial Building Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

439

Midwest Building Energy Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

440

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South- and west-facing windows allow more South- and west-facing windows allow more natural light into the building and reduce electricity use * Extensive awnings and overhangs control the light and heat entering the building during the day to reduce cooling loads * Rooftop light monitors in the garden area provide controllable natural light from above to save on electricity consumption * Insulating concrete form block construction with an R-22 insulation value helps control the temperature of the building and maximize

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Lovejoy Building  

Portland, OR Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

442

Building South Weyburn Avenue  

E-Print Network (OSTI)

36 P32 PCHS P9 P1 P8 P6 P2 P3 P5 17 P4 P7 PRO 11 15 10 Kinross Building Kinross Building South Road Charles E. Young Drive North R oyce D rive CharlesE.YoungDriveNorth Manning Avenue Manning Avenue/Engineering and Mathematical Sciences 8270 Boelter Hall SEL/Geology-Geophysics 4697 Geology Building Music Library 1102

Williams, Gary A.

443

Midwest Building Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

444

NREL: Buildings Research - Commercial Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings Research Staff Commercial Buildings Research Staff Members of the Commercial Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as computer science, physics, and chemistry. Brian Ball Kyle Benne Eric Bonnema Larry Brackney Alberta Carpenter Michael Deru Ian Doebber Kristin Field Katherine Fleming David Goldwasser Luigi Gentile Polese Brent Griffith Rob Guglielmetti Elaine Hale Bob Hendron Lesley Herrmann Adam Hirsch Eric Kozubal Feitau Kung Rois Langner Matt Leach Nicholas Long Daniel Macumber James Page Andrew Parker Shanti Pless Jennifer Scheib Marjorie Schott Michael Sheppy Greg Stark Justin Stein Daniel Studer Alex Swindler Paul Torcellini Evan Weaver Photo of Brian Ball Brian Ball, Ph.D., Senior Engineer brian.ball@nrel.gov

445

Building Technologies Office: Building America Solution Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Solution Center Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR® checklists, alphabetical lists, a house diagram with selectable components, and an information map. Logged-in users can quickly save any of these elements into their personal Field Kit.

446

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample". Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates should not be considered as finite point estimates, but as estimates with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100.

447

Quintessence Model Building  

E-Print Network (OSTI)

A short review of some of the aspects of quintessence model building is presented. We emphasize the role of tracking models and their possible supersymmetric origin.

Ph. Brax; J. Martin; A. Riazuelo

2001-09-27T23:59:59.000Z

448

What is Building America?  

SciTech Connect

DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

None

2013-06-20T23:59:59.000Z

449

Whole Building Energy Simulation  

Energy.gov (U.S. Department of Energy (DOE))

Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

450

Buildings Success Stories  

Energy Savers (EERE)

1 Buildings Success Stories en Zero Energy Ready Home Program: Race to Zero Student Design Competition http:energy.goveeresuccess-storiesarticleszero-energy-ready-home-progra...

451

Building bridges for fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-bridges-for-fish Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

452

2014 NERSC User Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 NERSC User Survey 2014 NERSC User Survey December 17, 2014 by Francesca Verdier (0 Comments) Please take a few minutes to fill out NERSC's annual user survey. Your feedback is...

453

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Partnerships Market Partnerships This photo shows two men silhouetted against a sky shaking hands, with the frame of a building under construction in the background. The U.S. Department of Energy (DOE) offers partnership opportunities, educational curricula, meetings, and webinars that help industry professionals bring research results to the market. DOE Challenge Home Through the DOE Challenge Home, the Building Technologies Office offers recognition to leading edge builders meeting extraordinary levels of excellence. Builders taking the challenge gain competitive advantage in the marketplace by providing their customers with unparalleled energy savings, quality, comfort, health, durability, and much more. Learn more about the DOE Challenge Home. ENERGY STAR for Homes Version 3

454

CHARACTERIZATION SURVEY OF THE BAKER AND WILLIAMS WAREHOUSES  

Office of Legacy Management (LM)

CHARACTERIZATION SURVEY CHARACTERIZATION SURVEY OF THE BAKER AND WILLIAMS WAREHOUSES BUILDING 513-519 NEW YORK, NEW YORK Prepared by W. C. Adams Environmental Survey and Site Assessment Program Energy/Environment System Division Oak Ridge Institute for Science and Education Oak Ridge, Tennessee 37831-0117 Prepared for the Office of Environmental Restoration U.S. Department of Energy FINAL REPORT DECEMBER 1993 This report is based on work performed under contract number DE-AC05-760R00033 with the U.S. Department of Energy. .- .- .- CHARACTERIZATION SURVEY OF THE BAKER AND W ILLIAMS WAREHOUSES BUILDING 513419 NEW YORK, NEW YORK Prepared by: Date: W . C. Adams, Project Leader i L!J!?J Environmental Survey and Site Assessment Program Reviewed by: W . L. Beck, Acting Laboratory Manager

455

An object-oriented framework for simulation-based green building design optimization with genetic algorithms  

Science Journals Connector (OSTI)

Simulation-based optimization can assist green building design by overcoming the drawbacks of trial-and-error with simulation alone. This paper presents an object-oriented framework that addresses many particular characteristics of green building design ... Keywords: Genetic algorithm, Green building, Object-oriented framework, Optimization, Simulation programs, Sustainable development

Weimin Wang; Hugues Rivard; Radu Zmeureanu

2005-01-01T23:59:59.000Z

456

U.S. Department of Energy Building Energy Data Exchange Specification  

Energy.gov (U.S. Department of Energy (DOE))

This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships.

457

Building Technologies Office: Commercial Building Energy Asset Scoring Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoring Tool to someone by E-mail Scoring Tool to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

458

Building Technologies Office: Building America Research for the American  

NLE Websites -- All DOE Office Websites (Extended Search)

for the American Home to someone by E-mail for the American Home to someone by E-mail Share Building Technologies Office: Building America Research for the American Home on Facebook Tweet about Building Technologies Office: Building America Research for the American Home on Twitter Bookmark Building Technologies Office: Building America Research for the American Home on Google Bookmark Building Technologies Office: Building America Research for the American Home on Delicious Rank Building Technologies Office: Building America Research for the American Home on Digg Find More places to share Building Technologies Office: Building America Research for the American Home on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools

459

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

460

MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS  

E-Print Network (OSTI)

) Common Use Areas All floored areas in the building for circulation and standard facilities provided and the like. These are extracts of NWPC standard method of measurement of building areas with an addition fromSection S ANNEXURE 4 MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS 1. GROSS BUILDING

Wang, Yan

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Trottier BuildingTrottier Building Fire SafetyFire Safety  

E-Print Network (OSTI)

building 1.1. Fire SafetyFire Safety 2.2. Fire Protection equipmentFire Protection equipment 3 OfficersFire Prevention Officers #12;Trottier BuildingTrottier Building Fire ProtectionFire Protection#12;Trottier BuildingTrottier Building Fire SafetyFire Safety in Trottier buildingin Trottier

Pientka, Brigitte

462

Reference Buildings by Building Type: Supermarket  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

463

Reference Buildings by Building Type: Warehouse  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

464

Reference Buildings by Building Type: Midrise Apartment  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

465

Reference Buildings by Building Type: Primary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

466

Reference Buildings by Building Type: Small office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

467

Reference Buildings by Building Type: Large office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

468

Reference Buildings by Building Type: Small Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

469

Reference Buildings by Building Type: Secondary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

470

Reference Buildings by Building Type: Large Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

471

Reference Buildings by Building Type: Strip mall  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

472

Reference Buildings by Building Type: Hospital  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

473

Reference Buildings by Building Type: Medium office  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

474

RESEARCH BUILDING AT NORTHWESTERN  

E-Print Network (OSTI)

-intensive medical schools. Perkins+Will has designed a building that will be superbly functional and have great selected the Chicago architectural firm of Perkins+Will to design the new Biomedical Research Building and advances sustainable practices with green technology and design features that support environmental

Engman, David M.

475

Tell: Building a consistent,  

E-Print Network (OSTI)

, Joseph M. Hellerstein, William R. Marczak UC Berkeley November 19, 2010 #12;Show and Tell: BuildingShow and Tell: Building a consistent, replicated shopping cart in Bloom Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R. Marczak Background The CALM Conjecture Introducing Bloom Writing

California at Irvine, University of

476

The Research Building Blocks  

E-Print Network (OSTI)

The Research Building Blocks For Teaching Children to Read Third Edition Put Reading First Kindergarten Through Grade 3 Third Edition #12;#12;The Research Building Blocks for Teaching Children to Read Centers Program, PR/Award Number R305R70004, as administered by the Office of Educational Research

Rau, Don C.

477

CONTACT INFO BUILDING SHELTER  

E-Print Network (OSTI)

CONTACT INFO SIGNALS BUILDING SHELTER THE DISABLED B.E.R.T. TEAM B.E.R.T.* EMERGENCY RESPONSE GUIDE, SIUC*Building Emergency Response Team Siren* Long Blast: Tornado High/Low: Any Other Emergency Radio needed. 2. Find two or three B.E.R.T. "buddies" who are willing to help you in the event of an emergency

King, David G.

478

Electric Services in Buildings  

Science Journals Connector (OSTI)

... Institution of Electrical Engineers on October 22. In the early days, electrical installations in buildings were for lighting and bells. Wood casing was used, and, so far as ... equipment were placed anywhere where they would be out of sight. Now new and larger buildings are being erected all over the country, and electrical contractors are having difficulty in ...

1936-10-31T23:59:59.000Z

479

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled Recommendations for the Computation of Heat Requirements for Buildings (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

480

Technical College Buildings  

Science Journals Connector (OSTI)

... should have such a paucity of literature dealing with material needs in the matter of buildings and equipment necessary for its field of activity. Books dealing with laboratories can be ... is therefore to be specially welcomed, particularly at the present time when the demands for buildings for technical education are so marked (London: Association of Technical Institutions and the Association ...

1935-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "buildings characteristics survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

New Buildings at Rothamsted  

Science Journals Connector (OSTI)

... June 21 was made the occasion of the official opening of a new block of buildings at the farm and the inauguration of an extensive electrical installation in the farm ... at the farm and the inauguration of an extensive electrical installation in the farm buildings. The Right Hon. Sir John Gilmour, Minister of Agriculture, declared the ...

1932-07-02T23:59:59.000Z

482

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... describes three vibrators at present in use, together with the methods of testing. In buildings, the vibrator is securely braced between two columns. A 4 in. x 4 ... . Resulting vibrations in structures or in the ground are measured by portable seismographs. For buildings a magnification of about 200 may be used, but for dams or on the ...

1966-06-11T23:59:59.000Z

483

Earthquake-proof Buildings  

Science Journals Connector (OSTI)

... more, the recent Quetta earthquake has emphasised the importance of erecting none but earthquake-proof buildings in a district subject to destructive shocks. The few houses in Quetta that could ... flanks of hills composed of hard rocks. Areas in which brickwork was seriously cracked and buildings occasionally fell, lay on the flanks of the hills facing the Pacific and in ...

Charles Davison

1936-01-11T23:59:59.000Z

484

University of London Buildings  

Science Journals Connector (OSTI)

... to the provision of an open space on part of the site of the new buildings of the University of London at Bloomsbury. He informs us that since his election ... by Mr. Humberstone that this undertaking was not carried out by the layout of the buildings. Representations were therefore made, with the result that a new design and layout have ...

1935-05-11T23:59:59.000Z

485

Electrical Equipment of Buildings  

Science Journals Connector (OSTI)

... eleventh) edition of the regulations of the Institution of Electrical Engineers for the wiring of buildings was published in June (London: Spon. Cloth 1s. 6d. net; paper cover ... of electrical energy in and about all types of dwelling houses, business premises, public buildings and factories, whether tho electric supply is derived from an external source or from ...

1939-10-14T23:59:59.000Z

486

Concrete Steel Buildings  

Science Journals Connector (OSTI)

... and engineers who consult this book will have little trouble in finding full descriptions of buildings similar to any they may be called upon to design. Examples of transit sheds ... to design. Examples of transit sheds for docks, railway goods stations, warehouses, factory buildings, business premises, villas, flour mills, hotels, theatres, &c., are all ...

T. H. B.

1907-09-19T23:59:59.000Z

487

Farm Buildings Research  

Science Journals Connector (OSTI)

... THE first supplement, 1958-61, of Part 3, Buildings for Poultry, issued by the Agricultural Research Council, has recently been published (Pp. ... . 71. London: Agricultural Research Council, 1963. 4s.). This bibliography of farm buildings research provides important basic information: in the past, much waste has occurred from the ...

1963-07-27T23:59:59.000Z

488

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... in an article under this heading (NATURE, vol. xxix. p. 290) to buildings in Caracas, which are low, slightly pyramidal, have flat roofs, and are bound ... architecture, and as such I must say that certainly the houses are generally one-story buildings, but all the remainder of the foregoing description is quite erroneous. However, I ...

A. ERNST

1884-04-24T23:59:59.000Z

489

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... A COMPLETE discussion of the effects which earthquakes produce upon buildings would form a treatise as useful as it would be interesting. Not only would ... to a few of the more important practical conclusions respecting the: effect of earthquakes on buildings, which may be of value to those whose mission it is to erect ...

JOHN MILNE

1884-01-24T23:59:59.000Z

490

Farm Buildings Research  

Science Journals Connector (OSTI)

... A BIBLIOGRAPHY, Fann Buildings Research, was issued by the Agricultural Research Council in 1958, covering publications of the ... published (Pp. 69. Agricultural Research Council, 1962. 4.). This deals with buildings for pigs and provides a brief annotation for each referenco quoted. An author index ...

1963-01-12T23:59:59.000Z

491

American School Buildings  

Science Journals Connector (OSTI)

... it was determined to begin with a study of the functional planning of elementary school buildings, and a report on this subject has been published by the United States Government ... that the elementary school curriculum is changing in ways which radically affect the planning of buildings, and that costs depend largely on the extent to which school work is organized ...

1938-05-14T23:59:59.000Z

492

Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"  

U.S. Energy Information Administration (EIA) Indexed Site

Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned Buildings","Federal","State","Local" "All Buildings* ...............",4645,4011,1841,2029,141,635,46,164,425 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2272,980,1205,87,280,"Q",77,183 "5,001 to 10,000 ..............",889,783,384,375,"Q",106,"Q","Q",87

493

Communicating Building Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Communicating Building Energy Performance Communicating Building Energy Performance Speaker(s): William Bordass Date: August 26, 2008 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Paul Mathew The heightened interest in building energy performance has exposed problems with reporting and benchmarking. Established conventions may no longer suit current needs, and new complications are emerging as national and corporate reporting (e.g. for carbon accounting and trading) begin to impact on the certification and labelling of building energy performance. If we are to achieve genuinely low-energy and carbon buildings, we need to get much better at reporting and benchmarking our intentions and outcomes, and particularly making performance visible and communicating it to all the people concerned. In design, this could help us to reduce the persistent

494

Buildings Performance Metrics Terminology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Commercial Building Initiative Page 1 Energy's Commercial Building Initiative Page 1 January 2009 Buildings Performance Metrics Terminology To clarify how the terms are used in the Department of Energy's Performance Metrics Research Project, a list of terms related to performance metrics are defined and include examples and comments. Visit www.commercialbuildings.energy.gov/performance_metrics.html to learn more. Baseline - a standard reference case used as a basis for comparison Examples: a simulation model of an ASHRAE 90.1 compliant building, control building, measurement of energy consumption prior to application of an energy conservation measure Comments: Establishing a clearly defined baseline very important and is often the most difficult task. Defining a repeatable baseline is essential if the work is to be compared to results of other

495

Better Buildings Neighborhood Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Name or Ancillary Text eere.energy.gov Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Analysis Leading to Lessons Learned Better Buildings Neighborhood Program Danielle Sass Byrnett, DOE Dave Roberts, NREL david.roberts@nrel.gov 303.384.7496 April 3, 2013 Better Buildings Neighborhood Program Analysis Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United States and are responsible for nearly 40% of the country's greenhouse gas emissions. Several well documented barriers have prevented the development of a self-sustaining building energy upgrade market to reduce this energy use.

496

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

497

Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Buildings EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

498

Buildings Energy Databook  

Buildings Energy Data Book (EERE)

2 BUILDINGS 2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered an evolving document as it will be will be periodically updated and additional data will be incorporated. Users are requested to submit additional data (e.g., more current, widely accepted, and/or better documented data) and suggested changes to the contacts below. Please provide full source references along with all data.

499

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

8.1 Buildings Sector Water Consumption 8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy needed to supply that water. The main points from this chapter are summarized below: In 2005, water use in the buildings sector was estimated at 39.6 billion gallons per day, which is nearly 10% of total water use in the United States. From 1985 to 2005, water use in the residential sector closely tracked population growth, while water use in the commercial sector grew almost twice as fast.

500

buildings | OpenEI  

Open Energy Info (EERE)

buildings buildings Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2