Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Archive Reference Buildings by Building Type: Warehouse  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

2

Archive Reference Buildings by Building Type: Supermarket  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

3

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

4

Archived Reference Building Type: Hospital  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

5

Archived Reference Building Type: Warehouse  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

6

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of Building Types Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

7

Archived Reference Building Type: Hospital  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

8

Archived Reference Building Type: Warehouse  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

9

Reference Buildings by Building Type: Strip mall | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strip mall Reference Buildings by Building Type: Strip mall In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes...

10

Reference Buildings by Building Type: Large Hotel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hotel Reference Buildings by Building Type: Large Hotel In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the...

11

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Consumption Survey (CBECS) > Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 and 2003 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

12

Archive Reference Buildings by Building Type: Stand-alone retail  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

13

Archive Reference Buildings by Building Type: Strip mall  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

14

Archive Reference Buildings by Building Type: Secondary school  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

15

Archive Reference Buildings by Building Type: Small office  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

16

Archive Reference Buildings by Building Type: Fast food  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

17

Archive Reference Buildings by Building Type: Primary school  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

18

Reference Buildings by Building Type: Supermarket  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

19

Reference Buildings by Building Type: Warehouse  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

20

Reference Buildings by Building Type: Midrise Apartment  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reference Buildings by Building Type: Primary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

22

Reference Buildings by Building Type: Small office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

23

Reference Buildings by Building Type: Large office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

24

Reference Buildings by Building Type: Small Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

25

Reference Buildings by Building Type: Secondary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

26

Reference Buildings by Building Type: Large Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

27

Reference Buildings by Building Type: Strip mall  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

28

Reference Buildings by Building Type: Hospital  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

29

Reference Buildings by Building Type: Medium office  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

30

Building America FY14 Projects by Building Type  

Energy.gov (U.S. Department of Energy (DOE))

This table lists U.S. Department of Energy Building America FY14 research projects by building type.

31

Reference Buildings by Building Type: Stand-alone retail | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stand-alone retail Reference Buildings by Building Type: Stand-alone retail In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet...

32

Archived Reference Building Type: Medium office  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

33

Archived Reference Building Type: Midrise Apartment  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

34

Archived Reference Building Type: Outpatient health care  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

35

Archive Reference Buildings by Building Type: Large office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large office Large office Archive Reference Buildings by Building Type: Large office Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-large_office.zip benchmark-v1.1_3.1-large_office.zip benchmark-new-v1.2_4.0-large_office.zip More Documents & Publications Archive Reference Buildings by Building Type: Large Hotel

36

Archive Reference Buildings by Building Type: Hospital | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hospital Hospital Archive Reference Buildings by Building Type: Hospital Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-hospital.zip benchmark-v1.1_3.1-hospital.zip benchmark-new-v1.2_4.0-hospital.zip More Documents & Publications Archive Reference Buildings by Building Type: Large office

37

Archive Reference Buildings by Building Type: Large Hotel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Hotel Large Hotel Archive Reference Buildings by Building Type: Large Hotel Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-large_hotel.zip benchmark-v1.1_3.1-large_hotel.zip benchmark-new-v1.2_4.0-large_hotel.zip More Documents & Publications Archive Reference Buildings by Building Type: Small Hotel

38

Archive Reference Buildings by Building Type: Medium office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medium office Medium office Archive Reference Buildings by Building Type: Medium office Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-medium_office.zip benchmark-v1.1_3.1-medium_office.zip benchmark-new-v1.2_4.0-medium_office.zip More Documents & Publications Archive Reference Buildings by Building Type: Large office

39

Property:Buildings/ModelBuildingType | Open Energy Information  

Open Energy Info (EERE)

Buildings/ModelBuildingType Buildings/ModelBuildingType Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Model. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Retail Other Than Mall) Mercantile (Enclosed and Strip Malls) Office Public Assembly Public Order and Safety Religious Worship Service Warehouse and Storage Other Vacant Pages using the property "Buildings/ModelBuildingType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + Mercantile (Retail Other Than Mall) + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Mercantile (Retail Other Than Mall) + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + Mercantile (Retail Other Than Mall) +

40

Archived Reference Building Type: Medium office  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Estimate Greenhouse Gas Emissions by Building Type  

Energy.gov (U.S. Department of Energy (DOE))

Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type.

42

Archived Reference Building Type: Midrise Apartment  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

43

Archived Reference Building Type: Outpatient health care  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

44

CBECS Building Types | Open Energy Information  

Open Energy Info (EERE)

CBECS Building Types CBECS Building Types Jump to: navigation, search The list below contains the Building Type classifications, also known as Principal Building Activity, established by the Commercial Buildings Energy Consumption Survey (CBECS) performed by the U.S. Energy Information Administration (EIA)[1]. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Enclosed and Strip Malls) Mercantile (Retail Other Than Mall) Office Other Public Assembly Public Order and Safety Religious Worship Service Vacant Warehouse and Storage References ↑ EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http://en.openei.org/w/index.php?title=CBECS_Building_Types&oldid=270205" What links here Related changes

45

Archive Reference Buildings by Building Type: Restaurant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restaurant Restaurant Archive Reference Buildings by Building Type: Restaurant Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-sit_down_restaurant.zip benchmark-v1.1_3.1-sit_down_restaurant.zip benchmark-new-v1.2_4.0-full_service_restaurant.zip More Documents & Publications

46

1999 Commercial Buildings Characteristics--CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of CBECS Building Types Description of CBECS Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the sub-categories were combined into the more general categories that are found in the detailed tables. These categories are consistent with prior years.

47

Types of Lighting in Commercial Buildings - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

48

Reference Buildings by Building Type: Quick service restaurant  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

49

Reference Buildings by Building Type: Full service restaurant  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

50

Reference Buildings by Building Type: Stand-alone retail  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

51

Reference Buildings by Building Type: Outpatient health care  

Energy.gov (U.S. Department of Energy (DOE))

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

52

Types of Lighting in Commercial Buildings - Changes  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Lighting Changes in Lighting The percentage of commercial buildings with lighting was unchanged between 1995 and 2003; however, three lighting types did show change in usage. Compact fluorescent lamps and halogen lamps showed a significant increase between 1995 and 2003 while the use of incandescent lights declined. The lighting questions in the 1995, 1999, and 2003 CBECS questionnaires were virtually identical which facilitates comparison across survey years. The use of compact fluorescent lamps more than doubled, from just under 10 percent of lit buildings to more than 20 percent (Figure 17 and Table 5). The use of halogen lamps nearly doubled, from 7 percent to 13 percent of lit buildings. Use of incandescent lights was the only lighting type to decline; their use dropped from 59 percent to just over one-half of lit buildings.

53

Estimate Greenhouse Gas Emissions by Building Type | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type YOU ARE HERE Step 2 Starting with the programs contributing the greatest...

54

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

55

Commercial Buildings Sector Agent-Based Model | Open Energy Information  

Open Energy Info (EERE)

Commercial Buildings Sector Agent-Based Model Commercial Buildings Sector Agent-Based Model Jump to: navigation, search Tool Summary Name: Commercial Buildings Sector Agent-Based Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Buildings - Commercial Phase: Evaluate Options Topics: Implementation Resource Type: Technical report User Interface: Website Website: web.anl.gov/renewables/research/building_agent_based_model.html OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US Commercial Buildings Sector[1] Model the market-participants, dynamics, and constraints-help decide whether to adopt energy-efficient technologies to meet commercial building

56

Types of Lighting in Commercial Buildings - Principal Building...  

U.S. Energy Information Administration (EIA) Indexed Site

floorspace compared by building activity (Figure 5). The two exceptions are education and health care buildings. Both rank higher in amount of lit floorspace because a larger...

57

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

58

Archived Reference Building Type: Stand-alone retail  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

59

Types of Lighting in Commercial Buildings - Lighting Types  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting Types Lighting Types The following are the most widely used types of lighting equipment used in commercial buildings. Characteristics such as energy efficiency, light quality, and lifetime vary by lamp type. Standard Fluorescent A fluorescent lamp consists of a sealed gas-filled tube. The gas in the tube consists of a mixture of low pressure mercury vapor and an inert gas such as argon. The inner surface of the tube has a coating of phosphor powder. When an electrical current is applied to electrodes in the tube, the mercury vapor emits ultraviolet radiation which then causes the phosphor coating to emit visible light (the process is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts

60

Whole Building Performance-Based Procurement Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole Building Performance-Based Whole Building Performance-Based Procurement Training TDM - Shalon Brown (BTO) Shanti Pless National Renewable Energy Laboratory Shanti.Pless@nrel.gov 303-384-6365 April 4, 2013 2 | Building Technologies Office eere.energy.gov Project Definition Replicating NREL/DOE procurement process successes in reaching 50% building energy savings at typical construction costs, by: - Creating a how-to guide that outlines the entire acquisition process, including: setting a building energy requirement, project

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Archived Reference Building Type: Stand-alone retail  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

62

Lattice chain models for ane buildings of classical type  

E-Print Network (OSTI)

Lattice chain models for aĂ?ne buildings of classical type Peter Abramenko #3; y and Gabriele Nebe z Abstract. A concrete lattice chain model for the buildings of the classical groups over non archimedean of this type is the model of the aĂ?ne building associated to SL n (D), where we denote by D a discretely

Bielefeld, University of

63

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lighting in Commercial Buildings - Full Report Types of Lighting in Commercial Buildings - Full Report file:///C|/mydocs/CBECS%20analysis/CBECS%20lighting/lighting_pdf.html[4/28/2009 9:20:44 AM] Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the

64

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Lighting in Commercial Buildings Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

65

Buildings*","Lit Buildings","Lighting Equipment Types  

U.S. Energy Information Administration (EIA) Indexed Site

3. Lighting Equipment, Number of Buildings for Non-Mall Buildings, 2003" 3. Lighting Equipment, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Lit Buildings","Lighting Equipment Types (more than one may apply)" ,,,"Incand- escent","Standard Fluor- escent","Compact Fluor- escent","High-Intensity Discharge","Halogen" "All Buildings* ...............",4645,4248,2184,3943,941,455,565 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2261,1070,2068,382,101,205 "5,001 to 10,000 ..............",889,821,416,772,148,88,107 "10,001 to 25,000 .............",738,716,412,665,189,105,123 "25,001 to 50,000 .............",241,231,145,223,102,60,55

66

Buildings*","Lit Buildings","Lighting Equipment Types  

U.S. Energy Information Administration (EIA) Indexed Site

4. Lighting Equipment, Floorspace for Non-Mall Buildings, 2003" 4. Lighting Equipment, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Lit Buildings","Lighting Equipment Types (more than one may apply)" ,,,"Incand- escent","Standard Fluor- escent","Compact Fluor- escent","High-Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,38528,59688,27571,20643,17703 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,2918,5579,1123,312,604 "5,001 to 10,000 ..............",6585,6090,3061,5726,1109,686,781 "10,001 to 25,000 .............",11535,11229,6424,10458,2944,1721,1973

67

Building Energy Performance Analysis of an Academic Building Using IFC BIM-Based Methodology  

E-Print Network (OSTI)

This paper discusses the potential to use an Industry Foundation Classes (IFC)/Building Information Modelling (BIM) based method to undertake Building Energy Performance analysis of an academic building. BIM/IFC based methodology provides a...

Aziz, Z.; Arayici, Y.; Shivachev, D.

2012-01-01T23:59:59.000Z

68

Types of Lighting in Commercial Buildings - Table L1  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995 L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*........................ 54,068 51,570 45,773 6,746 34,910 1,161 3,725 779 Building Floorspace (Square Feet) 1,001 to 5,000....................... 6,272 5,718 4,824 986 3,767 50 22 54 5,001 to 10,000.................... 7,299 6,667 5,728 1,240 4,341 61 169 45 10,001 to 25,000.................. 10,829 10,350 8,544 1,495 6,442 154 553 Q 25,001 to 50,000.................. 7,170 7,022 6,401 789 5,103 151 485 86

69

Types of Lighting in Commercial Buildings - Table L3  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003 L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*............................. 64,783 62,060 51,342 5,556 37,918 4,004 4,950 2,403 Building Floorspace (Square Feet) 1,001 to 5,000............................. 6,789 6,038 4,826 678 3,932 206 76 124 5,001 to 10,000........................... 6,585 6,090 4,974 739 3,829 192 238 248 10,001 to 25,000........................ 11,535 11,229 8,618 1,197 6,525 454 506 289 25,001 to 50,000........................ 8,668 8,297 6,544 763 4,971 527 454 240

70

Types of Lighting in Commercial Buildings - Table L2  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999 L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings* ............................. 61,707 58,693 49,779 6,496 37,150 3,058 5,343 1,913 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 6,750 5,836 4,878 757 3,838 231 109 162 5,001 to 10,000 .......................... 7,940 7,166 5,369 1,044 4,073 288 160 109 10,001 to 25,000 ....................... 10,534 9,773 7,783 1,312 5,712 358 633 232 25,001 to 50,000 ....................... 8,709 8,452 6,978 953 5,090 380 771 281

71

Image-based building modeling.  

E-Print Network (OSTI)

??Image-based modeling is the process of converting 2D images of the real world into digital 3D models in computer. Among myriad kinds of objects in… (more)

Xiao, Jianxiong

2009-01-01T23:59:59.000Z

72

Building on a Base: Applying Physics Education  

E-Print Network (OSTI)

Building on a Base: Applying Physics Education Research to Physics Teaching S.J. Pollock CU Boulder Concept Inventory (FCI) R. Hake, "...A six-thousand-student survey..." AJP 66, 64-74 (`98). = post. Pre R. App. Pre R. Care. Pre Math Pre Effort Pre Skept. Pre Overall Post Indep. Post Coher. Post Conc

Colorado at Boulder, University of

73

Advanced benchmarking for complex building types: laboratories as an exemplar.  

E-Print Network (OSTI)

Study of Energy Efficiency in Buildings. ACEEE, Washington©2010 ACEEE Summer Study on Energy Efficiency in BuildingsSummer Study on Energy Efficiency in Buildings Mathew, P. ,

Mathew, Paul; Clear, Robert; Kircher, Kevin; Webster, Tom; Lee, Kwang Ho; Hoyt, Tyler

2010-01-01T23:59:59.000Z

74

Property:Buildings/ModelType | Open Energy Information  

Open Energy Info (EERE)

ModelType ModelType Jump to: navigation, search This is a property of type String. The allowed values for this property are: Baseline Minimum Cost Max Tech PV Takeoff Cost Neutral 30% Energy Savings 50% Energy Savings 70% Energy Savings Other Pages using the property "Buildings/ModelType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Baseline + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + Baseline + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Miami High Plug Load Baseline + Baseline +

75

Property:Buildings/ModelTargetType | Open Energy Information  

Open Energy Info (EERE)

ModelTargetType ModelTargetType Jump to: navigation, search This is a property of type String. The allowed values for this property are: ASHRAE 90.1 2007 ASHRAE 90.1 2004 ASHRAE 189.1 LEED Pages using the property "Buildings/ModelTargetType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago High Plug Load Baseline + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Miami High Plug Load Baseline + ASHRAE 90.1 2004 +

76

Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems  

SciTech Connect

To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

Ong, S.; Campbell, C.; Clark, N.

2012-12-01T23:59:59.000Z

77

Transaction-Based Building Controls Framework, Volume 1: Reference Guide  

SciTech Connect

This document proposes a framework concept to achieve the objectives of raising buildings’ efficiency and energy savings potential benefitting building owners and operators. We call it a transaction-based framework, wherein mutually-beneficial and cost-effective market-based transactions can be enabled between multiple players across different domains. Transaction-based building controls are one part of the transactional energy framework. While these controls realize benefits by enabling automatic, market-based intra-building efficiency optimizations, the transactional energy framework provides similar benefits using the same market -based structure, yet on a larger scale and beyond just buildings, to the society at large.

Somasundaram, Sriram; Pratt, Robert G.; Akyol, Bora A.; Fernandez, Nicholas; Foster, Nikolas AF; Katipamula, Srinivas; Mayhorn, Ebony T.; Somani, Abhishek; Steckley, Andrew C.; Taylor, Zachary T.

2014-04-28T23:59:59.000Z

78

Advanced Benchmarking for Complex Building Types: Laboratories as an Exemplar  

E-Print Network (OSTI)

Office Buildings,” Proceedings of the 1996 ACEEE Summer Study of Energy EfficiencyEnergy Efficiency and Renewable Energy, Office of Building

Mathew, Paul A.

2010-01-01T23:59:59.000Z

79

A Model-Based Method For Building Reconstruction Konrad Schindler  

E-Print Network (OSTI)

A Model-Based Method For Building Reconstruction Konrad Schindler Graz University of Technology with predefined shape templates in or- der to automatically recover a CAD-like model of the build- ing surface specifically, the building model delivered by a dig- ital reconstruction system should be a structured surface

Schindler, Konrad

80

Pounding and impact of base isolated buildings due to earthquakes  

E-Print Network (OSTI)

.3. Base isolation in both adjacent buildings.....................................................72 5. SUMMARY AND CONCLUSION.........................................................................85 5.1. Summary and scope of study... ..............................................................................................................................138 viii LIST OF TABLES TABLE Page 1.1 Survey of earlier research on pounding of buildings...............................................5 3.1 Adjacent building configurations used in this study...

Agarwal, Vivek Kumar

2005-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Benchmarking and Performance Based Rating System for Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking and Performance Based Rating System for Commercial Buildings Benchmarking and Performance Based Rating System for Commercial Buildings in India Speaker(s): Saket Sarraf Date: May 4, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Girish Ghatikar The Indian building sector has witnessed huge surge in interest in energy performance in the last decade. The 'intention' based codes like the national Energy Conservation Building Code (ECBC) and green building rating systems such as Leadership in Energy and Environment Design (LEED-India) and Green Rating for Integrated Habitat Assessment (GRIHA) have been the prime mechanisms to design and assess energy efficient buildings. However, they do not rate the 'achieved' energy performance of buildings over time or reward their performance through a continuous evaluation process.

82

UNC Charlotte PORTAL Building Trade Package Base Bid  

E-Print Network (OSTI)

UNC Charlotte PORTAL Building Trade Package Base Bid Alternate #1 Office curtains/ double Alternate #6 Telecom cabling system Prefered Alternate #7 Pedestrian lighting fixture P and P Bond

Kelly, Scott David

83

The Impacts of Utility Rates and Building Type on the Economics of  

Open Energy Info (EERE)

Impacts of Utility Rates and Building Type on the Economics of Impacts of Utility Rates and Building Type on the Economics of Commercial Photovoltaic Systems Jump to: navigation, search Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems[1] Authors:Sean Ong, Clinton Campbell, and Nathan Clark National Renewable Energy Laboratory, 2012. Abstract To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories. The digital appendix is available with results for the different locations

84

UNC Charlotte PORTAL Building Trade Package Base Bid  

E-Print Network (OSTI)

UNC Charlotte PORTAL Building Trade Package Base Bid Alternate #1 Office curtains/ double glazing Telecom cabling system Prefered Alternate #7 Pedestrian lighting fixture P and P Bond 02001 Site Work,000 SteelFab, Inc. 2,554,007 21,709 Page 1 of 4 #12;UNC Charlotte PORTAL Building Trade Package Base Bid

Kelly, Scott David

85

A framework for simulation-based real-time whole building performance  

NLE Websites -- All DOE Office Websites (Extended Search)

A framework for simulation-based real-time whole building performance A framework for simulation-based real-time whole building performance assessment Title A framework for simulation-based real-time whole building performance assessment Publication Type Journal Article Refereed Designation Unknown LBNL Report Number 0360-1323 Year of Publication 2012 Authors Pang, Xiufeng, Michael Wetter, Prajesh Bhattacharya, and Philip Haves Journal Building and Environment Volume 54 Start Page 100 Pagination 100-108 Date Published 08/2012 ISSN 0360-1323 Keywords building controls virtual test bed, building performance, energy modeling, energyplus, real-time building simulation Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures. One approach to addressing this problems is to compare the predictions of an energy simulation model of the building to the measured performance and analyze significant differences to infer the presence and location of faults. This paper presents a framework that allows a comparison of building actual performance and expected performance in real time. The realization of the framework utilized the EnergyPlus, the Building Controls Virtual Test Bed (BCVTB) and the Energy Management and Control System (EMCS) was developed. An EnergyPlus model that represents expected performance of a building runs in real time and reports the predicted building performance at each time step. The BCVTB is used as the software platform to acquire relevant inputs from the EMCS through a BACnet interface and send them to the EnergyPlus and to a database for archiving. A proof-of-concept demonstration is also presented.

86

Indoor carbon dioxide concentrations and sick building syndrome symptoms in the BASE study revisited: Analyses of the 100 building dataset  

E-Print Network (OSTI)

OF THE 100 BUILDING DATASET CA Erdmann 1 , KC Steiner 1 ,and Evaluation (BASE) dataset, higher workday time-averaged100-building 1994-1998 BASE dataset. Multivariate logistic

Erdmann, Christine A.; Steiner, Kate C.; Apte, Michael G.

2002-01-01T23:59:59.000Z

87

Rank Sites by Building Type and Location for Greenhouse Gas Mitigation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rank Sites by Building Type and Location for Greenhouse Gas Rank Sites by Building Type and Location for Greenhouse Gas Mitigation Rank Sites by Building Type and Location for Greenhouse Gas Mitigation October 7, 2013 - 10:57am Addthis YOU ARE HERE: Step 2 After establishing building locations for greenhouse gas (GHG) mitigation analysis, the next step is to rank sites using the additional factors of eGRID region and climate region. In the Table 1 example below, because Site C and Site D represent the same proportion of Program B's office space (22% each), evaluating eGRID region and climate region will help to prioritize which sites may have a greater potential for GHG reductions. Table 1. Example: Program B Office Location Evaluation Site Name Percent of total Program SF by building type (%) eGRID Climate Region eGRID-Climate Weight1 Location Rank

88

Home-based business resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Home-based business resources Home-based business resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

89

Building America Top Innovations Hall of Fame Profile Â… Building Science-Based Climate Maps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a a climate zone map for the DOE based on the IECC climate zone map. It may not be intuitively obvious why a U.S. climate zone map is so important to the construction industry. Thanks to this Building America innovation, building science education, energy code development, and residential design can much more effectively integrate climate-specific best practices and advanced technologies across the United States. Climate has a major impact on the energy use of residential buildings, and energy codes and standards rely on a clear definition of climate zones to convey requirements to builders. However, prior to 2004, there was no single, agreed- upon climate zone map for the United States for use with building codes. Four different methods for specifying climate-dependent requirements were used by

90

Web-Based Services for Building Energy Management - WEBE  

E-Print Network (OSTI)

WEB-BASED SERVICES FOR BUILDING ENERGY MANAGEMENT ? WEBE Satu Paiho, Jorma Pietil?inen & Mia Ala-Juusela VTT Building and Transport, P.O.Box 1800, FI-02044 VTT, Finland, Email: firstname.lastname@vtt.fi Summary Nowadays, internet can...-line fault diagnosis using Internet and WWW-pages. In: Computers in the Practice of Building and Civil Engineering. Worldwide Symposium. Lahti, Finland, 3-5 Sept. 1997, pp. 362 - 366. 3. Pakanen, J., M?tt?nen, V. & Hyytinen, M. 2001. Prototyping a www...

Paiho, S.; Pietilainen, J.; Ala-Juusela, M.

2004-01-01T23:59:59.000Z

91

Net PV Value by location and building type | Open Energy Information  

Open Energy Info (EERE)

location and building type Jump to: navigation, search Impact of Utility Rates on PV Economics Solar value table: The following table shows the solar value (in kWh) found for...

92

Transformation of a building type : a study of Back Bay houses in Boston  

E-Print Network (OSTI)

The objective of this thesis is to explore the transformation of an existing building type and the application of the support/infill concept in a new context. For this purpose, a traditional Back Bay residential form in ...

Liu, Ricky Pei-Shen

1986-01-01T23:59:59.000Z

93

Types of Lighting in Commercial Buildings - Lighting Characteristics  

Annual Energy Outlook 2012 (EIA)

of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lmW). Lamps with a higher efficacy value are...

94

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lmW). Lamps with a higher efficacy value are...

95

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Characteristics of Lighting Types Characteristics of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lm/W). Lamps with a higher efficacy value are more energy efficient. Average Rated Life The average rated life of a particular type of lamp is defined by the number of hours when 50 percent of a large sample of that type of lamp has failed. Color Rendering Index (CRI) The CRI is a measurement of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are typically used in office and living environments. Correlated Color Temperature (CCT) The CCT is an indicator of the "warmth" or "coolness" of the color

96

List of Portfolio Manager property types | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Portfolio Manager property types Portfolio Manager property types Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

97

Home-based businesses | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Home-based businesses Home-based businesses Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Network list Join the network Technical resources Ask a technical question Auto dealers Grocery and convenience stores Home-based businesses Lodging Renters and tenants Restaurants Frequently asked questions Home-based businesses Saving energy for your home-based business may seem like a challenge, but

98

Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Heating technologies fo r energy efficiency Vol.III-3-4 Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building Guohui Feng Guangyu Cao Li Gang Ph.D. Ph... achieve above 95%. Since not heating up indoor air, it is specially suited for heating of factory buildings where the conditions of heat preservation and sealing are poor and their gates are opened frequently. The off-on of radiation heating system...

Feng, G.; Cao, G.; Gang, L.

2006-01-01T23:59:59.000Z

99

DOE Commercial Building Energy Asset Score: Software Development for Phase II Building Types  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

To estim assumpt to unders tables pr These ta but a bui even by s the Asse year, dep in the ap To get an tables. F Operat Schedu School Office Retail Warehou Hotel Apartme Courthou Library 1 Operatio Standard 9 are added be modifie 2 Closing ti purposes. DOE C Softwar Oper ate a buildin ions concern stand how w rovide a simp bles reflect t lding's level season in ca et Scoring To pending on e pendix at the n overall ide or a more gr tional As ules of Op Occu Sche (hrs 41 48 46 use 1 nt 1 use 4 4 nal assumption 90.1 Prototype to the Asset Sc ed to better ref mes reflect tho Commer re Devel rational a ng's energy u ning how the well these as plified list of the full-time of operation ases such as ool applies a each building e end of this a of the ass ranular unde sumption peration upancy

100

Whole Building Performance-Based Procurement Training | Department...  

Energy Savers (EERE)

Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review commlbldgs12pless040413.pdf More Documents & Publications Building America...

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

102

Distributed energy resources at naval base ventura county building 1512  

SciTech Connect

This paper reports the findings of a preliminary assessment of the cost effectiveness of distributed energy resources at Naval Base Ventura County (NBVC) Building 1512. This study was conducted in response to the base's request for design assistance to the Federal Energy Management Program. Given the current tariff structure there are two main decisions facing NBVC: whether to install distributed energy resources (DER), or whether to continue the direct access energy supply contract. At the current effective rate, given assumptions about the performance and structure of building energy loads and available generating technology characteristics, the results of this study indicate that if the building installed a 600 kW DER system with absorption cooling and heat capabilities chosen by cost minimization, the energy cost savings would be about 14 percent, or $55,000 per year. However, under current conditions, this study also suggests that significant savings could be obtained if Building 1 512 changed from the direct access contract to a SCE TOU-8 (Southern California Edison time of use tariff number 8) rate without installing a DER system. At current SCE TOU-8 tariffs, the potential savings from installation of a DER system would be about 4 percent, or $15,000 per year.

Bailey, Owen C.; Marnay, Chris

2004-10-01T23:59:59.000Z

103

Energy Star Building Upgrade Manual Facility Type: Supermarkets and Grocery Stores Chapter 11  

NLE Websites -- All DOE Office Websites (Extended Search)

1. Facility Type: 1. Facility Type: Supermarkets and Grocery Stores Revised January 2008 11.1 Challenges and Opportunities 2 11.2 Energy Use Profiles 3 11.3 Technical Recommendations 4 Retrocommissioning 5 Lighting 8 Load Reductions 11 Air Distribution Systems 15 Heating and Cooling Systems 16 11.4 Financial and Implementation Issues 17 Bibliography 17 Glossary G-1 ENERGY STAR ® Building Manual 2 11. Facility Type: Supermarkets and Grocery Stores 11.1 Challenges and Opportunities Energy is increasingly joining the ranks of top concerns for supermarket owners and facility managers. Supermarkets are the most electricity-intensive type of commercial building, using an average of about 50 kilowatt-hours (kWh) of electricity. They also use 50 cubic feet of natural gas per square foot (ft

104

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

E-Print Network (OSTI)

applied earlier for building energy modeling applicationstowards building HVAC system modeling and simulation. Forof equation-based modeling for building systems. We believe

Wetter, Michael

2010-01-01T23:59:59.000Z

105

Street-facing Dwelling Units and Livability: The Impacts of Emerging Building Types in Vancouver's New High-density Residential Neighbourhoods  

E-Print Network (OSTI)

design guidelines with new building types that have ground-?oor direct entry dwelling units integrated

Macdonald, Elizabeth

2006-01-01T23:59:59.000Z

106

Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM  

E-Print Network (OSTI)

Building Geometry for the NASA Ames Sustainability Base BIMBuilding Geometry for the NASA Ames Sustainability Base BIMusing the recently constructed NASA Ames Sustainability Base

O'Donnell, James T.

2014-01-01T23:59:59.000Z

107

Experiences in Building an Object-Based Storage System based on the OSD T-10 Standard  

E-Print Network (OSTI)

Experiences in Building an Object-Based Storage System based on the OSD T-10 Standard David Du and management costs, object based storage is on the verge of becoming the next standard storage interface. The American National Standards Institute (ANSI) ratified the object based stor- age interface standard (also

Minnesota, University of

108

Experiences Building an Object-Based Storage System based on the OSD T-10 Standard  

E-Print Network (OSTI)

Experiences Building an Object-Based Storage System based on the OSD T-10 Standard David Du costs, object based storage is on the verge of becoming the next standard storage interface. The American National Standards Institute (ANSI) ratified the object based stor- age interface standard (also

Jeong, Jaehoon "Paul"

109

Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product  

SciTech Connect

Western Research Institute (WRI) of Laramie, Wyoming and AeRock, LLC of Eagar, Arizona (formerly of Bellevue, Washington) partnered, under sponsorship of the U.S. Department of Energy National Energy Technology Laboratory (U.S. DOE-NETL), to support the development of rapid-setting, ash-based, fiber-incorporated ''green'' building products. Green building materials are a rapidly growing trend in the building and construction industry in the US. A two phase project was implemented wherein Phase I assessed, through chemical and physical testing, ash, ash-based cement and fiber composites exhibiting superior structural performance when applied to the AeRock mixing and extrusion process and involved the conduct of pilot-scale production trials of AeRock products, and wherein Phase II involved the design, construction, and operation of a commercial-scale plant to confirm production issues and to produce panels for performance evaluations. Phase I optimized the composite ingredients including ash-based cement, Class F and Class C DFGD ash, and various fiber reinforcements. Additives, such as retardants and accelerators, were also evaluated as related to extruder performance. The optimized composite from the Phase I effort was characterized by a modulus of rupture (MOR) measured between 1,931 and 2,221 psi flexural strength, comparable to other wood and non-wood building materials. Continuous extrusion of the optimum composite in the AeRock pilot-scale facility produced an excellent product that was assembled into a demonstration for exhibit and durability purposes. Finishes, from plain to marbled, from bright reds to muted earth tones and with various textures, could easily be applied during the mixing and extrusion process. The successful pilot-scale demonstration was in turn used to design the production parameters and extruder dies for a commercial scale demonstration at Ultrapanel Pty, Ltd of Ballarat, Australia under Phase II. The initial commercial-scale production trials showed green product sagging, as a result of the die design. After the third die was acquired and fitted to the extruder, satisfactory decking and structural panels were produced. Cured decking was shipped to the US but experienced significant breakage and damage during transport. Subsequent evaluations concluded that an alternative die design was needed that would produce a more robust product resistant to damage. In summary, AeRock Decking can be a commercially-viable non-wood alternative decking product. This project has provided WRI and AeRock the knowledge and understanding to make AeRock Decking a commercial success. However, a commercial demonstration that produces quality product and the subsequent evaluation of its performance is needed before commercial acceptance of the AeRock product.

Alan E. Bland; Jesse Newcomer

2007-06-30T23:59:59.000Z

110

Selecting Building Predictive Control Based on Model Uncertainty  

E-Print Network (OSTI)

S. Pr´?vara et al. “Building Modeling as a Crucial Part forThe details of building thermal modeling and estimation ofModeling and Optimal Control Algorithm Design for HVAC Systems in Energy Efficient Buildings”.

Maasoumy, Mehdi

2014-01-01T23:59:59.000Z

111

Category:Utility Rate Impacts on PV Economics By Building Type | Open  

Open Energy Info (EERE)

Rate Impacts on PV Economics By Building Type Rate Impacts on PV Economics By Building Type Jump to: navigation, search Impact of Utility Rates on PV Economics Full Service Restaurant Hospital Large Hotel Large Office Medium Office Midrise Apartment Outpatient Primary School Quick Service Restaurant Secondary School Small Hotel Small Office Stand-alone Retail Strip Mall Supermarket Warehouse Subcategories This category has the following 16 subcategories, out of 16 total. F [×] FullServiceRestaurant‎ 1 pages H [×] Hospital‎ L [×] LargeHotel‎ [×] LargeOffice‎ M [×] MediumOffice‎ [×] MidriseApartment‎ O [×] OutPatient‎ P [×] PrimarySchool‎ Q [×] QuickServiceRestaurant‎ S [×] SecondarySchool‎ [×] SmallHotel‎ [×] SmallOffice‎ S cont. [×] StandAloneRetail‎ [×] StripMall‎ [×] Supermarket‎ W [×] Warehouse‎

112

Covering based approximation – a new type approach  

Science Journals Connector (OSTI)

The rough set theory, proposed by Pawlak is termed as basic (traditional) rough set theory and it has been extended in many directions. Covering based rough set is one of the extensions of the basic rough set theory. A covering is a generalisation of notion of partitioned rough set (Pawalk rough set) introduced by W. Zakowski. In this article it is introduced a new type of covering-based rough set in which both lower and upper approximation operators are improved.

Debadutta Mohanty

2010-01-01T23:59:59.000Z

113

Estimates of energy consumption by building type and end use at U.S. Army installations  

SciTech Connect

This report discusses the use of LBNL`s End-use Disaggregation Alogrithm (EDA) to 12 US Army installations nationwide in order to obtain annual estimates of electricity use for all major building types and end uses. The building types include barrack, dining hall, gymnasium, administration, vehicle maintenance, hospital, residential, warehouse, and misc. Up to 8 electric end uses for each type were considered: space cooling, ventilation (air handling units, fans, chilled and hot water pumps), cooking, misc./plugs, refrigeration, exterior and interior lighting, and process loads. Through building simulations, we also obtained estimates of natural gas space heating energy use. Average electricity use for these 12 installations and Fort Hood are: HVAC, misc., and indoor lighting end uses consumed the most electricity (28, 27, and 26% of total[3.8, 3.5, and 3.3 kWh/ft{sup 2}]). Refrigeration, street lighting, exterior lighting, and cooking consumed 7, 7, 3, and 2% of total (0.9, 0.9, 0.4, and 0.3 kWh/ft{sup 2})

Konopacki, S.J.; Akbari, H.

1996-08-01T23:59:59.000Z

114

BUILDING A UNITED STATES DATA BASE: POPULATIONS AT RISK TO ENVIRONMENTAL POLLUTION  

E-Print Network (OSTI)

BUILDING A UNITED STATES DATA BASE: POPULATIONS AT RISK TO ENVIRONMENTAL POLLUTIONBUILDING A UNITED STATES DATA BASE: POPULATIONS AT RISK TO ENVIRONMENTAL POLLUTION

Sacks, Susan T.

2014-01-01T23:59:59.000Z

115

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network (OSTI)

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of… (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

116

A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based on Large Datasets  

E-Print Network (OSTI)

A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based consumption of buildings based on historical performances is an important approach to achieve energy consumption plays an important role in the total energy consumption of end use. Energy efficiency in building

Paris-Sud XI, Université de

117

The effect of side-restraint bearings on the performance of base-isolated buildings  

E-Print Network (OSTI)

1 The effect of side-restraint bearings on the performance of base- isolated buildings J P Talbot * Corresponding author. Email: jpt1000@eng.cam.ac.uk Abstract: Base-isolation of buildings is a common solution vibration isolation bearings between a building and its foundation, aligned in the vertical direction so

Talbot, James P.

118

Energy efficiency in public buildings through ICT based control and monitoring systems  

E-Print Network (OSTI)

Energy efficiency in public buildings through ICT based control and monitoring systems G, France Keywords: energy efficiency, existing public buildings, control strategies, dynamic simulations a project entitled "Smart Energy Efficient Middleware for Public Spaces" (SEEMPubS). The project addresses

Paris-Sud XI, Université de

119

Evaluation of a case-based Reasoning Energy Prediction Tool for Commercial Buildings  

E-Print Network (OSTI)

This paper presents the results of an energy predictor that predicts the energy demand of commercial buildings using Case Based Reasoning (CBR). The proposed approach is evaluated using monitored data in a real office building located in Varennes...

Monfet, D.; Arkhipova, E.; Choiniere, D.

2013-01-01T23:59:59.000Z

120

Internet-based Building Performance Analysis Provided as a Low-Cost Commercial Service  

E-Print Network (OSTI)

Internet-based monitoring services can play a very important role in reducing the energy consumed in commercial buildings. They can provide the information needed to identify improvements that should be made in the operation of particular buildings...

Heinemeier, K.; Koran, W.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint  

SciTech Connect

NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

Scheib, J.; Pless, S.; Torcellini, P.

2014-08-01T23:59:59.000Z

122

Web-based energy information systems for energy management and demand response in commercial buildings  

SciTech Connect

Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-04-18T23:59:59.000Z

123

State-based Modeling of Buildings and Facilities  

E-Print Network (OSTI)

.g. starting heating at unconventional times). Therefore we defined a methodology starting already at the design of the building leading to a formalized specification of the implementation of a building's management system, which seamlessly integrates...

Fisch, M.N.; Pinkernell, C.; Look, M.; Plesser, S.; Rumpe, B.

2011-01-01T23:59:59.000Z

124

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

125

Commander, Naval Base ATTN: Ms. Cheryl Barnett Building N-26  

Office of Legacy Management (LM)

.J>?j 1.2 1990 .J>?j 1.2 1990 Commander, Naval Base ATTN: Ms. Cheryl Barnett Building N-26 Code N 9 E Norfolk, Virginia 23511-6002 Dear Ms. Barnett: I enjoyed speaking with you on the phone. The Department of Energy (DOE) has established its Formerly Utilized Sites Remedial Action Program (FUSRAP) to identify sites formerly utilized by its predecessor agencies in the early days of the nation's atomic energy program and to determine the potential for these sites to contain radiological contamination, related to DOE's past activities, which may require remedial action. When necessary, radiological surveys of individual sites are performed to provide the data necessary to make this necessary determination. As we discussed, in July 1956, the Atomic Energy Commission (a DOE

126

Energy Star Building Upgrade Manual Facility Type: KÂ…12 Schools Chapter 10  

NLE Websites -- All DOE Office Websites (Extended Search)

10. Facility Type: 10. Facility Type: K-12 Schools Revised November 2006 10.1 Challenges and Opportunities 2 10.2 Energy-Use Profile 3 10.3 Technical Recommendations 4 Retrocommissioning 5 Lighting 7 Load Reductions 9 Air Distribution Systems 11 Heating and Cooling Systems 13 10.4 Financial and Implementation Issues 14 Bibliography 16 Glossary G-1 ENERGY STAR ® Building Manual 2 10. Facility Type: K-12 Schools 10.1 Challenges and Opportunities America's schools spend more than $7.5 billion annually on energy-more than they spend on textbooks and computers combined. Energy costs are the largest operating expense for school districts after salaries and benefits, and in recent years those costs have increasingly strained their budgets. The good news is that energy is one of the few expenses that can be decreased

127

Energy Star Building Upgrade Manual Facility Type: Hotels and Motels Chapter 12  

NLE Websites -- All DOE Office Websites (Extended Search)

2. Facility Type: 2. Facility Type: Hotels and Motels Revised December 2007 12.1 Challenges and Opportunities 2 12.2 Energy-Use Profile 3 12.3 Technical Recommendations 4 Retrocommissioning 5 Lighting 8 Load Reduction 11 Air Distribution Systems 13 Heating and Cooling Systems 15 12.4 Financial and Implementation Issues 16 Bibliography 17 Glossary G-1 ENERGY STAR ® Building Manual 2 12. Facility Type: Hotels and Motels 12.1 Challenges and Opportunities The United States' 47,000 hotels and motels spend an average of $2,196 per available room each year on energy, an amount that represents about 6 percent of all hotel operating costs. The varied nature of the physical facilities and the activities that they host can make energy management especially challenging, whether the facility is a large convention hotel, part of

128

Component-based Modeling of Complete Buildings Luc Leblanc Jocelyn Houle Pierre Poulin  

E-Print Network (OSTI)

Component-based Modeling of Complete Buildings Luc Leblanc Jocelyn Houle Pierre Poulin LIGUM, Dept Graphics [I.3.5]: Computational Geom- etry and Object Modeling 1 INTRODUCTION Buildings host a great deal the buildings of a city, quickly becomes a daunting endeavor. Procedural modeling is an excellent method

Montréal, Université de

129

Risk Perception in Performance-Based Building Design and Applications to Terrorism-Resistant Design  

E-Print Network (OSTI)

Risk Perception in Performance-Based Building Design and Applications to Terrorism-Resistant Design-offs in "acceptable" risk versus cost must be made. As terrorism represents a constantly changing design challenge; Terrorism. Introduction Risks have always been associated with buildings. However, as buildings become

Bank, Lawrence C.

130

An object-oriented framework for simulation-based green building design optimization with genetic algorithms  

Science Journals Connector (OSTI)

Simulation-based optimization can assist green building design by overcoming the drawbacks of trial-and-error with simulation alone. This paper presents an object-oriented framework that addresses many particular characteristics of green building design ... Keywords: Genetic algorithm, Green building, Object-oriented framework, Optimization, Simulation programs, Sustainable development

Weimin Wang; Hugues Rivard; Radu Zmeureanu

2005-01-01T23:59:59.000Z

131

Occupancy-Based Energy Management in Buildings: Final Report to Sponsors  

E-Print Network (OSTI)

1 Occupancy-Based Energy Management in Buildings: Final Report to Sponsors Michael D. Sohn1 Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs of the U Buildings program through the California Institute for Energy and the Environment (CIEE), and by the United

Cerpa, Alberto E.

132

Developing Performance-Based Policies for Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The State & Local Energy Efficiency Action Network (SEE Action) recently released a report, Greater Energy Savings through Building Energy Performance Policy: Four Leading Policy and Program...

133

A Scenario-based Predictive Control Approach to Building HVAC Management Systems  

E-Print Network (OSTI)

A Scenario-based Predictive Control Approach to Building HVAC Management Systems Alessandra Parisio and Air Conditioning (HVAC) systems while minimizing the overall energy use. The strategy uses

Johansson, Karl Henrik

134

A Computer-based LCA Tool for Sustainable Building Design  

Science Journals Connector (OSTI)

In the last two decades the interest in design sustainable buildings has developed rapidly. Design sustainable building is necessary to achieve a sustainable society. Moreover, recent design projects have become too big and too complicated to depend ... Keywords: Briefing stage, life cycle assessment, modeling, sustainability

Ahmed M. Azmy

2010-09-01T23:59:59.000Z

135

Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint  

SciTech Connect

This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

Pless, S.; Torcellini, P.; Shelton, D.

2011-05-01T23:59:59.000Z

136

Indoor carbon dioxide concentrations and sick building syndrome symptoms in the BASE study revisited: Analyses of the 100 building dataset  

E-Print Network (OSTI)

Proceedings of Healthy Buildings '95, Milan, Italy, 3:1305-Proceedings of Healthy Buildings '95, Milan, Italy, Vol 3,

Erdmann, Christine A.; Steiner, Kate C.; Apte, Michael G.

2002-01-01T23:59:59.000Z

137

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

138

building load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

139

Analytic target cascading in simulation-based building design R. Choudharya,*, A. Malkawib  

E-Print Network (OSTI)

of an office building by posing the problem as a constrained non- linear optimization problem. Gero et al. [9] included energy efficiency in the context of other performance criteria and proposed a design optimizationAnalytic target cascading in simulation-based building design R. Choudharya,*, A. Malkawib , P

Papalambros, Panos

140

Fusion of Feature-and Area-Based Information for Urban Buildings Modeling from Aerial Imagery  

E-Print Network (OSTI)

Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial Imagery on Graph Cuts. The fusion pro- cess exploits the advantages of both information sources and thus yields the complete geometry of the build- ing. The fusion of those sparse features is very fragile as there is no way

Giger, Christine

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A building’s refurbishment knowledge and device based decision support system  

Science Journals Connector (OSTI)

The integration of knowledge-based, devices-based and decision support systems have a very promising future in scientific research. The authors of this paper participated in the project Framework 6, ‘Bringing Retrofit Innovation to the Application ...

Edmundas Zavadskas; Arturas Kaklauskas; Povilas Vainiunas; Ruta Dubakiene; Andrius Gulbinas; Mindaugas Krutinis; Petras Cyras; Liudas Rimkus

2006-09-01T23:59:59.000Z

142

Emergy-based life cycle assessment (Em-LCA) of multi-unit and single-family residential buildings in Canada  

Science Journals Connector (OSTI)

Abstract The construction and building process depends on substantial consumption of natural resources with far-reaching impacts beyond their development area. In general, a significant portion of annual resource consumption by the building and construction industry is a result of applying traditional building strategies and practices such as designing and selecting types of development (e.g. multi-unit condo and single-family house, etc.), building materials and structure, heating/cooling systems, and planning renovation and maintenance practices. On the other hand, apart from structural suitability, building developers mostly consider the basic requirements of public owners or private occupants of the buildings, where the main criteria for selecting building strategies are costs, and long-term environmental and socio-economic impacts are generally ignored. The main purpose of this paper is to develop an improved building sustainability assessment framework to measure and integrate different sustainability factors, i.e. long-term environmental upstream and downstream impacts and associated socio-economic costs, in a unified and quantitative basis. The application of the proposed framework has been explained through a case study of single-family houses and multi-unit residential buildings in Canada. A comprehensive framework based on the integration of emergy synthesis and life cycle assessment (LCA) has been developed and applied. The results of this research prove that the proposed emergy-based life cycle assessment (Em-LCA) framework offers a practical sustainability assessment tool by providing quantitative and transparent results for informed decision-making.

Bahareh Reza; Rehan Sadiq; Kasun Hewage

2014-01-01T23:59:59.000Z

143

Ameresco and Hill Air Force Base: SPP Success Story | ENERGY STAR Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Hill Air Force Base: SPP Success Story Hill Air Force Base: SPP Success Story Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

144

The construction industry is comprised of a wide range of businesses involved in engineering standards, building design, and the construction of various types of materials and  

E-Print Network (OSTI)

in engineering standards, building design, and the construction of various types of materials and structures-related impacts, such as high winds and flooding, influence the choice of site construction, building techniques completion timelines. A changing climate can lead contractors to build smarter structures that are more

145

Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) | Open  

Open Energy Info (EERE)

Media, Inc. (Du Pont) (Building America Retrofit Alliance) Media, Inc. (Du Pont) (Building America Retrofit Alliance) Jump to: navigation, search Name Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) Place Wilmington, DE Website http://www.prweb.com/releases/ References Building America Retrofit Alliance Press Release[1] BMI Website[2] DuPont Website[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) is a company located in Wilmington, DE. References ↑ "Building America Retrofit Alliance Press Release" ↑ "BMI Website"

146

Model-Based Control: Development of a software tool for responsive building  

NLE Websites -- All DOE Office Websites (Extended Search)

Model-Based Control: Development of a software tool for responsive building Model-Based Control: Development of a software tool for responsive building research, design and operation Speaker(s): Brian Coffey Date: June 28, 2006 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Peng Xu Model-based control approaches the problem of optimal supervisory control for complex building systems by using discrete timesteps and searching for an optimal control configuration at each timestep, using a detailed building model and an optimization algorithm. Although the approach itself is not new (it was proposed at least as early as 1988), it is only during the past five to ten years that readily-available computation power has allowed researchers to consider this approach with complex system models. Recent research has developed and tested this approach for active solar

147

RSF Workshop Session II: Performance-Based Design-Build Process  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Performance-Based Design-Build II: Performance-Based Design-Build Process Moderator: Drew Detamore Panelists: Jeff Baker Karen Leitner Byron Haselden Achieving Superior Energy Performance at Competitive Cost RSF Workshop, Golden, Colorado July 27-28, 2011 Energy Efficiency & Renewable Energy *Moderator: *Drew Detamore Director, Infrastructure and Campus Development Office National Renewable Energy Laboratory *Panelists: *Karen Leitner Senior Supervisor, Contract and Business Services National Renewable Energy Laboratory *Byron J. Haselden President, Haselden Construction *Jeffrey M. Baker Director, Office of Laboratory Operations U.S. Department of Energy Golden Field Office * Performance based design-build process * Incentives * Shared Values * Owner's perspective * Design-Builder's perspective * Has anyone ever utilized one design-build team to

148

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

149

China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment  

SciTech Connect

We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

2012-01-13T23:59:59.000Z

150

SKETCH-BASED BUILDING MODELLING David J. Olsen and Nathan D. Pitman and Sutirtha Basak and Burkhard C. Wunsche  

E-Print Network (OSTI)

SKETCH-BASED BUILDING MODELLING David J. Olsen and Nathan D. Pitman and Sutirtha Basak and Burkhard 3D models of buildings are an important component of many computer graphics applica- tions. Rapid and detailed geometry. We present a sketch-based modelling tool for the rapid creation of rough 3D building

Sun, Jing

151

A Conceptual Framework for Building CIM-Based Ontologies  

Science Journals Connector (OSTI)

Cooperative Management has appeared as a promising paradigm on which Network and System Management (NSM) solutions should be partially or entirely based. This paper proposes a conceptual framework to obtain, from...

Emmanuel Lavinal; Thierry Desprats; Yves Raynaud

2003-01-01T23:59:59.000Z

152

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

specifies an electrical power-to- heat ratio based on theeffectiveness. Thus, power-to-heat ratios from TeChars areinverse of this modified power-to-heat ratio is the alpha

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

153

Market-Based Incentives for Green Building Alternatives K.R. Grosskopf, Ph.D.1  

E-Print Network (OSTI)

-based incentives for adaptation of water-saving, green building alternatives and a new international program is introduced wherein the water supplier can create "optimal" market-based incentives for consumer investment for Collective Protection, University of Florida, 336 Rinker Hall, Gainesville, Florida, USA, 32611-5703. 1

Jawitz, James W.

154

Linseed Oil-Based Concrete Surface Treatment -for Building and Highway Structures in  

E-Print Network (OSTI)

, Linseed Oil-Based Concrete Surface Treatment -for Building and Highway Structures in Hong Kong Y using jour Canadian linseed oil- based sealants on concrete specimens madejrom G30120 and G45120 Keywords: Unseed Oil, Concrete Surface Treatment, Salt Spray Resistance, Carbonation, Bond Strength, Ultra

155

A lifestyle-based scenario, Energy Policy A lifestyle-based scenario for U.S. buildings  

E-Print Network (OSTI)

A lifestyle-based scenario, Energy Policy A lifestyle-based scenario for U.S. buildings factors in developing different energy scenarios for the US and elsewhere (Schipper & Meyers, 1993). More economic and population growth worldwide to look at energy consumption and greenhouse gas emissions (Carter

Diamond, Richard

156

A lifestyle-based scenario, Energy Policy A lifestyle-based scenario for U.S. buildings  

E-Print Network (OSTI)

A lifestyle-based scenario, Energy Policy A lifestyle-based scenario for U.S. buildings energy scenarios for the US and elsewhere (Schipper & Meyers, 1993). More recently, the Intergovernmental worldwide to look at energy consumption and greenhouse gas emissions (Carter et al., 2000). By developing

157

Seismic response analyses of the base-isolated building at Tohoku  

NLE Websites -- All DOE Office Websites (Extended Search)

Seismic response analyses of the base-isolated building at Tohoku Seismic response analyses of the base-isolated building at Tohoku University Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Engineering Analysis Multimedia Bookmark and Share EA Multimedia, a collection of videos and audios featuring activities related to the Engineering Analysis Department Seismic response analyses of the base-isolated building at Tohoku

158

14 - Life cycle assessment (LCA) of wood-based building materials  

Science Journals Connector (OSTI)

Abstract: In this chapter we discuss major issues regarding life cycle assessment (LCA) and environmental performance analysis of wood-based building materials. We follow the life cycle of a wood product, beginning with a discussion of sustainable forestry and the growth of trees. We then discuss the processes of manufacturing wood-based building products, focusing on issues of adhesives and preservatives. We discuss the design and construction of buildings and infrastructure made of wood, with an emphasis on eco-design processes. We describe the system-wide material and energy flows associated with wood-based construction in a life cycle perspective, and discuss the climate benefits of using wood material from sustainably managed forests.

R. Sathre; S. González-García

2014-01-01T23:59:59.000Z

159

Effect of window type, size and orientation on the total energy demand for a building in Indian climatic conditions  

Science Journals Connector (OSTI)

Windows in a building allow daylight to enter a building space but simultaneously they also result in heat gains and losses affecting energy balance. This requires an optimisation of window area from the point of view of total energy demand viz., for lighting and cooling/heating. This paper is devoted to this kind of study for Indian climatic conditions, which are characterised by six climatic zones varying from extreme cold to hot, dry and humid conditions. Different types of windows have been considered because the optimised size will also depend on the thermo-optical parameters like heat transfer coefficient (U-value), solar heat gain coefficient (g), visual (?), and total transmittance (T) of the glazing in the window. It is observed that in a non-insulated building, cooling/heating energy demand far exceeds lighting energy demand, making the optimisation of window area a futile exercise from the point of view of total energy demand. Only for buildings with U-value below 0.6 W/m²K can optimisation be achieved. The optimised window area and the corresponding specific energy consumption have been calculated for different climates in India, for different orientations, and for three different advanced window systems.

Inderjeet Singh; N.K. Bansal

2004-01-01T23:59:59.000Z

160

New York State Standards for BUILDING Leaders Candidates in university-based preparation programs who seek NYS certification as  

E-Print Network (OSTI)

1 New York State Standards for BUILDING Leaders Candidates in university-based preparation programs who seek NYS certification as School Building Leaders (SBL) must demonstrate the following nine and skills necessary to perform the following: a. Develop and implement an educational vision, or build

Suzuki, Masatsugu

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Energy Modeling  

Energy.gov (U.S. Department of Energy (DOE))

Building energy simulation—physics-based calculation of building energy consumption—is a multi-use tool for building energy efficiency.

162

Sorbent-Based Gas Phase Air Cleaning for VOCs in Commercial Buildings  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Fisk, William J.

2006-01-01T23:59:59.000Z

163

Formal foundations for situation awareness based on dependent type theory  

Science Journals Connector (OSTI)

Cognitive situation awareness has recently caught the attention of the information fusion community. Some approaches have developed formalizations that are both ontology-based and underpinned with Situation Theory. While the semantics of Situation Theory ... Keywords: Aggregation, Dependent types, Ontologies, Situation awareness, Subsumption, Type inhabitation

Richard Dapoigny; Patrick Barlatier

2013-01-01T23:59:59.000Z

164

Building indicator groups based on species characteristics can improve conservation planning  

E-Print Network (OSTI)

is in identifying important areas for the conservation of biodiversity. As networks of areas encompassing biodiversity to select networks of areas for conservation? In the literature, reliable indicator groupsBuilding indicator groups based on species characteristics can improve conservation planning

Manne, Lisa

165

The Conference Control Channel Protocol (CCCP): A scalable base for building conference control applications  

E-Print Network (OSTI)

The Conference Control Channel Protocol (CCCP): A scalable base for building conference control.Handley@cs.ucl.ac.uk Abstract This paper presents the Conference Control Channel Pro­ tocol (CCCP), a new scheme intended these as a basis for developing an architecture for the next generation of conference control applications

Handley, Mark

166

Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial Buildings  

E-Print Network (OSTI)

Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial.agarwal@cs.cmu.edu ABSTRACT Commercial buildings contribute to 19% of the primary energy consumption in the US, with HVAC systems accounting for 39.6% of this usage. To reduce HVAC energy use, prior studies have pro- posed using

Gupta, Rajesh

167

REAL-TIME, WEB BASED ENERGY MONITORING SYSTEM FOR A SOLAR ACADEMIC BUILDING John H. Scofield  

E-Print Network (OSTI)

REAL-TIME, WEB BASED ENERGY MONITORING SYSTEM FOR A SOLAR ACADEMIC BUILDING John H. Scofield-time data on the world-wide-web from 14 sensors that monitor various aspects of energy flows to and from Field Station incorporates passive solar cooling and active solar heating, maximizes ergonomic

Scofield, John H.

168

Japan-Mexico Rectors' Summit "Building-up innovative relations for a knowledge-based society"  

E-Print Network (OSTI)

Japan-Mexico Rectors' Summit "Building-up innovative relations for a knowledge-based society" Joint Statement On June 29, 2011, the Japan-Mexico Rectors' Summit was hosted by the University of Tokyo, at which the importance of elevating the strategic partnership between Mexico and Japan to a new stage through

Katsumoto, Shingo

169

Energy-Goal-Based Building Procurement: Achieving 90% Energy Savings in a Parking Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Goal-Based Building Procurement: Achieving 90% Energy Savings in a Parking Structure Commercial Building Energy Alliance Shanti Pless, NREL Jennifer Scheib, NREL Phil Macey AIA Phil Macey, AIA August 8 2012 August 8, 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Overview * Campus background * Parking structure o Obj jectives o Determining the energy goal o Design solution o Design solution o Energy performance * Discussion about innovation and replication * Discussion about innovation and replication * Resources for replication 2 NREL Campus Background NREL Campus Background NREL Campus Background * Pre-2007 construction:

170

Structured Video: A Data Type with ContentBased Access  

E-Print Network (OSTI)

Structured Video: A Data Type with Content­Based Access Andrzej Duda y Ron Weiss September 1993 MIT: video indexing and searching, video databases, content­ based retrieval, video algebra #12; Abstract We describe structured video, a general video data model allowing free form annotation, composition

Gifford, David K.

171

Structured Video: A Data Type with Content-Based Access  

E-Print Network (OSTI)

Structured Video: A Data Type with Content-Based Access Andrzej Duday Ron Weiss September 1993 MIT or implied, of the Defense Advanced Research Projects Agency or the U.S. Government. #12;Keywords: video indexing and searching, video databases, content- based retrieval, video algebra #12;Abstract We describe

Gifford, David K.

172

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type.

173

Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM  

E-Print Network (OSTI)

requirements for modeling of building geometry for energyrequired by building energy modeling (BEM) tools. This isbe applied to all building energy modeling tools but to date

O'Donnell, James T.

2014-01-01T23:59:59.000Z

174

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy, Office of BuildingEnergy Efficiency and Renewable Energy, Office of BuildingBuilding Technologies Program, Office of Energy Efficiency

Hong, T.

2011-01-01T23:59:59.000Z

175

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network (OSTI)

quality survey. In: Healthy Buildings 2006. Lisbon,In: Proceedings of Healthy Buildings 2006. Lisbon, Portugal:as ventilation varies. In: Healthy Buildings 2012. Brisbane,

Mendell, Mark J.

2014-01-01T23:59:59.000Z

176

Regionalized LCA-Based Optimization of Building Energy Supply: Method and Case Study for a Swiss Municipality  

Science Journals Connector (OSTI)

Regionalized LCA-Based Optimization of Building Energy Supply: Method and Case Study for a Swiss Municipality ... This paper presents a regionalized LCA-based multiobjective optimization model of building energy demand and supply for the case of a Swiss municipality for the minimization of greenhouse gas emissions and particulate matter formation. ... A suitable method for such analyses is life cycle assessment (LCA). ...

Dominik Saner; Carl Vadenbo; Bernhard Steubing; Stefanie Hellweg

2014-05-27T23:59:59.000Z

177

A Modelica-based Model Library for Building Energy and Control Systems  

SciTech Connect

This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language. It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.

Wetter, Michael

2009-04-07T23:59:59.000Z

178

Airflow Characteristics of Direct-Type Kitchen Hood Systems in High-Rise Apartment Buildings  

E-Print Network (OSTI)

, Samsung C&T, South Korea 2 Introduction ? Today?s high-rise apartment buildings exhibit high degree of air-tightness. ? They are also subjected to stack effect and seasonal, unpredictable, wind pressure variations. ? Therefore, it is questionable... characteristics for alt0 16 32CMH 0Pa 42CMH 0Pa 74CMH 16Pa 477CMH 984CMH 355CMH 815CMH 173CMH 26Pa 0CMH 0CMH 0CMH 54CMH 0Pa 158CMH 1Pa 35CMH 0Pa 74CMH 18Pa (a)?On?3rd?floor?at?12:00,?Jan?1st 1.5m/s North 50CMH 1Pa 23CMH 0Pa 75CMH 18Pa...

Park, M.

2011-01-01T23:59:59.000Z

179

Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiciency  

E-Print Network (OSTI)

Existing Office Building for Energy Efficiency Liping Wang,Existing Office Building for Energy Efficiency Liping Wang

Wang, Liping

2014-01-01T23:59:59.000Z

180

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Automatic building of a web-like structure based on thermoplastic adhesive  

Science Journals Connector (OSTI)

Animals build structures to extend their control over certain aspects of the environment; e.g., orb-weaver spiders build webs to capture prey, etc. Inspired by this behaviour of animals, we attempt to develop robotics technology that allows a robot to automatically builds structures to help it accomplish certain tasks. In this paper we show automatic building of a web-like structure with a robot arm based on thermoplastic adhesive (TPA) material. The material properties of TPA, such as elasticity, adhesiveness, and low melting temperature, make it possible for a robot to form threads across an open space by an extrusion-drawing process and then combine several of these threads into a web-like structure. The problems addressed here are discovering which parameters determine the thickness of a thread and determining how web-like structures may be used for certain tasks. We first present a model for the extrusion and the drawing of TPA threads which also includes the temperature-dependent material properties. The model verification result shows that the increasing relative surface area of the TPA thread as it is drawn thinner increases the heat loss of the thread, and that by controlling how quickly the thread is drawn, a range of diameters can be achieved from 0.2–0.75 mm. We then present a method based on a generalized nonlinear finite element truss model. The model was validated and could predict the deformation of various web-like structures when payloads are added. At the end, we demonstrate automatic building of a web-like structure for payload bearing.

Derek Leach; Liyu Wang; Dorothea Reusser; Fumiya Iida

2014-01-01T23:59:59.000Z

182

Type-Based Analysis of Generic Key Management APIs  

E-Print Network (OSTI)

Type-Based Analysis of Generic Key Management APIs Pedro Ad~ao1,2 , Riccardo Focardi3, Universit`a Ca' Foscari, Venezia, Italy Abstract In the past few years, cryptographic key management APIs. In fact, real APIs provide mechanisms to declare the intended use of keys but they are not strong enough

183

City of Boulder - Green Points Building Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program < Back Eligibility Commercial Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Solar Heating Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider City of Boulder The Boulder Green Points Building Program is a mandatory residential green building program that requires a builder or homeowner to include a variety of sustainable building components based on the size of the proposed structure. Similar to the US Green Building Council's LEED program, the

184

Energy retrofitting of a typical old Danish multi-family building to a “nearly-zero” energy building based on experiences from a test apartment  

Science Journals Connector (OSTI)

The purpose of the research described in this paper was to demonstrate that an old Danish multi-family building built in 1896 could be retrofitted to a “nearly-zero” energy building. Three types of retrofit measures were implemented in a “test” apartment to obtain practical experiences. The first measure was the installation of two different types of interior insulation, specifically, an insulation component consisting of an aerogel–stone wool mixture or vacuum insulation panels. The second measure related to the retrofit of windows in which five measures were completed that consisted of applying a secondary frame, a sash mounted on the frame or to coupled frames. The third measure consisted of installing a decentralised mechanical ventilation system with heat recovery. The results showed that following the retrofit the building's theoretical energy use diminished from 162.5 kWh/(m2 year) to 51.5 kWh/(m2 year), corresponding to a reduction in energy use of 68%. The theoretical energy use after retrofitting fulfilled the requirements for new buildings in Denmark. The practical experiences that were retained following the retrofit were that the ventilation system ought to be installed with low noise components, insulation materials must be sized and cut to fit on site, and that new windows were selected.

Martin Morelli; Leif Rřnby; Svend Erik Mikkelsen; Maja G. Minzari; Troels Kildemoes; Henrik M. Tommerup

2012-01-01T23:59:59.000Z

185

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

SciTech Connect

Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each specific outcome threshold are estimated; and the highest of these MVRs, which would then meet all outcome thresholds, is selected as the target MVR. In a second step, implemented only if the target MVR from step 1 is judged impractically high, costs and benefits are estimated and this information is used in a risk management process. Four human outcomes with substantial quantitative evidence of relationships to VRs are identified for initial consideration in setting MVR standards. These are: building-related symptoms (sometimes called sick building syndrome symptoms), poor perceived indoor air quality, and diminished work performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. In an application of step 1 for offices using a set of example outcome thresholds, a target MVR of 9 L/s (19 cfm) per person was needed. Because this target MVR was close to MVRs in current standards, use of a cost/benefit process seemed unnecessary. Selection of more stringent thresholds for one or more human outcomes, however, could raise the target MVR to 14 L/s (30 cfm) per person or higher, triggering the step 2 risk management process. Consideration of outdoor air pollutant effects would add further complexity to the framework. For balancing the objective and subjective factors involved in setting MVRs in a cost-benefit process, it is suggested that a diverse group of stakeholders make the determination after assembling as much quantitative data as possible.

Mendell, Mark J.; Fisk, William J.

2014-02-01T23:59:59.000Z

186

Torsion in K-theory for boundary actions on affine buildings of type $\\tA_n$.  

E-Print Network (OSTI)

Let $\\Gamma$ be a torsion free lattice in $G = \\PGL(n+1,\\FF)$, where $n\\ge 1$ and $\\FF$ is a non-archimedean local field. Then $\\Gamma$ acts on the Furstenberg boundary $G/P$, where $P$ is a minimal parabolic subgroup of $G$. The identity element $\\id$ in the crossed product $C^*$-algebra $C(G/P)\\rtimes \\Gamma$ generates a class $[\\id]$ in the $K_0$ group of $C(G/P)\\rtimes \\Gamma$. It is shown that $[\\id]$ is a torsion element of $K_0$ and there is an explicit bound for the order of $[\\id]$. The result is proved more generally for groups acting on affine buildings of type $\\tA_n$. For $n=1, 2$ the Euler-Poincaré characteristic $\\chi(\\Gamma)$ annihilates the class $[\\id]$.

Guyan Robertson.; 251-269

187

Weather data analysis based on typical weather sequence analysis. Application: energy building simulation  

E-Print Network (OSTI)

In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...

David, Mathieu; Garde, Francois; Boyer, Harry

2014-01-01T23:59:59.000Z

188

Property:Building/Boundaries | Open Energy Information  

Open Energy Info (EERE)

Boundaries Boundaries Jump to: navigation, search This is a property of type String. Boundaries Pages using the property "Building/Boundaries" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Several buildings + Sweden Building 05K0002 + Part of a building + Sweden Building 05K0003 + One building + Sweden Building 05K0004 + One building + Sweden Building 05K0005 + One building + Sweden Building 05K0006 + Several buildings + Sweden Building 05K0007 + One building + Sweden Building 05K0008 + One building + Sweden Building 05K0009 + One building + Sweden Building 05K0010 + One building + Sweden Building 05K0011 + One building + Sweden Building 05K0012 + One building + Sweden Building 05K0013 + One building + Sweden Building 05K0014 + One building +

189

Research on Commercial Patterns of China Existing Building Energy Retrofit Based on Energy Management Contract  

E-Print Network (OSTI)

Existing building energy retrofit is one of the keys of building energy efficiency in China. According to experience in developed countries, implementation of energy management contract (EMC) is crucial to promote existing building energy retrofit...

Han, Z.; Liu, C.; Sun, J.

2006-01-01T23:59:59.000Z

190

Scalable and Robust Designs of Model - Based Control Strategies for Energy - Efficient Buildings.  

E-Print Network (OSTI)

??In the wake of rising energy costs, there is a critical need for sustainable energy management of commercial and residential buildings. Buildings consume approximately 40%… (more)

Agbi, Clarence

2014-01-01T23:59:59.000Z

191

Agent-based modeling of commercial building stocks for energy policy and demand response analysis.  

E-Print Network (OSTI)

??Managing a sustainable built environment with a large number of buildings rests on the ability to assess and improve the performance of the building stock… (more)

Zhao, Fei

2012-01-01T23:59:59.000Z

192

A GENERIC MODEL OF A BASE-ISOLATED BUILDING This chapter draws together the work of Chapters 3 and 4 and describes the assembly of a generic  

E-Print Network (OSTI)

145 Chapter 5 A GENERIC MODEL OF A BASE-ISOLATED BUILDING This chapter draws together the work of Chapters 3 and 4 and describes the assembly of a generic model of a base-isolated building. The first section describes an existing two-dimensional model of a building, which is based on the dynamic

Talbot, James P.

193

Elaboration of energy saving renovation measures for urban existing residential buildings in north China based on simulation and site investigations  

Science Journals Connector (OSTI)

It is necessary to determine whether to implement a retrofit measure or not based on its energy saving and economic benefits, when conducting a retrofit ... up a building simulation model and calculate its energy

Shuqin Chen; Jun Guan; Mark D. Levine; Linna Xie; P. Yowargana

2013-06-01T23:59:59.000Z

194

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

195

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

196

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

197

Co-simulation Based Building Controls Implementation with Networked Sensors and Actuators  

E-Print Network (OSTI)

building systems is the key to optimal integrated control of the interdependent building elements in low to building sensor and actuator networks for efficient con- troller design and testing. The platform creates building control and management systems is critical to integrated controls. The first objective

198

Buildings Performance Database Analysis Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Buildings Commercial Buildings » Buildings Performance Database » Buildings Performance Database Analysis Tools Buildings Performance Database Analysis Tools The Buildings Performance Database will offer four analysis tools for exploring building data and forecasting financial and energy savings: a Peer Group Tool, a Retrofit Analysis Tool, a Data Table Tool, and a Financial Forecasting Tool. Available now: Peer Group Tool The Peer Group Tool allows users to peruse the BPD, define peer groups, and analyze their performance. Users can create Peer Groups by filtering the dataset based on parameters such as building type, location, floor area, age, occupancy, and system characteristics such as lighting and HVAC type. The graphs show the energy performance distribution of those

199

CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies  

Science Journals Connector (OSTI)

......properly cited. CCBuilder: an interactive web-based tool for building, designing and...models. Results: We present CCBuilder, a web-based application that tackles the problem...sequences onto these frameworks. CCBuilder is a web-based application that generates complete......

Christopher W. Wood; Marc Bruning; Amaurys Á. Ibarra; Gail J. Bartlett; Andrew R. Thomson; Richard B. Sessions; R Leo Brady; Derek N. Woolfson

2014-11-01T23:59:59.000Z

200

AL KHALIL, O., NOUR EL DIN, M., GRUSSENMEYER, P. (2001) 3D indoor modeling of buildings based on photogrammetry and topologic approaches. , XVIII CIPA International Symposium, Potsdam,  

E-Print Network (OSTI)

AL KHALIL, O., NOUR EL DIN, M., GRUSSENMEYER, P. (2001) 3D indoor modeling of buildings based , 2001, 7 pages. 1 3D INDOOR MODELING OF BUILDINGS BASED ON PHOTOGRAMMETRY AND TOPOLOGIC APPROACHES Omar information systems. Modeling is used to document, preserve, restore or rebuild buildings. Properties

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

AN INITIAL MODEL OF A BASE-ISOLATED BUILDING When modelling a physical system there is always a compromise between adequately accounting  

E-Print Network (OSTI)

44 Chapter 3 AN INITIAL MODEL OF A BASE-ISOLATED BUILDING When modelling a physical system and convenient model will incorporate only the essential dynamic behaviour of the building and its foundation that a theoretical, rather than empirical, model is most suitable for a base-isolated building. This chapter

Talbot, James P.

202

Analysis of the differences in energy simulation results between building information modeling (BIM)-based simulation method and the detailed simulation method  

Science Journals Connector (OSTI)

Building Information Modeling (BIM)-based simulation models have been used to automate lengthy building energy modeling processes and it enable fast acquisition of results. Recent improvements of simulation programs have continued to the increase in ...

Seongchan Kim; Jeong-Han Woo

2011-12-01T23:59:59.000Z

203

Steven Winter Associates (Consortium for Advanced Residential Buildings) |  

Open Energy Info (EERE)

Winter Associates (Consortium for Advanced Residential Buildings) Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name Steven Winter Associates (Consortium for Advanced Residential Buildings) Place Norwalk, CT Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Steven Winter Associates (Consortium for Advanced Residential Buildings) is a company located in Norwalk, CT. References Retrieved from "http://en.openei.org/w/index.php?title=Steven_Winter_Associates_(Consortium_for_Advanced_Residential_Buildings)&oldid=379243" Categories: Clean Energy Organizations

204

Florida Solar Energy Center (Building America Partnership for Improved  

Open Energy Info (EERE)

(Building America Partnership for Improved (Building America Partnership for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction Place Orlando, FL Website http://www.floridasolarenergyc References Florida Solar Energy Center (Building America Partnership for Improved Residential Construction[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Florida Solar Energy Center (Building America Partnership for Improved Residential Construction is a company located in Orlando, FL. References

205

Residential Building Industry Consulting Services | Open Energy Information  

Open Energy Info (EERE)

Residential Building Industry Consulting Services Residential Building Industry Consulting Services Jump to: navigation, search Name Residential Building Industry Consulting Services Place New York, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Residential Building Industry Consulting Services is a company located in New York, NY. References Retrieved from "http://en.openei.org/w/index.php?title=Residential_Building_Industry_Consulting_Services&oldid=381757" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages

206

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New Hampshire Program Type Building Energy Code Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites. New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. SB 81 was enacted in July 2007, and it upgraded the New

207

Systematic time-based study for quantifying the uncertainty of uncalibrated models in building energy simulations  

E-Print Network (OSTI)

.4.1 Wisenbaker Engineering Research Center .........................................34 3.4.2 Harrington Tower ...............................................................................47 3.4.3 Wehner Business Administration Building... Usage.........................................................................114 5.3.2 Hot Water Usage ..............................................................................119 5.4 Wehner Business Administration Building...

Ahmad, Mushtaq

2005-07-27T23:59:59.000Z

208

Comprehensive Evaluation Model of Building Energy Efficiency Based on Rough Sets Theory  

E-Print Network (OSTI)

In order to improve the objectivity of building energy efficiency evaluation, this paper uses a new method to evaluate building energy efficiency on the basis of rough sets theory. The contribution of different subentry evaluation indicators...

Ding, L.; Ruan, X.; Huang, J.; Li, Y.

2006-01-01T23:59:59.000Z

209

Cooling Strategies Based on Indicators of Thermal Storage in Commercial Building Mass  

E-Print Network (OSTI)

specific instance of this phenomenon, in which thermal storage by building mass over weekends exacerbates Monday cooling energy requirements. The study relies on computer simulations of energy use for a large, office building prototype in El Paso, TX using...

Eto, J. H.

1985-01-01T23:59:59.000Z

210

Continuous Commissioning Based on the European Energy Performance of Buildings Directive and Intelligent Monitoring  

E-Print Network (OSTI)

H, Stuttgart/Kornwestheim Germany Christian Neumann Operating agent Building EQ Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT The Save Project BuildingEQ ?Tools and methods for linking EPBD and continuous commissioning... behaviour of the building available at this state. ESL-IC-08-10-08 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Page 2 of paper submitted to ICEBO 2008 Berlin Figure 1...

Schmidt, F.; Neumann, C.

211

SPECIFICATION AND IMPLEMENTATION OF IFC BASED PERFORMANCE METRICS TO SUPPORT BUILDING LIFE CYCLE ASSESSMENT OF HYBRID  

E-Print Network (OSTI)

with the introduction of tighter building codes have done little to stem the poor energy performance in commercial on owners to quantify the energy usage of their buildings against benchmarks set by government energy (LBNL), Berkeley, CA, USA ABSTRACT Minimising building life cycle energy consumption is becoming

212

New Construction Commercial Reference Buildings — Archive  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

213

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

214

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

MĂĽller, Jens-Dominik

215

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

216

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

217

Framework for formulating a performance-based incentive-rebate scale for the demand-side-energy management scheme for commercial buildings in Hong Kong  

Science Journals Connector (OSTI)

Many, but not all, rebate-type demand side management (DSM) programmes worldwide have met with success. The rebate rate offered is a critical factor to success but a rational rebate scale determination method that would help strike a proper balance between the incentive offered and the effectiveness of the programme is lacking. For the DSM programmes recently launched in Hong Kong, the rebate rates are disproportionate to the cost and performance of the promoted energy-saving measures, resulting in diverse participation rates among the programmes. This paper presents a conceptual framework for formulating the rebate scales for incentive-based DSM programmes for commercial buildings, which would attract participation of building owners and boost electricity saving. The establishment of the scale starts from developing a performance curve that relates the cost effectiveness and the long-term benefits of different energy-saving DSM measures. The rebate scale is set based on the premise that a proportionally higher rebate rate should be offered for the adoption of each additional measure, which would yield a diminished marginal rate of return. Analysis showed that replacing the current rebate scale by the proposed scale would lead to benefits, both to the building owners and the utility companies.

W.L. Lee; F.W.H. Yik

2002-01-01T23:59:59.000Z

218

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

219

1999 CBECS Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey, or CBECS, covers a wide variety of building types—office buildings, shopping malls, hospitals, churches, and fire stations, to name just a few. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial. For an overview of definitions and examples of the CBECS building types, see Description of Building Types. Compare Activities by... Number of Buildings Building size Employees Building Age Energy Conservation Number of Computers Electricity Generation Capability

220

Control Limits for Building Energy End Use Based on Engineering Judgment, Frequency Analysis, and Quantile Regression  

SciTech Connect

Approaches are needed to continuously characterize the energy performance of commercial buildings to allow for (1) timely response to excess energy use by building operators; and (2) building occupants to develop energy awareness and to actively engage in reducing energy use. Energy information systems, often involving graphical dashboards, are gaining popularity in presenting energy performance metrics to occupants and operators in a (near) real-time fashion. Such an energy information system, called Building Agent, has been developed at NREL and incorporates a dashboard for public display. Each building is, by virtue of its purpose, location, and construction, unique. Thus, assessing building energy performance is possible only in a relative sense, as comparison of absolute energy use out of context is not meaningful. In some cases, performance can be judged relative to average performance of comparable buildings. However, in cases of high-performance building designs, such as NREL's Research Support Facility (RSF) discussed in this report, relative performance is meaningful only when compared to historical performance of the facility or to a theoretical maximum performance of the facility as estimated through detailed building energy modeling.

Henze, G. P.; Pless, S.; Petersen, A.; Long, N.; Scambos, A. T.

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Modeling Multiple Occupant Behaviors In Buildings For Increased Simulation Accuracy: An Agent-Based Modeling Approach.  

E-Print Network (OSTI)

??The dissertation addresses the limitation of current building energy simulation programs in accounting for occupant behaviors, which have been identified as having significant impact on… (more)

Lee, Yoon Soo

2013-01-01T23:59:59.000Z

222

A framework for simulation-based real-time whole building performance assessment  

E-Print Network (OSTI)

Recent developments of the Modelica buildings library forsystem dynamics, such as Modelica [20], should be used tothe 8th International Modelica Conference. Dresden, Germany,

Pang, Xiufeng

2013-01-01T23:59:59.000Z

223

Building-integrated solar energy devices based on wavelength selective films.  

E-Print Network (OSTI)

??A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin… (more)

Ulavi, Tejas U.

2013-01-01T23:59:59.000Z

224

Building 32 35 Building 36  

E-Print Network (OSTI)

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

225

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

226

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

227

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Mississippi Program Type Building Energy Code Provider Mississippi Development Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement

228

Please cite this article in press as: T. Zhang, et al., Modelling electricity consumption in office buildings: An agent based approach. Energy Buildings (2011), doi:10.1016/j.enbuild.2011.07.007  

E-Print Network (OSTI)

in revised form 20 May 2011 Accepted 7 July 2011 Keywords: Office energy consumption Agent-based simulation, catering and hot water. Thus, energy consumption in office buildings is one of the research areas which cause energy consumption. Yet in the UK the energy consumption in office buildings has been primarily

Aickelin, Uwe

229

Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector  

E-Print Network (OSTI)

area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock targeting very low future energy consumption in the building stock. Model use has highlighted the scale

230

Special Building Renovations  

Energy.gov (U.S. Department of Energy (DOE))

A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

231

Building trees based on aggregation efficiency in sensor networks Albert F. Harris III a,*, Robin Kravets b  

E-Print Network (OSTI)

-mail addresses: harris@dei.unipd.it (A.F. Harris III), rhk@cs.uiuc.edu (R. Kravets), indy@cs.uiuc.edu (I. GuptaBuilding trees based on aggregation efficiency in sensor networks Albert F. Harris III a,*, Robin 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.adhoc.2007.02.021 * Corresponding author. E

Kravets, Robin

232

Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiciency  

E-Print Network (OSTI)

site energy use intensity (EUI) of this building is 268 kWh/indicates that its source EUI of 643 kWh/m 2 /yr (204 kBtu/the whole building source EUI of 580 kWh/m 2 /yr (184 kBtu/

Wang, Liping

2014-01-01T23:59:59.000Z

233

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

234

Stuck in a stack—Temperature measurements of the microclimate around split type condensing units in a high rise building in Singapore  

Science Journals Connector (OSTI)

Abstract The use of air-conditioning, the largest energy demand for buildings in the tropics, is increasing as regional population and affluence grow. The majority of installed systems are split type air-conditioners. While the performance of new equipment is much better, the influence of the microclimate where the condensing units are installed is often overlooked. Several studies have used CFD simulations to analyse the stack effect, a buoyancy-driven airflow induced by heat rejected from condensing units. This leads to higher on-coil temperatures, deteriorating the performance of the air-conditioners. We present the first field measurements from a 24-storey building in Singapore. A network of wireless temperature sensors measured the temperature around the stack of condensing units. We found that the temperatures in the void space increased continuously along the height of the building by 10–13 °C, showing a significant stack effect from the rejected heat from condensing units. We also found that hot air gets stuck behind louvres, built as aesthetic barriers, which increases the temperature another 9 °C. Temperatures of around 50 °C at the inlet of the condensing units for floors 10 and above are the combined result, reducing the unit efficiency by 32% compared to the undisturbed design case. This significant effect is completely neglected in building design and performance evaluation, and only with an integrated design process can truly efficient solutions be realised.

Marcel Bruelisauer; Forrest Meggers; Esmail Saber; Cheng Li; Hansjürg Leibundgut

2014-01-01T23:59:59.000Z

235

Type-based detection of XML query-update independence  

Science Journals Connector (OSTI)

This paper presents a novel static analysis technique to detect XML query-update independence, in the presence of a schema. Rather than types, our system infers chains of types. Each chain represents a path that can be traversed on a valid document ...

Nicole Bidoit-Tollu; Dario Colazzo; Federico Ulliana

2012-05-01T23:59:59.000Z

236

Associations of indoor carbon dioxide concentrations, VOCS, environmental susceptibilities with mucous membrane and lower respiratory sick building syndrome symptoms in the BASE study: Analyses of the 100 building dataset  

E-Print Network (OSTI)

ANALYSES OF THE 100 BUILDING DATASET MG Apte and CA ErdmannEvaluation (BASE) Study dataset, we performed multivariatewheeze). We explore, in a dataset collected in 100 US office

Apte, M.G.; Erdmann, C.A.

2002-01-01T23:59:59.000Z

237

New York City - Green Building Requirements for Municipal Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

238

Model-Based Methodology for Building Confidence in a Dynamic Measuring System  

E-Print Network (OSTI)

experimentation and computational simulation methods will be used to build trust in this measurement system. This process of establishing credibility will be presented in the form of a proposed methodology. This proposed methodology will utilize verification...

Reese, Isaac Mark

2013-05-03T23:59:59.000Z

239

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

Window-Related Energy Consumption in the US Residential andU.S. Lighting Market Characterization Volume I: National Lighting Inventory and Energy ConsumptionBuilding Energy Consumption Survey. EnergyPlus (2008). U.S.

Hong, T.

2011-01-01T23:59:59.000Z

240

Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiciency  

E-Print Network (OSTI)

6] Alajmi A. Energy audit of an educational building in aA, Bruni E. The Green Energy Audit, a new procedure for theequipment. Both an energy audit and commissioning are

Wang, Liping

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Performance-based serviceability design optimization of wind sensitive tall buildings.  

E-Print Network (OSTI)

??Recent trends towards developing increasingly taller and irregularly-shaped buildings have led to slender complex structures that are highly sensitive and susceptible to wind-induced deflection and… (more)

Huang, Mingfeng

2008-01-01T23:59:59.000Z

242

Tracking object's type changes with fuzzy based fusion rule Albena Tchamova, Jean Dezert and Florentin Smarandache  

E-Print Network (OSTI)

Tracking object's type changes with fuzzy based fusion rule Albena Tchamova, Jean Dezert/sequential attribute data fusion for target type estimation are analyzed. The comparative analysis is based on fusion rule influence over target type estimation performance is studied and estimated. 1 Introduction

Paris-Sud XI, Université de

243

A new type of whole oil-based drilling fluid  

Science Journals Connector (OSTI)

Abstract To meet the demand of ultra-deep well drilling and shale gas well drilling, organic clay and a oil-based filtrate reducer were developed and a whole oil-based drilling fluid formula was optimized. The performance of organic clay, oil-based filtrate reducer and the whole oil-based drilling fluid were evaluated in laboratory, and the whole oil-based drilling fluid was applied in drilling process for further test of its performance. Long carbon chain quaternary ammonium salt was used as modifying agents when synthesizing organobentonites. Oil-based filtrate reducer was synthesized with monomers of lignite and amine class. The laboratory tests show that the organic clay can effectively increase the viscosity of oil-based drilling fluid and the oil-based filtrate reducer can reduce the fluid loss. Their performances were better than additives of the same kind at home and abroad. The organic clay and oil-based filtrate reducer had great compatibility with the other additives in oil-based drilling fluid. Based on the optimal additives addition amount tests, the whole oil-based drilling fluid formula was determined and the test results show that the performances of the whole oil-based drilling fluids with various densities were great. The laboratory tests show that the oil-based drilling fluid developed was high temperature resistant, even at 200 °C, as density varies from 0.90 to 2.0 g/cm3, it still held good performance with only a little fluid loss, good inhibition, great anti-pollution, and good reservoir protection performance. Field application result shows that the performance of the oil-based drilling fluid is stable with great ability to maintain wellbore stability and lower density than the water-based drilling fluid; drilling bits can be used much longer and the average penetration rate is increased; the oil-based drilling fluid can satisfy the drilling requirements.

Jiancheng LI; Peng YANG; Jian GUAN; Yande SUN; Xubing KUANG; Shasha CHEN

2014-01-01T23:59:59.000Z

244

ConSol (Building Industry Research Alliance) | Open Energy Information  

Open Energy Info (EERE)

ConSol (Building Industry Research Alliance) ConSol (Building Industry Research Alliance) Jump to: navigation, search Name ConSol (Building Industry Research Alliance) Place Stockton, CA Website http://www.consol.com References ConSol (Building Industry Research Alliance)[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration Partnership Year 2004 Link to project description http://www.nrel.gov/news/press/2004/382.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! ConSol (Building Industry Research Alliance) is a company located in Stockton, CA. References ↑ "ConSol (Building Industry Research Alliance)" Retrieved from "http://en.openei.org/w/index.php?title=ConSol_(Building_Industry_Research_Alliance)&oldid=379316

245

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

Kinney, Satkartar; Piette, Mary Ann

2003-07-01T23:59:59.000Z

246

A Model Based on Lumped Parameters for Filippov-type Plasma Focus Devices  

Science Journals Connector (OSTI)

A model based on the Lumped Parameters has been presented for the description of behaviour of the Filippov-type Plasma Focus devices. Some results of this model for "Dena" Filippov-type Plasma Focus device (90 kJ...

S. Goudarzi; R. Amrollahi; R. Saberi Moghaddam

2008-09-01T23:59:59.000Z

247

Type B Accident Investigation of the March 20, 2003, Stair Installation Accident at Building 752, Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Accident Investigation Board appointed by Karen L. Boardman, Manager, Sandia Site Office (SSO), National Nuclear Security Administration (NNSA).

248

Type B Accident Investigation Board Report on the September 7, 2001, Burn Accident at Oak Ridge National Laboratory, Building 9210  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Investigation Board appointed by G. Leah Dever, Manager, Oak Ridge Operations Office, U.S. Department of Energy.

249

Simple automatic supervisory control system for office building based on energy-saving decoupling indoor comfort control  

Science Journals Connector (OSTI)

Abstract This work proposes a simple automatic supervisory control system (ASCS) that is based on an energy-saving decoupling indoor comfort control (ESDICC) for regulating the indoor comforts of an office building. Three energy-saving indoor comfort control algorithms are modified to yield the ESDICC algorithms. The ESDICC-based ASCS is modeled using a Petri net (PN), whose graph is presented in detail and whose dynamics are thoroughly described. Results of two test cases demonstrate the simplicity of the operations of ESDICC-based ASCS and the energy-saving effect of the ESDICC algorithms.

Shin-Yeu Lin; Shih-Ching Chiu; Wei-Yuan Chen

2015-01-01T23:59:59.000Z

250

Compare Activities by Building Age  

U.S. Energy Information Administration (EIA) Indexed Site

Activities by Building Age Activities by Building Age Compare Activities by ... Building Age Median Age of Building by Building Type Vacant buildings, retail stores (other than malls), and religious worship buildings tended to be the oldest buildings. Food sales buildings (which were predominantly convenience stores) and outpatient health care buildings were mainly newer buildings. Figure showing median age of building by building type. If you need assistance viewing this page, please call 202-586-8800. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: July 24, 2002 Page last modified: May 4, 2009 2:52 PM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/compareage.html If you are having any technical problems with this site, please contact the EIA

251

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

252

Deuteron Beam Source Based on Mather Type Plasma Focus  

Science Journals Connector (OSTI)

A 3 kJ Mather type plasma focus system filled with deuterium gas is operated ... pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus

L. K. Lim; S. L. Yap; C. S. Wong; M. Zakaullah

2013-04-01T23:59:59.000Z

253

Building America Solution Center - Building America Top Innovation...  

Energy Savers (EERE)

America Top Innovation SCimagemale.jpg The Building America Solution Center is a Web-based tool connecting users to fast, free, and expert building science and energy...

254

Building Energy Software Tools Directory: AAMASKY  

NLE Websites -- All DOE Office Websites (Extended Search)

AAMASKY AAMASKY Analysis of component and total heating, cooling, and lighting energy consumption attributable to skylights in commercial buildings, as well as peak demand impacts. Also provides hourly and monthly patterns of illumination levels from daylighting. The American Architectural Manufacturers Association's AAMASKY (AAMA SKYlight) consists of a Skylight Design Guidelines Handbook containing worksheet-based calculations, as well as a software spreadsheet that allows much more rapid determination of skylight impacts; all required data for analysis in ten U.S. climates is provided. Directly applicable to simple diffusing skylight designs for most types of commercial buildings. Helps achieve compliance with performance-based building codes. With experience, can be used for some

255

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

SciTech Connect

Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

Wetter, Michael

2009-02-12T23:59:59.000Z

256

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

257

Evaluate Greenhouse Gas Reduction Strategies for Buildings |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

office buildings, Program B can evaluate other key building types (i.e., storage and hospital facilities) using the same approach. Once all key building types are evaluated, the...

258

Vol. 9: Building America Best Practices Series - Builders Challenge...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EEBA Builder's Guides - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Buildings Home About Emerging Technologies...

259

Design and costs estimation of electrical substations based on three-dimensional building blocks  

Science Journals Connector (OSTI)

Substations design is a fundamental engineering component in power network construction. The benefits obtained for having adequate tools and design systems are related mainly to cost savings, reduction of construction problems and faster throughput of ... Keywords: 3D environments, CAD tools, building blocks, electrical substations design

Eduardo Islas Pérez; Jessica Bahena Rada; Jesus Romero Lima; Mirna Molina Marín

2010-11-01T23:59:59.000Z

260

Technical Meeting: Reference Guide for a Transaction-Based Building Controls Framework  

Energy.gov (U.S. Department of Energy (DOE))

BTO held a technical meeting at NREL, in Golden, CO, to discuss BTO's vision for a transaction-rich buildings energy ecosystem that will unlock the energy efficiency and grid services values and deliver them to consumers. View the presentations and meeting notes.

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Additional Resources for Estimating Building Energy and Cost Savings to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Resources for Estimating Building Energy and Cost Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases October 7, 2013 - 11:06am Addthis For evaluating greenhouse gas reduction strategies and estimating costs, the following information resources can help Federal agencies estimate energy and cost savings potential by building type. When deciding what resource to use for developing energy- and cost-savings estimates, a program should consider items detailed in Table 1. Table 1.Resources for Estimating Energy Savings Resource Items to consider Advanced Energy Retrofit Guides Based on representative building models of commercial buildings. Guidance available for a limited number of building types using the most common technologies.

262

Event-Based Computer Simulation Model of Aspect-Type Experiments Strictly Satisfying Einstein's Locality Conditions  

E-Print Network (OSTI)

Event-Based Computer Simulation Model of Aspect-Type Experiments Strictly Satisfying Einstein­Podolsky­Rosen­Bohm experiments with photons, we construct an event-based simulation model in which every essential element

263

A Look at Principal Building Activities in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial Buildings Home> Special Topics > 1995 Principal Home > Commercial Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public Assembly Public Order and Safety Warehouse and Storage Vacant Other Summary Comparison Table (All Activities) More information on the: Commercial Buildings Energy Consumption Survey A Look at ... Principal Building Activities in the Commercial Buildings Energy Consumption Survey (CBECS) When you look at a city skyline, most of the buildings you see are commercial buildings. In the CBECS, commercial buildings include office buildings, shopping malls, hospitals, churches, and many other types of buildings. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial.

264

The Energy-Navigator -A Web Based Platform for Quality Management in Buildings  

E-Print Network (OSTI)

Design, Braunschweig University of Technology, Germany {fisch, plesser}@igs.bau.tu-bs.de http://www.igs.bau.tu-bs.de 2 Software Engineering, RWTH Aachen University, Germany {pinkernell, kurpick, rumpe}@se-rwth.de http://www.se-rwth.de 3... synavision GmbH, Aachen, Germany {pinkernell, plesser}@synavision.de http://www.synavision.de ABSTRACT Energy efficient buildings require high quality standards for all their technical equipment to enable their efficient and successful operation...

Plesser, S. Pinkernell, C.; Fisch, N.; Rumpe, B.; Kurpick, T.

2010-01-01T23:59:59.000Z

265

Web-Based Method to Generate Specific Energy Consumption Data for the Evaluation and Optimization of Building Operation  

E-Print Network (OSTI)

5 University Karlsruhe (TH) - Department of Architecture Building Physics and Technical Building Services 0100200300400500600700800 ABCDEFGHI detailed analysis ACEGI benchmarkingand selection 0100200300400500600700800 12345678910 optimisation... consumption of electricity and heat arith. mean limit for heating energy demand: 95 kWh/m?y * for buildings with an average building compactness of 0,95 [building envelope/volume] * according to the German building code of 1995 University Karlsruhe (TH...

Wagner, A.; Wambsgan, M.; Froehlich, S.

2004-01-01T23:59:59.000Z

266

90.1 Prototype Building Models Outpatient Healthcare | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Outpatient Healthcare Outpatient Healthcare The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

267

Real-time Building Energy Simulation using EnergyPlus and the Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-time Building Energy Simulation using EnergyPlus and the Building Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Title Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Publication Type Conference Proceedings LBNL Report Number LBNL-5390E Year of Publication 2011 Authors Pang, Xiufeng, Prajesh Bhattacharya, Zheng O'Neill, Philip Haves, Michael Wetter, and Trevor Bailey Conference Name Proc. of the 12th IBPSA Conference Pagination p. 2890-2896 Date Published 11/2011 Conference Location Sydney, Australia Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

268

Earthquake Resilient Tall Reinforced Concrete Buildings at Near-Fault Sites Using Base Isolation and Rocking Core Walls.  

E-Print Network (OSTI)

?? This dissertation pursues three main objectives: (1) to investigate the seismic response of tall reinforced concrete core wall buildings, designed following current building codes,… (more)

Calugaru, Vladimir

2014-01-01T23:59:59.000Z

269

T O W ARDS T H E DE V E L OPM ENT O F A SIMPLIFIED L C A-BASED M ODE L F OR BUILDINGS: RE C Y C LING ASPE C TS  

E-Print Network (OSTI)

, energy and pollution through the building system by means of appropriate methods can help to provide can be applied to study the environmental impacts of buildings. Several LCA-based environmental for buildings. INTRODUC TION The environmental impacts of buildings have become an issue of interest since

Paris-Sud XI, Université de

270

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

271

Energy consumption comparison analysis of high energy efficiency office buildings in typical climate zones of China and U.S. based on correction model  

Science Journals Connector (OSTI)

Abstract Actual operation energy consumption of the high energy efficiency buildings built and operated in China and U.S. has been quite different than expected. This paper compares actual energy consumption to expect high energy efficiency office buildings in U.S. and China. Considering the different indoor design temperature, climate conditions and operated period between the compared cases in the two countries impact on the building energy consumption, correction model was built to eliminate the influence of the three factors on the comparison result and put the comparison analysis of high energy efficiency office buildings in the two countries into the same level. Regard to building general information and climate condition, four pairs of buildings in typical climate zones of China and U.S. were selected to compare the building energy conservation technology and building energy consumption based on a large scale of investigation and testing. After corrected, the energy consumption data are analyzed, including total energy consumption, and sub-metering energy consumption such as heating, cooling, lighting, office equipment, etc.. The energy saving technologies applied in these four pairs of buildings was also compared to explain energy consumption differences.

Long Liu; Jing Zhao; Xin Liu; Zhaoxia Wang

2014-01-01T23:59:59.000Z

272

EUCLIDEAN BUILDINGS By Guy Rousseau  

E-Print Network (OSTI)

EUCLIDEAN BUILDINGS By Guy Rousseau Buildings were introduced by Jacques Tits in the 1950s to give these buildings were called of spherical type [Tits-74]. Later Fran¸cois Bruhat and Jacques Tits constructed buildings associated to semi-simple groups over fields endowed with a non archimedean valuation. When

Remy, Bertrand

273

Commercial Prototype Building Models | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

274

Associations of indoor carbon dioxide concentrations and environmental susceptibilities with mucous membrane and lower respiratory building related symptoms in the BASE study: Analyses of the 100 building datas et  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Erdmann, Christine A.

2010-01-01T23:59:59.000Z

275

Buildings | OpenEI Community  

Open Energy Info (EERE)

Buildings Buildings Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Dc Living Walls Posted by: Dc 15 Nov 2013 - 13:26 Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more... Tags: ancient building system, architect, biomimicry, building technology, cooling, cu, daylight, design problem, energy use, engineer, fred andreas, geothermal, green building, heat transfer, heating, living walls, metabolic adjustment, net zero, pre-electricity, Renewable Energy, Solar, university of colorado, utility grid, Wind

276

Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy  

E-Print Network (OSTI)

-nanomaterial-based therapeutic strategies have been widely introduced into drug delivery and cancer theranostics, challenges

Tan, Weihong

277

Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects  

E-Print Network (OSTI)

such as existing building benchmark data) ? Modeling newof returnanalysis ? Modeling for building types across aenergy  savings   •   modeling   whole-­?building   energy  

Sanders, Mark D.

2014-01-01T23:59:59.000Z

278

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Indiana Program Type Building Energy Code Provider TSREI ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process, certain seismic provisions were weakened, primarily affecting nine southwestern counties. Local jurisdictions may amend to make the code more stringent with state approval only.

279

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Iowa Program Type Building Energy Code Provider Iowa Office of Energy Independence ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://coolice.legis.state.ia.us/Cool-ICE/default.asp?Category=billinfo&... House File 2361] was signed in April 2006. This law rescinded Iowa's minimum energy efficiency standard for residential construction, the "home heating index," and instead requires the state building commissioner to adopt energy conservation requirements based on a nationally recognized

280

Energy Information Administration (EIA)- Commercial Buildings...  

U.S. Energy Information Administration (EIA) Indexed Site

information for that building such as building size, year constructed, type of energy used, energy-using equipment, and conservation features. The smallest level of...

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Overview of Commercial Buildings, 2003 - Major Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Major Characteristics of All Commercial Buildings in 2003 Major Characteristics of All Commercial Buildings in 2003 CBECS data are used to answer basic questions about the commercial buildings sector, such as: What types are there? How large are they? How old are they? and Where are they? Results from the 2003 CBECS show that: The commercial buildings sector is not dominated by a single building type. Office buildings, the most common type of commercial building, account for 17 percent of buildings, floorspace, and energy consumed. Commercial buildings range widely in size and smaller buildings are much more numerous than larger buildings. The smallest buildings (1,001 to 5,000 square feet) account for 53 percent of buildings, but consume only 11 percent of total energy. The largest buildings (those larger than 500,000 square feet)

282

Property:Building/Category | Open Energy Information  

Open Energy Info (EERE)

Category Category Jump to: navigation, search This is a property of type String. Category Pages using the property "Building/Category" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Office + Sweden Building 05K0002 + Office + Sweden Building 05K0003 + Office + Sweden Building 05K0004 + Office + Sweden Building 05K0005 + Office + Sweden Building 05K0006 + Office + Sweden Building 05K0007 + Office + Sweden Building 05K0008 + Office + Sweden Building 05K0009 + Office + Sweden Building 05K0010 + Office + Sweden Building 05K0011 + Office + Sweden Building 05K0012 + Office + Sweden Building 05K0013 + Office + Sweden Building 05K0014 + Office + Sweden Building 05K0015 + Office + Sweden Building 05K0016 + Office +

283

Occupancy-Based Energy Management in Buildings: Final Report to Sponsors  

E-Print Network (OSTI)

Dec. 30, 2002. Wetter, M. 2009. “Modelica-based Modeling andwere developed in the Modelica language (Wetter 2009) and

Sohn, Michael D.

2010-01-01T23:59:59.000Z

284

Transactive Controls: A Market-Based GridWiseTM Controls for Building Systems  

SciTech Connect

This paper discusses the advantages of a market-based controls program developed for the GridWise program.

Katipamula, Srinivas; Chassin, David P.; Hatley, Darrel D.; Pratt, Robert G.; Hammerstrom, Donald J.

2006-07-31T23:59:59.000Z

285

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

286

Solar Cells Based on Inks of n-Type Colloidal Quantum Dots  

Science Journals Connector (OSTI)

Solar Cells Based on Inks of n-Type Colloidal Quantum Dots ... † Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada ...

Zhijun Ning; Haopeng Dong; Qiong Zhang; Oleksandr Voznyy; Edward H. Sargent

2014-09-16T23:59:59.000Z

287

A Cascade-Type Global Energy Conversion Diagram Based on Wave–Mean Flow Interactions  

Science Journals Connector (OSTI)

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wave–mean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave ...

Sachiyo Uno; Toshiki Iwasaki

2006-12-01T23:59:59.000Z

288

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building (Redirected from US EPA GHG Inventory Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing

289

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

290

Health Care Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Health Care Health Care Characteristics by Activity... Health Care Health care buildings are those used as diagnostic and treatment facilities for both inpatient and outpatient care. Doctor's and dentist's offices are considered health care if they use any type of diagnostic medical equipment and office if they do not. Skilled nursing or other residential care buildings are categorized as lodging. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Health Care Buildings... Health care buildings in the South tended to be smaller and were more numerous than those in other regions of the country. Buildings on health care complexes tended to be newer than those not on multibuilding facilities. The median age for buildings on health care complexes was 9.5 years, compared to 29.5 years for health care buildings not on a multibuilding facility.

291

Energy Efficiency and Green Building Standards for State Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

292

High-Performance Building Requirements for State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

293

Z .ISPRS Journal of Photogrammetry & Remote Sensing 54 1999 153163 Two algorithms for extracting building models from raw laser  

E-Print Network (OSTI)

solutions for the determination of the parameters of a standard gable roof type building model based building models from raw laser altimetry data Hans-Gerd Maas ) , George Vosselman Delft Uni Two new techniques for the determination of building models from laser altimetry data are presented

Lefsky, Michael

294

Building a Successful Communications Program Based on the Needs and Characteristics of the Affected Communities - 13152  

SciTech Connect

Over 200 local residents streamed through the doors of the Port Hope Lions Centre to see the detailed plans for the historic low-level radioactive waste clean-up project about to take place in their community. The event had a congenial atmosphere as people walked through the hall taking in rows of display panels that explained each element of the project, asked questions of project staff stationed around the room and chatted with friends and neighbours over light refreshments. Later that year, the results of the Port Hope Area Initiative (PHAI) 10. annual public attitude survey revealed an all-time high in community awareness of the project (94%) and the highest levels of confidence (84%) recorded since surveying began. Today, as the PHAI transitions from a decade of scientific and technical studies to implementation, the success of its communications program - as evidenced by the above examples - offers room for cautious encouragement. The PHAI has spent the past 10 years developing relationships with the southern Ontario communities of Port Hope and Port Granby in preparation for Canada's largest low-level radioactive waste environmental restoration project. These relationships have been built around a strong understanding of the communities' individual needs and characteristics and on the PHAI's efforts to consider and respond to these needs. The successes of the past, as well as the lessons learned, will inform the next stage of communications as the projects move into waste excavation and transportation and building of the long-term waste management facilities. (authors)

Herod, Judy; Mahabir, Alexandra; Holmes, Sandy [Atomic Energy of Canada Limited, Port Hope, ON, L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, Port Hope, ON, L1A 3S4 (Canada)

2013-07-01T23:59:59.000Z

295

2013 Better Building Federal Award Frequently Asked Questions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Better Building Federal Award Frequently Asked Questions Q. Is it required that nominated buildings have metered data for both 2012 and 2013? A. A building nominated for this competition must be using EPA's Portfolio Manager to track energy performance data. It must have a complete data set, which includes total facility Btu from all sources of power and total facility square footage for all months of the preceding year (2012), and must continue to use Portfolio Manager for each competing month of 2013. FEMP will be tracking building energy consumption each month during the competition and posting it on a competition website. Q. Will energy intensive buildings be competitive against other types of Federal buildings? A. The winner is not based on gross energy reductions, nor is it based on the lowest energy intensity

296

Study of the hydrothermal treatments of residues from fluidized bed combustors for the manufacture of ettringite-based building elements  

Science Journals Connector (OSTI)

Abstract Fluidized bed combustion (FBC) waste is generally unsuitable for making ordinary cements and concretes, and its alternative uses are therefore worthy of consideration. In the present work, FBC waste is investigated as a potentially suitable single raw material for the manufacture of building components based on ettringite, a compound characterized by low density, high fire resistance, significant mechanical strength and usefulness as the main component of preformed lightweight building materials. The hydration behaviour of two FBC waste samples (a fly and a bottom ash) was explored within curing periods comprised between 2 and 24 h at 55 °C, 70 °C and 85 °C. X-ray diffraction and differential thermal analysis were employed as main experimental techniques in order to evaluate the distribution of the hydration products. The role of the raw ash chemical and mineralogical composition, operating temperature and time in the ettringite formation was highlighted. The fly ash was more prone to generate ettringite which, after 2 h-curing time, tended to form and decompose earlier, as the curing temperature and time were further increased. The selectivity of the reactants toward ettringite can be enhanced by the addition of blending components.

Antonio Telesca; Daniela Calabrese; Milena Marroccoli; Gian Lorenzo Valenti; Fabio Montagnaro

2014-01-01T23:59:59.000Z

297

Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling  

SciTech Connect

The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.

Petrie, T.W.; Childs, P.W.

1998-06-01T23:59:59.000Z

298

Property:Building/OwnershipCategory | Open Energy Information  

Open Energy Info (EERE)

OwnershipCategory OwnershipCategory Jump to: navigation, search This is a property of type String. Ownership category Pages using the property "Building/OwnershipCategory" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Government building + Sweden Building 05K0002 + Government building + Sweden Building 05K0003 + Private company + Sweden Building 05K0004 + Private company + Sweden Building 05K0005 + Private company + Sweden Building 05K0006 + Government building + Sweden Building 05K0007 + Government building + Sweden Building 05K0008 + Government building + Sweden Building 05K0009 + Government building + Sweden Building 05K0010 + Government building + Sweden Building 05K0011 + Government building + Sweden Building 05K0012 + Government building +

299

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

300

ABO, D Blood Typing and Subtyping Using Plug-Based Microfluidics  

E-Print Network (OSTI)

ABO, D Blood Typing and Subtyping Using Plug-Based Microfluidics Timothy R. Kline, Matthew K-based microfluidic approach was used to perform multiple agglutination assays in parallel without cross-chip, a microfluidic device was designed to combine aqueous streams of antibody, buffer, and red blood cells (RBCs

Ismagilov, Rustem F.

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Embodied exergy-based assessment of energy and resource consumption of buildings  

Science Journals Connector (OSTI)

As an effective approach to achieve a more unified and scientific assessment, embodied exergy-based analysis is devised to assess the ... Quantities (BOQ) and the most recent embodied exergy intensities for the C...

Jing Meng; Zhi Li; Jiashuo Li; Ling Shao; Mengyao Han…

2014-03-01T23:59:59.000Z

302

Chinese Scrabble : a web-based speech-enabled game for Chinese vocabulary building  

E-Print Network (OSTI)

The subject of this thesis is a web-based language game Chinese Scrabble, whose main objective is to help students of Chinese to practice speaking, to learn and review vocabulary both in pinyin and in Chinese characters. ...

Trnovcova, Zuzana

2010-01-01T23:59:59.000Z

303

A primitive based approach for managing, deploying and monitoring in-building wireless sensor networks  

E-Print Network (OSTI)

products/ [5] Control4 home automation system. http://For example, control4 home automation only has the ‘home’for smart energy and home automation profile based devices

Dutta, Seemanta

2012-01-01T23:59:59.000Z

304

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

305

Electrical Equipment of Buildings  

Science Journals Connector (OSTI)

... eleventh) edition of the regulations of the Institution of Electrical Engineers for the wiring of buildings was published in June (London: Spon. Cloth 1s. 6d. net; paper cover ... of electrical energy in and about all types of dwelling houses, business premises, public buildings and factories, whether tho electric supply is derived from an external source or from ...

1939-10-14T23:59:59.000Z

306

Commercial Reference Buildings | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Commercial Reference Buildings Jump to: navigation, search DOE developed Commercial Reference Buildings which provide descriptions for whole building analysis using EnergyPlus. There are 16 building types and three categories that apply to all building types. The commercial reference buildings were developed across 16 reference locations. Contents 1 Building Types 2 Construction Categories 3 Climate Zones Used to Create Reference Buildings 4 References Building Types DOE developed 16 Commercial Reference Building Types[1] , which represent approximately 70% of the commercial buildings in the U.S. [2]. Whole

307

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Building Type and System Type (Million SF) Total Education Food Sales Food Service Health Care Lodging Mercantile and Service Office Public Buildings WarehouseStorage Total...

308

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network (OSTI)

'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAYBUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

309

* mebrahim@usc.edu; phone: (213) 447-518 Structural system identification of buildings by a wave method based  

E-Print Network (OSTI)

* mebrahim@usc.edu; phone: (213) 447-518 Structural system identification of buildings by a wave (TB) model of a high-rise building is presented and applied to system identification of a full-scale building from recorded seismic response. This model is a new development in a wave method for earthquake

Southern California, University of

310

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Control Ventilation Demand Control Ventilation 2012 IECC A demand control ventilation (DCV) system is an integral part of a building's ventilation design. It adjusts outside ventilation air based on the number of occupants and the ventilation demands that those occupants create. In most commercial occupancies, ventilation is provided to deal with two types of indoor pollution: (1) odors from people, and (2) off-gassing from building components and furniture. When a space is vacant, it has no people pollution so the people-related ventilation rate is not needed. Many types of high-occupancy spaces, such as classrooms, multipurpose rooms, theaters, conference rooms, or lobbies have ventilation designed for a high peak occupancy that rarely occurs. Ventilation can be reduced

311

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

312

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was slightly above average. Lodging buildings were one of the few...

313

Deep in Data: Empirical Data Based Software Accuracy Testing Using the Building America Field Data Repository: Preprint  

SciTech Connect

An opportunity is available for using home energy consumption and building description data to develop a standardized accuracy test for residential energy analysis tools. That is, to test the ability of uncalibrated simulations to match real utility bills. Empirical data collected from around the United States have been translated into a uniform Home Performance Extensible Markup Language format that may enable software developers to create translators to their input schemes for efficient access to the data. This may facilitate the possibility of modeling many homes expediently, and thus implementing software accuracy test cases by applying the translated data. This paper describes progress toward, and issues related to, developing a usable, standardized, empirical data-based software accuracy test suite.

Neymark, J.; Roberts, D.

2013-06-01T23:59:59.000Z

314

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Most Popular Tables PDFXLS 3.1.4 2010 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 1.1.1 U.S. Residential and Commercial Buildings Total Primary Energy Consumption PDFXLS...

315

Lighting Controls in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Controls in Commercial Buildings Lighting Controls in Commercial Buildings Title Lighting Controls in Commercial Buildings Publication Type Report Year of Publication 2012 Authors Williams, Alison A., Barbara A. Atkinson, Karina Garbesi, Erik Page, and Francis M. Rubinstein Series Title The Journal of the Illuminating Engineering Society of North America Volume 8 Document Number 3 Pagination 161-180 Date Published January ISBN Number 1550-2716 Keywords controls, daylighting, energy, occupancy sensors, tuning. Abstract Researchers have been quantifying energy savings from lighting controls in commercial buildings for more than 30 years. This study provides a meta-analysis of lighting energy savings identified in the literature-240 savings estimates from 88 papers and case studies, categorized into daylighting strategies, occupancy strategies, personal tuning, and institutional tuning. Beginning with an overall average of savings estimates by control strategy, successive analytical filters are added to identify potential biases introduced to the estimates by different analytical approaches. Based on this meta-analysis, the bestestimates of average lighting energy savings potential are 24 percent for occupancy, 28 percent for daylighting, 31 percent for personal tuning, 36 percent for institutional tuning, and 38 percent for multiple approaches. The results also suggest that simulations significantly overestimate (by at least 10 percent) the average savings obtainable from daylighting in actual buildings.

316

Associations of indoor carbon dioxide concentrations, VOCS, environmental susceptibilities with mucous membrane and lower respiratory sick building syndrome symptoms in the BASE study: Analyses of the 100 building dataset  

E-Print Network (OSTI)

Proceedings of Healthy Buildings '95, Milan, Italy, Vol 3,in the California Healthy Buildings Study. In particular,

Apte, M.G.; Erdmann, C.A.

2002-01-01T23:59:59.000Z

317

An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery  

Science Journals Connector (OSTI)

Abstract Modeling the energy performance of existing buildings enables quick identification and reporting of potential areas for building retrofit. However, current modeling practices of using energy simulation tools do not model the energy performance of buildings at their element level. As a result, potential retrofit candidates caused by construction defects and degradations are not represented. Furthermore, due to manual modeling and calibration processes, their application is often time-consuming. Current application of 2D thermography for building diagnostics is also facing several challenges due to a large number of unordered and non-geo-tagged images. To address these limitations, this paper presents a new computer vision-based method for automated 3D energy performance modeling of existing buildings using thermal and digital imagery captured by a single thermal camera. First, using a new image-based 3D reconstruction pipeline which consists of Graphic Processing Unit (GPU)-based Structure-from-Motion (SfM) and Multi-View Stereo (MVS) algorithms, the geometrical conditions of an existing building is reconstructed in 3D. Next, a 3D thermal point cloud model of the building is generated by using a new 3D thermal modeling algorithm. This algorithm involves a one-time thermal camera calibration, deriving the relative transformation by forming the Epipolar geometry between thermal and digital images, and the MVS algorithm for dense reconstruction. By automatically superimposing the 3D building and thermal point cloud models, 3D spatio-thermal models are formed, which enable the users to visualize, query, and analyze temperatures at the level of 3D points. The underlying algorithms for generating and visualizing the 3D spatio-thermal models and the 3D-registered digital and thermal images are presented in detail. The proposed method is validated for several interior and exterior locations of a typical residential building and an instructional facility. The experimental results show that inexpensive digital and thermal imagery can be converted into ubiquitous reporters of the actual energy performance of existing buildings. The proposed method expedites the modeling process and has the potential to be used as a rapid and robust building diagnostic tool.

Youngjib Ham; Mani Golparvar-Fard

2013-01-01T23:59:59.000Z

318

Building Energy Software Tools Directory: Building Performance Compass  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance Compass Building Performance Compass Building Performance Compass logo Building Performance Compass analyzes commercial and multi-family building energy use patterns in a simple, easy-to-use Web-based interface. Using building details and energy data from the buildingÂ’s utility bills, it is unique in its ability to benchmark and compare all buildings, whether residential or commercial. Recent enhancements to Building Performance Compass include new multi-family support, the ability to track non-energy quantities such as water and waste, and features such as its fast-feedback report, which enables reporting energy savings as early as one month after work is completed. Building Performance Compass also provides extensive tracking of building data and usage, as well as the ability to upload and track

319

Property:Building/InteriorHeight | Open Energy Information  

Open Energy Info (EERE)

Building/InteriorHeight Building/InteriorHeight Jump to: navigation, search This is a property of type Number. Interior height, m Pages using the property "Building/InteriorHeight" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 3.5 + Sweden Building 05K0002 + 3 + Sweden Building 05K0003 + 3 + Sweden Building 05K0004 + 3 + Sweden Building 05K0005 + 2.8 + Sweden Building 05K0006 + 3 + Sweden Building 05K0007 + 3.5 + Sweden Building 05K0008 + 3 + Sweden Building 05K0009 + 3 + Sweden Building 05K0010 + 3 + Sweden Building 05K0011 + 3 + Sweden Building 05K0012 + 3 + Sweden Building 05K0013 + 3 + Sweden Building 05K0014 + 3 + Sweden Building 05K0015 + 3.2 + Sweden Building 05K0016 + 3 + Sweden Building 05K0017 + 3 + Sweden Building 05K0018 + 3 +

320

Building envelope thermal anomaly analysis  

SciTech Connect

A detailed study has been made of building energy thermal anomalies (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the potential for retrofit or initial design modifications. In terms of presently available analytical techniques, a one-dimensional equivalent of the bridge and its affected area can be created from a steady-state computer simulation. This equivalent, combined with a degree day model, yields good estimates of the bridge behavior in buildings employing heating only. With heating and cooling, the equivalent must be used with an hour-by-hour simulation. A classification scheme based on the one-dimensional equivalent is proposed which should make it possible to create a catalog of basic bridge types that can be used to estimate their effects without requiring a complete hour-by-hour simulation of each building. The classification relates both energy loss and moisture condensation potential to the bridge configuration and the building envelope. The potential for moisture condensation on interior surfaces near a BETA was found to be as significant as the energy loss and this factor needds to be considered in assessing the complete detrimental effects of a bridge. With such a catalog, building designers and analysts would be able to determine and estimate the advantages or disadvantages of modifying the building envelope to reduce the impact of a thermal bridge. 18 refs., 31 figs., 17 tabs.

Melton, B.S.; Mulroney, P.; Scott, T.; Childs, K.W.

1987-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

322

Arizona Map for Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

styleseiasitewideF.css" rel"stylesheet" type"textcss" > Home > Households, Buildings & Industry > Background Information on CBECS > 2003 CBECS climate zone map corrections...

323

Social image tagging using graph-based reinforcement on multi-type interrelated objects  

Science Journals Connector (OSTI)

Social image tagging is becoming increasingly popular with the development of social website, where images are annotated with arbitrary keywords called tags. Most of present image tagging approaches are mainly based on the visual similarity or mapping between visual feature and tags. However, in the social media environment, images are always associated with multi-type of object information (i.e., visual content, tags, and user contact information) which makes this task more challenging. In this paper, we propose to fuse multi-type of information to tag social image. Specifically, we model social image tagging as a “ranking and reinforcement” problem, and a novel graph-based reinforcement algorithm for interrelated multi-type objects is proposed. When a user issue a tagging request for a query image, a candidate tag set is derived and a set of friends of the query user is selected. Then a graph which contains three types of objects (i.e., visual features of the query image, candidate tags, and friend users) is constructed, and each type of objects are initially ranked based on their weight and intra-relation. Finally, candidate tags are re-ranked by our graph-based reinforcement algorithm which takes into consideration both inter-relation with visual features and friend users, and the top ranked tags are saved. Experiments on real-life dataset demonstrate that our algorithm significantly outperforms state-of-the-art algorithms.

Xiaoming Zhang; Xiaojian Zhao; Zhoujun Li; Jiali Xia; Ramesh Jain; Wenhan Chao

2013-01-01T23:59:59.000Z

324

Atomic polar tensors and acid-base properties of metal-oxide building blocks  

SciTech Connect

The sensitivity of the atomic polar tensor to compositional substituents is reported for the alkali silicate series. Rotational invariants, effective atomic charge (GAPT) and charge normalized anisotropy and dipole ({alpha}{sub n} and {gamma}{sub n}) are used to characterize the charge distribution and chemical environment of the atomic sites. Comparison of {alpha}{sub n} and {gamma}{sub n} with a series of known Bronsted and Lewis acids and bases suggests that these rotational invariants may act as indicators for metal-oxide site acidities. Basis set and electron correlation particularly affect the determined effective charge, but show minimal effect on {alpha} and {gamma} quantities.

Ferris, K.F.

1993-02-01T23:59:59.000Z

325

Atomic polar tensors and acid-base properties of metal-oxide building blocks  

SciTech Connect

The sensitivity of the atomic polar tensor to compositional substituents is reported for the alkali silicate series. Rotational invariants, effective atomic charge (GAPT) and charge normalized anisotropy and dipole ([alpha][sub n] and [gamma][sub n]) are used to characterize the charge distribution and chemical environment of the atomic sites. Comparison of [alpha][sub n] and [gamma][sub n] with a series of known Bronsted and Lewis acids and bases suggests that these rotational invariants may act as indicators for metal-oxide site acidities. Basis set and electron correlation particularly affect the determined effective charge, but show minimal effect on [alpha] and [gamma] quantities.

Ferris, K.F.

1993-02-01T23:59:59.000Z

326

Building Energy Software Tools Directory: Analysis Platform  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Platform Analysis Platform Technical and economic performance estimation for building heating, cooling, and water heating equipment, including power generating options such as photovoltaics, fuel cells, and cogeneration. Based on representative loads in residential and commercial sectors. Focus on HVAC, aggregated electric, and integrated systems. Keywords heating, cooling, and SWH equipment, commercial buildings Validation/Testing N/A Expertise Required Moderate. Users N/A Audience Building end-use analysts, engineers, policy analysts. Input Building loads (selected from library, electric and fossil fuel rates, weather parameters, type of equipment, equipment operating parameters, and operating schedules. Allows detailed specification of equipment behavior, or use of default data. Data options correspond to selectable skills

327

Building Energy Software Tools Directory: SOLAR-5  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLAR-5 SOLAR-5 SOLAR-5 logo. Displays 3-D plots of hourly energy performance for the whole building or for 9 schemes and any of 40 different components. SOLAR-5 also plots heat flow into/out of thermal mass, and indoor air temperature, daylighting, output of the HVAC system, cost of electricity and heating fuel, and the corresponding amount of air pollution. It uses hour-by-hour weather data. It contains an expert system to design an initial base case building for any climate and any building type, that an architect can copy and redesign. Contains a variety of decision-making aids, including combination and comparison options, color overlays, and bar charts that show for any hour exactly where the energy flows. Keywords design, residential and small commercial buildings

328

A region segmentation based algorithm for building crystal position lookup table in scintillation detector  

E-Print Network (OSTI)

In scintillation detector, scintillation crystals are typically made into 2-dimension modular array. The location of incident gamma-ray need be calibrated due to spatial response nonlinearity. Generally, position histograms, the characteristic flood response of scintillation detectors, are used for position calibration. In this paper, a position calibration method based on crystal position lookup table which maps the inaccurate location calculated by Anger logic to the exact hitting crystal position has been proposed, Firstly, position histogram is segmented into disconnected regions. Then crystal marking points are labeled by finding the centroids of regions. Finally, crystal boundaries are determined and crystal position lookup table is generated. The scheme is evaluated by the whole-body PET scanner and breast dedicated SPECT detector developed by Institute of High Energy Physics, Chinese Academy of Sciences. The results demonstrate that the algorithm is accurate, efficient, robust and general purpose.

Wang, Hai Peng; Liu, Shuang Quan; Fan, Xin; Cao, Xue Xiang; Chai, Pei; Shan, Bao Ci

2014-01-01T23:59:59.000Z

329

Vol. 9: Building America Best Practices Series - Builders Challenge...  

Energy Savers (EERE)

EEBA Builder's Guides - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Weatherization & Intergovernmental Programs Office...

330

Commercial Building Partnership  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

331

Commercial Building Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

332

Guide Specifications: An Overlooked Avenue for Promoting Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide Specifications: An Overlooked Avenue for Promoting Building Energy Guide Specifications: An Overlooked Avenue for Promoting Building Energy Efficiency Title Guide Specifications: An Overlooked Avenue for Promoting Building Energy Efficiency Publication Type Conference Proceedings Year of Publication 2000 Authors Coleman, Philip, and Alexander T. Shaw Conference Name 2000 ACEEE Summer Study on Energy Efficiency in Buildings Volume 4 Pagination 47-54 Date Published 01/2000 Abstract Guide specifications, the templates from which individual building project specifications are based, can be written to require high-efficiency products or systems. This paper documents a few selected instances where federal, state, or commercial guide specifications have incorporated such provisions, resulting in estimated annual savings in 2010 of over $30 million. The argument is made that promoting higher efficiency through guide specifications has several advantages over other avenues, including the improvement of building codes. The paper calls for increased attention to this overlooked opportunity from the energy policy community.

333

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per and lower energy usage was reviewed. This factor is contained in the adopted Green Building Code Section 9 for the May 5, 2010 California Energy Commission business meeting. Thank you. John LaTorra Building Inspection

334

Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components.  

E-Print Network (OSTI)

?? Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission… (more)

Smith, Amanda D.

2012-01-01T23:59:59.000Z

335

Types of Commissioning  

Energy.gov (U.S. Department of Energy (DOE))

Several commissioning types exist to address the specific needs of equipment and systems across both new and existing buildings. The following commissioning types provide a good overview.

336

Santa Clara County - Green Building Policy for County Government Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Policy for County Government Green Building Policy for County Government Buildings Santa Clara County - Green Building Policy for County Government Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Santa Clara County Executive's Office In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009. All new buildings over 5,000 square feet are required to meet LEED Silver

337

Building Retrofits for Increased Protection Against Airborne  

E-Print Network (OSTI)

. Building envelope air seal air purging or building envelope airtightening. The guidance section describes each retrofit based gaseous air cleaning, ultraviolet germicidal irradiation, photocatalytic oxidative air cleaning

338

The Green Building Initiative | Open Energy Information  

Open Energy Info (EERE)

The Green Building Initiative Place: Portland, Oregon Zip: 97201 Product: The Green Building Initiative works with builders and their associations, through web-based resources...

339

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

340

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Temperature Sensitivity of the Residential Load and Commercial Building Load  

SciTech Connect

This paper presents a building modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building heating and cooling load in 10 major cities across the Western United States and Canada. A building simulation software are first used to quantify the hourly energy consumption of different building types by end-use and by vintage. Then, the temperature sensitivities are derived based on the climate data inputs.

Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Correia, James; Leung, Lai R.; Wong, Pak C.

2009-07-26T23:59:59.000Z

342

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Massachusetts Program Type Building Energy Code Provider State Board of Building Regulations and Standards ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Massachusetts Board of Building Regulations and Standards has authority

343

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

344

Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation  

E-Print Network (OSTI)

data base and building modeling that will enable comparativeApplying Information Modeling to Buildings,” in A. Dikba?

Bazjanac, Vladimir

2008-01-01T23:59:59.000Z

345

Office Buildings - End-Use Equipment  

U.S. Energy Information Administration (EIA) Indexed Site

End-Use Equipment End-Use Equipment The types of space heating equipment used in office buildings were similar to those of the commercial buildings sector as a whole (Table 8 and Figure 5). Furnaces were most used followed by packaged heating systems. Individual space heaters were third-most used but were primarily used to supplement the building's main heating system. Boilers and district heat systems were more often used in larger buildings. Table 8. Types of Heating Equipment Used in Office Buildings, 2003 Number of Buildings (thousand) Total Floorspace (million square feet) All Buildings* All Office Buildings All Buildings* All Office Buildings All Buildings 4,645 824 64,783 12,208 All Buildings with Space Heating 3,982 802 60,028 11,929 Heating Equipment (more than one may apply)

346

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

347

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

348

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

349

Type B Accident Investigation Board Report of the Brookhaven National Laboratory Employee Injury at Building 1005H on October 9, 2009  

Energy.gov (U.S. Department of Energy (DOE))

On the afternoon of October 9, 2009, a Lead Rigger for Brookhaven Science Associates (BSA), LLC at the Brookhaven National laboratory (BNL) wasinjured while at the Relativistic Heavy Ion Collider (RHIC) Compressor Building 1005H.

350

Sustainable Buildings  

Science Journals Connector (OSTI)

The construction and real estate sectors are in a state of change: ... operated differently, i.e. more sustainably. Sustainable building means to build intelligently: the focus ... comprehensive quality concept t...

Christine Lemaitre

2012-01-01T23:59:59.000Z

351

Type B Accident Investigation Board Report BNFL, Inc. Employee Foot Injury on December 17, 2003, at the East Tennessee Technology Park Building K-31  

Energy.gov (U.S. Department of Energy (DOE))

On December 17, 2003, at approximately 7:15 a.m., an accident occurred at the U.S. Department of Energy (DOE) East Tennessee Technology Park, Building K-31. An employee (Pipefitter) of British Nuclear Fuels Limited Inc. (BNFL) was injured while attempting to remove concrete block from within a wide-flange, steel column during demolition of the K-31 Control Room (first floor, center of building).

352

Building technologies  

SciTech Connect

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

353

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

354

Building Component Library | Open Energy Information  

Open Energy Info (EERE)

Building Component Library Building Component Library Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Component Library Agency/Company /Organization: NREL Sector: Energy Focus Area: Buildings Phase: Create a Vision, Evaluate Options, Develop Goals, Prepare a Plan Topics: Resource assessment, Technology characterizations Resource Type: Dataset Website: bcl.nrel.gov Cost: Free OpenEI Keyword(s): buildings, nrel, data, component Language: English Building Component Library Screenshot References: Buildings Component Library[1] The Building Component Library is a repository of building data used to create building energy models. The Building Component Library is a repository of building data used to create building energy models. The data are broken down into separate

355

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

356

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

357

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

358

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

359

Building America Building Science Education Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Science Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take...

360

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

362

Building Name BuildingAbbr  

E-Print Network (OSTI)

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

363

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

364

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

E-Print Network (OSTI)

Physical Modeling with Modelica. Kluwer Academic Publisher,Using SPARK as a solver for modelica. In Proc. of SimBuild,Proceedings of the 2nd Modelica conference, pages 55–1 – 55–

Wetter, Michael

2010-01-01T23:59:59.000Z

365

High Performance Building Standards in State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Oklahoma Program Type Energy Standards for Public Buildings Provider Oklahoma Department of Central Services In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification program for state construction and renovation projects. The standard, which

366

City of Chandler - Green Building Requirement for City Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chandler - Green Building Requirement for City Buildings Chandler - Green Building Requirement for City Buildings City of Chandler - Green Building Requirement for City Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Energy Standards for Public Buildings Provider City of Chandler The mayor and city council of Chandler, AZ adopted Resolution 4199 in June 2008, establishing a requirement for all new occupied city buildings larger than 5,000 square feet to be designed and built to achieve the Silver level

367

Compact IR Quadrupoles for Linear Colliders Based on Rutherford-type Cable  

SciTech Connect

The upcoming and disrupted beams in the interaction region (IR) of a linear collider are focused by doublets consisting of two small-aperture superconducting quadrupoles. These magnets need an effective compact magnetic shielding to minimize magnetic coupling between the two channels and sufficient temperature margin to withstand radiation-induced heat depositions in the coil. This paper presents conceptual designs of IR quadrupoles for linear colliders based on NbTi and Nb{sub 3}Sn Rutherford-type cables.

Lopes, M.L.; Kashikhin, V.S.; Kashikhin, V.V.; Zlobin, A.V.; /Fermilab

2008-08-01T23:59:59.000Z

368

Property:Building/FloorAreaMiscellaneous | Open Energy Information  

Open Energy Info (EERE)

FloorAreaMiscellaneous FloorAreaMiscellaneous Jump to: navigation, search This is a property of type Number. Floor area for Miscellaneous Pages using the property "Building/FloorAreaMiscellaneous" Showing 25 pages using this property. S Sweden Building 05K0002 + 360 + Sweden Building 05K0005 + 110 + Sweden Building 05K0013 + 3,550 + Sweden Building 05K0016 + 445 + Sweden Building 05K0021 + 250 + Sweden Building 05K0025 + 254 + Sweden Building 05K0035 + 1,629 + Sweden Building 05K0037 + 175 + Sweden Building 05K0040 + 869 + Sweden Building 05K0044 + 1,234 + Sweden Building 05K0047 + 1,039 + Sweden Building 05K0051 + 1,489.92 + Sweden Building 05K0052 + 200 + Sweden Building 05K0062 + 140 + Sweden Building 05K0063 + 654 + Sweden Building 05K0068 + 746 + Sweden Building 05K0071 + 293 +

369

Property:Building/YearConstruction | Open Energy Information  

Open Energy Info (EERE)

YearConstruction YearConstruction Jump to: navigation, search This is a property of type Date. Year of construction Pages using the property "Building/YearConstruction" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2003 + Sweden Building 05K0002 + 1999 + Sweden Building 05K0003 + 1960 + Sweden Building 05K0004 + 1914 + Sweden Building 05K0005 + 1940 + Sweden Building 05K0006 + 1995 + Sweden Building 05K0007 + 1900 + Sweden Building 05K0008 + 1997 + Sweden Building 05K0009 + 1980 + Sweden Building 05K0010 + 1777 + Sweden Building 05K0011 + 1995 + Sweden Building 05K0012 + 2000 + Sweden Building 05K0013 + 1850 + Sweden Building 05K0014 + 1650 + Sweden Building 05K0015 + 1878 + Sweden Building 05K0016 + 1700 + Sweden Building 05K0017 + 1987 +

370

Existing Commercial Reference Buildings Constructed Before 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 The files on this page contain commercial reference building models for existing buildings constructed before 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

371

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

372

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

373

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

374

Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009  

Energy.gov (U.S. Department of Energy (DOE))

This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

375

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

376

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

377

Commercial Reference Building: Warehouse | OpenEI  

Open Energy Info (EERE)

Warehouse Warehouse Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Warehouse for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

378

San Francisco Building Code Amendments to the  

E-Print Network (OSTI)

occupancy types regulated by the San Francisco Building Code, including: A, B, E, F, H, I, L, M, R, S, and U1 2010 San Francisco Building Code Amendments to the 2010 California Green Building Standards Code (Omitting amendments to 2010 California Building Code and 2010 California Residential Code which do

379

Collecting Occupant Presence Data for Use in Energy Management of Commercial Buildings  

E-Print Network (OSTI)

Visualization in Commercial Buildings: Design, Technology,diversity factors for common university building types. ”Energy and Buildings 42 (9) (September): 1543-1551. Dhummi,

Rosenblum, Benjamin Tarr

2012-01-01T23:59:59.000Z

380

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Full Report Full Report Energy Information Administration > Commercial Buildings Energy Consumption Survey > Overview of Commercial Buildings Overview of Commercial Buildings, 2003 Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: â—Ź total nearly 4.9 million buildings â—Ź comprise more than 71.6 billion square feet of floorspace â—Ź consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) â—Ź

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Ohio Program Type Building Energy Code Provider Ohio Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Board of Building Standards is the primary state agency that protects

382

Sustainable Building Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Sustainable Building Tax Credit (Personal) < Back Eligibility Commercial Multi-Family Residential Nonprofit Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 1/1/2007 Expiration Date 12/31/2016 State New Mexico Program Type Personal Tax Credit Rebate Amount Varies based on the square footage of the building and the certification level Provider New Mexico Taxation and Revenue Department SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax

383

Sustainable Building Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Sustainable Building Tax Credit (Corporate) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 1/1/2007 Expiration Date 12/31/2016 State New Mexico Program Type Corporate Tax Credit Rebate Amount Varies based on the square footage of the building and the certification level Provider New Mexico Taxation and Revenue Department SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax

384

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

SciTech Connect

This paper describes the origin, structure and continuing development of a model of time varying energy consumption in the US commercial building stock. The model is based on a flexible structure that disaggregates the stock into various categories (e.g. by building type, climate, vintage and life-cycle stage) and assigns attributes to each of these (e.g. floor area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock dynamics, the model has been used to study the likely outcomes of specific policy and innovation scenarios targeting very low future energy consumption in the building stock. Model use has highlighted the scale of the challenge of meeting targets stated by various government and professional bodies, and the importance of considering both new construction and existing buildings.

Coffey, Brian; Borgeson, Sam; Selkowitz, Stephen; Apte, Josh; Mathew, Paul; Haves, Philip

2009-07-01T23:59:59.000Z

385

Type A Accident Investigation Board Report on the February 13, 1997, Welding/Cutting Fatality at the K-33 Building, K-25 Site, Oak Ridge, Tennessee  

Energy.gov (U.S. Department of Energy (DOE))

On February 13, 1997, at approximately 11:10 a.m., a welder (referred to as “the Welder”) using a cutting torch at the K-33 Building, Oak Ridge K-25 Site, Oak Ridge Reservation, was fatally burned after being totally engulfed in flames when his anti-contamination coveralls and blue general-purpose coveralls burned.

386

Type B Accident Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington  

Energy.gov (U.S. Department of Energy (DOE))

During D4 project demolition preparation work on the morning of July 1, 2009, in Hanford’s 300 Area, a millwright fell 50 feet from a catwalk and was severely injured. The millwright was part of a Washington Closure Hanford, LLC (WCH) team of craft personnel preparing a bridge crane for removal from the 336 Building.

387

Building Energy Software Tools Directory: DesignBuilder  

NLE Websites -- All DOE Office Websites (Extended Search)

DesignBuilder DesignBuilder DesignBuilder logo User-friendly modelling environment where you can work (and play) with building models. It provides a range of environmental performance data such as: energy consumption, internal comfort data and HVAC component sizes. Output is based on detailed sub-hourly simulation time steps using the EnergyPlus simulation engine. DesignBuilder can be used for simulations of many common HVAC types, naturally ventilated buildings, buildings with daylighting control, double facades, advanced solar shading strategies etc. Screen Shots Keywords Building energy simulation, visualisation, CO2 emissions, solar shading, natural ventilation, daylighting, comfort studies, CFD, HVAC simulation, pre-design, early-stage design, building energy code compliance checking,

388

Property:Building/County | Open Energy Information  

Open Energy Info (EERE)

County County Jump to: navigation, search This is a property of type Page. County Pages using the property "Building/County" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Stockholm County, Sweden + Sweden Building 05K0002 + Stockholm County, Sweden + Sweden Building 05K0003 + Stockholm County, Sweden + Sweden Building 05K0004 + Stockholm County, Sweden + Sweden Building 05K0005 + Stockholm County, Sweden + Sweden Building 05K0006 + Stockholm County, Sweden + Sweden Building 05K0007 + Stockholm County, Sweden + Sweden Building 05K0008 + Stockholm County, Sweden + Sweden Building 05K0009 + Stockholm County, Sweden + Sweden Building 05K0010 + Stockholm County, Sweden + Sweden Building 05K0011 + Stockholm County, Sweden +

389

Commercial Reference Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings » Research Projects » Commercial Reference Buildings » Research Projects » Commercial Reference Buildings Commercial Reference Buildings The U.S. Department of Energy (DOE), in conjunction with three of its national laboratories, developed commercial reference buildings, formerly known as commercial building benchmark models. These reference buildings play a critical role in the program's energy modeling software research by providing complete descriptions for whole building energy analysis using EnergyPlus simulation software. There are 16 building types that represent approximately 70% of the commercial buildings in the U.S., according to the report published by the National Renewable Energy Laboratory titled U.S. Department of Energy Commercial Reference Building Models of the National Building Stock. These

390

Building a foundation for structure-based cellulosome design for cellulosic ethanol: Insight into cohesin-dockerin complexation from computer simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Foundation for Structure-Based Cellulosome Design for Foundation for Structure-Based Cellulosome Design for Cellulosic Ethanol: Insight into Cohesin-Dockerin Complexation from Computer Simulation Jiancong Xu, 1,3 Michael Crowley, 2,3 and Jeremy C. Smith 1,3 1 Center for Molecular Biophysics, Building 6011, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA. 2 Chemical and Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO, 80401-3393, USA 3 BioEnergy Science Center Corresponding author. Jiancong Xu, Building 6011, MS6309, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, USA; E-mail: xuj1@ornl.gov; Phone: 865-241-9111; Fax: 865-576-7651. Running title. Computer simulation of cohesin-dockerin complexes. Manuscript pages: 29 Supplementary material pages: 4

391

Buildings Database  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

392

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

393

Remote sensing-based characterization of plant functional type distributions at the Barrow Environmental Observatory  

SciTech Connect

Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).

Kumar, Jitendra; Hoffman, Forrest M.

2014-03-18T23:59:59.000Z

394

Predicting Collapse of Steel and Reinforced-Concrete Frame Buildings  

E-Print Network (OSTI)

Predicting Collapse of Steel and Reinforced-Concrete Frame Buildings in Different Types of Ground method is developed to predict P- collapse of frame buildings in earthquakes. The method incorporates two types of buildings (steel and RC moment-frame buildings) and three types of ground motions (near

Greer, Julia R.

395

Complete 90.1 Prototype Building Model package | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete 90.1 Prototype Building Model package Complete 90.1 Prototype Building Model package The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each

396

90.1 Prototype Building Models Full Service Restaurant | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

90.1 Prototype Building Models Full Service Restaurant 90.1 Prototype Building Models Full Service Restaurant The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each

397

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

398

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

399

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

400

Reference Buildings by Climate Zone and Representative City:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly...

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermal simulation of buildings with double-skin façades  

Science Journals Connector (OSTI)

Highly glazed commercial buildings with double-skin façades may overheat during summertime due to a coincidence of high outside temperatures, solar gains and internal heat gains. To optimize thermal comfort and minimize cooling loads, the thermal behaviour of this type of building, therefore, requires careful investigation at the design stage. However, complex physical phenomena—notably optical, thermodynamic and fluid dynamic processes—are involved and as yet, no single simulation tool is able to handle all these processes while remaining an efficient design tool. This paper presents a method based on the coupling of three different types of simulation models that is economical in terms of computing time, and thereby, suitable for design purposes. These models are: spectral optical model, computational fluid dynamics model and building energy simulation model. Various tools are available at each modelling level. The method is demonstrated on a commercial building with double-skin façades and additionally, night-time ventilation.

H. Manz; Th. Frank

2005-01-01T23:59:59.000Z

402

Property:Building/FloorAreaShops | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaShops Jump to: navigation, search This is a property of type Number. Floor area for Shops Pages using the property "Building/FloorAreaShops" Showing 19 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0009 + 800 + Sweden Building 05K0012 + 1,587 + Sweden Building 05K0013 + 154 + Sweden Building 05K0017 + 3,150 + Sweden Building 05K0018 + 245 + Sweden Building 05K0019 + 5,600 + Sweden Building 05K0035 + 292 + Sweden Building 05K0046 + 530 + Sweden Building 05K0062 + 940 + Sweden Building 05K0081 + 530 + Sweden Building 05K0086 + 920 + Sweden Building 05K0088 + 1,170 + Sweden Building 05K0089 + 976 + Sweden Building 05K0092 + 360 +

403

Property:Building/YearConstruction2 | Open Energy Information  

Open Energy Info (EERE)

YearConstruction2 YearConstruction2 Jump to: navigation, search This is a property of type Date. Year of construction 2 (Year of construction) Pages using the property "Building/YearConstruction2" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1921 + Sweden Building 05K0002 + 1999 + Sweden Building 05K0003 + 1960 + Sweden Building 05K0004 + 1914 + Sweden Building 05K0005 + 1940 + Sweden Building 05K0006 + 1995 + Sweden Building 05K0007 + 1900 + Sweden Building 05K0008 + 1997 + Sweden Building 05K0009 + 1980 + Sweden Building 05K0010 + 1777 + Sweden Building 05K0011 + 1995 + Sweden Building 05K0012 + 2000 + Sweden Building 05K0013 + 1850 + Sweden Building 05K0014 + 1650 + Sweden Building 05K0015 + 1878 + Sweden Building 05K0016 + 1700 +

404

Commercial Reference Building: Hospital | OpenEI  

Open Energy Info (EERE)

09 09 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278309 Varnish cache server Commercial Reference Building: Hospital Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Hospital for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

405

Commercial Building Energy Asset Score Sample Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMERCIAL BUILDING COMMERCIAL BUILDING ENERGY ASSET SCORE 1 SUMMARY BUILDING INFORMATION Example Building 2000 A St., Chicago, IL 60601 Building Type: Mixed-Use Gross Floor Area: 140,000 ft 2 Year Built: 2005 Office: 100,000 ft 2 Retail: 40,000 ft 2 Report #: IL-1234567 Score Date: 02/2013 Building ID #: XXXXX ASSET SCORE DATA LEVEL: ¨ Simple Score ¨ Advanced Score ¨ Verified Advanced Score Current Score Potential Score BUILDING USE TYPES: This report includes a Score for the entire building as well as individual Scores for each of the separate use types. CONTENTS BUILDING ASSET SCORE: * Summary.......................................................... Page 1 * Score................................................................ Pages 2-4 * Upgrade Opportunities

406

Farm Buildings  

Science Journals Connector (OSTI)

... is intended to guide the American farmer and agricultural student in designing and constructing farm buildings. It is stated that farm ... . It is stated that farm buildings have had their most rapid development in America in the years since 1910. Prior ...

1923-03-24T23:59:59.000Z

407

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

408

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

409

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

410

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

411

Scenario Analysis of Peak Demand Savings for Commercial Buildings with  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Title Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Publication Type Conference Paper LBNL Report Number LBNL-3636e Year of Publication 2010 Authors Yin, Rongxin, Sila Kiliccote, Mary Ann Piette, and Kristen Parrish Conference Name 2010 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center, demand shifting (pre-cooling), DRQAT Abstract This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30% using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

412

Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films  

Science Journals Connector (OSTI)

Abstract Polyvinyl alcohols-based nanocomposite films with four types of montmorillonite (MMT) nanoclay, including 18-amino stearic acid (I.24TL), methyl, bis hydroxyethyl, octadecyl ammonium (I.34TCN), di-methyl, di-hydrogenated tallow ammonium/siloxane (I.44PSS) organically modified MMT and a natural MMT (Na+-MMT) were fabricated by a solution-intercalation, film-casting method, and effects of the nanoclays were evaluated on physical properties, including transmittance, tensile strength (TS), elongation at break (E), water solubility (WS), swelling ratio (SR), water vapor uptake ratio (WVUR), and water vapor permeability (WVP), as well as antimicrobial activity of the polyvinyl alcohols-based films. Transmittance, WS, SR, WVUR, WVP of the nanocomposite films were significantly reduced by nano-composition compared to a pure polyvinyl alcohols film. The WVP decreased by 11.8–20.7%, and WS, SR and WVUR decreased by 19.9–41.8%, 9.1–26.4%, and 4.8–12.8%, respectively. The extent of changes was dependent on nanoclay type. X-ray diffraction patterns revealed that intercalation was formed in nanocomposite films. Overall among all the tested nanoclays, Na+-MMT showed more impact on physical properties of polyvinyl alcohols films, and the polyvinyl alcohols film compounded with quaternary ammonium group displayed remarkable antimicrobial activity against Gram-positive bacteria.

Guichao Liu; Ye Song; Jiamei Wang; Hong Zhuang; Lei Ma; Can Li; Yao Liu; Jianhao Zhang

2014-01-01T23:59:59.000Z

413

Commercial Reference Building: Supermarket | OpenEI  

Open Energy Info (EERE)

Supermarket Supermarket Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Supermarket for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

414

Type B Accident Investigation Board Report on the September 15, 1997, Drum Explosion at Building C-746-Q, Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Accident Investigation Board (Board) appointed by James C. Hall, Manager, Oak Ridge Operations.

415

Type B Accident Investigation Board Report on the October 22, 1997, Electrical Arc Blast at Building F-Zero Fermi National Accelerator Laboratory, Batavia, Illinois  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Accident Investigation Board appointed by Cherri J. Langenfeld, Manager, Chicago Operations Office, U.S. Department of Energy.

416

Type B Accident Investigation Board Report on the May 7, 1997, Worker Injury at the Hanford Site Canister Storage Building Construction Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Accident Investigation Board appointed by Michael S. Cowan, Chief Program Officer, Western Area Power Administration.

417

Property:Building/FloorAreaRestaurants | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaRestaurants Jump to: navigation, search This is a property of type Number. Floor area for Restaurants Pages using the property "Building/FloorAreaRestaurants" Showing 13 pages using this property. S Sweden Building 05K0007 + 1,990 + Sweden Building 05K0008 + 300 + Sweden Building 05K0013 + 215 + Sweden Building 05K0038 + 345 + Sweden Building 05K0046 + 200 + Sweden Building 05K0058 + 330 + Sweden Building 05K0060 + 256 + Sweden Building 05K0065 + 520 + Sweden Building 05K0081 + 98 + Sweden Building 05K0089 + 155 + Sweden Building 05K0098 + 170 + Sweden Building 05K0105 + 2,450 + Sweden Building 05K0114 + 400 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Building/FloorAreaRestaurants&oldid=285973#SMWResults"

418

Property:Building/SPElectrtyUsePercRefrigeration | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercRefrigeration SPElectrtyUsePercRefrigeration Jump to: navigation, search This is a property of type String. Refrigeration Pages using the property "Building/SPElectrtyUsePercRefrigeration" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 4.24846345193 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 24.6944086225 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 1.29913989581 + Sweden Building 05K0014 + 7.46645043826 + Sweden Building 05K0015 + 0.0 +

419

Property:Building/FloorAreaHeatedGarages | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaHeatedGarages Jump to: navigation, search This is a property of type Number. Floor area for Heated garages (> 10 °C) Pages using the property "Building/FloorAreaHeatedGarages" Showing 15 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0007 + 400 + Sweden Building 05K0020 + 300 + Sweden Building 05K0022 + 3,300 + Sweden Building 05K0031 + 2,331 + Sweden Building 05K0033 + 465 + Sweden Building 05K0035 + 1,276 + Sweden Building 05K0037 + 130 + Sweden Building 05K0039 + 580 + Sweden Building 05K0047 + 1,076 + Sweden Building 05K0048 + 340 + Sweden Building 05K0061 + 90 + Sweden Building 05K0067 + 856 + Sweden Building 05K0093 + 2,880 +

420

Property:Building/SPElectrtyUsePercMisc | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercMisc SPElectrtyUsePercMisc Jump to: navigation, search This is a property of type String. Miscellaneous Pages using the property "Building/SPElectrtyUsePercMisc" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 8.20317536691 + Sweden Building 05K0003 + 12.0483761962 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 19.7634622014 + Sweden Building 05K0008 + 14.4897052022 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 7.31692552305 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 20.7341221164 + Sweden Building 05K0014 + 16.7103315141 + Sweden Building 05K0015 + 3.35919986719 +

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Property:Building/SPElectrtyUsePercCopiers | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercCopiers SPElectrtyUsePercCopiers Jump to: navigation, search This is a property of type String. Copiers Pages using the property "Building/SPElectrtyUsePercCopiers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.771617925253 + Sweden Building 05K0003 + 0.613427670065 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 1.36986161503 + Sweden Building 05K0008 + 2.16128863574 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 5.17759434119 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 1.80125015206 + Sweden Building 05K0014 + 1.74714940255 + Sweden Building 05K0015 + 0.589964516333 +

422

Data Preparation Process for the Buildings Performance Database  

E-Print Network (OSTI)

Fuel Type of fuel used in the building record. Units Unit ofRequirements a) Each building needs to have a continuousPreparation Process for the Buildings Performance Database

Walter, Travis

2014-01-01T23:59:59.000Z

423

90.1 Prototype Building Models Mid-rise Apartment | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mid-rise Apartment Mid-rise Apartment The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

424

90.1 Prototype Building Models Stand Alone Retail | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Stand Alone Retail Stand Alone Retail The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

425

90.1 Prototype Building Models Quick Service Restaurant | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Quick Service Restaurant Quick Service Restaurant The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

426

90.1 Prototype Building Models- Medium Office | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Models- Medium Office Models- Medium Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

427

90.1 Prototype Building Models Large Hotel | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Hotel The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

428

90.1 Prototype Building Models Warehouse (non-refrigerated) | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Warehouse (non-refrigerated) Warehouse (non-refrigerated) The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

429

90.1 Prototype Building Models Large Office | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

430

90.1 Prototype Building Models Small Office | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Office The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

431

90.1 Prototype Building Models Strip Mall | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Strip Mall Strip Mall The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

432

90.1 Prototype Building Models Small Hotel | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Hotel The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

433

90.1 Prototype Building Models Primary School | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary School Primary School The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

434

90.1 Prototype Building Models Hospital | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Hospital The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

435

90.1 Prototype Building Models Secondary School | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary School Secondary School The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

436

Property:Building/Oid | Open Energy Information  

Open Energy Info (EERE)

Oid Oid Jump to: navigation, search This is a property of type Number. OID, m2 Pages using the property "Building/Oid" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 20,246 + Sweden Building 05K0002 + 7,700 + Sweden Building 05K0003 + 4,920 + Sweden Building 05K0004 + 26,420 + Sweden Building 05K0005 + 2,395 + Sweden Building 05K0006 + 13,957 + Sweden Building 05K0007 + 25,162 + Sweden Building 05K0008 + 8,040 + Sweden Building 05K0009 + 35,830 + Sweden Building 05K0010 + 460 + Sweden Building 05K0011 + 15,780 + Sweden Building 05K0012 + 23,220 + Sweden Building 05K0013 + 20,156 + Sweden Building 05K0014 + 1,487 + Sweden Building 05K0015 + 1,608 + Sweden Building 05K0016 + 2,786 + Sweden Building 05K0017 + 21,860 +

437

Sustainable Building Design Training | Open Energy Information  

Open Energy Info (EERE)

Sustainable Building Design Training Sustainable Building Design Training Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Building Design Training Agency/Company /Organization: United States Department of Energy Focus Area: Buildings Resource Type: Training materials Website: www1.eere.energy.gov/femp/program/sustainable_training.html References: Sustainable Building Design Training[1] Logo: Sustainable Building Design Training This training, sponsored by FEMP and other organizations, provides Federal agencies the essential information and skills needed to plan, implement, and manage sustainable buildings and sites. Overview "Sustainable Design Training Opportunities to learn more about sustainable design are available throughout the year. This training, sponsored by FEMP

438

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Alabama Program Type Building Energy Code Provider Alabama Department of Economic and Community Affairs ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Legislation passed in March 2010 authorized the Alabama Energy and

439

Green Building Requirement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Requirement Green Building Requirement Green Building Requirement < Back Eligibility Commercial Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info State District of Columbia Program Type Energy Standards for Public Buildings Provider District Department of the Environment The District of Columbia City Council enacted [http://dcclims1.dccouncil.us/images/00001/20061218152322.pdf B16-515] on December 5, 2006, establishing green building standards for public buildings and privately-owned commercial buildings of 50,000 square feet or

440

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Connecticut Program Type Building Energy Code Provider Connecticut Office of Policy and Management ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Building America Residential Buildings Energy Efficiency Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

442

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers (EERE)

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

443

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

444

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

445

Better Buildings  

E-Print Network (OSTI)

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

446

Type B accident investigation board report of the July 2, 1997 curium intake by shredder operator at Building 513 Lawrence Livermore National Laboratory, Livermore, California. Final report  

SciTech Connect

On July 2, 1997 at approximately 6:00 A.M., two operators (Workers 1 and 2), wearing approved personal protective equipment (PPE), began a shredding operation of HEPA filters for volume reduction in Building 513 (B-513) at Lawrence Livermore National Laboratory (LLNL). The waste requisitions indicated they were shredding filters containing {le} 1 {micro}Ci of americium-241 (Am-241). A third operator (Worker 3) provided support to the shredder operators in the shredding area (hot area) from a room that was adjacent to the shredding area (cold area). At Approximately 8:00 A.M., a fourth operator (Worker 4) relieved Worker 2 in the shredding operation. Sometime between 8:30 A.M. and 9:00 A.M., Worker 3 left the cold area to make a phone call and set off a hand and foot counter in Building 514. Upon discovering the contamination, the shredding operation was stopped and surveys were conducted in the shredder area. Surveys conducted on the workers found significant levels of contamination on their PPE and the exterior of their respirator cartridges. An exit survey of Worker 1 was conducted at approximately 10:05 A.M., and found contamination on his PPE, as well as on the exterior and interior of his respirator. Contamination was also found on his face, chest, back of neck, hair, knees, and mustache. A nose blow indicated significant contamination, which was later determined to be curium-244.

NONE

1997-08-01T23:59:59.000Z

447

Building Energy Software Tools Directory: BuildingAdvice  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingAdvice BuildingAdvice BuildingAdvice™ is a user-friendly, Web-based platform designed to assess building energy performance and identify and quantify energy savings opportunities. Target buildings are in the 5k-200k sq. ft. range, with scalability up to 1mm sq. ft. The platform combines 1) portable wireless sensor packages for capture of real-time building data, 2) automated entry of weather data, 3) manual entry of basic building information, and 4) proprietary EnGen™ energy modeling software. Output is a suite of comprehensive reports that benchmark against CBECS; provide key performance parameters including Energy Star rating, energy usage index, energy cost per square foot, and carbon emissions; provide ASHRAE Level II audits that quantify energy usage in four areas of

448

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

449

OpenEI - buildings efficiency cbecs  

Open Energy Info (EERE)

Commercial Building Commercial Building Profiles http://en.openei.org/datasets/node/41

License
type-text field-field-license-type"> Type of License:  Other (please specify below)
Source of data Source name: 

450

Type B Accident Investigation on the June 27, 2002, Exothermic Metal Reaction Event During Converter Disassembly in Building K-33 at the East Tennessee Technology Park  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Accident Investigation Board (Board) appointed by Michael Holland, Acting Manager, Oak Ridge Operations Office, U.S. Department of Energy.

451

Type B Accident Investigation Board Report on the June 2002 High Radiation Dose to Extremities in Building 151, Lawrence Livermore National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Accident Investigation Board appointed by Camille Yuan-Soo Hoo, Manager of the U.S. Department of Energy, Oakland Operations Office.

452

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

453

City of Greensburg - Green Building Requirement for New Municipal Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg - Green Building Requirement for New Municipal Greensburg - Green Building Requirement for New Municipal Buildings City of Greensburg - Green Building Requirement for New Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Kansas Program Type Energy Standards for Public Buildings Provider Greensburg City Hall In the aftermath of a May 2007 tornado that destroyed 95% of the city, the Greensburg City Council passed an ordinance requiring that all newly constructed or renovated municipally owned facilities larger than 4,000

454

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

455

Property:Building/SPElectrtyUsePercElevators | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercElevators SPElectrtyUsePercElevators Jump to: navigation, search This is a property of type String. Elevators Pages using the property "Building/SPElectrtyUsePercElevators" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.125907012528 + Sweden Building 05K0003 + 7.93251470469 + Sweden Building 05K0004 + 0.0177143892458 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 1.06750770532 + Sweden Building 05K0008 + 0.461813811056 + Sweden Building 05K0009 + 0.11704275811 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.237557009519 + Sweden Building 05K0014 + 1.64859225677 +

456

New dose-mortality data based on 3-D radiation shielding calculation for concrete buildings at Nagasaki  

SciTech Connect

The analysis of radiation doses received during the World War II attack on Nagasaki provides an important source of biochemical information. More than 40 years after the war, it has been possible to make a satisfactory calculation of the doses to personnel inside reinforced concrete buildings by use of a 3-dimensional discrete ordinates code, TORT. The results were used to deduce a new value of the LD50 parameter that is in good agreement with traditional values. The new discrete ordinates software appears to have potential application to conventional radiation transport calculations as well. 9 refs., 3 figs., 2 tabs.

Rhoades, W.A.; Childs, R.L.; Ingersoll, D.T.

1988-01-01T23:59:59.000Z

457

Data and Analytics to Inform Energy Retrofit of High Performance Buildings  

SciTech Connect

Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

Hong , Tianzhen; Yang, Le; Hill, David; Feng , Wei

2014-01-25T23:59:59.000Z

458

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE))

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

459

Building Scale DC Microgrids  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

460

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE))

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE))

Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

462

Building Energy Software Tools Directory: EPB-software  

NLE Websites -- All DOE Office Websites (Extended Search)

EPB-software EPB-software EPB-software logo Free application that supports the (Flemish) Energy Performance Legislation for Buildings. EPB=software is based on a large number of building and installation characteristics and calculates the U-values, the average insulation level and the E-level (Primary energy consumption) of newly built or renovated residential and non-residential buildings and controls compliance with energy-efficiency and indoor climate requirements. It also checks the compliance with the minimum ventilation requirements for all types of buildings. EPB-software Vlaanderen 1.0 has been public since March 2006. A French test version was made for the Brussels region and will be made for the Wallon region. Screen Shots Keywords EPBD implementation, Flemish region, primary energy consumption

463

JEA - New Home Build Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JEA - New Home Build Rebate Program JEA - New Home Build Rebate Program JEA - New Home Build Rebate Program < Back Eligibility Construction Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Solar Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Heat pumps and central air conditioning: $125 - $200 Pin-based lighting fixtures: $10 per fixture Clothes Washers: $25 Refrigerators: $25 Solar Water Heaters: $800 Provider JEA JEA's New Home Build Program is an incentive program offered by JEA to promote the use of energy efficient equipment in new single family homes constructed in Northeast Florida. rebates are available for certain energy efficient products. See the program web site for complete details.

464

High Performance Buildings Database  

DOE Data Explorer (OSTI)

The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

465

Building America Best Practices Series, Volume 7.1 - High-Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

baclimateguide71.pdf More Documents & Publications Building Science-Based Climate Maps - Building America Top Innovation Vol. 9: Building America Best Practices Series -...

466

Modeling of Heat Transfer in Rooms in the Modelica Buildings Library  

E-Print Network (OSTI)

The Future of Building System Modeling and Simulation ofequation-based modeling languages in the building simulationModeling of Heat Transfer in Rooms in the Modelica “Buildings

Wetter, Michael

2013-01-01T23:59:59.000Z

467

Evaluate Greenhouse Gas Reduction Strategies for Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Once key building types and priority sites have been identified, a Federal agency can identify appropriate energy management measures and estimate their impact on each program's building greenhouse gas (GHG) emissions. To support this evaluation, energy managers can use the Buildings GHG Mitigation Worksheet Estimator in tandem with this guidance to estimate of GHG savings and cost.

468

Life cycle analysis of a building-integrated solar thermal collector, based on embodied energy and embodied carbon methodologies  

Science Journals Connector (OSTI)

Abstract The present study is a life cycle analysis of a patented building-integrated solar thermal collector which was developed/experimentally tested at the University of Corsica, in France, with the concept “integration into gutters/no visual impact”. Three configurations (reference and two alternatives) are evaluated. The life-cycle impact assessment methodologies of embodied energy (EE)/embodied carbon (EC), two databases and multiple scenarios are adopted. The results reveal that the reference system can considerably improve its environmental performance by utilizing collectors connected in parallel. The Energy Payback Time of the reference system decreases to less than 2 years by parallel connection while it is around 0.5 years if recycling is also adopted. The EE of the systems is around 3 GJprim/m2 and it is reduced to around 0.4–0.5 GJprim/m2 by recycling. The EC of the configurations is approximately 0.16 t CO2.eq/m2 without recycling and around 0.02–0.03 t CO2.eq/m2 with recycling. CO2.eq emissions are strongly related with electricity mix. A reduction 28–96% in CO2.eq emissions of the systems is achieved by adopting configurations with “double collector surface/output”. Concerning indicator of sustainability, the system with parallel connection shows a value of 0.78. The findings of the present investigation could be utilized for the design of building-integrated solar thermal systems as well as for research purposes.

Chr. Lamnatou; G. Notton; D. Chemisana; C. Cristofari

2014-01-01T23:59:59.000Z

469

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

470

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

471

Hidden buildings  

Science Journals Connector (OSTI)

... to charge to research grants a portion of the costs of constructing and financing new buildings. What this means is that institutions confident that their researchers would be well supported ... that institutions confident that their researchers would be well supported have

1991-11-28T23:59:59.000Z

472

Special Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Building Renovations Special Building Renovations Special Building Renovations October 16, 2013 - 4:58pm Addthis A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following Federal building types with specific design considerations for renewable energy: data centers, historic buildings, hospitals, laboratories, remote facilities, residential, and warehouses and service buildings. Data Centers Because data centers account for an ever-growing amount of energy consumption, designing high efficiency data centers is both a sustainable and economic option. Coupled with energy efficiency measures, renewable energy technologies can provide some opportunities for data centers. Since

473

Guam - Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam - Building Energy Code Guam - Building Energy Code Guam - Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by the legislature before it is official. This entry and information will be updated accordingly. Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the

474

Property:Building/YearConstruction1 | Open Energy Information  

Open Energy Info (EERE)

YearConstruction1 YearConstruction1 Jump to: navigation, search This is a property of type Date. Year of construction 1 (taxation year) Subproperties This property has the following 1 subproperty: S Sweden Building 05K0004 Pages using the property "Building/YearConstruction1" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2003 + Sweden Building 05K0002 + 27 June 2013 21:11:42 + Sweden Building 05K0003 + 27 June 2013 21:10:49 + Sweden Building 05K0005 + 27 June 2013 21:11:38 + Sweden Building 05K0006 + 1995 + Sweden Building 05K0007 + 1972 + Sweden Building 05K0008 + 1997 + Sweden Building 05K0009 + 1980 + Sweden Building 05K0010 + 2004 + Sweden Building 05K0011 + 1995 + Sweden Building 05K0012 + 2000 + Sweden Building 05K0013 + 1992 +

475

Property:Building/SPElectrtyUsePercPrinters | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercPrinters SPElectrtyUsePercPrinters Jump to: navigation, search This is a property of type String. Printers Pages using the property "Building/SPElectrtyUsePercPrinters" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.29926142668 + Sweden Building 05K0002 + 1.28348328161 + Sweden Building 05K0003 + 0.566240926214 + Sweden Building 05K0004 + 1.48505629844 + Sweden Building 05K0005 + 3.2214095811 + Sweden Building 05K0006 + 1.96025561063 + Sweden Building 05K0007 + 1.71129445978 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 1.35426488397 + Sweden Building 05K0010 + 0.676132908085 + Sweden Building 05K0011 + 2.81489347006 + Sweden Building 05K0012 + 2.93588510144 + Sweden Building 05K0013 + 0.798111658869 +

476

Property:Building/SPElectrtyUsePercPcs | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercPcs SPElectrtyUsePercPcs Jump to: navigation, search This is a property of type String. PCs Pages using the property "Building/SPElectrtyUsePercPcs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 36.5249084193 + Sweden Building 05K0002 + 20.0932363649 + Sweden Building 05K0003 + 5.65187088935 + Sweden Building 05K0004 + 34.7104009598 + Sweden Building 05K0005 + 11.0080651822 + Sweden Building 05K0006 + 24.184624251 + Sweden Building 05K0007 + 8.87587721816 + Sweden Building 05K0008 + 11.1986770422 + Sweden Building 05K0009 + 15.0359863098 + Sweden Building 05K0010 + 5.360332965 + Sweden Building 05K0011 + 9.81855502127 + Sweden Building 05K0012 + 5.77340550546 + Sweden Building 05K0013 + 12.2392162394 +

477

Property:Building/StartPeriod | Open Energy Information  

Open Energy Info (EERE)

StartPeriod StartPeriod Jump to: navigation, search This is a property of type Date. Start of the period (first day o the month) Pages using the property "Building/StartPeriod" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1 January 2004 + Sweden Building 05K0002 + 1 January 2004 + Sweden Building 05K0003 + 1 January 2004 + Sweden Building 05K0004 + 1 January 2004 + Sweden Building 05K0005 + 1 October 2004 + Sweden Building 05K0006 + 1 October 2004 + Sweden Building 05K0007 + 1 October 2004 + Sweden Building 05K0008 + 1 October 2004 + Sweden Building 05K0009 + 1 October 2004 + Sweden Building 05K0010 + 1 October 2004 + Sweden Building 05K0011 + 1 October 2004 + Sweden Building 05K0012 + 1 January 2004 + Sweden Building 05K0013 + 1 October 2004 +

478

Property:Building/SPElectrtyUsePercLighting | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercLighting SPElectrtyUsePercLighting Jump to: navigation, search This is a property of type String. Lighting Pages using the property "Building/SPElectrtyUsePercLighting" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19.0328399893 + Sweden Building 05K0002 + 46.2232615553 + Sweden Building 05K0003 + 34.7717923865 + Sweden Building 05K0004 + 22.0431358106 + Sweden Building 05K0005 + 31.1832874134 + Sweden Building 05K0006 + 18.0356496585 + Sweden Building 05K0007 + 24.5339800461 + Sweden Building 05K0008 + 37.7154176036 + Sweden Building 05K0009 + 34.3932478145 + Sweden Building 05K0010 + 24.6640988083 + Sweden Building 05K0011 + 47.0283985768 + Sweden Building 05K0012 + 34.1786814575 + Sweden Building 05K0013 + 31.4027334982 +

479

Property:Building/SPElectrtyUsePercCirculationFans | Open Energy  

Open Energy Info (EERE)

SPElectrtyUsePercCirculationFans SPElectrtyUsePercCirculationFans Jump to: navigation, search This is a property of type String. Circulation fans Pages using the property "Building/SPElectrtyUsePercCirculationFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 18.6715328229 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 3.84924044288 + Sweden Building 05K0004 + 13.5679722118 + Sweden Building 05K0005 + 10.115947775 + Sweden Building 05K0006 + 10.4348038368 + Sweden Building 05K0007 + 3.09034005771 + Sweden Building 05K0008 + 1.5024342653 + Sweden Building 05K0009 + 13.4365662073 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 2.75323793817 + Sweden Building 05K0012 + 15.8993705073 + Sweden Building 05K0013 + 1.11354848212 +

480

Property:Building/SPElectrtyUsePercFans | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercFans SPElectrtyUsePercFans Jump to: navigation, search This is a property of type String. Fans Pages using the property "Building/SPElectrtyUsePercFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 7.29539104961 + Sweden Building 05K0002 + 16.7673965927 + Sweden Building 05K0003 + 27.9131959869 + Sweden Building 05K0004 + 12.2479817873 + Sweden Building 05K0005 + 29.1925346224 + Sweden Building 05K0006 + 15.8653423601 + Sweden Building 05K0007 + 12.809449974 + Sweden Building 05K0008 + 22.2979541594 + Sweden Building 05K0009 + 22.7088540206 + Sweden Building 05K0010 + 13.3738132017 + Sweden Building 05K0011 + 25.1040933765 + Sweden Building 05K0012 + 22.6542018423 + Sweden Building 05K0013 + 24.3166483485 +

Note: This page contains sample records for the topic "building types based" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Property:Building/SPElectrtyUsePercPumps | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercPumps SPElectrtyUsePercPumps Jump to: navigation, search This is a property of type String. Pumps Pages using the property "Building/SPElectrtyUsePercPumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 8.91703516299 + Sweden Building 05K0002 + 5.44401702405 + Sweden Building 05K0003 + 4.64947707499 + Sweden Building 05K0004 + 6.56273142826 + Sweden Building 05K0005 + 5.01938364093 + Sweden Building 05K0006 + 11.9118923171 + Sweden Building 05K0007 + 2.54384656538 + Sweden Building 05K0008 + 7.98580537202 + Sweden Building 05K0009 + 5.45859856983 + Sweden Building 05K0010 + 9.8738703755 + Sweden Building 05K0011 + 5.36301484451 + Sweden Building 05K0012 + 8.75598690694 + Sweden Building 05K0013 + 3.81910862154 +

482

Building Energy-Efficiency Best Practice Policies and Policy Packages  

E-Print Network (OSTI)

the Building Energy Efficiency Market in India - Lessonson the high-energy-performance market, most constructionand Market-based Mechanisms to Improve Building Energy

Levine, Mark

2014-01-01T23:59:59.000Z

483

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

484

A High-Resolution Transmission-Type (TT) Phaser Based on Reflection-Type (RT) Units for Radio Analog Signal Processing (R-ASP)  

E-Print Network (OSTI)

A high Radio Analog Signal Processing (R-ASP) resolution transmission-type (TT) phaser based on reflection-type (RT) phaser units is introduced, theoretically studied and experimentally demonstrated. It is first shown that RT phasers inherently exhibit higher R-ASP resolution than their TT counterparts because their group delay swing is proportional to the reflection coefficient associated with a resonator coupling mechanism (admittance inverter), easy to maximize towards unity, rather than to a coupled-line coupling coefficient, typically restricted to values will inferior to unity, as in the RT case. Moreover, a detailed sensitivity analysis reveals that the proposed phaser is simultaneously features high R-ASP resolution and low sensitivity to fabrication tolerance, which makes it an ideal solution for R-ASP. The proposed phaser exhibits a 5 ns group delay swing over a fractional bandwidth of about 50% around 4 GHz.

Zou, Lianfeng

2014-01-01T23:59:59.000Z

485

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lights > Lit Floorspace In Lit Buildings Types of Lights > Lit Floorspace In Lit Buildings Lit Floorspace in Lit Buildings To analyze the use of different kinds of lighting equipment with data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), building floorspace can be described in three different ways: total floorspace in all buildings; total floorspace in lit buildings; and total lit floorspace in buildings. The latter two measures of floorspace with lighting differ because not all of the floorspace in lit buildings is illuminated (see Table 1): Table 1: Floorspace Denominators Used To Analyze Lighting Equipment Usage (Million Square Feet) 1995 CBECS Total Floorspace in All Buildings: 58, 772 1995 CBECS Total Floorspace in Lit Buildings: 56, 261 1995 CBECS Total Lit Floorspace in Buildings: 50, 303

486

End-use energy consumption estimates for U.S. commercial buildings, 1992  

SciTech Connect

An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs of the US Department of Energy, utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1992 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Statistical Adjusted Engineering (SAE) models were estimated by building type. The nonlinear SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption (based upon utility billing information). End-use consumption by fuel was estimated for each of the 6,751 buildings in the 1992 CBECS. The report displays the summary results for 11 separate building types as well as for the total US commercial building stock. 4 figs., 15 tabs.

Belzer, D.B.; Wrench, L.E.

1997-03-01T23:59:59.000Z

487

Alabama State Certification of Commercial Building Codes | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Codes Commercial Building Codes In response to the U.S. Department of Energy's July 20, 2011 notice of determination in the Federal Register regarding ANSI/ASHRAE/IESNA Standard 90.1-2007, Alabama certifies that it has reviewed and adopted the provisions of its Alabama Energy and Residential Code to include the requirement for non-state-funded buildings to comply with the 2009 International Energy Conservation Code, and by reference ASHRAE 90.1-2007. Publication Date: Wednesday, May 15, 2013 Alabama Commercial Certification.pdf Document Details Last Name: Adams Initials: TL Affiliation: Alabama Department of Economic and Community Affairs Focus: Adoption Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-2007 2009 IECC Document type: State-specific Target Audience:

488

ASHRAE Standard 90.1-2004 -- Building Envelope Requirements | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Envelope Requirements Building Envelope Requirements This course provides an overview of the building envelope requirements of ASHRAE Standard 90.1-2004. Estimated Length: 60 minutes Presenters: John Hogan, City of Seattle Original Webcast Date: Thursday, June 14, 2007 - 13:00 CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2004 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Wednesday, July 18, 2012 - 16:04

489

Effectiveness of External Window Attachments Based on Daylight Utilization and Cooling Load Reduction for Small Office Buildings in Hot Humid Climates  

E-Print Network (OSTI)

savings in the building. Computer simulations using an hourly energy calculation model were conducted to predict the building's total energy consumption using each strategy. The economics of each strategy were analyzed with lifecycle costing techniques...

Soebarto, V. I.; Degelman, L. O.

1994-01-01T23:59:59.000Z

490

Using Building Control System for Commissioning  

E-Print Network (OSTI)

France-USA Finland France Japan USA Netherlands Main End-Users BOp MC ES BD BOp BI BOp MC ES BOp BOw BS BOp ES BOp MC ES MI CA BOp MC ES BOp Type building Large commercial buildings Any types Medium and large commercial... 34, VTT, Finland, ISBN 951-38-5725-5. [4] Castro, N.S., Galler, M. A., Bushby, S. T. ?A Test Shell for Developing Automated Commissioning Tools for BACnet Systems? National Conference on Building Commissioning, 2003. ...

Vaezi-Nejad, H.; Salsbury, T.; Choiniere, D.

2004-01-01T23:59:59.000Z

491

Building Performance Simulation  

E-Print Network (OSTI)

of  Three  Building  Energy  Modeling  Programs: and D.  Zhu.  Building energy modeling programs comparison: Comparison  of  building  energy  modeling  programs:  HVAC 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

492

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

493

Building Performance Simulation  

E-Print Network (OSTI)

technologies, integrated design, building operation andperformance,  integrated  building design and operation, Integrated  Design  and  Operation  for  Very  Low  Energy  Buildings

Hong, Tianzhen

2014-01-01T23:59:59.000Z

494

Building Performance Simulation  

E-Print Network (OSTI)

Y (2008). DeST—An integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeST—An integrated building simulation toolkit,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

495

Creating community connections : sociocultural constructionism and an asset-based approach to community technology and community building  

E-Print Network (OSTI)

(cont.) Through this lens, I examine the early results of the project in the areas of community social capital and community cultural capital, based on quantitative and qualitative data resulting from direct observation, ...

Pinkett, Randal D. (Randal Dike), 1971-

2002-01-01T23:59:59.000Z

496

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

497

Risk management for buildings -- Has the time come?  

SciTech Connect

There are both incentives and challenges for applying formal risk management processes to buildings and other structures, including bridges, highways, dams, stadiums, shopping centers, and private dwellings. Based on an assessment of several issues, the authors conclude that for certain types of buildings and structures the time has come for the use of a formal risk-management approach, including probabilistic risk assessment methods, to help identify dominant risks to public health, safety, and security and to help manage these risks in a cost-effective manner.

Berry, D.L.; Hunter, R.L.

1997-08-01T23:59:59.000Z

498

Predicting the Texas Windstorm Insurance Association Payout for Commercial Property Loss Due to Ike Based on Weather, Geographical, and Building Variables  

E-Print Network (OSTI)

the landfall center of Hurricane Ike, proportion in floodplain zone (100 year, 500 year, 100-500 year), building area, proportion in island, number of buildings per parcel, and building age. The methodology of this study includes Pearson’s correlation...

Zhu, Kehui

2013-04-04T23:59:59.000Z

499

Strategies for Demand Response in Commercial Buildings  

SciTech Connect

This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-06-20T23:59:59.000Z

500