Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Development of a Training Program for Commercial Building Technicians  

SciTech Connect (OSTI)

This project focused on developing and deploying a comprehensive program of 22 training modules, including certification requirements, and accreditation standards for commercial building technicians, to help achieve the full savings potential of energy efficient buildings, equipment, and systems. This curriculum extended the currently available commercial building technician programs -- training a labor force in a growing market area focused on energy efficiency. The program helps to remove a major market impediment to low energy/zero energy commercial building system acceptance, namely a lack of operating personnel capable of handling more complex high efficiency systems. The project developed a training curriculum for commercial building technicians, with particular focus on high-efficiency building technology, and systems. In Phase 1, the project team worked collaboratively in developing a draft training syllabus to address project objectives. The team identified energy efficiency knowledge gaps in existing programs and plans and plans to address the gaps with either modified or new curricula. In Phase 2, appropriate training materials were developed to meet project objectives. This material was developed for alternative modes of delivery, including classroom lecture materials, e-learning elements, video segments, exercises, and hands-on training elements. A Certification and Accreditation Plan and a Commercialization and Sustainability Plan were also investigated and developed. The Project Management Plan was updated quarterly and provided direction on the management approaches used to accomplish the expected project objectives. GTI project management practices tightly coordinate project activities using management controls to deliver optimal customer value. The project management practices include clear scope definition, schedule/budget tracking, risk/issue resolution and team coordination.

Rinholm, Rod

2013-05-31T23:59:59.000Z

2

Monroe Thomas, Mechanical Technician  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monroe Thomas, Mechanical Technician Print The weekend before the ALS was scheduled to start up again after the most recent shutdown, mechanical technician Monroe Thomas kept...

3

Career Map: Meteorological Technician  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Meteorological Technician positions.

4

Radiological Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Part 2 of 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank. DOE-HDBK-1122-2009 iii Table of Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Purpose of Qualification Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Phase I: RCT Academics Training . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1 Phase II: RCT Core Practical (JPMs) Training . . . . . . . . . . . . . . . . . .. . . . . . . 1

5

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Facility Job Performance Measures ........................................................................................2 Final Verification Signatures ....................................................................................................3 DOE-HDBK-1122-2009 iv

6

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

7of 9 7of 9 Radiological Control Technician Training Practical Training Phase II Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii Table of Contents Page Introduction.............................................................................. ......1 Development of Job Performance Measures (JPMs)............................ .....1 Conduct Job Performance Evaluation...................................................3 Qualification Area: Radiological Instrumentation.......................................5 Task 2-1.................. ..................................................................... 5 Objective.............................................................................. 5

7

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Change Notice No. 1 2009 Change Notice No. 2 2011 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population

8

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

_______ _______ Change Notice 1 June 2009 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population of the United States". Part 3 1.05-9 4) U.S. national average from diagnostic

9

GIS Mapping Technician Prince George  

E-Print Network [OSTI]

GIS Mapping Technician Prince George Salary $48,942.48 - $55,662.83 annually An excellent opportunity to apply your GIS mapping expertise BCTS was established in 2003 to offer fibre to the market Northern GIS Service Centre, a collaborative model where GIS resources are shared between four Business

Northern British Columbia, University of

10

"Recovery Act: Training Program Development for Commercial Building  

Broader source: Energy.gov (indexed) [DOE]

Training Program Development for Commercial Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning Agents/Auditors" "Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning Agents/Auditors" A report detailling the Recovery Act: training program development for commercial building equipment technicians, building operators, and energy commissioning agents/auditors. "Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning Agents/Auditors" More Documents & Publications Microsoft Word - FOA cover sheet.doc Microsoft Word - kDE-FOA-0000090.rtf Recovery Act: Wind Energy Consortia between Institutions of Higher Learning

11

"Recovery Act: Training Program Development for Commercial Building...  

Broader source: Energy.gov (indexed) [DOE]

"Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning AgentsAuditors" "Recovery Act: Training...

12

HVAC Technician | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HVAC Technician HVAC Technician Department: Facilities Supervisor(s): Tom Ward Staff: L&S 07 Requisition Number: 1300884 Under the supervision of the General Lead Technician and Lead HVAC Technician, the incumbent will be responsible for the installation, preventative maintenance, troubleshooting and repair of various HVAC and refrigeration equipment; local HVAC control systems and ancillary support equipment; and will work with other groups within the Division and throughout the Laboratory to ensure long-term, safe and efficient operation of HVAC and refrigeration systems. All tasks must be completed in a timely, cost efficient manner, support on-going sustainability initiatives and energy efficiency programs at the Laboratory. The incumbent is expected to utilize thorough theoretical knowledge and techniques to accomplish

13

Alternative Fuels Data Center: Alternative Fuel Technician Training  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Technician Training to someone by E-mail Technician Training to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Technician Training on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Technician Training on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Technician Training on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Technician Training on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Technician Training on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Technician Training on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Technician Training The Alternative Fuels Technician Certification Act (Act) regulates the

14

Pneumoconiosis and exposures of dental laboratory technicians  

SciTech Connect (OSTI)

One hundred and seventy-eight dental laboratory technicians and 69 non-exposed controls participated in an epidemiological respiratory study. Eight technicians who had a mean of 28 years grinding nonprecious metal alloys were diagnosed as having a simple pneumoconiosis by chest radiograph. Mean values for per cent predicted FVC and FEV1 were reduced among male nonsmoker technicians compared to male nonsmoker controls; after controlling for age, there was also a reduction in spirometry with increasing work-years. An industrial hygiene survey was conducted in 13 laboratories randomly selected from 42 laboratories stratified by size and type of operation in the Salt Lake City, Utah metropolitan area. Personal exposures to beryllium and cobalt exceeded the Threshold Limit Values (TLVs) in one laboratory. Occupational exposures in dental laboratories need to be controlled to prevent beryllium-related lung disorders as well as simple pneumoconiosis.

Rom, W.N.; Lockey, J.E.; Lee, J.S.; Kimball, A.C.; Bang, K.M.; Leaman, H.; Johns, R.E. Jr.; Perrota, D.; Gibbons, H.L.

1984-11-01T23:59:59.000Z

15

North American Technician Excellence Wayne Reedy  

E-Print Network [OSTI]

's largest non-profit certification organization for heating, ventilation, air conditioning and refrigeration/or Service certification in one or more SPECIALTY areas, including: Air Conditioning Air Distribution Heat and light HVACR commercial technicians in air conditioning, air distribution, heat pump, gas heating and oil

Oak Ridge National Laboratory

16

Alternative Fuels Data Center: Technician Training for Alternative Fuels  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Technician Training for Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Technician Training for Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Technician Training for Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Technician Training for Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Technician Training for Alternative Fuels on AddThis.com... More in this section... Technician Training for Alternative Fuels

17

NREL Job Task Analysis: Retrofit Installer Technician | Department...  

Broader source: Energy.gov (indexed) [DOE]

51671.pdf More Documents & Publications NREL Job Task Analysis: Retrofit Installer Technician (Revised) NREL Job Task Analysis: Energy Auditor trainingselfassessment.xlsx...

18

NREL Job Task Analysis: Retrofit Installer Technician (Revised...  

Broader source: Energy.gov (indexed) [DOE]

installerjta04112012.pdf More Documents & Publications NREL Job Task Analysis: Retrofit Installer Technician NREL Job Task Analysis: Energy Auditor trainingselfassessment.xlsx...

19

Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels  

SciTech Connect (OSTI)

The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way of two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.

Thibodeaux, J.; Hensley, J.

2013-01-01T23:59:59.000Z

20

Internships Give Nuclear Technician Students Hands-on Experience |  

Broader source: Energy.gov (indexed) [DOE]

Internships Give Nuclear Technician Students Hands-on Experience Internships Give Nuclear Technician Students Hands-on Experience Internships Give Nuclear Technician Students Hands-on Experience August 9, 2012 - 2:23pm Addthis Brandalin Barnes, left, is a nuclear technician student at Idaho State University's Energy Systems Technology and Education Center (ESTEC). Her summer internship at INL provided experience at the lab's operating nuclear facilities. Brandalin Barnes, left, is a nuclear technician student at Idaho State University's Energy Systems Technology and Education Center (ESTEC). Her summer internship at INL provided experience at the lab's operating nuclear facilities. Kortny Rolston INL Communications & Governmental Affairs Did You Know? Idaho National Laboratory partnered with Idaho State University and

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

9 9 Radiological Control Technician Training Fundamental Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers

22

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

9 9 Radiological Control Technician Training Fundamental Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy

23

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

6 of 9 6 of 9 Radiological Control Technician Training Site Academic Training Study Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Study Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Study Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy

24

Get Help -Call a Certified Child Safety Seat Technician For a Free Child Safety Seat Inspection  

E-Print Network [OSTI]

Get Help - Call a Certified Child Safety Seat Technician For a Free Child Safety Seat Inspection Commissioners Courts of Texas Cooperating Get Help - Call a Certified Child Safety Seat Technician For a Free

25

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

9 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 ii This page intentionally left blank. DOE-HDBK-1122-99 iii Course Developers Dave Lent Coleman Research Joe DeMers EG&G Mound Applied Technologies (formerly) Andy Hobbs FERMCO Dennis Maloney RUST - GJPO Richard Cooke Argonne National Laboratory Bobby Oliver Lockheed Martin Energy Systems Michael McNaughton Los Alamos National Laboratory Eva Lauber West Valley Nuclear Services Michael McGough Westinghouse Savannah River Corporation Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers U.S. Department of Energy Peter O'Connell U.S. Department of Energy

26

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Work Coverage Radiological Work Coverage Instructor's Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that should be discussed with workers during pre-job briefings. 2.11.06 Describe exposure control techniques that can be used to control worker and technician radiation exposures. L 2.11.07 Describe the in-progress radiological surveys that should be performed, at your site, under various radiological conditions.

27

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Unit Analysis & Conversion Unit Analysis & Conversion Study Guide 1.02-1 Course Title: Radiological Control Technician Module Title: Unit Analysis & Conversion Module Number: 1.02 Objectives: 1.02.01 Identify the commonly used unit systems of measurement and the base units for mass, length, and time in each system. 1.02.02 Identify the values and abbreviations for SI prefixes. 1.02.03 Given a measurement and the appropriate conversion factor(s) or conversion factor table, convert the measurement to the specified units. 1.02.04 Using the formula provided, convert a given temperature measurement to specified units. INTRODUCTION A working knowledge of the unit analysis and conversion process is necessary for the Radiological Control Technician. It is useful for air and water sample activity

28

POSITION AVAILABLE: GIS/Remote Sensing Technician at UW-Madison Overview: A new position for a remote sensing and GIS technician is available in the  

E-Print Network [OSTI]

POSITION AVAILABLE: GIS/Remote Sensing Technician at UW-Madison Overview: A new position for a remote sensing and GIS technician is available in the Department of Forest and Wildlife Ecology imagery, especially from Landsat and MODIS sensors, and to acquire and process GIS datasets

Mladenoff, David

29

STEP 1: TO BE COMPLETED BY ALCOHOL TECHNICIAN  

Broader source: Energy.gov (indexed) [DOE]

7 (07/03) OMB Control No. 1910-5122 7 (07/03) OMB Control No. 1910-5122 U.S. Department of Energy (DOE) Human Reliability Program (HRP) Alcohol Testing Form (Instructions for completing this form are attached.) STEP 1: TO BE COMPLETED BY ALCOHOL TECHNICIAN A. Employee Name __________________________________________________________________ (Print) First M.I. Last B. Employee ID No. __________________________________________________________ C. Employer Name __________________________________________________________ _____________________________________(____)________________ HRP Supervisor Phone Number D. Reason for Test: Random Reasonable Susp. Post-Accident Return to Duty Follow-up Pre-employment

30

A GRASP-Based Approach for Technicians and Interventions Scheduling for Telecommunications  

E-Print Network [OSTI]

A GRASP-Based Approach for Technicians and Interventions Scheduling for Telecommunications Hideki for solving a Technicians and Interventions Scheduling Problem for Telecommunications which we abbreviate­ the supervisors have to 1 French telecommunications company 2 http://www.g-scop.fr/ChallengeROADEF2007/ or http

Paris-Sud XI, Université de

31

Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

s more and more AFVs find s more and more AFVs find their places in the transporta- tion industry, the need for qualified technicians to service these vehicles continues to grow. To help meet this need, transportation indus- try and education experts are working together to develop standards for AFV technician training, standards that will serve as a valuable tool for AFV technician training programs now and in the future. Background Section 411 of the Energy Policy Act of 1992 (EPAct) requires that the U.S. Department of Energy (DOE) ensure the availability of training programs for voluntary certification of alternative fuels technicians. To meet this requirement, DOE entered into a 5-year cooperative agreement with the National Automotive Technicians Education Foundation (NATEF) to develop and implement

32

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Study Guide Study Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: 2.19.01 Describe the features and specifications for commonly used laboratory counters or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting 2.19.02 Describe the features and specifications for low-background automatic counting systems: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting 2.19.03 Describe the following features and specifications for commonly used gamma spectroscopy systems.

33

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Air Sampling Program/Methods Air Sampling Program/Methods Instructor's Guide 2.06-1 Course Title: Radiological Control Technician Module Title: Air Sampling Program/Methods Module Number: 2.06 Objectives: 2.06.01 State the primary objectives of an air monitoring program. 2.06.02 Describe the three physical states of airborne radioactive contaminants. 2.06.03 List and describe the primary considerations to ensure a representative air sample is obtained. 2.06.04 Define the term "isokinetic sampling" as associated with airborne radioactivity sampling. 2.06.05 Identify the six general methods for obtaining samples or measurements of airborne radioactivity concentrations and describe the principle of operation for each method. a. Filtration b. Volumetric c. Impaction/impingement d. Adsorption e. Condensation/dehumidification

34

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages and state the applicable limits. 2.12.05 Describe the necessary radiation and contamination surveys to be performed on exclusive use vehicles and state the applicable limits. 2.12.06 Identify the proper placement of placards on a transport vehicle. L 2.12.07 Identify inspection criteria that should be checked prior to releasing a

35

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Environmental Monitoring Environmental Monitoring Instructor's Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." L 2.09.05 State locations frequently surveyed for radiological contamination at outdoor waste sites associated with your site and the reasons for each. 2.09.06 Define the term "suspect waste site," and how they can be identified. L 2.09.07 Describe the methods used for environmental monitoring at your site. References: 1. Gollnick, Daniel, Basic Radiation Protection Technology, 2nd Edition, Pacific

36

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Communication Systems Communication Systems Instructor's Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of good communications. 2.02.06 Explain the importance of knowing how to contact key personnel. i 2.02.07 Identify the communication systems available at your site and methods available to contact key personnel. i 2.02.08 Describe the emergency communication systems available at your site.

37

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

6 Radiation Survey Instrumentation 6 Radiation Survey Instrumentation Instructor's Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. L 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument operating range c. Detector shielding d. Detector window e. Types of radiation detected/measured f. Operator-adjustable controls g. Markings for detector effective center h. Specific limitations/characteristics. L 2.16.03 Identify the following features and specifications for high range

38

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

DOE-HDBK-1122-99 July 1999 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1122-99 iii Foreword This Handbook describes an implementation process for core training as recommended in DOE Guide G441.1-1, Management and Administration of Radiation Protection Programs and as

39

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Contamination Control Contamination Control Instructor's Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a contamination control program and list actions that contribute to its success. 2.05.04 State the basic principles of contamination control and list examples of implementation methods. 2.05.05 List and describe the possible engineering control methods used for contamination control. 2.05.06

40

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

External Exposure Control External Exposure Control Instructor's Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify "time-saving" techniques for minimizing personnel external exposures. 1.11.05 Using the stay time equation, calculate an individual's remaining allowable dose equivalent or stay time. 1.11.06 Identify "distance to radiation sources" techniques for minimizing personnel external exposures.

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Counting Errors and Statistics Counting Errors and Statistics Instructor's Guide 2.03-1 Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State two applications of counting statistics in sample analysis. 2.03.03. Define the following terms: a. mode b. median c. mean 2.03.04. Given a series of data, determine the mode, median, or mean. 2.03.05. Define the following terms: a. variance b. standard deviation 2.03.06. Given the formula and a set of data, calculate the standard deviation. 2.03.07. State the purpose of a Chi-squared test. L 2.03.08. State the criteria for acceptable Chi-squared values at your site.

42

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Protection Standards Radiological Protection Standards Instructor's Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of the 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" Instructional Aids:

43

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Unit Analysis & Conversion Unit Analysis & Conversion Instructor's Guide 1.02-1 Course Title: Radiological Control Technician Module Title: Unit Analysis & Conversion Module Number: 1.02 Objectives: 1.02.01 Identify the commonly used unit systems of measurement and the base units for mass, length, and time in each system. 1.02.02 Identify the values and abbreviations for SI prefixes. 1.02.03 Given a measurement and the appropriate conversion factor(s) or conversion factor table, convert the measurement to the specified units. 1.02.04 Using the formula provided, convert a given temperature measurement to specified units. References: 1. "Health Physics and Radiological Health Handbook"; Scinta, Inc; 1989. 2. DOE-HDBK-1010-92 (June 1992) "Classical Physics" DOE Fundamental Handbook; US

44

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

ALARA Instructor's Guide ALARA Instructor's Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for ALARA implementation. References: 1. NCRP Report No. 91 (1987) "Recommendations on Limits for Exposure to Ionizing Radiation" 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998), "Occupational Radiation Protection"

45

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Dosimetry Dosimetry Instructor's Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. L 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General Employee b. Member of the Public/Minor c. Incidents and emergencies d. Embryo/Fetus L 2.04.04 Identify the requirements for a female general employee who has notified her employer in writing that she is pregnant. 2.04.05 Determine the theory of operation of a thermoluminescent dosimeter (TLD). 2.04.06 Determine how a TLD reader measures the radiation dose from a TLD.

46

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Incidents and Emergencies Radiological Incidents and Emergencies Instructor's Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. L 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. L 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm. L 2.13.04 Describe the RCT response to a personnel contamination monitor alarm. L 2.13.05 Describe the RCT response to off scale or lost dosimetry. L 2.13.06 Describe the RCT response to rapidly increasing, unanticipated radiation levels or an area radiation monitor alarm. L

47

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.14-1 Course Title: Radiological Control Technician Module Title: Personnel Decontamination Module Number: 2.14 Objectives: 2.14.01 List the three factors which determine the actions taken in decontamination of personnel. L 2.14.02 List the preliminary actions and notifications required by the RCT for an individual suspected to be contaminated. L 2.14.03 List the actions to be taken by the RCT when contamination of clothing is confirmed. L 2.14.04 List the actions to be taken by the RCT when skin contamination is confirmed. L 2.14.05 List the steps for using decontamination reagents to decontaminate personnel. References: (Site Specific) Instructional Aids: 1. Overheads 2. Overhead projector/screen 3. Chalkboard/whiteboard 4. Lessons learned DOE-HDBK-1122-99 Module 2.14 Personnel Decontamination

48

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Study Guide Study Guide 2.18-1 Course Title: Radiological Control Technician Module Title: Air Sampling Equipment Module Number: 2.18 Objectives: 2.18.01 Identify the factors that affect the operator's selection of a portable air sampler. i 2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers. i 2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps. i 2.18.04 List the steps for a preoperational checkout of a portable air sampler. i 2.18.05 Identify the physical and operational characteristics and the limitation(s) of beta-gamma constant air monitors (CAMs). i 2.18.06 Identify the physical and operating characteristics and the limitation(s) of alpha constant air monitors (CAMs).

49

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Biological Effects of Radiation Biological Effects of Radiation Instructor's Guide 1.08-1 Course Title: Radiological Control Technician Module Title: Biological Effects of Radiation Module Number: 1.08 Objectives: 1.08.01 Identify the function of the following cell structures: a. Cell membrane b. Cytoplasm c. Mitochondria d. Lysosome e. Nucleus f. DNA g. Chromosomes 1.08.02 Identify effects of radiation on cell structures. 1.08.03 Define the law of Bergonie and Tribondeau. 1.08.04 Identify factors which affect the radiosensitivity of cells. 1.08.05 Given a list of types of cells, identify which are most or least radiosensitive. 1.08.06 Identify primary and secondary reactions on cells produced by ionizing radiation. 1.08.07 Identify the following definitions and give examples of each: a. Stochastic effect b. Non-stochastic effect

50

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

External Exposure Control External Exposure Control Study Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify "time-saving" techniques for minimizing personnel external exposures. 1.11.05 Using the stay time equation, calculate an individual's remaining allowable dose equivalent or stay time. 1.11.06 Identify "distance to radiation sources" techniques for minimizing personnel external exposures.

51

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radioactive Source Control Radioactive Source Control Study Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. i 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. i 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. i 2.08.04 Describe the approval and posting requirements for radioactive materials areas. i 2.08.05 Describe the process and procedures used at your site for storage and accountability of radioactive sources. INTRODUCTION A radioactive source is material used for its emitted radiation. Sources are constructed as sealed or unsealed and are classified as accountable or exempt.

52

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Respiratory Protection Respiratory Protection Instructor's Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following respirators: a. Air purifying, particulate removing filter respirators b. Air purifying, Chemical Cartridge and Canister respirators for Gases and Vapors c. Full-face, supplied-air respirators d. Self-contained breathing apparatus (SCBA) e. Combination atmosphere supplying respirators 2.07.05

53

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Internal Exposure Control Internal Exposure Control Study Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and "Derived Air Concentration" (DAC). 1.12.04 Identify the basis for determining Annual Limit on Intake (ALI). 1.12.05 Identify the definition of "reference man". 1.12.06 Identify a method of using DACs to minimize internal exposure potential. 1.12.07 Identify three factors that govern the behavior of radioactive materials in the

54

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Access Control and Work Area Setup Access Control and Work Area Setup Instructor's Guide 2.10-1 Course Title: Radiological Control Technician Module Title: Access Control and Work Area Setup Module Number: 2.10 Objectives: L 2.10.01 State the purpose of and information found on a Radiological Work Permit (RWP) including the different classifications at your site. L 2.10.02 State responsibilities in using or initiating a RWP. L 2.10.03 State the document that governs the ALARA program at your site. L 2.10.04 Describe how exposure/performance goals are established at your site. L 2.10.05 State the conditions under which a pre-job ALARA review is required at your site. L 2.10.06 State the conditions under which a post-job ALARA review is required at your site. 2.10.07 State purpose of radiological postings, signs, labels, and barricades; and

55

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

8 Radioactive Source Control 8 Radioactive Source Control Instructor's Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. L 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. L 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. L 2.08.04 Describe the approval and posting requirements for radioactive materials areas. L 2.08.05 Describe the process and procedures used at your site for storage and accountability of radioactive sources. References: 1. 10 CFR 835, "Occupational Radiation Protection," (1998) Instructional Aids: 1. Overheads 2. Overhead projector and screen

56

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

- Radioactivity and Radioactive Decay Study Guide - Radioactivity and Radioactive Decay Study Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following radioactive decay modes: a. alpha decay b. beta decay c. positron decay d. electron capture 1.06.05 Identify two aspects associated with the decay of a radioactive nuclide. 1.06.06 Identify differences between natural and artificial radioactivity. 1.06.07 Identify why fission products are unstable.

57

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Number TRNG-0003 Number TRNG-0003 Module 1.13 Radiation Detector Theory Study Guide 1.13-1 Course Title: Radiological Control Technician Module Title: Radiation Detector Theory Module Number: 1.13 Objectives: 1.13.01 Identify the three fundamental laws associated with electrical charges. 1.13.02 Identify the definition of current, voltage and resistance and their respective units. 1.13.03 Select the function of the detector and readout circuitry components in a radiation measurement system. 1.13.04 Identify the parameters that affect the number of ion pairs collected in a gas- filled detector. 1.13.05 Given a graph of the gas amplification curve, identify the regions of the curve. 1.13.06 Identify the characteristics of a detector operated in each of the useful regions of the gas amplification curve.

58

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.19-1 Course Title: Radiological Control Technician Module Title: Counting Room Equipment Module Number: 2.19 Objectives: L 2.19.01 Describe the following features and specifications for commonly used laboratory counter or scalers: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls f. Source check g. Procedure for sample counting L 2.19.02 Describe the following features and specifications for low-background automatic counting systems: a. Detector type b. Detector shielding c. Detector window d. Types of radiation detected and measured e. Operator-adjustable controls d. Source check e. Procedures for sample counting L 2.19.03 Describe the following features and specifications for commonly used

59

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Contamination Control Contamination Control Study Guide 2.05-1 Course Title: Radiological Control Technician Module Title: Contamination Control Module Number: 2.05 Objectives: 2.05.01 Define the terms "removable and fixed surface contamination," state the difference between them and list common methods used to measure each. 2.05.02 State the components of a radiological monitoring program for contamination control and common methods used to accomplish them. 2.05.03 State the basic goal of a contamination control program and list actions that contribute to its success. 2.05.04 State the basic principles of contamination control and list examples of implementation methods. 2.05.05 List and describe the possible engineering control methods used for contamination control. 2.05.06

60

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radioactivity & Radioactive Decay Radioactivity & Radioactive Decay Instructor's Guide 1.06-1 Course Title: Radiological Control Technician Module Title: Radioactivity & Radioactive Decay Module Number: 1.06 Objectives: 1.06.01 Identify how the neutron to proton ratio is related to nuclear stability. 1.06.02 Identify the definition for the following terms: a. radioactivity b. radioactive decay 1.06.03 Identify the characteristics of alpha, beta, and gamma radiations. 1.06.04 Given simple equations identify the following radioactive decay modes: a. alpha decay b. beta decay c. positron decay d. electron capture 1.06.05 Identify two aspects associated with the decay of a radioactive nuclide. 1.06.06 Identify differences between natural and artificial radioactivity. 1.06.07 Identify why fission products are unstable.

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Considerations for First Aid Radiological Considerations for First Aid Study Guide 2.15-1 Course Title: Radiological Control Technician Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. i 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. INTRODUCTION "Standard first aid is applied prior to contamination control whenever it is considered to have life-saving value, or is important to the patient for relief of pain or prevention of

62

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.18-1 Course Title: Radiological Control Technician Module Title: Air Sampling Equipment Module Number: 2.18 Objectives: 2.18.01 Identify the factors that affect the operator's selection of a portable air sampler. L 2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers. L 2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps. L 2.18.04 List the steps for a preoperational checkout of a portable air sampler. L 2.18.05 Identify the physical and operational characteristics and the limitation(s) of beta-gamma constant air monitors (CAM's). L 2.18.06 Identify the physical and operating characteristics and the limitation(s) of alpha constant air monitors (CAM's).

63

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

3 Radiation Detector Theory 3 Radiation Detector Theory Instructor's Guide 1.13-1 Course Title: Radiological Control Technician Module Title: Radiation Detector Theory Module Number: 1.13 Objectives: 1.13.01 Identify the three fundamental laws associated with electrical charges. 1.13.02 Identify the definition of current, voltage and resistance and their respective units. 1.13.03 Select the function of the detector and readout circuitry components in a radiation measurement system. 1.13.04 Identify the parameters that affect the number of ion pairs collected in a gas- filled detector. 1.13.05 Given a graph of the gas amplification curve, identify the regions of the curve. 1.13.06 Identify the characteristics of a detector operated in each of the useful regions of the gas amplification curve. 1.13.07

64

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Counting Errors and Statistics Counting Errors and Statistics Study Guide 2.03-1 Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State two applications of counting statistics in sample analysis. 2.03.03. Define the following terms: a. mode b. median c. mean 2.03.04. Given a series of data, determine the mode, median, or mean. 2.03.05. Define the following terms: a. variance b. standard deviation 2.03.06. Given the formula and a set of data, calculate the standard deviation. 2.03.07. State the purpose of a Chi-squared test. i 2.03.08. State the criteria for acceptable Chi-squared values at your site.

65

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Physics Nuclear Physics Instructor's Guide 1.04-1 Course Title: Radiological Control Technician Module Title: Nuclear Physics Module Number: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope 1.04.02 Identify the basic principles of the mass-energy equivalence concept. 1.04.03 Identify the definitions of the following terms: a. Mass defect b. Binding energy c. Binding energy per nucleon 1.04.04 Identify the definitions of the following terms: a. Fission b. Criticality c. Fusion References: 1. "Nuclear Chemistry"; Harvey, B. G. 2. "Physics of the Atom"; Wehr, M. R. and Richards, J. A. Jr. 3. "Introduction to Atomic and Nuclear Physics"; Oldenburg, O. and Holladay, W. G. 4. "Health Physics Fundamentals"; General Physics Corp.

66

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Study Guide Study Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages and state the applicable limits. 2.12.05 Describe the necessary radiation and contamination surveys to be performed on exclusive use vehicles and state the applicable limits. 2.12.06 Identify the proper placement of placards on a transport vehicle. i 2.12.07 Identify inspection criteria that should be checked prior to releasing a

67

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

5 Radiological Considerations for First Aid 5 Radiological Considerations for First Aid Instructor's Guide 2.15-1 Course Number: Radiological Control Technicians Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. L 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. References: 1. Basic Radiation Protection Technology (2nd edition) - Daniel A. Gollnick 2. Operational Health Physics Training - H. J. Moe

68

DOE-HDBK-1122-99; Radiological Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiological Incidents and Emergencies Radiological Incidents and Emergencies Study Guide 2.13-1 Course Title: Radiological Control Technician Module Title: Radiological Incidents and Emergencies Module Number: 2.13 Objectives: 2.13.01 Describe the general response and responsibilities of an RCT during any incident. i 2.13.02 Identify any emergency equipment and facilities that are available, including the location and contents of emergency equipment kits. i 2.13.03 Describe the RCT response to a Continuous Air Monitor (CAM) alarm. i 2.13.04 Describe the RCT response to a personnel contamination monitor alarm. i 2.13.05 Describe the RCT response to off scale or lost dosimetry. i 2.13.06 Describe the RCT response to rapidly increasing, unanticipated radiation levels or an area radiation monitor alarm. i 2.13.07

69

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

- Sources of Radiation - Sources of Radiation Study Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a. Nuclear Fallout b. Medical Exposures c. Consumer Products d. Nuclear Facilities INTRODUCTION Apart from the amount of radiation a worker may receive while performing work, they will also be exposed to radiation because of the very nature of our environment. All individuals are subject to some irradiation even though they may not work with

70

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

ALARA ALARA Study Guide 1.10-1 Course Title: Radiological Control Technician Module Title: ALARA Module Number: 1.10 Objectives: 1.10.01 Describe the assumptions on which the current ALARA philosophy is based. 1.10.02 Identify the ALARA philosophy for collective personnel exposure and individual exposure. 1.10.03 Identify the scope of an effective radiological ALARA program. 1.10.04 Identify the purposes for conducting pre-job and/or post-job ALARA reviews. 1.10.05 Identify RCT responsibilities for ALARA implementation. INTRODUCTION All personnel at a facility must be committed to the ALARA philosophy. The RCT can play a major role in establishing and maintaining that commitment by understanding its concepts. This lesson will familiarize the student with the ALARA concepts and the

71

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instructor's Guide Instructor's Guide 2.17-1 Course Title: Radiological Control Technician Module Title: Contamination Monitoring Instrumentation Module Number: 2.17 Objectives: 2.17.01 List the factors which affects an RCT's selection of a portable contamination monitoring instrument. L 2.17.02 Describe the following features and specifications for commonly used count rate meter probes used at your site for beta/gamma and/or alpha surveys: a. Detector type b. Detector shielding and window c. Types of radiation detected/measured d. Energy response for measured radiation e. Specific limitations/characteristics L 2.17.03 Describe the following features and specifications for commonly used count rate instruments used at your site: a. Types of detectors available for use b. Operator-adjustable controls

72

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Study Guide Study Guide 2.14-1 Course Title: Radiological Control Technician Module Title: Personnel Decontamination Module Number: 2.14 Objectives: 2.14.01 List the three factors which determine the actions taken in decontamination of personnel. i 2.14.02 List the preliminary actions and notifications required by the RCT for an individual suspected to be contaminated. i 2.14.03 List the actions to be taken by the RCT when contamination of clothing is confirmed. i 2.14.04 List the actions to be taken by the RCT when skin contamination is confirmed. i 2.14.05 List the steps for using decontamination reagents to decontaminate personnel. INTRODUCTION In our work environment, one of the major concerns of radiological control is the prevention of personnel contamination. When personnel contamination has been

73

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Internal Exposure Control Internal Exposure Control Instructor's Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and "Derived Air Concentration" (DAC). 1.12.04 Identify the basis for determining Annual Limit on Intake (ALI). 1.12.05 Identify the definition of "reference man". 1.12.06 Identify a method of using DACs to minimize internal exposure potential. 1.12.07 Identify three factors that govern the behavior of radioactive materials in the

74

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

8 Biological Effects of Radiation 8 Biological Effects of Radiation Study Guide 1.08-1 Course Title: Radiological Control Technician Module Title: Biological Effects of Radiation Module Number: 1.08 Objectives: 1.08.01 Identify the function of the following cell structures: a. Cell membrane b. Cytoplasm c. Mitochondria d. Lysosome e. Nucleus f. DNA g. Chromosomes 1.08.02 Identify effects of radiation on cell structures. 1.08.03 Define the law of Bergonie and Tribondeau. 1.08.04 Identify factors which affect the radiosensitivity of cells. 1.08.05 Given a list of types of cells, identify which are most or least radiosensitive. 1.08.06 Identify primary and secondary reactions on cells produced by ionizing radiation. 1.08.07 Identify the following definitions and give examples of each: a. Stochastic effect b. Non-stochastic effect

75

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Environmental Monitoring Environmental Monitoring Study Guide 2.09-1 Course Title: Radiological Control Technician Module Title: Environmental Monitoring Module Number: 2.09 Objectives: 2.09.01 State the goals of an environmental monitoring program. 2.09.02 State the exposure limits to the general public as they apply to environmental monitoring. 2.09.03 Define the term "critical nuclide." 2.09.04 Define the term "critical pathway." i 2.09.05 State locations frequently surveyed for radiological contamination at outdoor waste sites associated with your site and the reasons for each. 2.09.06 Define the term "suspect waste site," and how they can be identified. i 2.09.07 Describe the methods used for environmental monitoring at your site. INTRODUCTION Environmental monitoring plays a large role in the field of radiological control.

76

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Radiation Protection Standards Radiation Protection Standards Study Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" DOE-HDBK-1122-99 Module 1.09 Radiation Protection Standards

77

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Dosimetry Dosimetry Study Guide 2.04-1 Course Title: Radiological Control Technician Module Title: Dosimetry Module Number: 2.04 Objectives: 2.04.01 Identify the DOE external exposure limits for general employees. 2.04.02 Identify the DOE limits established for the embryo/fetus of a declared pregnant female general employee. i 2.04.03 Identify the administrative exposure control guidelines at your site, including those for the: a. General employee b. Member of the public/minor c. Incidents and emergencies d. Embryo/fetus i 2.04.04 Identify the requirements for a female general employee who has notified her employer in writing that she is pregnant. 2.04.05 Determine the theory of operation of a thermoluminescent dosimeter (TLD). 2.04.06 Determine how a TLD reader measures the radiation dose from a TLD.

78

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Air Sampling Program/Methods Air Sampling Program/Methods Study Guide 2.06-1 Course Title: Radiological Control Technician Module Title: Air Sampling Program/Methods Module Number: 2.06 Objectives: 2.06.01 State the primary objectives of an air monitoring program. 2.06.02 Describe the three physical states of airborne radioactive contaminants. 2.06.03 List and describe the primary considerations to ensure a representative air sample is obtained. 2.06.04 Define the term "isokinetic sampling" as associated with airborne radioactivity sampling. 2.06.05 Identify the six general methods for obtaining samples or measurements of airborne radioactivity concentrations and describe the principle of operation for each method. a. Filtration b. Volumetric c. Impaction/impingement d. Adsorption e.

79

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Instrumentation Study Guide Instrumentation Study Guide 2.16-1 Course Title: Radiological Control Technician Module Title: Radiation Survey Instrumentation Module Number: 2.16 Objectives: 2.16.01 List the factors which affect an RCT's selection of a portable radiation survey instrument, and identify appropriate instruments for external radiation surveys. i 2.16.02 Identify the following features and specifications for ion chamber instruments used at your facility: a. Detector type b. Instrument operating range c. Detector shielding d. Detector window e. Types of radiation detected/measured f. Operator-adjustable controls g. Markings for detector effective center h. Specific limitations/characteristics i 2.16.03 Identify the following features and specifications for high range instruments used at your facility:

80

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

4 - Nuclear Physics 4 - Nuclear Physics Study Guide 1.04-1 Course Title: Radiological Control Technician Module Title: Nuclear Physics Module Number: 1.04 Objectives: 1.04.01 Identify the definitions of the following terms: a. Nucleon b. Nuclide c. Isotope 1.04.02 Identify the basic principles of the mass-energy equivalence concept. 1.04.03 Identify the definitions of the following terms: a. Mass defect b. Binding energy c. Binding energy per nucleon 1.04.04 Identify the definitions of the following terms: a. Fission b. Criticality c. Fusion INTRODUCTION Nuclear power is made possible by the process of nuclear fission. Fission is but one of a large number of nuclear reactions which can take place. Many reactions other than fission are quite important because they affect the way we deal with all aspects of

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Respiratory Protection Respiratory Protection Study Guide 2.07-1 Course Title: Radiological Control Technician Module Title: Respiratory Protection Module Number: 2.07 Objectives: 2.07.01 Explain the purpose of respiratory protection standards and regulations. 2.07.02 Identify the OSHA, ANSI, and DOE respiratory protection program requirements. 2.07.03 Identify the standards which regulate respiratory protection. 2.07.04 Describe the advantages and disadvantages (limitations) of each of the following respirators: a. Air purifying, particulate removing filter respirators b. Air purifying, Chemical Cartridge and Canister respirators for Gases and Vapors c. Full-face, supplied-air respirators d. Self-contained breathing apparatus (SCBA) e. Combination atmosphere supplying respirators 2.07.05 Define the term protection factor (PF).

82

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Sources of Radiation Sources of Radiation Instructor's Guide 1.05-1 Course Title: Radiological Control Technician Module Title: Sources of Radiation Module Number: 1.05 Objectives: 1.05.01 Identify the following four sources of natural background radiation including the origin, radionuclides, variables, and contribution to exposure. a. Terrestrial b. Cosmic c. Internal Emitters d. Radon 1.05.02 Identify the following four sources of artificially produced radiation and the magnitude of dose received from each. a. Nuclear Fallout b. Medical Exposures c. Consumer Products d. Nuclear Facilities References: 1. "Basic Radiation Protection Technology"; Gollnick, Daniel; Pacific Radiation Press; 1983. 2. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago.

83

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Communication Systems Communication Systems Study Guide 2.02-1 Course Title: Radiological Control Technician Module Title: Communication Systems Module Number: 2.02 Objectives: 2.02.01 Explain the importance of good communication. 2.02.02 Identify two methods of communication and be able to determine different types of each. 2.02.03 Describe different types of communication systems. 2.02.04 Describe the FCC and DOE guidelines regarding proper use of communication systems. 2.02.05 Describe general attributes of good communications. 2.02.06 Explain the importance of knowing how to contact key personnel. i 2.02.07 Identify the communication systems available at your site and methods available to contact key personnel. i 2.02.08 Describe the emergency communication systems available at your site.

84

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

7 Interaction of Radiation with Matter 7 Interaction of Radiation with Matter Instructor's Guide 1.07-1 Course Title: Radiological Control Technician Module Title: Interaction of Radiation with Matter Module Number: 1.07 Objectives: 1.07.01 Identify the definitions of the following terms: a. ionization b. excitation c. bremsstrahlung 1.07.02 Identify the definitions of the following terms: a. specific ionization b. linear energy transfer (LET) c. stopping power d. range e. W-value 1.07.03 Identify the two major mechanisms of energy transfer for alpha particulate radiation. 1.07.04 Identify the three major mechanisms of energy transfer for beta particulate radiation. 1.07.05 Identify the three major mechanisms by which gamma photon radiation interacts with matter. 1.07.06 Identify the four main categories of neutrons as they are classified by kinetic

85

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Physical Sciences Physical Sciences Study Guide 1.03-1 Course Title: Radiological Control Technician Module Title: Physical Sciences Module Number: 1.03 Objectives: 1.03.01 Define the following terms as they relate to physics: a. Work b. Force c. Energy 1.03.02 Identify and describe four forms of energy. 1.03.03 State the Law of Conservation of Energy. 1.03.04 Distinguish between a solid, a liquid, and a gas in terms of shape and volume. 1.03.05 Identify the basic structure of the atom, including the characteristics of subatomic particles. 1.03.06 Define the following terms: a. Atomic number b. Mass number c. Atomic mass d. Atomic weight 1.03.07 Identify what each symbol represents in the A Z X notation. 1.03.08 State the mode of arrangement of the elements in the Periodic Table. 1.03.09 Identify periods and groups in the Periodic Table in terms of their layout.

86

Building Energy Software Tools Directory: solacalc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solacalc solacalc solacalc logo. Simulates passive solar houses by calculating heat losses and solar gains in residential buildings, using interlinked worksheets and very extensive help. Based on New Method 5000, 'solacalc' uses UK climate data to easily and quickly calculate thermal balances and financial analysis. A reference calculation concurrently offers a design comparison without solar features. A Net Present Value calculation provides economic analysis. Keywords passive solar, house design, building design, building services, design tools Validation/Testing N/A. Expertise Required None, but knowledge of spreadsheets and basic building thermodynamics is helpful. Users More than 30. Audience Architects, Builders, homeowners, technicians in architectural practices,

87

Recovery Act: Training Curriculum Development for Building Equipment Technicians, Operators, and Commissioning Agents/Auditors  

SciTech Connect (OSTI)

This US DOE funded project produced ten advanced energy engineering technology courses where students learn about the latest technologies and practices in the energy industry to reduce energy use in residential, commercial and industrial settings, accounting for over 50% of the worlds energy use. A geothermal and a solar thermal system were installed and commissioned as part of this project, an MATCs cost share. An innovative intelligent lighting lab was installed, complete with course content as well as innovative academic pathway construction, laddering students from the 2-year technical college to the 4-year engineering school.

Jacobsen, Joseph; Yu, David

2012-08-04T23:59:59.000Z

88

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

89

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

90

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

91

DOE-HDBK-1122-99; Radiological Control Technician Training, Part 5 of 9  

Broader source: Energy.gov (indexed) [DOE]

5 of 9 5 of 9 Radiological Control Technician Training Site Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers

92

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

93

January 18, 2013 Sustainability Office Energy Project Student Technician (Student Tech 1)  

E-Print Network [OSTI]

January 18, 2013 Sustainability Office Energy Project Student Technician (Student Tech 1) Position The OSU Sustainability Office seeks a student employee to scope and implement energy conservation projects and execute related programmatic tasks. The Sustainability Office is part of Campus Operations, the department

Escher, Christine

94

Building Technologies Office: Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

95

Administrative Technician  

Broader source: Energy.gov [DOE]

(See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Upper Great Plains Region, Montana Maintenance, Fort Peck, Montana. Find out more...

96

Building Technologies Office: Building America: Bringing Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

97

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

98

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

99

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAYBUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

100

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was slightly above average. Lodging buildings were one of the few...

102

DOE Announces More Than $76 Million for Advanced Energy-Efficient Building  

Broader source: Energy.gov (indexed) [DOE]

Announces More Than $76 Million for Advanced Energy-Efficient Announces More Than $76 Million for Advanced Energy-Efficient Building Technologies and Commercial Building Training Programs DOE Announces More Than $76 Million for Advanced Energy-Efficient Building Technologies and Commercial Building Training Programs June 17, 2010 - 12:00am Addthis WASHINGTON-U.S. Energy Secretary Steven Chu today announced awards totaling more than $76 million in funding from the American Recovery and Reinvestment Act to support advanced energy-efficient building technology projects and the development of training programs for commercial building equipment technicians, building operators, and energy auditors. The 58 projects selected today will help make the nation's buildings more energy efficient and cost-effective. They will also support programs to

103

DOE Announces More Than $76 Million for Advanced Energy-Efficient Building  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces More Than $76 Million for Advanced Energy-Efficient DOE Announces More Than $76 Million for Advanced Energy-Efficient Building Technologies and Commercial Building Training Programs DOE Announces More Than $76 Million for Advanced Energy-Efficient Building Technologies and Commercial Building Training Programs June 17, 2010 - 12:00am Addthis WASHINGTON-U.S. Energy Secretary Steven Chu today announced awards totaling more than $76 million in funding from the American Recovery and Reinvestment Act to support advanced energy-efficient building technology projects and the development of training programs for commercial building equipment technicians, building operators, and energy auditors. The 58 projects selected today will help make the nation's buildings more energy efficient and cost-effective. They will also support programs to

104

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per and lower energy usage was reviewed. This factor is contained in the adopted Green Building Code Section 9 for the May 5, 2010 California Energy Commission business meeting. Thank you. John LaTorra Building Inspection

105

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

106

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

107

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

108

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

109

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

110

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

111

Sustainable Buildings  

Science Journals Connector (OSTI)

The construction and real estate sectors are in a state of change: ... operated differently, i.e. more sustainably. Sustainable building means to build intelligently: the focus ... comprehensive quality concept t...

Christine Lemaitre

2012-01-01T23:59:59.000Z

112

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

113

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

114

Building Technologies Office: Residential Building Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

115

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

116

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

117

Building Technologies Office: Building America Meetings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

118

Building America Building Science Education Roadmap | Department...  

Broader source: Energy.gov (indexed) [DOE]

Building Science Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take...

119

Building Technologies Office: Building Energy Optimization Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

120

Buildings Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building Science  

Broader source: Energy.gov (indexed) [DOE]

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

122

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

123

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

124

Building Technologies Office: Commercial Reference Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

125

Building Technologies Office: Buildings to Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

126

Buildings Database  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

127

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

128

Better Buildings Neighborhood Program: Better Buildings Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

129

Building Technologies Office: National Laboratories Supporting Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

130

Building Technologies Office: Integrated Building Management System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

131

Farm Buildings  

Science Journals Connector (OSTI)

... is intended to guide the American farmer and agricultural student in designing and constructing farm buildings. It is stated that farm ... . It is stated that farm buildings have had their most rapid development in America in the years since 1910. Prior ...

1923-03-24T23:59:59.000Z

132

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

133

Better Buildings Neighborhood Program: Better Buildings Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

134

Building Technologies Office: Commercial Building Partnership Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

135

Building Technologies Office: About Residential Building Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

136

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

137

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers [EERE]

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

138

Building America Building Science Education Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

139

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

140

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

142

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

143

Residential Buildings Integration Program  

Broader source: Energy.gov [DOE]

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

144

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

145

Commercial Buildings Consortium  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

146

Energy Efficient Buildings Hub  

Broader source: Energy.gov [DOE]

Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

147

Building Technologies Office: Building America Research Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

148

Building Technologies Office: Commercial Building Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

149

Hidden buildings  

Science Journals Connector (OSTI)

... to charge to research grants a portion of the costs of constructing and financing new buildings. What this means is that institutions confident that their researchers would be well supported ... that institutions confident that their researchers would be well supported have

1991-11-28T23:59:59.000Z

150

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

151

Building Technologies Program: Building America Publications  

Broader source: Energy.gov (indexed) [DOE]

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

152

Experienced Irrigation Technician (Brighton, MI) Beauchamp Lawn Care and Landscape is a property maintenance and landscape company that has been in Livingston  

E-Print Network [OSTI]

maintenance and landscape company that has been in Livingston County for over 20 years. We are looking Care and Landscape is a property maintenance and landscape company that has been in Livingston County Technicians (Brighton, MI) Beauchamp Lawn Care and Landscape is a property maintenance and landscape company

Isaacs, Rufus

153

Building Performance Simulation  

E-Print Network [OSTI]

of Three Building Energy Modeling Programs:andD. Zhu. Buildingenergymodelingprogramscomparison:Comparison of building energy modeling programs: HVAC

Hong, Tianzhen

2014-01-01T23:59:59.000Z

154

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

155

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

156

Building Energy Modeling  

Broader source: Energy.gov [DOE]

Building energy simulationphysics-based calculation of building energy consumptionis a multi-use tool for building energy efficiency.

157

Building Performance Simulation  

E-Print Network [OSTI]

Y (2008). DeSTAn integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeSTAn integrated building simulation toolkit,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

158

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

159

Building Technologies Office: Energy Efficient Buildings Hub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

160

Model Building  

E-Print Network [OSTI]

In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly seen at HERA.

Paul H. Frampton

1997-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Technologies Office: Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

162

Building and Buildings, Scotland: Draft Building Standards (Scotland) Regulations, 1961  

E-Print Network [OSTI]

These regulations, made under the Building (Scotland) Act, 1959, prescribe standards for buildings for the purposes of Part II of that Act. The matters in relation to which standards have been prescribed are described in ...

Her Majesty's Stationary Office

1961-01-01T23:59:59.000Z

163

Transforming Commercial Building Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

164

Transforming Commercial Building Operations  

Broader source: Energy.gov (indexed) [DOE]

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

165

Model curriculum outline for Alternatively Fueled Vehicle (AFV) automotive technician training in light and medium duty CNG and LPG  

SciTech Connect (OSTI)

This model curriculum outline was developed using a turbo-DACUM (Developing a Curriculum) process which utilizes practicing experts to undertake a comprehensive job and task analysis. The job and task analysis serves to establish current baseline data accurately and to improve both the process and the product of the job through constant and continuous improvement of training. The DACUM process is based on the following assumptions: (1) Expert workers are the best source for task analysis. (2) Any occupation can be described effectively in terms of tasks. (3) All tasks imply knowledge, skills, and attitudes/values. A DACUM panel, comprised of six experienced and knowledgeable technicians who are presently working in the field, was given an orientation to the DACUM process. The panel then identified, verified, and sequenced all the necessary job duty areas and tasks. The broad duty categories were rated according to relative importance and assigned percentage ratings in priority order. The panel then rated every task for each of the duties on a scale of 1 to 3. A rating of 3 indicates an {open_quotes}essential{close_quotes} task, a rating of 2 indicates an {open_quotes}important{close_quotes} task, and a rating of 1 indicates a {open_quotes}desirable{close_quotes} task.

NONE

1997-04-01T23:59:59.000Z

166

Building Energy Software Tools Directory: T*SOL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T*SOL T*SOL T*SOL logo. T*SOL is a simulation program for the planning and professional design of solar thermal systems. The standard module contains a large number of system configurations for domestic hot water supply and space heating. Swimming pool, large systems, and air collector systems also come standard with the program. This dynamic simulation program, with its easy-to-use Design Assistant, was developed for engineers, planners, roofing specialists, and heating or building technicians. After entering just a few parameters for location and consumption, systems or company system configurations can be selected and the collectors and stores sized. The automatic variant calculation allows the user to select the optimal system configuration. Screen Shots Keywords

167

Building Energy Software Tools Directory: PV*SOL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV*SOL PV*SOL PV*SOL logo. PV*SOL Pro is a program for the design and simulation of grid-connected and off-grid photovoltaic systems. You can create your system using a wide range of modules (including thin-film and crystalline) and the program determines the size of the system with the roof layout tool. After testing all the relevant physical parameters, the program automatically selects the inverter and PV array configuration. This dynamic simulation program was developed for engineers, designers, installers, roofing specialists, and electrical contractors or building technicians. Screen Shots Keywords photovoltaic systems simulation, planning and design software, grid-connected systems, stand-alone systems Validation/Testing N/A Expertise Required No special expertise or training needed.

168

Commercial Buildings Integration Program  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

169

Home | Better Buildings Workforce  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

170

Buildings without energy bills  

Science Journals Connector (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

171

Academic Buildings Student & Admin.  

E-Print Network [OSTI]

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

172

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

173

Building Technologies Office: Subscribe to Building America Updates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

174

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network [OSTI]

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: Buildingof comparing three Building Energy Modeling Programs (BEMPs)

Zhu, Dandan

2014-01-01T23:59:59.000Z

175

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

176

Building Technologies Research and  

E-Print Network [OSTI]

Building Technologies Research and Integration Center Breaking new ground in energy efficiency #12;Building Technologies Research To enjoy a sustainable energy and environmental future, America must these enormous challenges. Today, through the Building Technologies and Research Integration Center (BTRIC

Oak Ridge National Laboratory

177

Building Performance Simulation  

E-Print Network [OSTI]

low energy buildings, with site EUI of 40 or lowerbuildings in the US (EUI of 90 kBtu/ft). Thisthe bubble represents the EUI. These buildings were

Hong, Tianzhen

2014-01-01T23:59:59.000Z

178

Building a Molecule Building Structures in Moe  

E-Print Network [OSTI]

14 Chapter 3 Building a Molecule #12;15 Building Structures in Moe Dorzolamide Exercise 1 #12;16 Open the Molecule Builder · Open the Molecule Builder panel using MOE | Edit | Build | Molecule, the chiral center will be either R or S, and one of the two will be highlighted in green. The green

Fischer, Wolfgang

179

Building Technologies Office Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

180

Building Technologies Office: Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building Performance Simulation  

E-Print Network [OSTI]

LEEDNCCertifiedBuildings (courtesyNewBuildingInstitute) Figure3MeasuredEnergyUseIntensitiesofBig?BoxRetailsinUSandCanada(

Hong, Tianzhen

2014-01-01T23:59:59.000Z

182

GSA Building Energy Strategy  

Broader source: Energy.gov (indexed) [DOE]

Rapid Building Assessments Green Button 12 Remote Building Analytics Platform First Fuel Dashboard 13 Data Center Ronald Reagan Detail Summary First Fuel Analysis 14...

183

Solar buildings. Overview: The Solar Buildings Program  

SciTech Connect (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

184

Building Technologies Office: Commercial Building Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

185

Building Technologies Office: Building America 2013 Technical Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

186

Building Green in Greensburg: City Hall Building  

Broader source: Energy.gov (indexed) [DOE]

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

187

Building Technologies Office: Building America Meetings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

188

Building Technologies Office: Better Buildings Neighborhood Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

189

Building Green in Greensburg: Business Incubator Building  

Broader source: Energy.gov (indexed) [DOE]

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

190

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

191

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

192

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

193

Better Buildings Neighborhood Program  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

194

Building Technology MSc Programme  

E-Print Network [OSTI]

of this programme is on the design of innovative and sustainable building components and their integration

Langendoen, Koen

195

Building Technologies Office: Building America Climate-Specific Guidance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

196

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

197

Building Technologies Office: Buildings Performance Database Analysis Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

198

Building Technologies Office: About the Commercial Buildings Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

199

Building Technologies Office: Building Energy Data Exchange Specification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

200

Commercial Buildings Consortium  

Broader source: Energy.gov (indexed) [DOE]

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Residential Buildings Integration Program  

Broader source: Energy.gov (indexed) [DOE]

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

202

Residential Buildings Integration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

203

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

204

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

205

DOE - Better Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

206

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

207

Fact Sheet- Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Neighborhood Program.

208

John Anderson Campus UNIVERSITY BUILDINGS  

E-Print Network [OSTI]

John Anderson Campus UNIVERSITY BUILDINGS 1 McCance Building 2 Collins Building 3 Livingstone Tower 4 Accommodation Office 5 Graham Hills Building 6 Turnbull Building 7 Royal College Building 8 Students' Union 9 Centre for Sport & Recreation 10 St Paul's Building/Chaplaincy 11 Thomas Graham Building

Mottram, Nigel

209

Building America System Research  

Broader source: Energy.gov (indexed) [DOE]

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

210

Building Technologies Office: Building Science Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

211

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Documentation ............................................................................2.01-1 Documentation ............................................................................2.01-1 Module 2.02 Communication Systems ..................................................................................2.02-1 Module 2.03 Counting Errors and Statistics ..........................................................................2.03-1 Module 2.04 Dosimetry .........................................................................................................2.04-1 Module 2.05 Contamination Control .....................................................................................2.05-1 Module 2.06 Airborne Sampling Program/Methods .............................................................2.06-1 Module 2.07 Respiratory Protection ......................................................................................2.07-1

212

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

Documentation Documentation ............................................................................2.01-1 Module 2.02 Communication Systems ..................................................................................2.02-1 Module 2.03 Counting Errors and Statistics ..........................................................................2.03-1 Module 2.04 Dosimetry .........................................................................................................2.04-1 Module 2.05 Contamination Control .....................................................................................2.05-1 Module 2.06 Airborne Sampling Program/Methods .............................................................2.06-1 Module 2.07 Respiratory Protection ......................................................................................2.07-1

213

Technicians need new skills  

Science Journals Connector (OSTI)

... A FAILURE to adopt new technology is seen as the one sure way for declining competitiveness in the world economy. The lesson applies equally well for companies and nations, while ... the survival of the company, for others the rapid utilization of new technology, increased competitiveness and the release of high-level skills.

Richard Pearson

1985-02-07T23:59:59.000Z

214

Public UtilitiesTechnician  

Broader source: Energy.gov [DOE]

(See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration, Upper Great Plains Region, Power System Operations, Power Accounting and Billing ...

215

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

the the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Purpose of Oral Examinations .....................................................................................................1 Scope............................................................................................................................................1 Participation in Oral Examination Boards..............................................................................2 Board Membership.......................................................................................................................2

216

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

217

Building Green in Greensburg: City Hall Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

218

Building America Webinar: High Performance Building Enclosures...  

Broader source: Energy.gov (indexed) [DOE]

used to improve energy performance of building envelopes while dealing with issues like ice damming during exterior "overcoat" insulation retrofits? How can deep energy retrofits...

219

Building Technologies Office: Partner With DOE and Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

220

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

222

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

223

Energy Efficient Buildings Hub  

Broader source: Energy.gov (indexed) [DOE]

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

224

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

225

DOE Building Technologies Program  

Broader source: Energy.gov (indexed) [DOE]

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

226

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE BUILDING A&S BUILDING EXTENSIO N P7 P5.1 P5 P2 P3.1 P3.2 P6 P8 P4 P2 P2 P4 P8 P2.4 PARKING MAP GRENFELL

deYoung, Brad

227

NREL: Buildings Research - Residential Buildings Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

228

Building Technologies Office: Building America Research Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

229

Building Technologies Office: Commercial Building Partnership Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

230

Building Technologies Office: Residential Building Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

231

Building Technologies Office: Building America's Top Innovations Advance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

232

Building Technologies Office: Subscribe to Building Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

233

Reference Buildings by Building Type: Strip mall | Department...  

Broader source: Energy.gov (indexed) [DOE]

Strip mall Reference Buildings by Building Type: Strip mall In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes...

234

Reference Buildings by Building Type: Large Hotel | Department...  

Broader source: Energy.gov (indexed) [DOE]

Hotel Reference Buildings by Building Type: Large Hotel In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the...

235

DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Strong: Building FORTIFIED Homes Part II DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED Homes Part II Watch the video or view the presentation slides below...

236

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

237

Building Green in Greensburg: Business Incubator Building | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Business Incubator Building Building Green in Greensburg: Business Incubator Building This poster highlights energy efficiency, renewable energy, and sustainable features of the...

238

Apply: Funding Opportunity- Buildings University Innovators and Leaders Development (BUILD)  

Broader source: Energy.gov [DOE]

The Building Technologies Office (BTO)s Emerging Technologies Program has announced the availability of up to $1 million for the Buildings University Innovators and Leaders Development (BUILD)...

239

Building Technologies Office: Commercial Building Energy Asset Score  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

240

Building operating systems services: An architecture for programmable buildings.  

E-Print Network [OSTI]

7.3.2 Building Performance Analysis . . . . . . 7.4 RelatedWork 2.1 Building Physical Design . . . . . . . . . .3.2.6 Building Applications . . . . . . . . . . .

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

242

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

243

Macallen Building Condominiums  

High Performance Buildings Database

Boston, MA The Macallen Building, a 140-unit condominium building in South Boston, was designed to incorporate green design as a way of marketing a green lifestyle while at the same time increasing revenue from the project.

244

Building Energy Code  

Broader source: Energy.gov [DOE]

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

245

Lockheed Building 157  

High Performance Buildings Database

Sunnyvale, CA In 1983, Lockheed Missiles and Space Company, Inc. (now Lockheed Martin) moved 2,700 engineers and support staff from an older office building on the Lockheed campus into the new Building 157.

246

Better Buildings Federal Award  

Broader source: Energy.gov [DOE]

The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis.

247

Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

248

Building Energy Standards  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

249

Special Building Renovations  

Broader source: Energy.gov [DOE]

A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

250

Grid-Responsive Buildings  

Broader source: Energy.gov [DOE]

The U.S.-India Joint Center for Building Energy Research and Development (CBERD) conducts energy efficiency research and development with a focus on integrating information technology with building controls and physical systems for commercial/high-rise residential units.

251

Sustainable Building Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Buildings & Campuses Sustainable Building Contacts Sustainable Building Contacts For more information about sustainable buildings and campuses, contact: Sarah Jensen...

252

Buildings Performance Database  

Broader source: Energy.gov (indexed) [DOE]

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

253

Buildings Performance Database Overview  

Broader source: Energy.gov [DOE]

Buildings Performance Database Overview, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

254

Kiowa County Commons Building  

Broader source: Energy.gov [DOE]

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

255

Buildings Sector Working Group  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating, cooking, lighting, and refrigeration * Hurdle rates - Update using latest Johnson Controls reports regarding commercial investment decisions * ENERGY STAR buildings -...

256

HEEP CENTER Building # 1502  

E-Print Network [OSTI]

1 HEEP CENTER Building # 1502 EMERGENCY EVACUATION PLAN Prepared by: Harry Cralle and Mark Wright a building. Examples of such occasions include: smoke/fire, gas leak, bomb threat. Pre-planning and rehearsal are effective ways to ensure that building occupants recognize the evacuation alarm and know how to respond

Tomberlin, Jeff

257

Digital Planetaria: Building Bridges  

E-Print Network [OSTI]

Digital Planetaria: Building Bridges Building Bridges Between Institutions, Universities Group Goals & Objectives: The goal of the Building Bridges focus group was to create a framework applications and dreaming about their potential in the digital dome environment. #12;L to R, Back to front

Collar, Juan I.

258

Link Building Martin Olsen  

E-Print Network [OSTI]

Link Building Martin Olsen PhD Dissertation Department of Computer Science Aarhus University Denmark #12;#12;Link Building A Dissertation Presented to the Faculty of Science of Aarhus University The Computational Complexity of Link Building Proc. Computing and Combinatorics, 14th Annual International

259

BROOKHAVENNATIONAL LABORATORY Building 510  

E-Print Network [OSTI]

BROOKHAVENNATIONAL LABORATORY Building 510 P.O. Box 5000 Upton, NY 11973-5000 Phone 631 344 in C-AD buildings. Work Planning and Control for Experiments The intent of this agreement is to ensure or modification work on experiments performed by Physics personnel or guests in C-AD buildings. The Collider

Homes, Christopher C.

260

Bioengineering/ Engineering Building,  

E-Print Network [OSTI]

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction Roble Hall 'CO NNO R LN Skilling HEPL South Green Earth Sciences Mitchell Earth Sciences Moore Materials Rsrch. Durand David Packard Elect. Eng. Paul G. Allen Building Godzilla Thornton Center Bambi Roble Gym e

Bogyo, Matthew

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Bioengineering/ Engineering Building,  

E-Print Network [OSTI]

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction HFD HFD HFD GALVEZST CAPISTRANOW BOWDOIN LN L VIAORTEGA VIAPALOU O 'CO NNO R LN Skilling HEPL South Green Earth Building Godzilla Thornton Center Bambi Roble Gym e Cypress Hall Cedar Hall Cogen Facility Tresidder Union

Bogyo, Matthew

262

The Economics of Green Building  

E-Print Network [OSTI]

Environment Quality in Green Buildings: A Review," Nationalof Popular Attention to Green Building Notes: Sources:2007 - 2009 panel of green buildings and nearby control

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

263

Federal Buildings Supplemental Survey 1993  

U.S. Energy Information Administration (EIA) Indexed Site

mobile homes and trailers, even if they housed commercial activity; and oil storage tanks. (See Commercial Building and Nonresidential Building.) Building Envelope or Shell...

264

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

265

Archive Reference Buildings by Building Type: Stand-alone retail  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

266

Archive Reference Buildings by Building Type: Strip mall  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

267

Archive Reference Buildings by Building Type: Secondary school  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

268

Archive Reference Buildings by Building Type: Small office  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

269

Archive Reference Buildings by Building Type: Fast food  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

270

Archive Reference Buildings by Building Type: Primary school  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

271

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 CX-003466: Categorical Exclusion Determination Building-Level Energy Management Systems CX(s) Applied: A1, A9, A11, B5.1 Date: 08/23/2010 Location(s): Niskayuna, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 23, 2010 CX-003465: Categorical Exclusion Determination Vehicle Technologies Program Advanced Automotive Fuels Research, Development and Commercialization Cluster CX(s) Applied: A9, B2.2, B3.6, B5.1 Date: 08/23/2010 Location(s): Youngstown, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 23, 2010 CX-003464: Categorical Exclusion Determination Building Operator Certification (BOC) For Building Technicians CX(s) Applied: A9, A11 Date: 08/23/2010

272

Building Technologies Office: Sensor Suitcase for Small Commercial Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Suitcase for Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project to someone by E-mail Share Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Facebook Tweet about Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Twitter Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Google Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Delicious Rank Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Digg

273

Chapter 3: Building Siting  

Broader source: Energy.gov (indexed) [DOE]

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

274

NREL: Buildings Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

275

NREL: Buildings Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

276

Better Buildings Alliance  

Broader source: Energy.gov (indexed) [DOE]

Kristen Taddonio DOE/EERE/BTO/Commercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce building energy use by 50 percent, saving ~$2.2 trillion in energy-related costs. CBI Program Goals: New Buildings - Demonstrate 50% cost-effective savings at a convincing scale by 2020 (EISA 2007) - Demonstrate 100% cost-effective savings at a convincing scale by 2030 (EISA 2007) Existing Buildings

277

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

278

Autotune Building Energy Models  

Broader source: Energy.gov (indexed) [DOE]

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

279

Green Building Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

280

Building Technologies Office: Better Buildings Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenge Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The City of Atlanta has committed 16 million square feet of public and private space to substantive upgrades as part of the Better Buildings Challenge. Credit: iStockphoto The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts.

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Building America FY14 Projects by Building Type  

Broader source: Energy.gov [DOE]

This table lists U.S. Department of Energy Building America FY14 research projects by building type.

282

Ventilation in Multifamily Buildings  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

283

Building Data Visualization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Building Data Visualization contour plot Figure 1: Contour plot showing the various operating stages of occupancy sensors described in the case study. Data visualization for buildings is the display of a rich set of variables and parameters that managers can use to verify the energy savings of energy- efficient technology and identify malfunctions in building equipment or problems with operating strategies. Effective data visualization depends on having graphic presentation formats that reveal the phenomena relevant to the building's performance. A research project at the Center for Building Science is aimed at developing data visualization techniques for improved building management. Buildings with energy management control systems as well as dedicated monitoring equipment in the

284

Health Care Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Health Care Health Care Characteristics by Activity... Health Care Health care buildings are those used as diagnostic and treatment facilities for both inpatient and outpatient care. Doctor's and dentist's offices are considered health care if they use any type of diagnostic medical equipment and office if they do not. Skilled nursing or other residential care buildings are categorized as lodging. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Health Care Buildings... Health care buildings in the South tended to be smaller and were more numerous than those in other regions of the country. Buildings on health care complexes tended to be newer than those not on multibuilding facilities. The median age for buildings on health care complexes was 9.5 years, compared to 29.5 years for health care buildings not on a multibuilding facility.

285

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

286

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network [OSTI]

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

287

Property:Building/Boundaries | Open Energy Information  

Open Energy Info (EERE)

Boundaries Boundaries Jump to: navigation, search This is a property of type String. Boundaries Pages using the property "Building/Boundaries" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Several buildings + Sweden Building 05K0002 + Part of a building + Sweden Building 05K0003 + One building + Sweden Building 05K0004 + One building + Sweden Building 05K0005 + One building + Sweden Building 05K0006 + Several buildings + Sweden Building 05K0007 + One building + Sweden Building 05K0008 + One building + Sweden Building 05K0009 + One building + Sweden Building 05K0010 + One building + Sweden Building 05K0011 + One building + Sweden Building 05K0012 + One building + Sweden Building 05K0013 + One building + Sweden Building 05K0014 + One building +

288

Commercial Building Asset Rating Program  

Broader source: Energy.gov [DOE]

Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

289

Saving Energy in Multifamily Buildings  

Broader source: Energy.gov [DOE]

This presentation is for the Building Technologies program webinar titled Saving Energy in Multifamily Buildings delivered on July 25, 2011.

290

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

291

New York City - Green Building Requirements for Municipal Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

292

Building Technologies Office: Commercial Building Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

293

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More. News DOE Publishes Petition of CSA Group for Classification as a Nationally

294

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Keep Up To Date Read the Better Buildings Network View newsletter. The Network View is an e-newsletter that provides information on the newly launched Better Buildings Residential Network. The Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to build upon the many successes of the Better Buildings Neighborhood Program. Read the latest issue. Through the Better Buildings Neighborhood Program, communities across the country are improving neighborhoods, creating jobs, and increasing access to energy savings in homes and businesses. Following are some of the news-making innovations and results that Better Buildings Neighborhood Program partners are achieving. Latest DOE News and Blog Posts

295

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

296

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

The Energy Index for Commercial Buildings The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results yield national totals for commercial buildings. For more information on CBECS, visit EIA's website. Location Census Division View Map New England West North Central West South Central Middle Atlantic South Atlantic Mountain East North Central East South Central Pacific

297

Building Science - Ventilation  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

298

1999 Commercial Buildings Characteristics--Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Principal Building Activities Principal Building Activities Principal Building Activities Three of the four activities that dominated commercial floorspace-office, warehouse and storage, and mercantile-dominated the distribution of buildings (Figure 1). Each of these three activity categories included more than 600,000 buildings, while no other building activity had more than a half-million buildings and only service buildings exceeded 350,000 buildings. Detailed tables Figure 1. Distribution of Buildings by Principal Building Activity, 1999 Figure 1. Distribution of Buildings by Principal Building Activity, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey

299

Building Technologies Office: Building-Level Energy Management Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

300

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

SciTech Connect (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Observation Critical Thinking  

E-Print Network [OSTI]

Application Reviewer Energy Conservation Technician Environmental Inspector Environmental Technician EPA Technician Pollution Control Technician Polymer Chemist Product Development Manager Quality Control is fundamental to most scientific disciplines and technology. Chemistry is concerned with the building blocks

Jiang, Huiqiang

302

Commercial Building Partnership  

Broader source: Energy.gov (indexed) [DOE]

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

303

Commercial Building Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

304

Midwest Building Energy Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

305

Kiowa County Commons Building  

Broader source: Energy.gov (indexed) [DOE]

South- and west-facing windows allow more South- and west-facing windows allow more natural light into the building and reduce electricity use * Extensive awnings and overhangs control the light and heat entering the building during the day to reduce cooling loads * Rooftop light monitors in the garden area provide controllable natural light from above to save on electricity consumption * Insulating concrete form block construction with an R-22 insulation value helps control the temperature of the building and maximize

306

The Lovejoy Building  

High Performance Buildings Database

Portland, OR Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

307

Building South Weyburn Avenue  

E-Print Network [OSTI]

36 P32 PCHS P9 P1 P8 P6 P2 P3 P5 17 P4 P7 PRO 11 15 10 Kinross Building Kinross Building South Road Charles E. Young Drive North R oyce D rive CharlesE.YoungDriveNorth Manning Avenue Manning Avenue/Engineering and Mathematical Sciences 8270 Boelter Hall SEL/Geology-Geophysics 4697 Geology Building Music Library 1102

Williams, Gary A.

308

Midwest Building Energy Program  

Broader source: Energy.gov (indexed) [DOE]

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

309

NREL: Buildings Research - Commercial Buildings Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Buildings Research Staff Commercial Buildings Research Staff Members of the Commercial Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as computer science, physics, and chemistry. Brian Ball Kyle Benne Eric Bonnema Larry Brackney Alberta Carpenter Michael Deru Ian Doebber Kristin Field Katherine Fleming David Goldwasser Luigi Gentile Polese Brent Griffith Rob Guglielmetti Elaine Hale Bob Hendron Lesley Herrmann Adam Hirsch Eric Kozubal Feitau Kung Rois Langner Matt Leach Nicholas Long Daniel Macumber James Page Andrew Parker Shanti Pless Jennifer Scheib Marjorie Schott Michael Sheppy Greg Stark Justin Stein Daniel Studer Alex Swindler Paul Torcellini Evan Weaver Photo of Brian Ball Brian Ball, Ph.D., Senior Engineer brian.ball@nrel.gov

310

Building Technologies Office: Building America Solution Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solution Center Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR® checklists, alphabetical lists, a house diagram with selectable components, and an information map. Logged-in users can quickly save any of these elements into their personal Field Kit.

311

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

312

Quintessence Model Building  

E-Print Network [OSTI]

A short review of some of the aspects of quintessence model building is presented. We emphasize the role of tracking models and their possible supersymmetric origin.

Ph. Brax; J. Martin; A. Riazuelo

2001-09-27T23:59:59.000Z

313

What is Building America?  

SciTech Connect (OSTI)

DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

None

2013-06-20T23:59:59.000Z

314

Whole Building Energy Simulation  

Broader source: Energy.gov [DOE]

Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

315

Buildings Success Stories  

Energy Savers [EERE]

1 Buildings Success Stories en Zero Energy Ready Home Program: Race to Zero Student Design Competition http:energy.goveeresuccess-storiesarticleszero-energy-ready-home-progra...

316

Building bridges for fish  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building-bridges-for-fish Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

317

Building Technologies Office: Building America Market Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Partnerships Market Partnerships This photo shows two men silhouetted against a sky shaking hands, with the frame of a building under construction in the background. The U.S. Department of Energy (DOE) offers partnership opportunities, educational curricula, meetings, and webinars that help industry professionals bring research results to the market. DOE Challenge Home Through the DOE Challenge Home, the Building Technologies Office offers recognition to leading edge builders meeting extraordinary levels of excellence. Builders taking the challenge gain competitive advantage in the marketplace by providing their customers with unparalleled energy savings, quality, comfort, health, durability, and much more. Learn more about the DOE Challenge Home. ENERGY STAR for Homes Version 3

318

1999 CBECS Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey, or CBECS, covers a wide variety of building types—office buildings, shopping malls, hospitals, churches, and fire stations, to name just a few. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial. For an overview of definitions and examples of the CBECS building types, see Description of Building Types. Compare Activities by... Number of Buildings Building size Employees Building Age Energy Conservation Number of Computers Electricity Generation Capability

319

Building Technologies Office: Commercial Building Energy Asset Scoring Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scoring Tool to someone by E-mail Scoring Tool to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

320

Building Technologies Office: Building America Research for the American  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the American Home to someone by E-mail for the American Home to someone by E-mail Share Building Technologies Office: Building America Research for the American Home on Facebook Tweet about Building Technologies Office: Building America Research for the American Home on Twitter Bookmark Building Technologies Office: Building America Research for the American Home on Google Bookmark Building Technologies Office: Building America Research for the American Home on Delicious Rank Building Technologies Office: Building America Research for the American Home on Digg Find More places to share Building Technologies Office: Building America Research for the American Home on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Look at Principal Building Activities in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial Buildings Home> Special Topics > 1995 Principal Home > Commercial Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public Assembly Public Order and Safety Warehouse and Storage Vacant Other Summary Comparison Table (All Activities) More information on the: Commercial Buildings Energy Consumption Survey A Look at ... Principal Building Activities in the Commercial Buildings Energy Consumption Survey (CBECS) When you look at a city skyline, most of the buildings you see are commercial buildings. In the CBECS, commercial buildings include office buildings, shopping malls, hospitals, churches, and many other types of buildings. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial.

322

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

323

MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS  

E-Print Network [OSTI]

) Common Use Areas All floored areas in the building for circulation and standard facilities provided and the like. These are extracts of NWPC standard method of measurement of building areas with an addition fromSection S ANNEXURE 4 MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS 1. GROSS BUILDING

Wang, Yan

324

Trottier BuildingTrottier Building Fire SafetyFire Safety  

E-Print Network [OSTI]

building 1.1. Fire SafetyFire Safety 2.2. Fire Protection equipmentFire Protection equipment 3 OfficersFire Prevention Officers #12;Trottier BuildingTrottier Building Fire ProtectionFire Protection#12;Trottier BuildingTrottier Building Fire SafetyFire Safety in Trottier buildingin Trottier

Pientka, Brigitte

325

Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

326

Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

327

Reference Buildings by Building Type: Midrise Apartment  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

328

Reference Buildings by Building Type: Primary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

329

Reference Buildings by Building Type: Small office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

330

Reference Buildings by Building Type: Large office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

331

Reference Buildings by Building Type: Small Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

332

Reference Buildings by Building Type: Secondary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

333

Reference Buildings by Building Type: Large Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

334

Reference Buildings by Building Type: Strip mall  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

335

Reference Buildings by Building Type: Hospital  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

336

Reference Buildings by Building Type: Medium office  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

337

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

338

RESEARCH BUILDING AT NORTHWESTERN  

E-Print Network [OSTI]

-intensive medical schools. Perkins+Will has designed a building that will be superbly functional and have great selected the Chicago architectural firm of Perkins+Will to design the new Biomedical Research Building and advances sustainable practices with green technology and design features that support environmental

Engman, David M.

339

Tell: Building a consistent,  

E-Print Network [OSTI]

, Joseph M. Hellerstein, William R. Marczak UC Berkeley November 19, 2010 #12;Show and Tell: BuildingShow and Tell: Building a consistent, replicated shopping cart in Bloom Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R. Marczak Background The CALM Conjecture Introducing Bloom Writing

California at Irvine, University of

340

The Research Building Blocks  

E-Print Network [OSTI]

The Research Building Blocks For Teaching Children to Read Third Edition Put Reading First Kindergarten Through Grade 3 Third Edition #12;#12;The Research Building Blocks for Teaching Children to Read Centers Program, PR/Award Number R305R70004, as administered by the Office of Educational Research

Rau, Don C.

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CONTACT INFO BUILDING SHELTER  

E-Print Network [OSTI]

CONTACT INFO SIGNALS BUILDING SHELTER THE DISABLED B.E.R.T. TEAM B.E.R.T.* EMERGENCY RESPONSE GUIDE, SIUC*Building Emergency Response Team Siren* Long Blast: Tornado High/Low: Any Other Emergency Radio needed. 2. Find two or three B.E.R.T. "buddies" who are willing to help you in the event of an emergency

King, David G.

342

Electric Services in Buildings  

Science Journals Connector (OSTI)

... Institution of Electrical Engineers on October 22. In the early days, electrical installations in buildings were for lighting and bells. Wood casing was used, and, so far as ... equipment were placed anywhere where they would be out of sight. Now new and larger buildings are being erected all over the country, and electrical contractors are having difficulty in ...

1936-10-31T23:59:59.000Z

343

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled Recommendations for the Computation of Heat Requirements for Buildings (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

344

Technical College Buildings  

Science Journals Connector (OSTI)

... should have such a paucity of literature dealing with material needs in the matter of buildings and equipment necessary for its field of activity. Books dealing with laboratories can be ... is therefore to be specially welcomed, particularly at the present time when the demands for buildings for technical education are so marked (London: Association of Technical Institutions and the Association ...

1935-08-10T23:59:59.000Z

345

New Buildings at Rothamsted  

Science Journals Connector (OSTI)

... June 21 was made the occasion of the official opening of a new block of buildings at the farm and the inauguration of an extensive electrical installation in the farm ... at the farm and the inauguration of an extensive electrical installation in the farm buildings. The Right Hon. Sir John Gilmour, Minister of Agriculture, declared the ...

1932-07-02T23:59:59.000Z

346

Farm Buildings in Britain  

Science Journals Connector (OSTI)

... the Government does not think that a case has been established for a Government farm buildings research centre, but the Agricultural Research Council is undertaking a survey of farm ... research centre, but the Agricultural Research Council is undertaking a survey of farm buildings in Great Britain and is issuing a bibliography of research publications on the subject. ...

1961-07-29T23:59:59.000Z

347

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... describes three vibrators at present in use, together with the methods of testing. In buildings, the vibrator is securely braced between two columns. A 4 in. x 4 ... . Resulting vibrations in structures or in the ground are measured by portable seismographs. For buildings a magnification of about 200 may be used, but for dams or on the ...

1966-06-11T23:59:59.000Z

348

Earthquake-proof Buildings  

Science Journals Connector (OSTI)

... more, the recent Quetta earthquake has emphasised the importance of erecting none but earthquake-proof buildings in a district subject to destructive shocks. The few houses in Quetta that could ... flanks of hills composed of hard rocks. Areas in which brickwork was seriously cracked and buildings occasionally fell, lay on the flanks of the hills facing the Pacific and in ...

Charles Davison

1936-01-11T23:59:59.000Z

349

University of London Buildings  

Science Journals Connector (OSTI)

... to the provision of an open space on part of the site of the new buildings of the University of London at Bloomsbury. He informs us that since his election ... by Mr. Humberstone that this undertaking was not carried out by the layout of the buildings. Representations were therefore made, with the result that a new design and layout have ...

1935-05-11T23:59:59.000Z

350

Electrical Equipment of Buildings  

Science Journals Connector (OSTI)

... eleventh) edition of the regulations of the Institution of Electrical Engineers for the wiring of buildings was published in June (London: Spon. Cloth 1s. 6d. net; paper cover ... of electrical energy in and about all types of dwelling houses, business premises, public buildings and factories, whether tho electric supply is derived from an external source or from ...

1939-10-14T23:59:59.000Z

351

Concrete Steel Buildings  

Science Journals Connector (OSTI)

... and engineers who consult this book will have little trouble in finding full descriptions of buildings similar to any they may be called upon to design. Examples of transit sheds ... to design. Examples of transit sheds for docks, railway goods stations, warehouses, factory buildings, business premises, villas, flour mills, hotels, theatres, &c., are all ...

T. H. B.

1907-09-19T23:59:59.000Z

352

Farm Buildings Research  

Science Journals Connector (OSTI)

... THE first supplement, 1958-61, of Part 3, Buildings for Poultry, issued by the Agricultural Research Council, has recently been published (Pp. ... . 71. London: Agricultural Research Council, 1963. 4s.). This bibliography of farm buildings research provides important basic information: in the past, much waste has occurred from the ...

1963-07-27T23:59:59.000Z

353

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... in an article under this heading (NATURE, vol. xxix. p. 290) to buildings in Caracas, which are low, slightly pyramidal, have flat roofs, and are bound ... architecture, and as such I must say that certainly the houses are generally one-story buildings, but all the remainder of the foregoing description is quite erroneous. However, I ...

A. ERNST

1884-04-24T23:59:59.000Z

354

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... A COMPLETE discussion of the effects which earthquakes produce upon buildings would form a treatise as useful as it would be interesting. Not only would ... to a few of the more important practical conclusions respecting the: effect of earthquakes on buildings, which may be of value to those whose mission it is to erect ...

JOHN MILNE

1884-01-24T23:59:59.000Z

355

Farm Buildings Research  

Science Journals Connector (OSTI)

... A BIBLIOGRAPHY, Fann Buildings Research, was issued by the Agricultural Research Council in 1958, covering publications of the ... published (Pp. 69. Agricultural Research Council, 1962. 4.). This deals with buildings for pigs and provides a brief annotation for each referenco quoted. An author index ...

1963-01-12T23:59:59.000Z

356

American School Buildings  

Science Journals Connector (OSTI)

... it was determined to begin with a study of the functional planning of elementary school buildings, and a report on this subject has been published by the United States Government ... that the elementary school curriculum is changing in ways which radically affect the planning of buildings, and that costs depend largely on the extent to which school work is organized ...

1938-05-14T23:59:59.000Z

357

Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"  

U.S. Energy Information Administration (EIA) Indexed Site

Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned Buildings","Federal","State","Local" "All Buildings* ...............",4645,4011,1841,2029,141,635,46,164,425 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2272,980,1205,87,280,"Q",77,183 "5,001 to 10,000 ..............",889,783,384,375,"Q",106,"Q","Q",87

358

Communicating Building Energy Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Communicating Building Energy Performance Communicating Building Energy Performance Speaker(s): William Bordass Date: August 26, 2008 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Paul Mathew The heightened interest in building energy performance has exposed problems with reporting and benchmarking. Established conventions may no longer suit current needs, and new complications are emerging as national and corporate reporting (e.g. for carbon accounting and trading) begin to impact on the certification and labelling of building energy performance. If we are to achieve genuinely low-energy and carbon buildings, we need to get much better at reporting and benchmarking our intentions and outcomes, and particularly making performance visible and communicating it to all the people concerned. In design, this could help us to reduce the persistent

359

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

360

Buildings Performance Metrics Terminology  

Broader source: Energy.gov (indexed) [DOE]

Energy's Commercial Building Initiative Page 1 Energy's Commercial Building Initiative Page 1 January 2009 Buildings Performance Metrics Terminology To clarify how the terms are used in the Department of Energy's Performance Metrics Research Project, a list of terms related to performance metrics are defined and include examples and comments. Visit www.commercialbuildings.energy.gov/performance_metrics.html to learn more. Baseline - a standard reference case used as a basis for comparison Examples: a simulation model of an ASHRAE 90.1 compliant building, control building, measurement of energy consumption prior to application of an energy conservation measure Comments: Establishing a clearly defined baseline very important and is often the most difficult task. Defining a repeatable baseline is essential if the work is to be compared to results of other

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Better Buildings Neighborhood Program  

Broader source: Energy.gov (indexed) [DOE]

Program Name or Ancillary Text eere.energy.gov Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Analysis Leading to Lessons Learned Better Buildings Neighborhood Program Danielle Sass Byrnett, DOE Dave Roberts, NREL david.roberts@nrel.gov 303.384.7496 April 3, 2013 Better Buildings Neighborhood Program Analysis Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United States and are responsible for nearly 40% of the country's greenhouse gas emissions. Several well documented barriers have prevented the development of a self-sustaining building energy upgrade market to reduce this energy use.

362

Residential Building Code Compliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

363

Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Buildings EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

364

Buildings Energy Databook  

Buildings Energy Data Book [EERE]

2 BUILDINGS 2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered an evolving document as it will be will be periodically updated and additional data will be incorporated. Users are requested to submit additional data (e.g., more current, widely accepted, and/or better documented data) and suggested changes to the contacts below. Please provide full source references along with all data.

365

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

8.1 Buildings Sector Water Consumption 8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy needed to supply that water. The main points from this chapter are summarized below: In 2005, water use in the buildings sector was estimated at 39.6 billion gallons per day, which is nearly 10% of total water use in the United States. From 1985 to 2005, water use in the residential sector closely tracked population growth, while water use in the commercial sector grew almost twice as fast.

366

buildings | OpenEI  

Open Energy Info (EERE)

buildings buildings Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2

367

NREL Buildings Research Video  

SciTech Connect (OSTI)

Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campusthe first Federal building to be LEED Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

None

2009-01-01T23:59:59.000Z

368

NREL Buildings Research Video  

ScienceCinema (OSTI)

Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus?the first Federal building to be LEED Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

None

2013-05-29T23:59:59.000Z

369

Categorical Exclusion Determinations: A9 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 CX-003054: Categorical Exclusion Determination Energy Efficient/Comfortable Buildings through Multivariate Integrated Controls (ECoMIC) CX(s) Applied: A9, B2.2, B5.1 Date: 07/19/2010 Location(s): Westchester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 19, 2010 CX-003050: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project CX(s) Applied: A9, A11, B3.6, B4.6, B5.1 Date: 07/19/2010 Location(s): Irvine, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 19, 2010 CX-003048: Categorical Exclusion Determination Training Program Development for Commercial Building Equipment Technicians CX(s) Applied: A1, A9, A11 Date: 07/19/2010

370

Compare Activities by Building Age  

U.S. Energy Information Administration (EIA) Indexed Site

Activities by Building Age Activities by Building Age Compare Activities by ... Building Age Median Age of Building by Building Type Vacant buildings, retail stores (other than malls), and religious worship buildings tended to be the oldest buildings. Food sales buildings (which were predominantly convenience stores) and outpatient health care buildings were mainly newer buildings. Figure showing median age of building by building type. If you need assistance viewing this page, please call 202-586-8800. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: July 24, 2002 Page last modified: May 4, 2009 2:52 PM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/compareage.html If you are having any technical problems with this site, please contact the EIA

371

Building Technologies Office: Appliances Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appliances Research to Appliances Research to someone by E-mail Share Building Technologies Office: Appliances Research on Facebook Tweet about Building Technologies Office: Appliances Research on Twitter Bookmark Building Technologies Office: Appliances Research on Google Bookmark Building Technologies Office: Appliances Research on Delicious Rank Building Technologies Office: Appliances Research on Digg Find More places to share Building Technologies Office: Appliances Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub Building Energy Modeling

372

Building Technologies Office: Webinar Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinar Archives to Webinar Archives to someone by E-mail Share Building Technologies Office: Webinar Archives on Facebook Tweet about Building Technologies Office: Webinar Archives on Twitter Bookmark Building Technologies Office: Webinar Archives on Google Bookmark Building Technologies Office: Webinar Archives on Delicious Rank Building Technologies Office: Webinar Archives on Digg Find More places to share Building Technologies Office: Webinar Archives on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program

373

Building Technologies Office: Strategic Plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Strategic Plans to Strategic Plans to someone by E-mail Share Building Technologies Office: Strategic Plans on Facebook Tweet about Building Technologies Office: Strategic Plans on Twitter Bookmark Building Technologies Office: Strategic Plans on Google Bookmark Building Technologies Office: Strategic Plans on Delicious Rank Building Technologies Office: Strategic Plans on Digg Find More places to share Building Technologies Office: Strategic Plans on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

374

Building Technologies Office: Commercial Building Energy Asset Score Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tool Report to someone by E-mail Tool Report to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

375

Commercial Prototype Building Models | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

376

Reference Buildings by Building Type: Stand-alone retail | Department...  

Broader source: Energy.gov (indexed) [DOE]

Stand-alone retail Reference Buildings by Building Type: Stand-alone retail In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet...

377

City of Scottsdale- Green Building Policy for Public Buildings  

Broader source: Energy.gov [DOE]

In 2005, Scottsdale approved a green building policy for new city buildings and remodels. The resolution requires all new, occupied city buildings of any size to be designed, contracted and built...

378

Building America Research Teams: Spotlight on Alliance for Residential Building Innovation (ARBI) and Building America Research Alliance (BARA)  

Broader source: Energy.gov [DOE]

This article profiles the Building America teams, Alliance for Residential Building Innovation (ARBI) and Building America Research Alliance (BARA).

379

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

5.1 Building Materials/Insulation 5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 5 contains market and technology data on building materials and equipment. Sections 5.1 and 5.2 cover the building envelope, including building assemblies, insulation, windows, and roofing. Sections 5.3 through 5.7 cover equipment used in buildings, including space heating, water heating, space cooling, lighting, thermal distribution (ventilation and hydronics), and appliances. Sections 5.8 and 5.9 focus on energy production from on-site power equipment. The main points from this chapter are summarized below:

380

Building-integrated photovoltaics  

SciTech Connect (OSTI)

This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

NONE

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Report on the project Building knowledge  

E-Print Network [OSTI]

Building knowledge To build citizens To build cities Report on the project #12;#12;RectoR's message 1. oveReport on the project Building knowledge To build citizens To build cities UPF CAMPUS IC?RIA

382

Building America Solution Center - Building America Top Innovation...  

Energy Savers [EERE]

America Top Innovation SCimagemale.jpg The Building America Solution Center is a Web-based tool connecting users to fast, free, and expert building science and energy...

383

Building America Webinar: Building America: Research for Real...  

Office of Environmental Management (EM)

(DOE) Building America program has been a source of innovations for high performance homes. Join Eric Werling, Building America Program Coordinator, and Sam Rashkin, Chief...

384

Webinar: Make Your Building Sing!: Building-Retuning to Reduce...  

Broader source: Energy.gov (indexed) [DOE]

(PNNL) developed a curricula focused on retuning both large (with a building automation system, or BAS) and small (without a BAS) commercial buildings. Hear from Better...

385

Building operating systems services: An architecture for programmable buildings.  

E-Print Network [OSTI]

architecture of an Automated Logic building managementAssociation. [24] Automated Logic Corporation. ALC systemarchitecture of an Automated Logic building management

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

386

A Look at Principal Building Activities in Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public...

387

Types of Lighting in Commercial Buildings - Principal Building...  

U.S. Energy Information Administration (EIA) Indexed Site

floorspace compared by building activity (Figure 5). The two exceptions are education and health care buildings. Both rank higher in amount of lit floorspace because a larger...

388

BETTER BUILDINGS ALLIANCE  

Broader source: Energy.gov [DOE]

Commercial buildingsour offices, schools, hospitals, restaurants, hotels and storesconsume nearly 20% of all energy used in the United States. We spend more than $200 billion each year to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by commissioning existing systems so they operate as intended. Energy efficiency is a cost-effective way to save money, support job growth, reduce pollution, and improve competitiveness.

389

Buildings Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Buildings Events Buildings Events August 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Building America Webinar: High...

390

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

energy efficiency. Intelligent Buildings, 3:43-46, 2011. InM. Bhandari. Comparison of Building Energy Use Data betweenand China, Energy and Buildings, 2013. Under reviewed. 5. T.

Hong, Tianzhen

2014-01-01T23:59:59.000Z

391

High Performance and Sustainable Buildings Guidance | Department...  

Energy Savers [EERE]

High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance More Documents &...

392

The Building Standard (Scotland) Amendment Regulations 1964  

E-Print Network [OSTI]

STATUTORY INSTRUMENTS 1964 No. 802 (S. 50) BUILDING AND BUILDINGS The Building Standards (Scotland) Amendment Regulations 1964...

Noble, Michael

1964-01-01T23:59:59.000Z

393

Building Dashboard Kiosk | Open Energy Information  

Open Energy Info (EERE)

Management, Building Systems, Energy Management, Enterprise Management, Reporting, Sustainability, Tools, Water Building Dashboard Kiosk Screenshot Logo: Building Dashboard Kiosk...

394

Building Dashboard Network | Open Energy Information  

Open Energy Info (EERE)

Management, Building Systems, Energy Management, Enterprise Management, Reporting, Sustainability, Tools, Water Building Dashboard Network Screenshot Logo: Building Dashboard...

395

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

Building thermal loadThe building thermal load predictor. . . . . . . .of Figures 1.1 Classification schematic for building MPC

Ma, Yudong

2012-01-01T23:59:59.000Z

396

Buildings*","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

B6. Building Size, Number of Buildings for Non-Mall Buildings, 2003" B6. Building Size, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings* ...............",4645,2552,889,738,241,129,65,25,7 "Principal Building Activity" "Education ....................",386,162,56,60,48,39,16,5,"Q" "Food Sales ...................",226,164,44,"Q","Q","Q","Q","N","N"

397

Buildings","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003" A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003" ,"Number of Buildings (thousand)" ,"All Buildings","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",4859,2586,948,810,261,147,74,26,8 "Principal Building Activity" "Education ....................",386,162,56,60,48,39,16,5,"Q" "Food Sales ...................",226,164,44,"Q","Q","Q","Q","N","N"

398

Benchmarking Building Performance & the Australian Building Greenhouse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Building Performance & the Australian Building Greenhouse Benchmarking Building Performance & the Australian Building Greenhouse Rating Scheme Speaker(s): Paul Bannister Date: August 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Stephen Selkowitz (Two topics): Benchmarking Building Performance: In a variety of voluntary and regulatory initiatives around the globe, including the introduction of the European Building Performance Directive, the question of how to assess the performance of commercial buildings has become a critical issue. There are presently a number of initiatives for the assessment of actual building performance internationally, including in particular US Energy Star Buildings rating tools and the Australian Building Greenhouse Rating scheme. These schemes seek to assess building energy performance on the

399

1999 Commercial Buildings Characteristics--Trends in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace The addition of commercial buildings and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty years of CBECS. Each year more buildings are added to the sector (new construction or conversion of pre-existing buildings to commercial activity) than are removed (demolition or conversion to non-commercial activity). The definition for the commercial buildings population was changed for the 1995 CBECS which resulted in a slightly smaller buildings population and accounts for the data break in both Figures 1 and 2 (see report "Trends in the Commercial Buildings Sector" for complete details). Figure 1. Total Commercial Buildings, 1979 to 1999

400

90.1 Prototype Building Models Outpatient Healthcare | Building Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Outpatient Healthcare Outpatient Healthcare The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building Technologies Office: Small- and Medium-Sized Building Automation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small- and Medium-Sized Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project to someone by E-mail Share Building Technologies Office: Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project on Facebook Tweet about Building Technologies Office: Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project on Twitter Bookmark Building Technologies Office: Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project on Google Bookmark Building Technologies Office: Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project on Delicious Rank Building Technologies Office: Small- and Medium-Sized Building

402

Buildings*","Principal Building Activity"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Principal Building Activity: Part 1, Number of Buildings for Non-Mall Buildings, 2003" 1. Selected Principal Building Activity: Part 1, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Principal Building Activity" ,,"Education","Food Sales","Food Service","Health Care",,"Lodging","Retail (Other Than Mall)" ,,,,,"Inpatient","Outpatient" "All Buildings* ...............",4645,386,226,297,8,121,142,443 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,162,164,202,"N",56,38,241 "5,001 to 10,000 ..............",889,56,44,65,"N",38,21,97 "10,001 to 25,000 .............",738,60,"Q",23,"Q",19,38,83

403

Building Energy Software Tools Directory: Building Performance Compass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Performance Compass Building Performance Compass Building Performance Compass logo Building Performance Compass analyzes commercial and multi-family building energy use patterns in a simple, easy-to-use Web-based interface. Using building details and energy data from the building’s utility bills, it is unique in its ability to benchmark and compare all buildings, whether residential or commercial. Recent enhancements to Building Performance Compass include new multi-family support, the ability to track non-energy quantities such as water and waste, and features such as its fast-feedback report, which enables reporting energy savings as early as one month after work is completed. Building Performance Compass also provides extensive tracking of building data and usage, as well as the ability to upload and track

404

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

405

Federal Buildings Supplemental Survey - Index Page  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Federal Buildings 1993 Federal Buildings Supplemental Survey Overview Full Report Tables Energy usage and energy costs, by building characteristics, for federally-owned buildings...

406

Smart Buildings: Business Case and Action Plan  

E-Print Network [OSTI]

4: Use Integrated Design for All New Buildings New buildingsUse Integrated Design for All New Buildings Recommendation #an existing building, requires an integrated design approach

Ehrlich, Paul

2009-01-01T23:59:59.000Z

407

Better Buildings Alliance | Department of Energy  

Energy Savers [EERE]

Better Buildings Alliance Better Buildings Alliance Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review commlbldgs05taddonio0...

408

Buildings | OpenEI Community  

Open Energy Info (EERE)

Buildings Buildings Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Dc Living Walls Posted by: Dc 15 Nov 2013 - 13:26 Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more... Tags: ancient building system, architect, biomimicry, building technology, cooling, cu, daylight, design problem, energy use, engineer, fred andreas, geothermal, green building, heat transfer, heating, living walls, metabolic adjustment, net zero, pre-electricity, Renewable Energy, Solar, university of colorado, utility grid, Wind

409

Better Buildings Neighborhood Program: Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events to Events to someone by E-mail Share Better Buildings Neighborhood Program: Events on Facebook Tweet about Better Buildings Neighborhood Program: Events on Twitter Bookmark Better Buildings Neighborhood Program: Events on Google Bookmark Better Buildings Neighborhood Program: Events on Delicious Rank Better Buildings Neighborhood Program: Events on Digg Find More places to share Better Buildings Neighborhood Program: Events on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Events Better Buildings Neighborhood Program partners around the county are actively engaged in promoting energy efficiency and showcasing their achievements. Here's a look at what some of our partners have been doing. 2013 2012 2011 September-October 2013

410

Building Technologies | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Envelope Equipment Building Technologies Deployment System/Building Integration Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy consumption of the nation's buildings and resulting carbon emissions is essential to achieving a sustainable clean energy future. To address the enormous challenge, Oak Ridge National Laboratory is focused on helping develop new building technologies, whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations in all of these areas.

411

Frederick County- Green Building Program  

Broader source: Energy.gov [DOE]

Frederick County administers a green building program. It has two goals: (1) to ensure that County building projects implement strategies that enhance environmental performance and fiscal...

412

Building information modeling for MEP.  

E-Print Network [OSTI]

??Building Information Modeling (BIM) is a new way of approaching the design, construction, and management of a building. It is an innovative method that bridges (more)

McFarland, Jessica E

2007-01-01T23:59:59.000Z

413

The Economics of Green Building  

E-Print Network [OSTI]

Even among green buildings, increased energy efficiency isof total returns to energy efficient and green constructionof Energy and Indoor Environment Quality in Green Buildings:

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

414

Building Life Cycle Cost Programs  

Broader source: Energy.gov [DOE]

The National Institute of Standards and Technology (NIST) developed the Building Life Cycle Cost (BLCC) Program to provide computational support for the analysis of capital investments in buildings.

415

Sustainable Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Sustainable Buildings Mission The team evaluates and incorporates the requirements for sustainable buildings as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The team advocates the use of sustainable building practices. Scope The team evaluates how to locate, design, construct, maintain, and operate its buildings and facilities in a resource-efficient, sustainable, and economically viable manner, consistent with its mission. The team provides a process to evaluate sustainable building practices for any new construction, major renovation, and existing capital asset buildings in

416

Buildings Technologies | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings Technologies 1-4 of 4 Results June 2014 June 2014 ORNL's inaugural issue of Building Technologies Update highlights a breakthrough in home refrigeration research, the new...

417

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

9Market Transformation 9Market Transformation 9.1 ENERGY STAR 9.2 LEED 9.3 Certification Programs 9.4 High Performance Buildings Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter contains data on two market transformation programs that reach across the United States and to other countries: the ENERGY STAR program, jointly administered by the U.S. Environmental Protection Agency and the U.S. Department of Energy, and the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) rating system. It also includes data on three professional certifications and five case studies of high performance buildings. The main points from this chapter are summarized below:

418

Science Behind ORNL's Building  

E-Print Network [OSTI]

C 1340 Standard For Estimating Heat Gain or Loss Through Ceilings Under Attics #12;Summer Operation of HVAC Duct in ASHRAE Climate Zone 3 #12;11 Roof Savings Calculator · Building Details · HVAC efficiency

Wang, Xiaorui "Ray"

419

Buildings Stock Load Control  

E-Print Network [OSTI]

: An assembly of the various blocks of the library of simbad and simulink permit to model building. Finally the last part prensents the study results: Graphs and tables to see the load shedding strategies impacts....

Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

2006-01-01T23:59:59.000Z

420

Building a Foundation  

E-Print Network [OSTI]

Building a Foundation examines my personal history growing up in a Midwestern, conservative, farming community, within a family of boys. This exhibition of drawings and prints explores ideas of identity and the American male experience...

Metzger, Jonathan David

2013-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

BUILD Summer Program 2014  

E-Print Network [OSTI]

a battery using the DAQ (data acquisition) system. One of her projects is to downsize/redesign a muscle in Matlab. #12;BUILD Summer Program 2014 Marc Madore, an undergraduate from Johns Hopkins University

422

BETTER BUILDINGS PARTNER SUMMARIES  

Broader source: Energy.gov [DOE]

In addition to Better Buildings Neighborhood Program Summary of Reported Data From July 1, 2010 September 30, 2013, each document below presents a summary of data reported by an organization...

423

Building Energy Efficient Schools  

E-Print Network [OSTI]

Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

McClure, J. D.; Estes, J. M.

1985-01-01T23:59:59.000Z

424

Safety in Buildings  

E-Print Network [OSTI]

Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, and the spread of disease...

Hutcheon, N. B.

425

Computers in Commercial Buildings  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

equal to 50, 000 square feet ) had 2,061 computers per million square feet. Education and health care buildings had the next highest ratio of computers to square feet, with 1,377...

426

Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Department of Energy's (DOE's) Better Buildings Residential programs work with residential energy efficiency programs and their partners to improve homeowners' lives, the economy, and the...

427

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

Most Popular Tables PDFXLS 3.1.4 2010 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 1.1.1 U.S. Residential and Commercial Buildings Total Primary Energy Consumption PDFXLS...

428

Building Energy Modeling Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

429

Sustainable Building Basics  

Broader source: Energy.gov [DOE]

Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

430

High Performance Buildings Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

431

Federal Buildings Supplemental Survey -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Survey > Overview Survey > Overview Overview Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line Highlights on Federal Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the Government. Extensive analysis of the data was not conducted because this report represents the 881 responding buildings (buildings for which interviews were completed) and cannot be used to generalize about Federal buildings in each region. Crosstabulations of the data from the 881 buildings are provided in the Detailed Tables section.

432

Better Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over $400 billion. These buildings and operations can be made much more efficient using a variety of cost effective efficiency improvements while creating jobs and building a stronger economy. We have similar opportunities in our homes. In February 2011, President Obama, building upon the investments of the American Recovery and Reinvestment Act, announced the Better Buildings Initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years and accelerate private sector investment in energy efficiency. Better Buildings strategies include: Last year, commercial and industrial buildings used roughly 50% of the

433

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings Trend—Detail Commercial Floorspace Trend—Detail Background: Adjustment to data Trends in Buildings and Floorspace Each year buildings are added to and removed from the commercial buildings sector. Buildings are added by new construction or conversion of existing buildings from noncommercial to commercial activity. Buildings are removed by demolition or conversion from commercial to noncommercial activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the United States; by 1992, the number increased 27 percent to 4.8 million (an average annual increase of 1.8%) (Figure 1). In 1995, the estimated number declined to 4.6 million buildings, but it is unlikely that there was an actual decline in the number of buildings. To understand the apparent decline, two factors should be considered—the change in the way that the target population of commercial buildings was defined in 1995 and the uncertainty of estimates from sample surveys:

434

(TWST = Tri-Cities West Building) West Building  

E-Print Network [OSTI]

Elevator (TWST = Tri-Cities West Building) West Building 1st Floor Stage to parking lot Nursing TV Parking Lot and Cougar Garden Admissions Elevator Elevator Commons To the East Building Mac Lab Vet Center Professional Programs Student Affairs Nursing Lab Media Services Lobby West Building 2nd Floor (TWST = Tri

Collins, Gary S.

435

Two Integrated Teaching Buildings Two Integrated Teaching Buildings  

E-Print Network [OSTI]

Draft Plan Two Integrated Teaching Buildings #12;Two Integrated Teaching Buildings Effort to avoid screening effect Relocate the third building to the opposite side of Station Road. Allow larger site area for the remaining two buildings for better disposition of blocking layout. Place the large spaces like lecture

Huang, Jianwei

436

On Opposition in Spherical Buildings and Twin Buildings  

E-Print Network [OSTI]

On Opposition in Spherical Buildings and Twin Buildings Peter Abramenko 1 \\Lambda Hendrik Van apartments in twin buildings by means of the opposition relation on chambers. We also characterize adjacency of chambers in twin buildings by means of opposition of chambers. As an application, we study maps which

Bielefeld, University of

437

Building Knowledge about Buildings Matthew T. Young and Eyal Amir  

E-Print Network [OSTI]

Building Knowledge about Buildings Matthew T. Young and Eyal Amir University of Illinois, Urbana The ability to encode information about the structure of buildings is essential for the development of applications which are able to reason about buildings and answer queries concerning their design and function

Amir, Eyal

438

Energy Efficiency and Green Building Standards for State Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

439

Climate change and buildings | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate change and buildings Climate change and buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings Climate change and buildings

440

High-Performance Building Requirements for State Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace for Non-Mall Buildings, 2003" 8. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned Buildings","Federal","State","Local" "All Buildings* ...............",64783,49421,23591,23914,1916,15363,1956,3808,9599 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6043,2682,3162,199,746,"Q",206,498 "5,001 to 10,000 ..............",6585,5827,2858,2791,"Q",758,"Q","Q",620

442

Archived Reference Building Type: Hospital  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

443

Archived Reference Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

444

SIVE Workshop '95 Building Map  

E-Print Network [OSTI]

SIVE Workshop '95 Building Map Workshop . Room W401 in Pappajohn Business Administration Building RIVERSIDE DRIVE (HIGHWAYS 1 & 6) Highways 1 & 6 (from Coralville) Riverside Drive RIVER IOWA ART BUILDING 1234567890 1234567890 1234567890 1234567890 Pappajohn Business Administration Building IMU RAMP DUBUQUE ST

Cremer, James

445

EUCLIDEAN BUILDINGS By Guy Rousseau  

E-Print Network [OSTI]

EUCLIDEAN BUILDINGS By Guy Rousseau Buildings were introduced by Jacques Tits in the 1950s to give these buildings were called of spherical type [Tits-74]. Later Fran¸cois Bruhat and Jacques Tits constructed buildings associated to semi-simple groups over fields endowed with a non archimedean valuation. When

Remy, Bertrand

446

Building Address Locations -Assumes entire  

E-Print Network [OSTI]

Housman Building 80 E. Concord St R BU School of Medicine, Instructional Building 80 E. Concord St L BU JBuilding Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC

Guenther, Frank

447

2008 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network [OSTI]

2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards the adoption of the 2008 Building Energy Efficiency Standards to Jon Leber, PE, (November 13, 1947 - February

448

Building Technologies Office: Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Newsletter Newsletter Sign up for the BTO Newsletter Sign up for the BTO Newsletter Around the Building Technologies Office - May Connect with the Building Technologies Office (BTO) information that interests you-program events and news, financial opportunities, and industry events. Upcoming BTO Webinars: Whole-Building Energy Modeling: Reducing Modeling Time with the OpenStudio 0.8 User Interface and the Building Component Library When: Thursday, June 28, 2012, 12:00-1:30 p.m. ET View the webinar materials. Description: The webinar will outline recent improvements to NREL and DOE's free open-platform energy modeling software, OpenStudio. This webinar will preview OpenStudio version 0.8, which features integration with the Building Component Library, an on-line repository of reusable components for rapid and consistent energy modeling. The presenters will demonstrate a complete and easy-to-use modeling workflow using the OpenStudio SketchUp Plug-in and the stand-alone OpenStudio application.

449

Building the Information Superhighway  

Office of Scientific and Technical Information (OSTI)

"Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. "Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. Building the Information Superhighway Summer 1993 By Jeffery Kahn, JBKahn@lbl.gov In 1989, LBL researcher Bill Johnston was called to Washington for a U.S. Senate hearing. Its purpose: to explore the potential of a national information superhighway.

450

Building the Information Superhighway  

Office of Scientific and Technical Information (OSTI)

"Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. "Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. Building the Information Superhighway Summer 1993 By Jeffery Kahn, JBKahn@lbl.gov In 1989, LBL researcher Bill Johnston was called to Washington for a U.S. Senate hearing. Its purpose: to explore the potential of a national information superhighway.

451

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

452

Chapter 9: Commissioning the Building  

Broader source: Energy.gov (indexed) [DOE]

: : Commissioning the Building Commissioning Process Overview Commissioning Activities and Documentation LANL | Chapter 9 Commissioning the Building Commissioning Process Overview Commissioning is a process - a systematic process of ensuring that a building performs in accordance with the design intent, contract documents, and the owner's operational needs. Commissioning is fundamental to the success of the whole-building design process. Due to the sophistication of building designs and the com- plexity of building systems constructed today, commis- sioning is necessary, but not automatically included as part of the typical design and contracting process. Commissioning is critical for ensuring that the building design is successfully constructed and operated.

453

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

454

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of Building Types Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

455

building | OpenEI Community  

Open Energy Info (EERE)

building building Home Dc's picture Submitted by Dc(10) Member 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building comfort design improve incentive indoor message sms text Yes 50% (2 votes) No 0% (0 votes) Maybe if I had an incentive 25% (1 vote) Maybe if my reply is confidential and anonymous 0% (0 votes) Maybe if the data will be used to improve building design 25% (1 vote) Total votes: 4 Buildings account for roughly 40% of all U.S. energy use (70% of all electricity): residential buildings account for 22% of all U.S. energy use and commercial buildings account for 18% of all U.S. energy use[i]. There is an unanswered need for information about buildings in use and how building design affects building occupant comfort, productivity, and, by

456

Commercial Building Energy Asset Score Program  

Broader source: Energy.gov [DOE]

Fact sheet summarizing the Building Technologies Program's commercial building energy asset score program

457

Better Buildings Alliance Equipment Performance Specifications  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

458

Whole Building Ventilation Systems  

Broader source: Energy.gov (indexed) [DOE]

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

459

Better Buildings Summit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EERE Home | Programs & Offices | Consumer Information EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Summit Recognition photo with Kristen Taddonio and Kathleen Hogan Recognition photo with Kristen Taddonio and Kathleen Hogan Recognition photo with Kristen Taddonio and Kathleen Hogan Save the Date! DOE Better Buildings Summit May 7-May 9, 2014 Washington, D.C. The U.S. Department of Energy (DOE) is holding a national Summit to catalyze investment in energy efficiency across the public, private, commercial, industrial, and multifamily sectors. We look forward to recognizing leaders and highlighting innovative market solutions and best practices. Registration will be opening in February 2014. See what attendees had to say about last year's event: "I was very impressed with the amount of practical information that was

460

Table B6. Building Size, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

B6. Building Size, Number of Buildings, 1999" B6. Building Size, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings ","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",4657,2348,1110,708,257,145,59,23,7 "Principal Building Activity" "Education ....................",327,119,61,52,49,30,10,5,"Q" "Food Sales ...................",174,138,"Q","Q","Q","Q","Q","N","N"

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Buildings*","Principal Building Activity"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Selected Principal Activity: Part 2, Number of Buildings for Non-Mall Buildings, 2003" 3. Selected Principal Activity: Part 2, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Principal Building Activity" ,,"Office","Public Assembly","Public Order and Safety","Religious Worship","Service","Warehouse and Storage" "All Buildings* ...............",4645,824,277,71,370,622,597 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,503,119,37,152,434,294 "5,001 to 10,000 ..............",889,127,67,"Q",104,100,110 "10,001 to 25,000 .............",738,116,69,"Q",83,66,130 "25,001 to 50,000 .............",241,43,9,"Q",27,17,27

462

1999 Commercial Buildings Characteristics--Disaggregated Principal Building  

U.S. Energy Information Administration (EIA) Indexed Site

Disaggregated Principal Building Activities Disaggregated Principal Building Activities Disaggregated Principal Building Activities The 1999 CBECS collected information for 20 general building activities. Five of the activities were aggregated and data for 16 activities are displayed in the detailed tables. Within the aggregated warehouse and storage category, nonrefrigerated warehouses greatly exceeded refrigerated warehouses both in amount of floorspace and number of buildings (compare Figure 1 with Figure 2). Within the mercantile category, the number of retail buildings greatly exceeded strip shopping buildings which, in turn, greatly exceeded enclosed shopping malls (Figure 2). The amount of mercantile floorspace was more evenly distributed (Figure 1) because of differences in average building size-enclosed malls were largest and retail buildings the smallest.

463

Santa Clara County - Green Building Policy for County Government Buildings  

Broader source: Energy.gov (indexed) [DOE]

Green Building Policy for County Government Green Building Policy for County Government Buildings Santa Clara County - Green Building Policy for County Government Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Santa Clara County Executive's Office In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009. All new buildings over 5,000 square feet are required to meet LEED Silver

464

Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) | Open  

Open Energy Info (EERE)

Media, Inc. (Du Pont) (Building America Retrofit Alliance) Media, Inc. (Du Pont) (Building America Retrofit Alliance) Jump to: navigation, search Name Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) Place Wilmington, DE Website http://www.prweb.com/releases/ References Building America Retrofit Alliance Press Release[1] BMI Website[2] DuPont Website[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) is a company located in Wilmington, DE. References ↑ "Building America Retrofit Alliance Press Release" ↑ "BMI Website"

465

Building Technologies Office: Renovate and Retrofit Commercial Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renovate and Retrofit Commercial Buildings for Energy Efficiency Renovate and Retrofit Commercial Buildings for Energy Efficiency Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. A local law firm upgraded one floor of their offices in the Wells Fargo Center (center) in Denver as part of Commercial Building Partnerships. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge.

466

BUILD UP: Energy Solutions for Better Buildings (Website) | Open Energy  

Open Energy Info (EERE)

BUILD UP: Energy Solutions for Better Buildings (Website) BUILD UP: Energy Solutions for Better Buildings (Website) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BUILD UP: Energy Solutions for Better Buildings (Website) Focus Area: Energy Efficiency Topics: Best Practices Website: www.buildup.eu/home Equivalent URI: cleanenergysolutions.org/content/build-energy-solutions-better-buildin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Building Certification This website serves as a forum for the exchange of best working practices and knowledge and the transfer of tools and resources. The BUILD UP initiative was established by the European Commission to support European

467

Building Technologies Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hVac controls guide hVac controls guide for Plans examiners and Building inspectors September 2011 authors: Eric Makela, PNNL James Russell, PECI Sarah Fujita, PECI Cindy Strecker, PECI Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Technologies Program 2 contents introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 how to use the guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 code requirements and compliance checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Performance Path 10 Control Requirements for All Systems 11 Thermostatic Control of Heating and Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply Fan Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

468

Bagley University Classroom Building  

High Performance Buildings Database

Duluth, MN, MN LEED PLATINUM CERTIFIED AND PASSIVHAUS ( certification pending) CLASSROOM BUILDING The Nature Preserve where this building is located is a contiguous natural area, 55 acres in size, deeded to the University in the 1950's for educational and recreational use. The site has hiking trails through old growth hard woods frequented by the university students as well as the public. We were charged with designing a facility to serve eight different departments for the nature portions of their teaching and study at a regional University.

469

Historic Building Renovations  

Broader source: Energy.gov [DOE]

When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

470

Re-Building Greensburg  

ScienceCinema (OSTI)

Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Many of the town's government buildings use cutting edge energy-saving technologies, saving the local taxpayers' money. Greensburg has demonstrated to the world that any city can reach its energy efficiency and renewable energy goals today using widely available technologies.

Hewitt, Steven; Wallach, Daniel; Peterson, Stephanie;

2013-05-29T23:59:59.000Z

471

Energy Systems Laboratory: Building a Model Repository Collection  

E-Print Network [OSTI]

approximately 120 staff members, including mechanical engineers, computer science graduates, lab technicians, support staff, and graduate and undergraduate students. The Lab focuses on energy-related research, energy efficiency, and emissions reduction, and has...

Koenig, Jay; Haberl, Jeff S.; Gilman, Don; Hughes, Sherrie

2008-06-05T23:59:59.000Z

472

Enhancing Building Performance Through More Responsive Maintenance System  

E-Print Network [OSTI]

Electric Company (SCECO) are modeled in Extend+BPR to be an experimental tool for evaluating the benefits of multi-skilled technicians. The simulation models of this study showed significant improvement in both preventive and corrective maintenance...

Alsudairi, A. A.

2012-01-01T23:59:59.000Z

473

Building Technologies Office: Climate Zones  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Zones to Climate Zones to someone by E-mail Share Building Technologies Office: Climate Zones on Facebook Tweet about Building Technologies Office: Climate Zones on Twitter Bookmark Building Technologies Office: Climate Zones on Google Bookmark Building Technologies Office: Climate Zones on Delicious Rank Building Technologies Office: Climate Zones on Digg Find More places to share Building Technologies Office: Climate Zones on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

474

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

475

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

476

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Consumption Survey (CBECS) > Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 and 2003 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

477

building load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

478

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

479

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

7.1 National Legislation 7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 7 outlines national climate change legislation, tax incentives, Federal regulations, and State programs that have influenced building energy consumption. Section 7.1 summarizes the past 40 years of national energy legislation beginning with the Clean Air Act of 1970. Section 7.2 describes the energy efficiency-related Federal tax incentives created in the last 5 years. Sections 7.3 through 7.7 describe the energy and water efficiency standards currently or soon to be in effect for residential and commercial HVAC equipment, appliances, lighting, and water-consuming products. Section 7.8 covers building energy codes. Following is a summary of the energy legislation discussed in this chapter:

480

SUSY Model Building  

E-Print Network [OSTI]

I review some of the latest directions in supersymmetric model building, focusing on SUSY breaking mechanisms in the minimal supersymmetric standard model [MSSM], the "little" hierarchy and $\\mu$ problems, etc. I then discuss SUSY GUTs and UV completions in string theory.

Stuart Raby

2007-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "building technicians cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

String Model Building  

E-Print Network [OSTI]

In this talk I review some recent progress in heterotic and F theory model building. I then consider work in progress attempting to find the F theory dual to a class of heterotic orbifold models which come quite close to the MSSM.

Stuart Raby

2009-11-06T23:59:59.000Z

482

BUILDING ENERGY 1987 Edition  

E-Print Network [OSTI]

) The alternative HVAC compliance method for second generation nonresidential standards has been codifiedBUILDING ENERGY EFFICIENCY STANDARDS 1987 Edition 1988 SUPPLEMENT December 1987 Supplement May 1988 ,+ -.* CALIFORNIA *-3q-:-- =id-,/* + ,+ I ENERGY For historical reference Current Title 24 Standards are available

483

PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--  

E-Print Network [OSTI]

know that solar energy is environ- mentally attractive--and that photovoltaic or PV systems have made's electrical output matches well with patterns of energy use in commercial buildings, promoting effective convey tax advantages, such as accelerated depreciation and a federal income tax credit. M ost people

Perez, Richard R.

484

ACADEMIC, ADMINISTRATIVE & MULTIPURPOSE BUILDINGS  

E-Print Network [OSTI]

ACADEMIC, ADMINISTRATIVE & MULTIPURPOSE BUILDINGS 1 Albright Health Center (HC) 2 Applied Science S SIBIL I T Y M A P R E V I S E D M AY 2 0 0 7 L Open Parking M Student Parking N Reserved Parking O Open/VIP Parking P Student Parking Q Student Parking R Student Parking** S Open Parking T Open Parking U Student

Boyce, Richard L.

485

Building Programming List Procedures  

E-Print Network [OSTI]

1 6.090 Building Programming Experience Lecture 4 1/16/2007 Outline · List Procedures · Compound)) (define (reverse-helper l r) (if (null? l) r (reverse-helper (cdr l) (cons (car l) r)))) list-ref · Write

486

BUILDING MOMENTUM ACHIEVING EXCELLENCE  

E-Print Network [OSTI]

BUILDING MOMENTUM ACHIEVING EXCELLENCE AnnuAlRepoRtofDonoRs July 1, 2013 ­ June 30, 2014 #12;the '82 Douglas R. Cliggott '78 Lecturer UMass Amherst Jeanette Cole^ Associate Chair & Director UMass Amherst David J. Der Hagopian '72 (Retired) CEO Ravago Holdings Americare George R. Ditomassi Jr. '57, '96

Mountziaris, T. J.

487

Building communities, creating relationships  

E-Print Network [OSTI]

Building communities, creating relationships c e n t e r f o r f a m i l i e s a n n u a l r e p o r t 2 0 0 7 ­ 0 8 #12;c o n t e n t s 2 Council Provides New Direction 3 Providing Expert Knowledge

Ginzel, Matthew

488

Building diagnosable distributed systems  

E-Print Network [OSTI]

Building diagnosable distributed systems Petros Maniatis Intel Research Berkeley ICSI ­ Security] Project response@R (R, K, SI) lookup response Specification #12;2/8/2006 Petros Maniatis9 Strawman Design Join lookup.NI == node.NI Join lookup.NI == succ.NI Select K in (N, S] Project response@R (R, K, SI

Maniatis, Petros

489

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 CX-003050: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project CX(s) Applied: A9, A11, B3.6, B4.6, B5.1 Date: 07/19/2010 Location(s): Irvine, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 19, 2010 CX-003049: Categorical Exclusion Determination Public Serving Institutions - Folsom School Parking Lot Lights Project CX(s) Applied: B2.3, B5.1 Date: 07/19/2010 Location(s): North Hero, Vermont Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 19, 2010 CX-003048: Categorical Exclusion Determination Training Program Development for Commercial Building Equipment Technicians CX(s) Applied: A1, A9, A11 Date: 07/19/2010 Location(s): College Station, Texas

490

Importance of individual capacity building for successful solar program implementation: A case study in the Philippines  

Science Journals Connector (OSTI)

Abstract Solar energy is often chosen as the enabling technology for many off grid, rural electrification projects. In many situations photovoltaic systems (PV) prove to be a highly effective means of meeting essential needs such as lighting for homes, schools and community centres, as well as remote telecommunication, fresh drinking water and vaccine refrigeration. Throughout the Pacific-island region, countries such as the Philippines have experimented with small scale rural energy projects for over three decades. There are lack of adequate individual technical training and appropriate social preparation activities has often resulted in project failures due to poor maintenance, abuse, poor installation, and lack of understanding by the system owner, operator or local technician. This research was aimed at investigating the importance of individual training in capacity building programs for solar home system (SHS) technology transfer projects. The focus is on the analysis of the effectiveness of the individual training component in various projects in the Philippines. A survey has been undertaken which included a series of SHS site visits and individual surveys with system owners and operators, and Focus Group Discussions with other project stakeholders. Survey results show that adequate user and local technician training is an important factor in successfully implementing rural electrification through PV power systems. However, for training to be successful there must be a consensus of what the target performance behaviors should be and how they should be measured. The most basic requirements for successful training are that the training reaches to the right people at the right time and delivers the right content.

Chris Brooks; Tania Urmee

2014-01-01T23:59:59.000Z

491

Building Technologies Office: Regulatory Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Processes to Regulatory Processes to someone by E-mail Share Building Technologies Office: Regulatory Processes on Facebook Tweet about Building Technologies Office: Regulatory Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building Technologies Office: Regulatory Processes on Digg Find More places to share Building Technologies Office: Regulatory Processes on AddThis.com... About History & Impacts Statutory Authorities & Rules Regulatory Processes Plans & Schedules Reports & Publications Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories

492

Building Technologies Program: About Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Standards to About Standards to someone by E-mail Share Building Technologies Program: About Standards on Facebook Tweet about Building Technologies Program: About Standards on Twitter Bookmark Building Technologies Program: About Standards on Google Bookmark Building Technologies Program: About Standards on Delicious Rank Building Technologies Program: About Standards on Digg Find More places to share Building Technologies Program: About Standards on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More.

493

Homepage | The Better Buildings Alliance  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Alliance Sectors Public Private Commercial Real Estate & Hospitality Healthcare Higher Education Retail, Food Service & Grocery Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management Information Systems Public Sector Teams Energy Savings Performance Contracts Strategic Energy Planning Finance Strategies Data Management Approaches Market Solutions Teams Appraisals & Valuation Data Access Financing Leasing & Split Incentive Workforce Development Events 2014 Better Buildings Summit Better Buildings Webinar Series Efficiency Forum Past Webinars

494

Building Energy Codes ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENFORCEMENT TOOLKIT ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES i Building Energy Codes ENFORCEMENT TOOLKIT Prepared by: Building Energy Codes Program The U.S. Department of Energy's Building Energy Codes Program is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90467 LEARNING SERIES OVERVIEW Building Energy Codes ACE

495

Building Energy Codes COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMPLIANCE TOOLKIT COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES III Building Energy Codes COMPLIANCE TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90466 LEARNING SERIES OVERVIEW Building Energy Codes

496

Building America: Bringing Building Innovations to Market | Department of  

Broader source: Energy.gov (indexed) [DOE]

America: Bringing Building America: Bringing Building Innovations to Market Building America: Bringing Building Innovations to Market INNOVATIONS Advanced technologies and whole-house solutions for saving energy and costs. Read more SOLUTION CENTER Solutions for improving the energy performance and quality of new and existing homes. Read more RESEARCH TOOLS Tools to ensure consistent research results for new and existing homes. Read more MARKET PARTNERSHIPS Resources and partnering opportunities for the U.S. building industry. Read more Learn about how this world-class research program can help the U.S. building industry promote and construct homes that are better for business, homeowners, and the nation. Building America logo The U.S. Department of Energy's (DOE) Building America program has been a

497

Building Technologies Office: Commercial Building Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Research and Development Photo of NREL researcher Jeff Tomberlin working on a data acquisition panel at the Building Efficiency Data Acquisition and Control Laboratory at NREL's Thermal Test Facility. The Building Technology Program funds research that can dramatically improve energy efficiency in commercial buildings. Credit: Dennis Schroeder, NREL PIX 20181 The Building Technologies Office (BTO) invests in technology research and development activities that can dramatically reduce energy consumption and energy waste in buildings. Buildings in the United States use nearly 40 quadrillion British thermal units (Btu) of energy for space heating and cooling, lighting, and appliances, an amount equivalent to the annual amount of electricity delivered by more than 3,800 500-megawatt coal-fired power plants. The BTO technology portfolio aims to help reduce building energy requirements by 50% through the use of improved appliances; windows, walls, and roofs; space heating and cooling; lighting; and whole building design strategies.

498

Archive Reference Buildings by Building Type: Large office | Department of  

Broader source: Energy.gov (indexed) [DOE]

Large office Large office Archive Reference Buildings by Building Type: Large office Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-large_office.zip benchmark-v1.1_3.1-large_office.zip benchmark-new-v1.2_4.0-large_office.zip More Documents & Publications Archive Reference Buildings by Building Type: Large Hotel

499

Archive Reference Buildings by Building Type: Hospital | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hospital Hospital Archive Reference Buildings by Building Type: Hospital Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-hospital.zip benchmark-v1.1_3.1-hospital.zip benchmark-new-v1.2_4.0-hospital.zip More Documents & Publications Archive Reference Buildings by Building Type: Large office

500

Building Energy Codes ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ADOPTION TOOLKIT ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES I Building Energy Codes ADOPTION TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-89963 LEARNING SERIES OVERVIEW Building Energy Codes