National Library of Energy BETA

Sample records for building systems integration

  1. Integrated Building Management System (IBMS)

    SciTech Connect (OSTI)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  2. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  3. Building Management System Integrators | Open Energy Information

    Open Energy Info (EERE)

    Place: Berkshire, England, United Kingdom Zip: SL1 5AU Product: Service and maintenance provider. References: Building Management System Integrators1 This article is a...

  4. Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  5. Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  6. Active Integrated Perimeter Building Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active Integrated Perimeter Building Systems Active Integrated Perimeter Building Systems Integrated systems require seamless data exchange between controlled demand side end uses and supply side resources for optimal energy cost/ carbon minimization, comfort, and indoor environmental quality. Integrated systems require seamless data exchange between controlled demand side end uses and supply side resources for optimal energy cost/ carbon minimization, comfort, and indoor environmental quality.

  7. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    2009-09-01

    Factsheet developed to describe the activities of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  8. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  9. Integration of Real-Time Data Into Building Automation Systems

    SciTech Connect (OSTI)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  10. Integrated Energy Systems (IES) for Buildings: A Market Assessment,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2002 | Department of Energy (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. This study

  11. Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  12. Smart Homes and Buildings Research at the Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility (Text Version) | Energy Systems Integration | NREL Smart Homes and Buildings Research at the Energy Systems Integration Facility (Text Version) This is a text version of the video "Smart Homes and Buildings Research at the Energy Systems Integration Facility." So, the big promise of the smart home is to enhance your comfort and your convenience. And at the same time, allow us to save energy. So, we're doing the right thing, but we're also more convenient and more

  13. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    SciTech Connect (OSTI)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating

  14. Integrating fuel cell power systems into building physical plants

    SciTech Connect (OSTI)

    Carson, J.

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  15. Commercial Buildings Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within ...

  16. Greater than the Sum of its Parts; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    NREL's Electricity, Resources, and Building Systems Integration Center brings together a diverse group of experts performing grid integration and optimization R&D activities.

  17. Building America Systems Integration Research Annual Report: FY 2012

    SciTech Connect (OSTI)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  18. Building America Systems Integration Research Annual Report. FY 2012

    SciTech Connect (OSTI)

    Gestwick, Michael

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  19. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    SciTech Connect (OSTI)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  20. TriBITS (Tribal Build, Integrate, and Test System)

    Energy Science and Technology Software Center (OSTI)

    2013-05-16

    TriBITS is a configuration, build, test, and reporting system that uses the Kitware open-source CMake/CTest/CDash system. TriBITS contains a number of custom CMake/CTest scripts and python scripts that extend the functionality of the out-of-the-box CMake/CTest/CDash system.

  1. Integrated Energy Systems (IES) for Buildings: A Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Energy Systems (IES) combine on-site power or distributed generation ... functions using thermal energy normally wasted in the production of electricitypower. ...

  2. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  3. Building system integration research: recommendations for a US Department of Energy multiyear program plan

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This plan describes the scope, technical content, and resources required to conduct the Building System Integration (BSI) research program during FY 1987 through 1991. System integration research is defined, the need for the research is discussed, its benefits are outlined, and the history of building system integration research is summarized. The program scope, the general approach taken in developing this program plan, and the plan's contents are also described.

  4. Commercial Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * ISO 50001: Conformant Energy Management Systems * Small Building Energy Management * BEM Library * Financing Turnkey Energy Efficiency Solutions * Whole Building Energy ...

  5. System Integration of Distributed Power for Complete Building Systems: Phase 2 Report

    SciTech Connect (OSTI)

    Kramer, R.

    2003-12-01

    This report describes NiSource Energy Technologies Inc.'s second year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of combined heat and power systems in end-user environments and a further understanding of electric interconnection and siting issues. The specific objective of work under this subcontract is to identify the system integration and implementation issues of DG and develop and test potential solutions to these issues. In addition, recommendations are made to resolve identified issues that may hinder or slow the integration of integrated energy systems into the national energy picture.

  6. Integrated Building Energy Systems Design Considering Storage Technologies

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  7. Building America Systems Integration Research Annual Report: FY12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    America » Tools & Resources » Building America Climate-Specific Guidance Building America Climate-Specific Guidance Marine Hot-Humid Hot-Dry/Mixed-Dry Mixed-Humid Cold/Very Cold Click on the map to access case studies in specific climate regions or visit the All Climates page to see technology-specific case studies applicable to all climate zones. 2015 Housing Innovation Awards! See the 2015 Housing Innovation Award winners-industry leaders who represent the very best in innovation on the

  8. The technical and economic feasibility of establishing a building system integration laboratory

    SciTech Connect (OSTI)

    Crawley, D.B.; Drost, M.K.; Johnson, B.M.

    1989-09-01

    On December 22, 1987, the US Congress provided funding to the US Department of Energy (DOE) to study the feasibility and conceptual design of a whole building system integration laboratory'' (Title II of Pub. L. 100--202). A whole-building system integration laboratory would be a full-scale experimental facility in which the energy performance interactions of two or more building components, e.g., walls, windows, lighting, could be tested under actual operating conditions. At DOE's request, the Pacific Northwest Laboratory (PNL) conducted the study with the assistance of a technical review and representing other federal agencies and the academic and private sectors, including professional societies, building component manufacturers, and building research organizations. The results of the feasibility study are presented in this report.

  9. Integrative Genomics Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrative Genomics Building Community Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description The Integrative Genomics Building (IGB) is proposed to be an approximately 77,000 gsf, four-story research and office building constructed in the former Bevatron area - a fully developed site in the geographic interior of the Berkeley Lab. The IGB is intended to

  10. System Integration of Distributed Power for Complete Building Systems: Phase 1 Report

    SciTech Connect (OSTI)

    Kramer, R.

    2003-12-01

    This report describes NiSource Energy Technologies Inc.'s base year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of CHP systems in end-user environments and a further understanding of electric interconnection and siting issues. Important results from the first year were a survey of the state of the art of interconnection issues associated with distributed generation, a survey of the local zoning requirements for the NiSource service territory, and the acquisition of data about the operation, reliability, interconnection, and performance of CHP systems and components of two test sites.

  11. Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

  12. Building America System Research

    SciTech Connect (OSTI)

    2013-04-01

    Residential Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  13. An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings

    SciTech Connect (OSTI)

    Trcka, Marija; Wetter, Michael; Hensen, Jan L.M.

    2010-07-01

    Integrated performance simulation of buildings and heating, ventilation and air-conditioning (HVAC) systems can help reducing energy consumption and increasing level of occupant comfort. However, no singe building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to accommodate the ever-increasing complexity and rapid innovations in building and system technologies. One way to alleviate this problem is to use co-simulation. The co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This paper elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in a co-simulation prototype. The prototype is verified and validated against the results obtained from the traditional simulation approach. It is further used in a case study for the proof-of-concept, to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling frequency. The paper concludes by defining requirements and recommendations for generic cosimulation implementations.

  14. Project Profile: Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics

    Broader source: Energy.gov [DOE]

    The Dow Chemical Company, under the BOS-X funding opportunity, has launched a transformational product in the building-integrated photovoltaics (BIPV) industry: the Dow POWERHOUSE Solar Shingle.

  15. Energy analysis of facade-integrated photovoltaic systems applied to UAE commercial buildings

    SciTech Connect (OSTI)

    Radhi, Hassan

    2010-12-15

    Developments in the design and manufacture of photovoltaic cells have recently been a growing concern in the UAE. At present, the embodied energy pay-back time (EPBT) is the criterion used for comparing the viability of such technology against other forms. However, the impact of PV technology on the thermal performance of buildings is not considered at the time of EPBT estimation. If additional energy savings gained over the PV system life are also included, the total EPBT could be shorter. This paper explores the variation of the total energy of building integrated photovoltaic systems (BiPV) as a wall cladding system applied to the UAE commercial sector and shows that the ratio between PV output and saving in energy due to PV panels is within the range of 1:3-1:4. The result indicates that for the southern and western facades in the UAE, the embodied energy pay-back time for photovoltaic system is within the range of 12-13 years. When reductions in operational energy are considered, the pay-back time is reduced to 3.0-3.2 years. This study comes to the conclusion that the reduction in operational energy due to PV panels represents an important factor in the estimation of EPBT. (author)

  16. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with industry: Better Buildings Alliance, federal and other partners 2. Developing core tools, guides and products * Energy data access and analysis: Commercial Building Asset ...

  17. Residential Buildings Integration Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Integration Program Residential Buildings Integration Program ... More Documents & Publications Home Performance with ENERGY STAR -- 10 Years of Continued ...

  18. Commercial Buildings Integration Program Overview - 2013 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 BTO Peer Review Commercial Buildings Integration Program Overview - 2013 BTO Peer Review Commercial Buildings Integration Program Presentation for the 2013 Building Technologies ...

  19. All-AC, building integrated PV system for mass deployment of residential PV systems

    SciTech Connect (OSTI)

    Kevin Cammack; Joe Augenbraun; Dan Sun

    2011-05-17

    Project Objective: Solar Red is developing novel PV installation methods and system designs that lower costs dramatically and allow seamless integration into the structure of any sloped roof using existing construction tools and processes. The overall objective of this project is to address the greatest barriers to massive adoption of residential and small commercial rooftop solar scalability of installation and total cost of ownership - by moving Solar Reds snap-in/snap-out PV installation method from the pre-prototype design phase to the development and construction of a deployed prototype system. Financial Summary: ? Funded through ARRA, DOE and Match Funding ? Original Project Budget: $229,310 o DOE/ARRA Funding: $150,000 o Match Funding: $79,310 ? Actual Cost: $216,598 o DOE/ARRA Funding: $150,000 o Match Funding: $120,087 Project Summary: Develop snap-in/snap-out mounting system for low-cost, thin-film solar panels Lower installation cost Lower sales costs Lower training/expertise barriers

  20. Invensys Building System | Open Energy Information

    Open Energy Info (EERE)

    Zip: 61132 Product: Invensys was a supplier of integrated systems for building automation, and is now merged with TAC. References: Invensys Building System1 This article is...

  1. Integrated fuel cell energy systems for modern buildings. Final technical report for contract period October 1997 to September 2001

    SciTech Connect (OSTI)

    Woods, Richard

    2001-09-27

    This report summarizes the activities and results of a cooperative agreement. The scope focused on natural gas fuel processing subsystems for fuel cell systems that could be used in modern buildings. The focus of this project was the development of a natural gas (NG) fueled, fuel processing subsystem (FPS) for polymer electrolyte membrane (PEM) fuel cell systems in modern buildings applications. This cooperative development program was coordinated with several parallel programs that were related to integrated fuel processor developments for fuel cell systems. The most significant were the development of an integrated fuel-flexible, fuel processing subsystem (DE-FC02-97EE0482) and internal HbT programs to develop autothermal reforming (ATR) technologies and to develop a commercially viable stationary subsystem.

  2. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  3. Residential Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Program Overview - 2014 BTO Peer Review Residential Buildings Integration Program Overview - 2016 BTO Peer Review NREL: Building America Total Quality Management - 2015

  4. Commercial Buildings Integration Program Overview - 2016 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2016 BTO Peer Review Commercial Buildings Integration Program Overview - 2016 BTO Peer Review Presenter: Jason Hartke, U.S. Department of ...

  5. Residential Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Integration Residential Buildings Integration Zero Energy Ready Home Zero Energy Ready Home Zero Energy Ready Homes are so efficient that a renewable energy ...

  6. Technical Meeting: Buildings-to-Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid Integration Technical Meeting: Buildings-to-Grid Integration As a first step to better understanding a range of perspectives on buildings-to-grid integration opportunities, the Building Technologies Office held a technical meeting on December 12-13, 2012. The meeting was hosted by the National Renewable Energy Laboratory at the Energy Systems Integration Facility, and participants included stakeholders from the private sector, utilities, universities, federal sector, and the

  7. INTEGRATED SCIENCE BUILDING

    SciTech Connect (OSTI)

    CONKLIN, SHANE

    2013-09-30

    Shell space fit out included faculty office advising space, student study space, staff restroom and lobby cafe. Electrical, HVAC and fire alarm installations and upgrades to existing systems were required to support the newly configured spaces. These installations and upgrades included audio/visual equipment, additional electrical outlets and connections to emergency generators. The project provided increased chilled water capacity with the addition of an electric centrifugal chiller. Upgrades associated with chiller included upgrade of exhaust ventilation fan, electrical conductor and breaker upgrades, piping and upgrades to air handling equipment.

  8. Opt-E-Plus Software for Commercial Building Optimization; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laborato Innovation for Our Energy Future Horizontal Format-A Horizontal Format-A Reversed Providing Options to Meet Design Goals Opt-E-Plus was developed by NREL to help determine cost- effective, energy-efficient building strategies quickly, taking into account the many factors involved in the

  9. Building-Integrated Heat & Moisture Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building-Integrated Heat & Moisture Exchange 2014 Building Technologies Office Peer Review John E. Breshears jbreshears@architecturalapplications.com Architectural Applications Project Summary Timeline: Start date: October, 2012 Planned end date: August, 2014 Key Milestones Mid- & Full-scale Lab Tests; June, 2013 Full-scale Demo; January, 2014 System Documentation; July, 2014 Budget: Total DOE $ to date: $1,037,812 Total future DOE $: $0 (committed to date) Target Market/Audience:

  10. Commercial Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation at the 2015 Peer Review provided an overview of the Building Technologies Office's Commercial Buildings Integration Program. Through robust feedback, the BTO ...

  11. About Buildings-to-Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid » About Buildings-to-Grid Integration About Buildings-to-Grid Integration As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and variable generation sources, such as photovoltaic systems, as well as new load sources, such as electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. At the same time, smart sensing, metering and

  12. EERE & Buildings to Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE & Buildings to Grid Integration Joe Hagerman, Senior Advisor DOE Building Technologies Office July 22, 2015 EERE: Office of Energy Efficiency and Renewable Energy BTO: Building Technologies Office (Portfolio - RD&D, Deployment, Regulatory) Opportunity to Control Building Loads is Key to Integrating EE & RE effectively with the GRID! Buildings consume 74% electricity produced in the US (CBECS 2009) Buildings have the potential to reduce their consumption by 20%- 30% (18 quads or

  13. Buildings Technology Office Residential Buildings Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Summaries Building America, ARIES: High Performance Factory Built Housing Presenter: Jordan Dentz, ARIESThe Levy Partnership Project Goal Provide factory homebuilders with high ...

  14. Building America System Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Research Building America System Research Residential Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review resbldgs01_werling_040213.pdf (3.5 MB) More Documents & Publications Solar Decathlon Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Whole Building Performance-Based Procurement Training

  15. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  16. Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watch: NREL Eastern Renewable Generation Integration Study Redefines What's Possible for Renewables Text Version Watch: NREL + SolarCity: Maximizing Solar Power on Electrical Grids Text Version Watch: Smart Homes and Buildings Research at the Energy Systems Integration Facility Text Version # # Previous Story Next Story × Skip to main content Toggle Search Search NREL.gov Search National Renewable Energy Laboratory Energy Systems Integration Toggle navigation Menu Research Research Renewable

  17. Commercial Buildings Integration Program Overview- 2013 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  18. Distributed Energy Systems Integration Group (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  19. Residential Buildings Integration Program Overview - 2014 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 BTO Peer Review Residential Buildings Integration Program Overview - 2014 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2014 Peer ...

  20. Residential Buildings Integration Program Overview - 2016 BTO...

    Energy Savers [EERE]

    Residential Buildings Integration Program Overview - 2016 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2016 Peer Review provided an ...

  1. Residential Buildings Integration Program Logic Model

    Broader source: Energy.gov (indexed) [DOE]

    The Residential Integration Program accelerates energy improvements in existing and new residential buildings by reducing technical and market barriers to spur investment and ...

  2. Integrated and Engineered Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated and Engineered Systems Integrated and Engineered Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Miranda Intrator Business Development Executive Richard P. Feynmnan Center for Innovation (505) 665-8315 Email Engineers at Los Alamos create, design, and build the

  3. Commercial Buildings Integration Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Array of building stakeholders use building energy performance data & tools to incorporate energy efficiency into appraisal, underwriting, & other financial transactions The Commercial Integration Program accelerates the adoption of energy saving technologies and solutions in existing and new commercial buildings of all types by reducing specific technical and market barriers to spur investment in building energy performance. External Influences: DOE budget, Construction industry, Energy

  4. EERE & Buildings to Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    74% electricity produced in the US (CBECS 2009) Buildings have the potential to reduce their consumption by 20%- ... is added cost to the end user, manufacturers and utilities. ...

  5. Buildings to Grid Integration & Interoperability

    Broader source: Energy.gov (indexed) [DOE]

    value proposition Develop and commercialize advanced diagnostics and controls to create self-aware buildings that optimize performance. Scaling Transaction Based...

  6. Research and Development Needs for Building-Integrated Solar Technologies

    SciTech Connect (OSTI)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  7. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-level system integration New distribution scenarios such as household DC systems and residential-scale generation and storage integrated with home energy management systems. ...

  8. Commercial Buildings Integration Program Overview- 2015 BTO Peer Review

    Broader source: Energy.gov [DOE]

    This presentation at the 2015 Peer Review provided an overview of the Building Technologies Office's Commercial Buildings Integration Program.

  9. Commercial Buildings Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings Integration Commercial Buildings Integration DOE Campaign Proves Commercial Lighting Upgrades Drive Savings DOE Campaign Proves Commercial Lighting Upgrades Drive Savings The Interior Lighting Campaign has seen tremendous success since its inception with more than 160 leading organizations signing on as participants and supporters. Read more Transformation of the Built Environment by 2030 Transformation of the Built Environment by 2030 Architecture 2030 has been lauded by

  10. Green Building Certification Systems Requirement for New Federal Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Major Renovations of Federal Buildings Final Rule | Department of Energy Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Document details the Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings' Final Rule for 10 CFR

  11. Building-Integrated Heat & Moisture Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building-Integrated Heat & Moisture Exchange 2016 Building Technologies Office Peer Review John Breshears, President Architectural Applications jbreshears@architecturalapplications.com 2 Project Summary Timeline: Start date: June 17, 2011 Planned end date: July 27, 2016 Key Milestones 1: Demo. Manufacturing at Target Cost July'16 2: Alternate Design At 8% Lower Cost July'17 3: Assembly w/ 28% Fewer Parts July'17 Budget: Tot. Project $ to Date: * DOE: $1288590 * Cost Share: $878833 Total

  12. Integrated Safety Management Workshop - Building Mission Success

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Safety Management Workshop - Building Mission Success Acting Deputy Secretary Jeff Kupfer addresses the audience at the 2008 ISM Workshop. Over 500 U.S. Department of Energy and contractor employees started the Labor Day weekend with safety in mind. Hosted by the U.S. Department of Energy's Idaho Operations Office, along with the prime contractors at the Idaho National Laboratory Site, the 2008 Integrated Safety Management Workshop, which was held in Idaho Falls, concluded Aug. 28.

  13. Integrated Safety Management- Building Mission Success

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ISM Integrated Safety Management- Building Mission Success Approximately 500 federal and contractor employees will arrive in Idaho Falls to participate in the 2008 Integrated Safety Management Workshop, beginning Aug. 25. Hosted by the U.S. Department of Energy�s Idaho Operations Office, along with the prime contractors at the Idaho National Laboratory Site, the workshop will serve as a forum for sharing safety related practices and lessons learned, while emphasizing the importance of the use

  14. The importance of hybrid PV-building integration

    SciTech Connect (OSTI)

    Posnansky, M.; Gnos, S.; Coonen, S.

    1994-12-31

    An extensive utilization of photovoltaics for future electricity generation and for hybrid generation of electricity and thermal energy is possible, when PV-panels are designed to become a part of the building envelope itself. Large areas are available, since roofs and facades are perfectly suited for solar energy conversion. Atlantis Energy Ltd. has developed special PV-generators which fulfill at the same time the functions and requirements of conventional building elements. In the context of different R and D projects funded by the Swiss government to implement a series of typical building integrated photovoltaic systems, Atlantis Energy Ltd was entrusted to design and build various hybrid building integrated PV-power plants, four of which are described in this paper.

  15. Integrated envelope and lighting technologies for commercial buildings

    SciTech Connect (OSTI)

    Selkowitz, S.; Schuman, J.

    1992-07-01

    Fenestration systems are major contributors to peak cooling loads in commercial buildings and thus to HVAC system costs, peak electric demand, and annual energy use. These loads can be reduced significantly through proper fenestration design and the use of daylighting strategies. However, there are very few documented applications of energy-saving daylighted buildings today, which suggests that significant obstacles to efficient fenestration and lighting design and utilization still exist. This paper reports results of the first phase of a utility-sponsored research, development, and demonstration project to more effectively address the interrelated issues of designing and implementing energy-efficient envelope and lighting systems. We hypothesize that daylighting and overall energy efficiency will not be achieved at a large scale until true building integration has been accomplished to some meaningful degree. Moving beyond the vague concept of ``intelligent` buildings long popular in the design sector, we attempt to integrate component technologies into functional systems in order to optimize the relevant building energy performance and occupant comfort parameters. We describe the first set of integrated envelope and lighting concepts we are developing using available component technologies. Emerging and future technologies will be incorporated in later phases. Because new hardware systems alone will not ensure optimal building performance, we also discuss obstacles to innovation within the design community and proposed strategies to overcome these obstacles.

  16. Integrated envelope and lighting technologies for commercial buildings

    SciTech Connect (OSTI)

    Selkowitz, S.; Schuman, J.

    1992-07-01

    Fenestration systems are major contributors to peak cooling loads in commercial buildings and thus to HVAC system costs, peak electric demand, and annual energy use. These loads can be reduced significantly through proper fenestration design and the use of daylighting strategies. However, there are very few documented applications of energy-saving daylighted buildings today, which suggests that significant obstacles to efficient fenestration and lighting design and utilization still exist. This paper reports results of the first phase of a utility-sponsored research, development, and demonstration project to more effectively address the interrelated issues of designing and implementing energy-efficient envelope and lighting systems. We hypothesize that daylighting and overall energy efficiency will not be achieved at a large scale until true building integration has been accomplished to some meaningful degree. Moving beyond the vague concept of intelligent' buildings long popular in the design sector, we attempt to integrate component technologies into functional systems in order to optimize the relevant building energy performance and occupant comfort parameters. We describe the first set of integrated envelope and lighting concepts we are developing using available component technologies. Emerging and future technologies will be incorporated in later phases. Because new hardware systems alone will not ensure optimal building performance, we also discuss obstacles to innovation within the design community and proposed strategies to overcome these obstacles.

  17. Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

  18. Building Integrated Heat and Moisture Exchange | Department of...

    Energy Savers [EERE]

    Integrated Heat and Moisture Exchange Building Integrated Heat and Moisture Exchange 1 of 2 Building-integrated heat and moisture exchanger, the AirFlow(tm) Panel, installed for ...

  19. Buildings-to-Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid Integration Buildings-to-Grid Integration Integrating buildings and the grid increases energy efficiency, supports incorporation of renewable energy, and balances new loads, such as electric vehicles. Integrating buildings and the grid increases energy efficiency, supports incorporation of renewable energy, and balances new loads, such as electric vehicles. The U.S. Department of Energy's Building Technologies Office is coordinating strategies and activities with stakeholders

  20. Volttron Enabling Vehicle-to-Building Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VOLTTRON(tm) Enabling Vehicle- to-Building Integration 1 RICK PRATT, P.I. Pacific Northwest National Laboratory Software Framework for Transactive Energy: VOLTTRON(tm) This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 What makes electric vehicle charging control a good market for VOLTTRON TM ? Managed charging is needed * EV adoption growth expected * Distribution feeder loads limiting with growing electric vehicle population * EV charging

  1. Energy Department Issues Green Building Certification System...

    Energy Savers [EERE]

    Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification System ...

  2. Sustainable Building Rating Systems Summary

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Rauch, Emily M.

    2006-07-01

    The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.

  3. Building International Emergency Management Systems | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Building International Emergency Management Systems NNSA helps nations develop the core elements of an emergency response program. Based on preliminary discussions with counterparts, NNSA develops emergency management programs with partner nations to exchange views and enhance development of effective emergency management systems. Generally, NNSA will assist foreign governments and international organizations with integration of emergency-program core

  4. Research & Development Needs for Building-Integrated Solar Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Needs for Building-Integrated Solar Technologies Research & Development Needs for Building-Integrated Solar Technologies The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development

  5. Residential Buildings Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the...

  6. ancient building system | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  7. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  8. About the Commercial Buildings Integration Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Commercial Buildings Integration Program About the Commercial Buildings Integration Program The Building Technologies Office (BTO) works to identify and develop strategies and technologies to dramatically reduce commercial building energy consumption. BTO's commercial building efforts focus on highly innovative, cost-effective, energy saving measures-ones that promise large energy savings at cost-effective levels, but are underutilized by the market. These efforts are carried out in

  9. Residential Buildings Integration Program Overview - 2016 BTO Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Residential Buildings Integration Program Overview - 2016 BTO Peer Review Residential Buildings Integration Program Overview - 2016 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. 2016 BTO Peer Review

  10. Residential Buildings Integration Program Overview - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 BTO Peer Review Residential Buildings Integration Program Overview - 2014 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. View the presentation Residential Buildings Integration Program Overview - 2014 BTO

  11. Residential Buildings Integration Program Overview - 2015 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5 BTO Peer Review Residential Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2015 Peer Review provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. VIEW THE PRESENTATION Residential Buildings Integration Program Overview - 2015 BTO

  12. Acoustic Building Infiltration Measurement System (ABIMS)

    Broader source: Energy.gov [DOE]

    The Acoustic Building Infilitration Measurement System project is developing an acoustic method of measuring the infiltration of a building envelope.

  13. Connector device for building integrated photovoltaic device

    SciTech Connect (OSTI)

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  14. Connector device for building integrated photovoltaic device

    DOE Patents [OSTI]

    Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

    2014-06-03

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  15. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building...

  16. Energy Management Systems Package for Small Commercial Buildings

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  17. Plug and Play Components for Building Integrated PV Systems, Phase II Final Report, 20 February 2003 - 31 May 2007

    SciTech Connect (OSTI)

    Rowell, D.

    2008-04-01

    Progress by Schott Solar, Inc. under NREL's PV Manufacturing R&D Project. Details progress on meter-interconnect device; free-standing mounting system; dark I-V curves to unearth problems with PV module strings; new 34-V version of ASE-300 PV module; and updated source-circuit protectors.

  18. Commercial Buildings Integration Program Overview — 2016 BTO Peer Review

    Broader source: Energy.gov [DOE]

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Commercial Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  19. Building America Webinar: Ductless Hydronic Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team...

  20. Building-Integrated Heat & Moisture Exchange (STTR Phase 1 and...

    Office of Environmental Management (EM)

    -- ETH Zurich - Zurich, Switzerland -- Membrane Technology & Research Inc. - Newark, CA ... Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Membrane Technology Workshop ...

  1. BTO Awards Small Business Grants for Lighting, Building-Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SBIR) grants targeting advances in solid-state lighting (SSL) and building-integrated ... to 90% while also providing individual luminaire control and network communications. ...

  2. Building Integrated Heat and Moisture Exchange | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building-integrated heat and moisture exchanger, the AirFlow(tm) Panel, installed for evaluation at Lawrence Berkeley National Lab. Image: Architectural Applications 2 of 2 A ...

  3. Systems Integration Competitive Awards

    Broader source: Energy.gov [DOE]

    Through the SunShot Systems Integration efforts, DOE is funding a range of research and development (R&D) projects to advance balance of system hardware technologies, such as racking systems...

  4. A View on Future Building System Modeling and Simulation

    SciTech Connect (OSTI)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  5. Building America Systems Engineering Approach

    SciTech Connect (OSTI)

    2011-12-15

    The Building America Research Teams use a systems engineering approach to achieve higher quality and energy savings in homes. Using these techniques, the energy consumption of new houses can be reduced by 40% or more with little or no impact on the cost of ownership.

  6. Energy Department Issues Green Building Certification System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green...

  7. Residential Building Integration Program: An Overview of RBI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Integration Program An Overview of RBI David Lee, Program Manager David.Lee@ee.doe.gov 2 RBI Program Overview - Agenda 1. Introduction to RBI  Context within the BTO Ecosystem  Potential Opportunities of Residential Building Energy Efficiency 2. Program Overview  Building America Research-to-Market Plan  Better Buildings Residential Program Overview 3. Historical Budget Information 4. RBI Program Logic Model 5. Program Goals Overview 3 Introduction to RBI Residential

  8. Low-Cost, High Efficiency Integration of SSL and Building Controls using a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PET Power Distribution System | Department of Energy High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Lead Performer: VoltServer Inc. - East Greenwich, RI DOE Total Funding: $999,122 Project Term: July 28, 2015 - July 27, 2017 Funding Opportunity: FY2015 Phase II Release 2 SBIR Awards PROJECT OBJECTIVE This project will demonstrate a novel

  9. EMBODY(Environmental Modules Build System Software)

    Energy Science and Technology Software Center (OSTI)

    2009-02-09

    Embody (Environment Modules Build) is a software build tool with integrated support for the environment-modules package. The tool eases and automates the task of building and installing software packages from source or binary distributions, as well as the management of associated modulefiles. An administrator or software pool maintainer has to write a brief script for the installation process. These steps are usually described for manual execution, in a package's README or INSTALL file. It wouldmore » be up to the site administrator to work out a procedure to capture the steps taken. This tool: streamlines and codifies the installation tasks in a common framework; it provides a self-documenting and unified way for maintaining package installations; uses bash shell variables and functions for portability; keeps log files of the proceedings. It is similar in intent and function to other existing tools, such as RPM, but has several novel features tailored for High Performance Computing (HPC) software deployments. The design goal is simplicity and decoupling from RPM's dependencies and its database, which enables coexistence of several builds. Useful on HPC systems, new builds can be deployed centrally to shared file systems and without affecting running jobs.« less

  10. NREL: Energy Systems Integration - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    archive. Printable Version Energy Systems Integration Home Capabilities Research & Development Facilities Working with Us Publications News Events Energy Systems Integration...

  11. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  12. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  13. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    SciTech Connect (OSTI)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and

  14. Integration of HVAC System Design with Simplified Duct Distribution -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovation | Department of Energy Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation This photo shows framed walls and HVAC distribution systems. This Top Innovation profile describes work by Building America research team IBACOS who field tested simplified duct designs in hundreds of homes, confirming the performance of

  15. Building-integrated photovoltaics (BIPV): Analysis and US market potential. Final report

    SciTech Connect (OSTI)

    Frantzis, L.; Friedman, D.; Hill, S.; Teagan, P.; Strong, S.; Strong, M.

    1995-02-01

    Arthur D. Little, Inc., in conjunction with Solar Design Associates, conducted a study for the US Department of Energy (DOE), Office of Building Technologies (OBT) to determine the market potential for grid-connected, building-integrated photovoltaics (BIPV). This study defines BIPV as two types of applications: (1) where the PV modules are an integral part of the building, often serving as the exterior weathering skin; and (2) the PV modules are mounted on the existing building exterior. Both of these systems are fully integrated with the energy usage of the building and have potential for significant market penetration in the US. Off-grid building applications also offer a near-term market for BIPV, but are not included in the scope of this study.

  16. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Air Distribution Retrofit Strategies for Affordable Housing | Department of Energy Air Distribution Retrofit Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable Housing Jordan Dentz, Advanced Residential Integrated Energy Solutions (ARIES), and Francis Conlin, High Performance Building Solutions, Inc., presenting Air Distribution Retrofit Strategies for Affordable Housing.

  17. Building-Integrated Solar Panels at BigHorn

    Broader source: Energy.gov [DOE]

    This photograph features the building-integrated photovoltaic (PV) panels at BigHorn Home Improvement Center, installed on the south-facing roof. The silicon PV modules were wired into three arrays...

  18. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    SciTech Connect (OSTI)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  19. Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The focus of systems integration is to understand the complex interactions among program areas, components, and the tradeoffs between them. Systems Integration ensures all ...

  20. High-performance commercial building systems

    SciTech Connect (OSTI)

    Selkowitz, Stephen

    2003-10-01

    health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program

  1. Systems and methods for analyzing building operations sensor data

    DOE Patents [OSTI]

    Mezic, Igor; Eisenhower, Bryan A.

    2015-05-26

    Systems and methods are disclosed for analyzing building sensor information and decomposing the information therein to a more manageable and more useful form. Certain embodiments integrate energy-based and spectral-based analysis methods with parameter sampling and uncertainty/sensitivity analysis to achieve a more comprehensive perspective of building behavior. The results of this analysis may be presented to a user via a plurality of visualizations and/or used to automatically adjust certain building operations. In certain embodiments, advanced spectral techniques, including Koopman-based operations, are employed to discern features from the collected building sensor data.

  2. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing

    Broader source: Energy.gov [DOE]

    The Energy Systems Integration Facility (or ESIF) is the nation's premier facility for research, development, and demonstration of the components and strategies needed to optimize our entire energy system. It was established in 2013 by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, on the campus of its National Renewable Energy Laboratory and is a designated U.S. Department of Energy user facility. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also provides hot water to the ESIF, meeting all of the building's heating needs. Peregrine is the first installation of the new HP Apollo Liquid-Cooled Supercomputing Platform, and it provides the foundation for numerical models and simulations that are enabling NREL scientists to gain new insights into a wide range of energy systems integration issues. This innovative high-performance computer (HPC) can do more than a quadrillion calculations per second as part of the world's most energy-efficient HPC data center. As HPC systems are scaling up by orders of magnitude, energy consumption and heat dissipation issues are starting to stress the supporting systems and the facilities in which they are housed. But unlike most other computers that are air-cooled, Peregrine is cooled directly with warm water, allowing much greater performance density, cutting energy consumption in half, and creating efficiencies with other building energy systems. Peregrine's warm-water cooling system eliminates the need for expensive data center chillers and heats the water to 103°F, allowing it to help meet building heating loads. At least 90 percent of the computer's waste heat is captured and reused as the primary heat source for the ESIF offices and laboratory space. The remaining waste heat is dissipated efficiently via evaporative cooling towers. The ESIF is designed to address the key

  3. Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings

    SciTech Connect (OSTI)

    Conte, Emilia; Monno, Valeria

    2012-04-15

    The available sustainable building evaluation systems have produced a new environmental design paradigm. However, there is an increasing need to overcome the buildingcentric approach of these systems, in order to further exploit their innovate potential for sustainable building practices. The paper takes this challenge by developing a cross-scale evaluation approach focusing on the reliability of sustainable building design solutions for the context in which the building is situated. An integrated building-urban evaluation model is proposed based on the urban matrix, which is a conceptualisation of the built environment as a social-ecological system. The model aims at evaluating the sustainability of a building considering it as an active entity contributing to the resilience of the urban matrix. Few holistic performance indicators are used for evaluating such contribution, so expressing the building reliability. The discussion on the efficacy of the model shows that it works as a heuristic tool, supporting the acquisition of a better insight into the complexity which characterises the relationships between the building and the built environment sustainability. Shading new lights on the meaning of sustainable buildings, the model can play a positive role in innovating sustainable building design practices, thus complementing current evaluation systems. - Highlights: Black-Right-Pointing-Pointer We model an integrated building-urban evaluation approach. Black-Right-Pointing-Pointer The urban matrix represents the social-ecological functioning of the urban context. Black-Right-Pointing-Pointer We introduce the concept of reliability to evaluate sustainable buildings. Black-Right-Pointing-Pointer Holistic indicators express the building reliability. Black-Right-Pointing-Pointer The evaluation model works as heuristic tool and complements other tools.

  4. A Living Laboratory for Building-Grid Integration

    SciTech Connect (OSTI)

    Shankle, Steve; Goyal, Siddharth

    2015-08-20

    At PNNL we’re developing a test bed for control of how buildings interact with the grid—an important step toward helping buildings achieve their potential for reducing energy use and improving the management of the nation’s power systems. The test bed works by allowing researchers to conduct experiments on PNNL’s specially-equipped Systems Engineering Building. This unique resource will help the Department of Energy achieve its mission of reducing buildings energy use by 50 percent by 2030.

  5. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect (OSTI)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  6. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    SciTech Connect (OSTI)

    NONE

    1998-09-28

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  7. Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures: A Sourcebook for Architects

    SciTech Connect (OSTI)

    2009-01-18

    Sourcebook for architects on building-integrated photovoltaic designs covering commercial and institutional structures.

  8. Building America Webinar: Ductless Hydronic Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility study of ductless hydronic distribution systems in new homes and deep retrofits. webinar_arbi_20111108.wmv (14.32 MB) More Documents & Publications Building America Webinar: National Residential Efficiency Measures Database

  9. Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Lead Performer: Architectural Applications - Portland, Oregon Partner: Oregon State University - Corvallis, Oregon DOE Funding: $1,009,999 Cost

  10. NREL: Energy Systems Integration - Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Modeling and Control Get the full list of job postings and learn more about working at NREL. Smarter Grid Solutions to Demonstrate Active Network Management System ...

  11. Building Energy Information Systems: User Case Studies

    SciTech Connect (OSTI)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

    2010-03-22

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  12. Building Controls and Lighting Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation to State Energy Advisory Board (STEAB) February 22, 2011 Francis Rubinstein Lead, Lighting Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory fmrubinstein@lbl.gov Lawrence Berkeley National Laboratory U.S. Building End Use Energy Consumption Buildings consume 40% of Building
sector
has:
 total U.S. energy Largest
Energy
Use!
 * 71% of electricity *54% of natural gas No Single End Use Dominates Fastest
growth
rate!
 Lawrence

  13. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for research, development, and demonstration of key components of future energy systems. ... Demonstration of technology to control loads dynamically without affecting occupant ...

  14. NREL: Energy Systems Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Stay up-to-date with the latest energy systems integration news from NREL with the following resources. Energy Systems Integration Newsletter Read a monthly recap of NREL's...

  15. Green Building Certification Systems Requirement for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Fossil Fuel-Generated Energy Consumption Reduction ...

  16. Green Building Certification Systems Requirement for New Federal...

    Office of Environmental Management (EM)

    Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy ...

  17. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  18. Integrating Renewable Energy Requirements Into Building Energy Codes

    SciTech Connect (OSTI)

    Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

    2011-07-01

    This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

  19. Staff | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber-Physical Systems Security and Resilience Center, and Energy Systems Integration ... Bryan Hannegan leads the lab's global initiative to optimize links among electricity, ...

  20. Research and Development Needs for Building-Integrated Solar Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Development Needs for Building-Integrated Solar Technologies January 2014 NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  1. Integrated fluorescence analysis system

    DOE Patents [OSTI]

    Buican, Tudor N.; Yoshida, Thomas M.

    1992-01-01

    An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.

  2. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  3. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, Russell; Ludwig, Peter; Maurer, Tessa

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  4. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC data center.

  5. Integrated Management Tracking System

    Energy Science and Technology Software Center (OSTI)

    2000-03-30

    The Integrated Management Tracking System (IMTS) is a "Web Enabled" Client/Server Business application that provides for the Identification and Resolution of commitments, situations, events and problems. The IMTS engine is written with Microsoft Active Server Pages (ASP) for IIS4. The system provides for reporting, entering, editing, closing and administration over a Intranet, Extranet or Internet. This Application facilitates: Electronic assignment, acceptance and tracking to completion. Email notifications of assigned action. Establishment of Due Dates. Electronicmore » search and retrieval based on keywords in combination with user specified database parameters (Document Type, Date Ranges, etc.). Coded for Trending and Reporting. User selected reports. Various levels of access for reports and administration. The "Server" side of this application consists of a Microsoft Access database running on a NT Server with Internet Information Server (IIS). As the "Client" side of the application runs on any Web browser, this solution is a cost effective, user friendly application that lends itself to organizations not physically colocated in one location providing information immediately available to everyone at once.« less

  6. NREL: Technology Deployment - Building Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and

  7. Building Systems Diagnostics and Predictive Maintenance

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Pratt, Robert G.; Braun, J.

    2001-01-01

    There has been an increasing interest in the development of methods and tools for automated fault detection and diagnostics (FDD) of building systems and components in the 1990s. This chapter, written for the CRC Handbook for HVAC&R Engineering, will describe the status of these methods and and methodologies as applied to HVAC&R and building systems and present certain illustrative case studies.

  8. Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document

    Broader source: Energy.gov [DOE]

    Document details the Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings' OIRA Comparison Document for 10 CFR Parts 433, 435 and 436.

  9. Transaction-Based Controls for Building-Grid Integration: VOLTTRON™

    SciTech Connect (OSTI)

    Akyol, Bora A.; Haack, Jereme N.; Hernandez, George; Katipamula, Srinivas; Widergren, Steven E.

    2015-07-01

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of a “transactional network” concept that supports energy, operational, and financial transactions between building systems (e.g., rooftop units -- RTUs), and the electric power grid using applications, or 'agents', that reside either on the equipment, on local building controllers, or in the Cloud. The transactional network vision is delivered using a real-time, scalable reference platform called VOLTTRON that supports the needs of the changing energy system. VOLTTRON is an agent execution and an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions.

  10. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  11. Integrated system checkout report

    SciTech Connect (OSTI)

    Not Available

    1991-08-14

    The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab.

  12. Building International Emergency Management Systems | National...

    National Nuclear Security Administration (NNSA)

    Generally, NNSA will assist foreign governments and international organizations with integration of emergency-program core elements, including communications systems, networks and ...

  13. Building Codes and Regulations for Solar Water Heating Systems...

    Office of Environmental Management (EM)

    Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit:...

  14. Advanced Framing Systems and Packages - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Framing Systems and Packages - Building America Top Innovation Advanced Framing Systems and Packages - Building America Top Innovation This photo shows advanced framing ...

  15. Energy Management Systems Package for Small Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Package for Small Commercial Buildings Energy Management Systems Package for Small ... Heat Pump - 2013 Peer Review Buildings Performance Database - 2013 BTO Peer

  16. NREL: Energy Systems Integration - Analytics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Materials Laboratory of the Energy Systems Integration Facility run high-temperature instruments for the analysis of thermophysical properties. Small samples of ...

  17. Acoustic Building Infiltration Measurement System (ABIMS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ralph T Muehleisen, rmuehleisen@anl.gov Argonne National Laboratory Acoustic Building Infiltration Measurement System (ABIMS): New Project 2014 Building Technologies Office Peer Review Wireless Transmission Sound Leaks / Infiltration Sites Microphone Array Analysis Computer Powered Speaker Interior Microphone Oscillator Infiltration Properties Out 2 Project Summary Timeline: Start date: 10/1/2014 Planned end date: 9/30/2015 Key Milestones 1. Full Computer Simulation: 9/30/2014 2. First Prototype

  18. Energy Systems Integration Newsletter Archives | Energy Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Energy Systems Integration Newsletter Archives Read past issues of Energy Systems Integration News. July 2016 June 2016 May 2016 April 2016 March 2016 February 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 April 2015 March 2015 February 2015 January 201

  19. A Buildings Module for the Stochastic Energy Deployment System

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

    2008-05-15

    The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

  20. A concept of integrated environmental approach for building upgrades and new construction: Part 1setting the stage

    SciTech Connect (OSTI)

    Bomberg, Mark; Gibson, Michael; Zhang, Jian

    2015-01-31

    This article highlights the need for an active role for building physics in the development of near-zero energy buildings while analyzing an example of an integrated system for the upgrade of existing buildings. The science called either Building Physics in Europe or Building Science in North America has so far a passive role in explaining observed failures in construction practice. In its new role, it would be integrating modeling and testing to provide predictive capability, so much needed in the development of near-zero energy buildings. The authors attempt to create a compact package, applicable to different climates with small modifications of some hygrothermal properties of materials. This universal solution is based on a systems approach that is routine for building physics but in contrast to separately conceived sub-systems that are typical for the design of buildings today. One knows that the building structure, energy efficiency, indoor environmental quality, and moisture management all need to be considered to ensure durability of materials and control cost of near-zero energy buildings. These factors must be addressed through contributions of the whole design team. The same approach must be used for the retrofit of buildings. As this integrated design paradigm resulted from demands of sustainable built environment approach, building physics must drop its passive role and improve two critical domains of analysis: (i) linked, real-time hygrothermal and energy models capable of predicting the performance of existing buildings after renovation and (ii) basic methods of indoor environment and moisture management when the exterior of the building cannot be modified.

  1. Towards SustainabilityGreen Building, Sustainability Objectives, and Building America Whole House Systems Research

    SciTech Connect (OSTI)

    none,

    2008-02-01

    This paper discusses Building America whole-house systems research within the broad effort to reduce or eliminate the environmental impact of building and provides specific recommendations for future Building America research based on Building Science Corporations experience with several recent projects involving green home building programs.

  2. HLW System Integrated Project Team

    Office of Environmental Management (EM)

    l W S Hi h l W S High Level Waste System High Level Waste System Integrated Project Team ... and skilled kf Developing and deploying t h l i This document is intended for planning ...

  3. Energy Systems Integration Facility Overview

    ScienceCinema (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  4. Energy Systems Integration Facility Overview

    SciTech Connect (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  5. Energy Systems Integration Events | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events View presentations from past seminars and workshops. September 2016 IEA Forum on Integrating Energy Efficiency and Renewable Energy September 8, 2016 Paris, France Contact: Dr. Martha Symko-Davies NREL Director of Partnerships for ESI Dr. Martha Symko-Davies will speak at the September 8 IEA Forum on Integrating Energy Efficiency and Renewable Energy on a panel called "Sectoral challenges and approaches." Grid Modernization Initiative Devices and Integrated Systems Workshops

  6. Building.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in ITER refers to plant systems located outside the Tokamak Building. A thick wall ... The cooling water system provides for the rejection of heat from a variety of ITER systems ...

  7. LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy High Performance Active Perimeter Building Systems - 2015 Peer Review LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review Presenter: Eleanor Lee, LBNL View the Presentation LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review (2 MB) More Documents & Publications FLEXLAB Connected Buildings Interoperability Vision Webinar 2015 DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS

  8. Building-Grid Integration Research and Development Innovators Program (BIRD IP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building Technologies Office (BTO) within the Department of Energy (DOE) is seeking graduate students interested in exploring building-grid integration and development (R&D) technology concepts that can improve the operating efficiency of buildings and increase penetration of distributed renewable energy generation, leading to more efficient buildings and cleaner generation of electricity.

  9. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  10. Building a Smarter Distribution System in Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study - PPL Electric Utilities Corporation Smart Grid Investment Grant 1 Building a Smarter Distribution System in Pennsylvania PPL Electric Utilities Corporation (PPL) provides electricity to 1.4 million customers across central and eastern Pennsylvania. Having installed smart meters and other advanced technologies over the last several years, PPL has experience with operating smart grid systems and achieving operational improvements. To further improve quality of service for its customers, PPL

  11. Integrated multiplexed capillary electrophoresis system

    DOE Patents [OSTI]

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  12. Integrated Safety Management System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-01

    This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.

  13. 25 Year Lifetime for Flexible Buildings Integrated Photovoltaics

    SciTech Connect (OSTI)

    Gross, Mark E.

    2010-07-10

    Although preliminary proof-of-principle of the efficacy of barrier materials and processes, first developed by Battelle at PNNL and commercialized by Vitex, has been demonstrated at the laboratory scale, there are several challenges to the practical commercial implementation of these developments in the Buildings Integrated Photovoltaics (BIPV) market. Two important issues that are addressed in this project are identifying a low cost substrate material that can survive in the outside environment (rain, heat, dust, hail, etc.) for 25 years and developing an encapsulation method for the photovoltaic (PV) cells that can meet the required barrier performance without driving the cost of the total barrier package out of range (remaining below $3.00/Wp). Without these solutions, current encapsulation technologies will limit the use of PV for BIPV applications. Flexible, light-weight packaging that can withstand 25 years in the field is required for a totally flexible integrated PV package. The benefit of this research is to make substantial progress in the development of a cost-effective, viable thin film barrier package which will be a critical enabling technology to meet the Solar America Initiative cost and device reliability goals, and to make photovoltaics (PV) more cost-competitive with electricity generated using fossil fuels. Increased PV installations will enable increased US electrical capacity and reduce dependence on imported oil through increased utilization of a widely abundant source of renewable energy (sunlight).

  14. Energy Systems Integration Newsletter | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsletter A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives August 2016 Read the latest ESI news from NREL. Photo of a visualization screen showing power grid modeling scenarios Study Shows Eastern U.S. Power Grid Can Support Upwards of 30% Wind and Solar Power Using high-performance computing capabilities and innovative visualization tools, NREL's newly released Eastern Renewable Energy Integration Study (ERGIS) shows

  15. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  16. Better Buildings Webinar Transcription- Financial Vehicles within an Integrated Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    "Financial Vehicles Within an Integrated Energy Efficiency Program," webinar transcript from the U.S. Department of Energy's Better Buildings program.

  17. Enhancements to the SHARP Build System and NEK5000 Coupling

    SciTech Connect (OSTI)

    McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay

    2014-10-01

    The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase in overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that

  18. Ball State building massive geothermal system

    Broader source: Energy.gov [DOE]

    Ball State University is building America’s largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also “expand how America will define the use of geothermal technology on a district-wide scale,” and provide health benefits such as reducing asthma rates for Indiana residents, says Philip Sachtleben, Ball State’s associate vice president of governmental relations. The system will cool and heat nearly 50 buildings on Ball State’s Muncie, Ind., campus, replace four coal-burning boilers and span more than 600 acres. The switch to geothermal will save the university $2.2 million in fuel costs and cut its carbon footprint in half.

  19. Chapter 5 - Increasing Efficiency of Buildings Systems and Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5 - Increasing Efficiency of Buildings Systems and Technologies Chapter 5 - Increasing Efficiency of Buildings Systems and Technologies Chapter 5 - Increasing Efficiency of Buildings Systems and Technologies The buildings sector accounts for about 76%* of electricity use and 40% of all U.S. primary energy use and associated greenhouse gas (GHG) emissions, making it essential to reduce energy consumption in buildings in order to meet national energy and environmental

  20. Innovative Office Lighting System with Integrated Spectrally...

    Energy Savers [EERE]

    Office Lighting System with Integrated Spectrally Adaptive Control Innovative Office Lighting System with Integrated Spectrally Adaptive Control Lead Performer: Philips Research ...

  1. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual ...

  2. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 ...

  3. Building Safer Communities: The Integrated Community Safety Approach

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kerr, Thomas A; Jordan, Steven Albert

    2001-03-01

    This paper discusses an integrated community safety approach to creating safer communities. It defines community broadly to include two categories of community members: “industry” and “neighbors.” Potential community members within the “industry” category include facilities, government/regulators, customers, stockholders, and suppliers. Within the “neighbors” category are towns, cities, counties, states; people/commodity flow systems; news media and special interest groups; environment; and families of employees. Each of these potential community members and its characteristics are discussed. The integrated community safety approach consists of three major activities: (1) define the boundaries of the community; (2) facilitate the sense of community; and (3) address the needs of the community. Defining the boundaries of the community includes determining the geographical and social boundaries; this is accomplished through conducting a hazard analysis and community involvement to identify all of the community members. Facilitating the sense of community includes conducting a capability/needs assessment and continuing community involvement to identify the issues and concerns of community members. Addressing the needs of the community involves master planning to consider safety issues in all community development actions and continuing community education and involvement. The integrated community safety approach is a workable approach for existing industries and their neighbors as well as new projects that industries and their neighbors might be considering. By using this socio-technical approach to integrating industry and all of its neighbors into a safer community, the integrated community safety approach will better assure the viability and safety of industry and its neighbors while maintaining or improving the overall quality of life.

  4. Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Systems Integration Hawaii DREAMS of New Solar Technologies Hawaii DREAMS of New Solar Technologies Read more Plug and Play Solar PV for American Homes Plug and Play Solar PV for American Homes Read more Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Modal, Machine-Learning Solar Forecasting Technology Read more High PV Penetration with Energy Storage in Flagstaff, AZ High PV Penetration with Energy Storage

  5. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems June 21, 2016 1:00PM to 2:00PM EDT Hosted by ...

  6. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY STAR and Green Building Rating Systems ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems October 13, 2015 2:00PM to 3:00PM EDT Online Hosted by the U.S....

  7. Integrated Solar Thermochemical Reaction System

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes an integrated solar thermochemical reaction system project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pacific Northwest National Laboratory, is working to develop and demonstrate a high-performance solar thermochemical reaction system in an end-to-end demonstration that produces electricity. A highly efficient solar thermochemical reaction system would allow for 24-hour operation without the need for storage technology, and reductions in total system costs while providing a relatively low-risk deployment option for CSP systems.

  8. Building Codes and Regulations for Solar Water Heating Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every

  9. Abengoa | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abengoa Abengoa is working with NREL researchers to develop a new and more cost-effective manufacturing process for critical components of concentrating solar power systems. Photo of a person standing in front of a large 3D visualization screen. Photo by Abengoa Engineers usually need to wait until a prototype is built before they can test their design at actual scale. With the immersive three-dimensional environment at the Energy Systems Integration Facility's (ESIF's) Insight Center, however,

  10. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  11. Commercial Building Integration Program Overview - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Appliance and Equipment Standards Program. Through robust feedback, the BTO ...

  12. Research & Development Needs for Building-Integrated Solar Technologie...

    Broader source: Energy.gov (indexed) [DOE]

    of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to ...

  13. ESIF 2014 (Energy Systems Integration Facility) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This report covers research highlights and achievements for the Energy Systems Integration Facility in 2014.

  14. Sandia National Laboratories: Integrated Military Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Military Systems (IMS) Capabilities Facilities Projects Facebook Twitter YouTube Flickr RSS Integrated Military Systems (IMS) Integrated Military Systems Missile Air Defense Demonstrates advanced technologies, delivers responsive technical solutions in anticipation of Missile Defense mission needs, and facilitates the integration and sustainment of operational capabilities across the broad Missile Defense mission Missile Air Defense Strike Systems & Aerospace Technologies Provides

  15. Integrated Chemical Geothermometry System for Geothermal Exploration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemical Geothermometry System for Geothermal Exploration Integrated Chemical Geothermometry System for Geothermal Exploration DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids. tracers_spycher_integrated_chemical.pdf (272.32 KB) More Documents & Publications Integrated Chemical Geothermometry System for Geothermal Exploration

  16. Integrated Modeling of Building Energy Requirements IncorporatingSolar Assisted Cooling

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris; Wang, Juan

    2005-08-10

    This paper expands on prior Berkeley Lab work on integrated simulation of building energy systems by the addition of active solar thermal collecting devices, technology options not previously considered (Siddiqui et al 2005). Collectors can be used as an alternative or additional source of hot water to heat recovery from reciprocating engines or microturbines. An example study is presented that evaluates the operation of solar assisted cooling at a large mail sorting facility in southern California with negligible heat loads and year-round cooling loads. Under current conditions solar thermal energy collection proves an unattractive option, but is a viable carbon emission control strategy.

  17. Building America Webinar: Central Multifamily Water Heating Systems...

    Energy Savers [EERE]

    Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the ...

  18. Energy Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Energy Systems Integration Presentation-given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the National Renewable Energy Laboratory's Energy Systems Integration Facility (ESIF) and its capabilities. Download the Energy Systems Integration presentation. (1.96 MB) More Documents & Publications National Renewable Energy Laboratory's Energy Systems Integration Facility Overview Facilities and Infrastructure Program FY 2016 Budget

  19. Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

    2014-12-24

    Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated “dumb” nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated ‘smart grid’. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced

  20. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  1. Basement Insulation Systems- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  2. Solectria | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solectria NREL is partnering with Solectria at the Energy Systems Integration Facility (ESIF) to develop photovoltaic inverters with advanced features that can support the electric grid. Photo of two men standing in a laboratory behind power inverter equipment Photo by Dennis Schroeder To get more solar power onto the grid, researchers are working to find ways to tame solar power's variable nature. Solar inverters offer a lot of potential to help with this, and manufacturers like Solectria are

  3. Microgrids | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrids Think small: microgrids offer the flexibility, quick response and control, and security that the larger grid can't. NREL's cyber-physical test platform for microgrids reduces deployment risks and helps optimize hardware, communications, and security performance. Photo of three men standing in front of microgrid hardware in a laboratory NREL's microgrid research focuses on getting technologies from the factory into the field. The megawatt (MW)-scale Energy Systems Integration Facility

  4. NREL: Energy Systems Integration Facility - Fuel Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Distribution Buses The Energy Systems Integration Facility's integrated fuel distribution buses provide natural gas, hydrogen, and diesel for fueling applications. Standard, ...

  5. Integrated nonthermal treatment system study

    SciTech Connect (OSTI)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J.; Quapp, W.J.; Bechtold, T.; Brown, B.; Schwinkendorf, W.; Swartz, G.

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  6. Asetek | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asetek Asetek's ultra-energy-efficient RackCDU liquid cooling system was installed and tested at the Energy Systems Integration Facility's (ESIF's) high-performance computing data center. It's a first-of-its-kind, multi-award-winning innovation that saves the ESIF approximately $1 million per year in operating costs. Photo of a computer rack with the word Asetek on its facade Photo from Asetek High-performance computers generate a lot of heat when in operation, and they often rely on expensive,

  7. NREL: Energy Systems Integration Facility - Visualization of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visualization of Electric Power System Information Workshop The Energy Systems Integration Facility workshop, Visualization of Electric Power System Information, was held September...

  8. Air quality data systems integration

    SciTech Connect (OSTI)

    Row, V.K.; Wilson, J.F.

    1998-12-31

    Traditionally, data used for compliance with air quality programs are obtained from various sources within the plant, on site lab, or perhaps from a product movement accounting program. For the most part, the data processing and subsequent calculations and reports were handled individually, thus generating huge spreadsheets and mounds of process data in paper format. The natural reaction to this overwhelming data management problem is to search for an off-the-shelf software package that will hopefully cover all of the plant`s needs for compliance with air quality regulations. Rather than searching for or trying to custom build a single electronic system, the authors suggest using internet browsing software to create links between existing repositories of air quality data and related information.

  9. Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.

    2013-01-01

    This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.

  10. BTO Awards Small Business Grants for Lighting, Building-Integrated Heat and Moisture Exchange Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) and building-integrated heat and moisture exchange technology.

  11. Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 17, 2012, in Denver, CO, discusses building-integrated photovoltaics (BIPV) in the residential section and includes an analysis of installed rooftop prices.

  12. Design/Installation and Structural Integrity Assessment of Bethel Valley Low-Level Waste Collection and transfer system upgrade for Building 2649 (Transported Waste Receiving Facility) at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    1995-01-01

    This document covers the design aspects of the new tank system and certifies that the design has sufficient structural integrity and is acceptable for storing or treating hazardous and/or radioactive substances. This issue identifies specific activities that must be completed during fabrication, installation, and testing of the new tank system in order to prove compliance of the final installation with governing requirements. The assessment is responsive to the Environmental Restoration Agreement for the Oak Ridge Reservation.

  13. Integrated Energy System Dispatch Optimization

    SciTech Connect (OSTI)

    Firestone, Ryan; Stadler, Michael; Marnay, Chris

    2006-06-16

    On-site cogeneration of heat and electricity, thermal and electrical storage, and curtailing/rescheduling demand options are often cost-effective to commercial and industrial sites. This collection of equipment and responsive consumption can be viewed as an integrated energy system(IES). The IES can best meet the sites cost or environmental objectives when controlled in a coordinated manner. However, continuously determining this optimal IES dispatch is beyond the expectations for operators of smaller systems. A new algorithm is proposed in this paper to approximately solve the real-time dispatch optimization problem for a generic IES containing an on-site cogeneration system subject to random outages, limited curtailment opportunities, an intermittent renewable electricity source, and thermal storage. An example demonstrates how this algorithm can be used in simulation to estimate the value of IES components.

  14. Integrated risk information system (IRIS)

    SciTech Connect (OSTI)

    Tuxen, L.

    1990-12-31

    The Integrated Risk Information System (IRIS) is an electronic information system developed by the US Environmental Protection Agency (EPA) containing information related to health risk assessment. IRIS is the Agency`s primary vehicle for communication of chronic health hazard information that represents Agency consensus following comprehensive review by intra-Agency work groups. The original purpose for developing IRIS was to provide guidance to EPA personnel in making risk management decisions. This original purpose for developing IRIS was to guidance to EPA personnel in making risk management decisions. This role has expanded and evolved with wider access and use of the system. IRIS contains chemical-specific information in summary format for approximately 500 chemicals. IRIS is available to the general public on the National Library of Medicine`s Toxicology Data Network (TOXNET) and on diskettes through the National Technical Information Service (NTIS).

  15. Building-Integrated Heat & Moisture Exchange (STTR Phase 1 and 2) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy STTR Phase 1 and 2) Building-Integrated Heat & Moisture Exchange (STTR Phase 1 and 2) 1 of 2 Building-integrated heat and moisture exchanger, the AirFlow(tm) Panel, installed for evaluation at Lawrence Berkeley National Lab. Image: Architectural Applications 2 of 2 A schematic of the AirFlow(tm) Panel developed by Architectural Applications. Image: Architectural Applications Lead Performer: Architectural Applications - Portland, OR Partners: -- Lawrence Berkeley

  16. Building America Webinar: Ductless Hydronic Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility study of ductless hydronic distribution ...

  17. Commercial Building Integration Program Overview- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Arah Schuur, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Appliance and Equipment Standards Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  18. Building America Webinar: Central Multifamily Water Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution. Presenters and specific topics for this webinar included: Elizabeth Weitzel from the Building America team, Alliance for Residential Building Innovation, presenting

  19. Subscribe to Energy Systems Integration Newsletter | Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration | NREL Subscribe to Energy Systems Integration Newsletter Subscribe to receive regular updates on what's happening in energy systems integration at NREL and around the world. * indicates required Email Address * First Name Last Name Subscribe

  20. Workshop: Systems Integration Vision Challenges and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Vision Challenges and Opportunities Workshop: Systems Integration Vision Challenges and Opportunities May 22, 2014 2:30PM to 5:30PM PDT Pacific A Even after ...

  1. Building America Webinar: Central Multifamily Water Heating Systems...

    Energy Savers [EERE]

    Energy-Efficient Controls for Multifamily Domestic Hot Water Building America Webinar: Central Multifamily Water Heating Systems - Energy-Efficient Controls for Multifamily ...

  2. Building America Webinar: Central Multifamily Water Heating Systems...

    Energy Savers [EERE]

    Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will ...

  3. Building America Case Study: Indirect Solar Water Heating Systems...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Greenfield, Massachusetts ... Building Component: Solar water heating Application: Single-family Years Tested: 2010-2013 ...

  4. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  5. LBNL: High Performance Active Perimeter Building Systems - 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review Presenter: Eleanor Lee, LBNL View the Presentation PDF icon LBNL: High Performance Active Perimeter ...

  6. Building Codes and Regulations for Solar Water Heating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision...

  7. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    SciTech Connect (OSTI)

    Birru, Dagnachew; Wen, Yao-Jung; Rubinstein, Francis M.; Clear, Robert D.

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants’ visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the

  8. Facilities | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of the Hydrogen Infrastructure Testing and Research Facility building, with fuel cell charging stations and vehicles Hydrogen Infrastructure Testing and Research Facility A ...

  9. Integrated control system and method

    SciTech Connect (OSTI)

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  10. NREL: Energy Systems Integration Facility - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards The Energy Systems Integration Facility continues to receive awards for design, planning, construction, and efficiency. Highlights of recent awards are provided below. Photo of the exterior of the Energy Systems Integration Facility. The one-of-a-kind Energy Systems Integration Facility has been lauded for its unique approach to sustainable design-which includes the most energy-efficient data center in the world. R&D Magazine 2014 Laboratory of the Year The Energy Systems Integration

  11. Solar Energy Technologies Program: Systems Integration

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram

  12. NREL: Energy Systems Integration Facility - Research Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research, development, and demonstration needed to transform the nation's energy system. ... research, development, and demonstration activities and create new, integrated ...

  13. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Historically, only Industrial Facilities (ISO 50003 Industry - light to medium and ... is allowing Commercial Buildings (ISO 50003 - Buildings and Building Complexes) ...

  14. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics

    SciTech Connect (OSTI)

    Hasan, A.; Norton, B.; McCormack, S.J.; Huang, M.J.

    2010-09-15

    Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures {proportional_to}25 {+-} 4 C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 C was achieved for 30 min while 10 C temperature reduction was maintained for 5 h at -1000 W/m{sup 2} insolation. (author)

  15. National Renewable Energy Laboratory's Energy Systems Integration...

    Broader source: Energy.gov (indexed) [DOE]

    This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory. Download the National Renewable Energy Laboratory's energy systems ...

  16. Performance of Integrated Systems of Automated Roller Shade Systems and Daylight Responsive Dimming Systems

    SciTech Connect (OSTI)

    Park, Byoung-Chul; Choi, An-Seop; Jeong, Jae-Weon; Lee, Eleanor S.

    2010-07-08

    Daylight responsive dimming systems have been used in few buildings to date because they require improvements to improve reliability. The key underlying factor contributing to poor performance is the variability of the ratio of the photosensor signal to daylight workplane illuminance in accordance with sun position, sky condition, and fenestration condition. Therefore, this paper describes the integrated systems between automated roller shade systems and daylight responsive dimming systems with an improved closed-loop proportional control algorithm, and the relative performance of the integrated systems and single systems. The concept of the improved closed-loop proportional control algorithm for the integrated systems is to predict the varying correlation of photosensor signal to daylight workplane illuminance according to roller shade height and sky conditions for improvement of the system accuracy. In this study, the performance of the integrated systems with two improved closed-loop proportional control algorithms was compared with that of the current (modified) closed-loop proportional control algorithm. In the results, the average maintenance percentage and the average discrepancies of the target illuminance, as well as the average time under 90percent of target illuminance for the integrated systems significantly improved in comparison with the current closed-loop proportional control algorithm for daylight responsive dimming systems as a single system.

  17. Enhanced Cloud-based Control System for Small Commercial Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Enhanced Cloud-based Control System for Small Commercial Buildings Enhanced Cloud-based Control System for Small Commercial Buildings Lead Performer: Pacific Northwest National Laboratory - Richland, WA Partner: NorthWrite Inc. - Portland, OR DOE Total Funding: $300,000 Project Term: June 1, 2016 - November 30, 2017 Funding Type: Small Business Vouchers Pilot PROJECT OBJECTIVE NorthWrite Inc. delivers services to owners of small commercial buildings, using a cloud-based

  18. Model Predictive Control for the Operation of Building Cooling Systems

    SciTech Connect (OSTI)

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  19. Advanced integrated solvent extraction systems

    SciTech Connect (OSTI)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  20. Integrated Security System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Security System Integrated Security System A security platform providing multi-layer intrusion detection and security management for a networked energy control systems architecture Integrated Security System (1.49 MB) More Documents & Publications Cybersecurity for Energy Delivery Systems 2010 Peer Review Presentations - Vulnerability and Intrusion Detection Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Impacts of IPv6 on Infrastructure Control

  1. Ideas that Work!. Retuning the Building Automation System

    SciTech Connect (OSTI)

    Parker, Steven

    2015-03-01

    A building automation system (BAS) can save considerable energy by effectively and efficiently operating building energy systems (fans, pumps, chillers boilers, etc.), but only when the BAS is properly set up and operated. Tuning, or retuning, the BAS is a cost effective process worthy of your time and attention.

  2. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR, this webinar will help attendees how to use EPA tools and resources to help meet requirements for green building rating systems, such as the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED), the Green Globes system, and others.

  3. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  4. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  5. A prototype photovoltaic/thermal system integrated with transpired collector

    SciTech Connect (OSTI)

    Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan

    2011-01-15

    Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

  6. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    2 U.S. Commercial Buildings Conditioned Floorspace, Building Type and System Type (Million SF) Total Education Food Sales Food Service Health Care Lodging Mercantile and Service Office Public Buildings Warehouse/Storage Total Source(s): BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1. 3,988 4,771 19,767 5,287 2,822 3,352 12,065 48,064 119 1,482 0 0 102

  7. The Integrated Airport: Building a Successful NextGen Testbed

    ScienceCinema (OSTI)

    Frederick-Recascino, Christina [Embry-Riddle Aeronautical University, Daytona Beach, Florida, United States]; Sweigard, Doug [Lockheed Martin Corporation]; Lester, Wade [ERAU

    2010-01-08

    This presentation will describe a unique public-private partnership - the Integrated Airport - that was created to engage in research and testing related to NextGen Technology deployment.  NextGen refers to the program that will be initiated to modernize the US National Airspace.  As with any major, multi-decade initiative, such as NextGen, integration of work efforts by multiple partners in the modernization is critical for success.  This talk will focus on the development of the consortium, how the consortium plans for NextGen initiatives, the series of technology demonstrations we have produced and plans for the future of NextGen testing and implementation. 

  8. NREL's Building-Integrated Supercomputer Provides Heating and...

    Broader source: Energy.gov (indexed) [DOE]

    reliability. It's a complex problem involving systems within systems and leveraging Big Data-and the Peregrine serves as a powerful new tool in NREL's ongoing work to find a...

  9. Fact Sheet: Systems Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Fact Sheet: Systems Integration The Systems Integration program enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the

  10. Power Systems Integration Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).