Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Record of Technical Change {number_sign}1 for ''Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada'' Revision 0  

Science Conference Proceedings (OSTI)

This Record of Technical Change provides updates to the technical information included in ''Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada'' Revision 0

US DOE Nevada Operations Office

1999-06-30T23:59:59.000Z

2

Property:Building/FloorAreaMiscellaneous | Open Energy Information  

Open Energy Info (EERE)

FloorAreaMiscellaneous FloorAreaMiscellaneous Jump to: navigation, search This is a property of type Number. Floor area for Miscellaneous Pages using the property "Building/FloorAreaMiscellaneous" Showing 25 pages using this property. S Sweden Building 05K0002 + 360 + Sweden Building 05K0005 + 110 + Sweden Building 05K0013 + 3,550 + Sweden Building 05K0016 + 445 + Sweden Building 05K0021 + 250 + Sweden Building 05K0025 + 254 + Sweden Building 05K0035 + 1,629 + Sweden Building 05K0037 + 175 + Sweden Building 05K0040 + 869 + Sweden Building 05K0044 + 1,234 + Sweden Building 05K0047 + 1,039 + Sweden Building 05K0051 + 1,489.92 + Sweden Building 05K0052 + 200 + Sweden Building 05K0062 + 140 + Sweden Building 05K0063 + 654 + Sweden Building 05K0068 + 746 + Sweden Building 05K0071 + 293 +

3

Table B6. Building Size, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

B6. Building Size, Number of Buildings, 1999" B6. Building Size, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings ","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",4657,2348,1110,708,257,145,59,23,7 "Principal Building Activity" "Education ....................",327,119,61,52,49,30,10,5,"Q" "Food Sales ...................",174,138,"Q","Q","Q","Q","Q","N","N"

4

Property:Building/FloorAreaRestaurants | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaRestaurants Jump to: navigation, search This is a property of type Number. Floor area for Restaurants Pages using the property "Building/FloorAreaRestaurants" Showing 13 pages using this property. S Sweden Building 05K0007 + 1,990 + Sweden Building 05K0008 + 300 + Sweden Building 05K0013 + 215 + Sweden Building 05K0038 + 345 + Sweden Building 05K0046 + 200 + Sweden Building 05K0058 + 330 + Sweden Building 05K0060 + 256 + Sweden Building 05K0065 + 520 + Sweden Building 05K0081 + 98 + Sweden Building 05K0089 + 155 + Sweden Building 05K0098 + 170 + Sweden Building 05K0105 + 2,450 + Sweden Building 05K0114 + 400 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Building/FloorAreaRestaurants&oldid=285973#SMWResults"

5

Property:Building/FloorAreaShops | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaShops Jump to: navigation, search This is a property of type Number. Floor area for Shops Pages using the property "Building/FloorAreaShops" Showing 19 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0009 + 800 + Sweden Building 05K0012 + 1,587 + Sweden Building 05K0013 + 154 + Sweden Building 05K0017 + 3,150 + Sweden Building 05K0018 + 245 + Sweden Building 05K0019 + 5,600 + Sweden Building 05K0035 + 292 + Sweden Building 05K0046 + 530 + Sweden Building 05K0062 + 940 + Sweden Building 05K0081 + 530 + Sweden Building 05K0086 + 920 + Sweden Building 05K0088 + 1,170 + Sweden Building 05K0089 + 976 + Sweden Building 05K0092 + 360 +

6

Property:Building/FloorAreaHeatedGarages | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaHeatedGarages Jump to: navigation, search This is a property of type Number. Floor area for Heated garages (> 10 °C) Pages using the property "Building/FloorAreaHeatedGarages" Showing 15 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0007 + 400 + Sweden Building 05K0020 + 300 + Sweden Building 05K0022 + 3,300 + Sweden Building 05K0031 + 2,331 + Sweden Building 05K0033 + 465 + Sweden Building 05K0035 + 1,276 + Sweden Building 05K0037 + 130 + Sweden Building 05K0039 + 580 + Sweden Building 05K0047 + 1,076 + Sweden Building 05K0048 + 340 + Sweden Building 05K0061 + 90 + Sweden Building 05K0067 + 856 + Sweden Building 05K0093 + 2,880 +

7

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

8

Table B14. Number of Establishments in Building, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

4. Number of Establishments in Building, Number of Buildings, 1999" 4. Number of Establishments in Building, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",4657,3528,688,114,48,27,251 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1897,272,"Q","Q","Q",164 "5,001 to 10,000 ..............",1110,802,222,17,"Q","Q","Q" "10,001 to 25,000 .............",708,506,121,51,12,"Q",17 "25,001 to 50,000 .............",257,184,33,15,15,"Q","Q"

9

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH  

E-Print Network (OSTI)

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

10

Number of U.S. Commercial Buildings  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 2

11

Property:Building/FloorAreaOffices | Open Energy Information  

Open Energy Info (EERE)

FloorAreaOffices FloorAreaOffices Jump to: navigation, search This is a property of type Number. Floor area for Offices Pages using the property "Building/FloorAreaOffices" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 5,000 + Sweden Building 05K0003 + 4,360 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,150 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 21,765 + Sweden Building 05K0008 + 7,500 + Sweden Building 05K0009 + 33,955 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 14,080 + Sweden Building 05K0012 + 20,978 + Sweden Building 05K0013 + 15,632 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,101 +

12

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

13

Table B15. Number of Establishments in Building, Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

5. Number of Establishments in Building, Floorspace, 1999" 5. Number of Establishments in Building, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",67338,43343,10582,3574,3260,4811,1769 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5358,857,"Q","Q","Q",512 "5,001 to 10,000 ..............",8238,5952,1630,137,"Q","Q","Q" "10,001 to 25,000 .............",11153,7812,1982,784,"Q","Q",296

14

Table B37. Water Heating Equipment, Number of Buildings and Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

7. Water Heating Equipment, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings...

15

Table B27. Cooking Energy Sources, Number of Buildings and Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

7. Cooking Energy Sources, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings...

16

Table B10. Employment Size Category, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

0. Employment Size Category, Number of Buildings, 1999" 0. Employment Size Category, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Workers" ,,"Fewer than 5 Workers","5 to 9 Workers","10 to 19 Workers","20 to 49 Workers","50 to 99 Workers","100 to 249 Workers","250 or More Workers" "All Buildings ................",4657,2376,807,683,487,174,90,39 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1567,482,226,66,"Q","Q","N" "5,001 to 10,000 ..............",1110,511,180,249,144,"Q","Q","N" "10,001 to 25,000 .............",708,250,105,146,157,46,"Q","Q"

17

Table B8. Year Constructed, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

B8. Year Constructed, Number of Buildings, 1999" B8. Year Constructed, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999" "All Buildings ................",4657,419,499,763,665,774,846,690 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,227,270,359,321,367,413,390 "5,001 to 10,000 ..............",1110,107,102,240,166,193,156,145 "10,001 to 25,000 .............",708,63,90,97,84,130,179,65 "25,001 to 50,000 .............",257,13,20,39,53,44,43,44 "50,001 to 100,000 ............",145,7,9,19,24,26,33,27

18

Table B6. Building Size, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

4,657 4,657 2,348 1,110 708 257 145 59 23 7 Principal Building Activity Education .................................................... 327 119 61 52 49 30 10 5 Q Food Sales .................................................. 174 138 Q Q Q Q Q N N Food Service ............................................... 349 251 71 23 Q Q Q N N Health Care ................................................. 127 64 Q 10 8 4 2 2 1 Inpatient ..................................................... 11 N N Q Q Q 2 2 1 Outpatient .................................................. 116 64 Q Q 7 Q Q Q Q Lodging ........................................................ 153 Q 38 27 32 11 4 3 Q Mercantile .................................................... 667 316 146 141 28 20 13 2 1 Retail (Other Than Mall) ............................ 534 308 103 100 11 6 5 Q Q Enclosed and Strip Malls ...........................

19

Property:Building/FloorAreaSchoolsChildDayCare | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search This is a property of type Number. Floor area for Schools, including child day-care centres Pages using the property "Building...

20

Property:Building/FloorAreaUnheatedRentedPremises | Open Energy Information  

Open Energy Info (EERE)

FloorAreaUnheatedRentedPremises FloorAreaUnheatedRentedPremises Jump to: navigation, search This is a property of type Number. Floor area for Unheated but rented-out premises (garages) < 10 °C Pages using the property "Building/FloorAreaUnheatedRentedPremises" Showing 6 pages using this property. S Sweden Building 05K0021 + 700 + Sweden Building 05K0050 + 760 + Sweden Building 05K0058 + 1,200 + Sweden Building 05K0080 + 2,000 + Sweden Building 05K0081 + 700 + Sweden Building 05K0102 + 234 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Building/FloorAreaUnheatedRentedPremises&oldid=285964#SMWResults" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table B16. Multibuilding Facilities, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

6. Multibuilding Facilities, Number of Buildings and Floorspace, 1999" 6. Multibuilding Facilities, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,"Total Floorspace (million square feet)" ,"All Buildings","Buildings on Multibuilding Facilities",,"All Buildings","Buildings on Multibuilding Facilities" ,,"All Buildings","With Central Physical Plant",,"All Buildings","With Central Physical Plant" "All Buildings ................",4657,1362,142,67338,26049,7101 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,604,"Q",6774,1706,"Q" "5,001 to 10,000 ..............",1110,297,"Q",8238,2211,"Q"

22

Property:Building/FloorAreaChurchesChapels | Open Energy Information  

Open Energy Info (EERE)

Churches and chapels Retrieved from "http:en.openei.orgwindex.php?titleProperty:BuildingFloorAreaChurchesChapels&oldid285978" What links here Related changes Special pages...

23

Property:Building/FloorAreaGroceryShops | Open Energy Information  

Open Energy Info (EERE)

for Grocery shops Retrieved from "http:en.openei.orgwindex.php?titleProperty:BuildingFloorAreaGroceryShops&oldid286018" What links here Related changes Special pages...

24

Table B36. Refrigeration Equipment, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

6. Refrigeration Equipment, Number of Buildings and Floorspace, 1999" 6. Refrigeration Equipment, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Refrigeration Equipment","Type of Equipment (more than one may apply)",,,"All Buildings","All Buildings with Refrigeration Equipment","Type of Equipment (more than one may apply)" ,,,"Walk-In","Open Cases or Cabinets","Closed Cases or Cabinets",,,"Walk-In","Open Cases or Cabinets","Closed Cases or Cabinets" "All Buildings ................",4657,950,658,255,719,67338,25652,19713,8808,19938 "Building Floorspace"

25

Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Shows Philadelphia-area Building Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs November 10, 2011 - 10:36am Addthis This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency Buildings Hub is one of the U.S. Department of Energy’s research centers called Energy Innovation Hubs. | Photo courtesy of EEB Hub This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency

26

Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search Properties of type "Number" Showing 200 properties using this type. (previous 200) (next 200) A Property:AvgAnnlGrossOpCpcty Property:AvgTempGeoFluidIntoPlant Property:AvgWellDepth B Property:Building/FloorAreaChurchesChapels Property:Building/FloorAreaGroceryShops Property:Building/FloorAreaHealthServices24hr Property:Building/FloorAreaHealthServicesDaytime Property:Building/FloorAreaHeatedGarages Property:Building/FloorAreaHotels Property:Building/FloorAreaMiscellaneous Property:Building/FloorAreaOffices Property:Building/FloorAreaOtherRetail Property:Building/FloorAreaResidential Property:Building/FloorAreaRestaurants Property:Building/FloorAreaSchoolsChildDayCare Property:Building/FloorAreaShops Property:Building/FloorAreaSportCenters

27

Building America Developments, September 2000, Information Bulletin Number 1 (Revised)  

SciTech Connect

Building America Developments on-line newsletter highlights the Erie-Ellington Homes publicly-funded housing project in Boston, Massachusetts. A Building America and industry partnership that produced energy-efficient manufactured homes built with foam core panels is featured. Also, Habitat for Humanity dedicates two energy-efficient test houses in East Tennessee, and affordable, healthy homes are offered in metro Atlanta. Upcoming events in the Building America Program are also listed.

Hendron, R.; Anderson, J.; Epstein, K.

2001-12-01T23:59:59.000Z

28

About the AreaCalc Software | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

About the AreaCalc Software About the AreaCalc Software AreaCalc is a tool to simplify the process of calculating the building areas needed to demonstrate energy code compliance. A spreadsheet-like interface is used to calculate window, door, skylight, roof, wall, and floor areas. These areas can then be transferred directly into REScheck(tm) where the code compliance results for those assemblies can be displayed. Publication Date: Wednesday, May 13, 2009 ab_about_the_areacalc_sofware.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Residential Code Referenced: International Energy Conservation Code (IECC) Document type: Technical Articles Target Audience: Architect/Designer Builder Code Official Contractor Engineer Contacts Web Site Policies U.S. Department of Energy

29

Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" 9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled","All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled" "All Buildings ................",4657,1097,1012,751,1796,67338,8864,16846,16966,24662 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,668,352,294,1034,6774,1895,1084,838,2957 "5,001 to 10,000 ..............",1110,282,292,188,348,8238,2026,2233,1435,2544

30

Table B30. Percent of Floorspace Lit When Open, Number of Buildings and Floorspa  

U.S. Energy Information Administration (EIA) Indexed Site

0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" 0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit","All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit" "All Buildings ................",4657,498,835,1228,2096,67338,3253,9187,20665,34233 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,323,351,517,1156,6774,915,1061,1499,3299 "5,001 to 10,000 ..............",1110,114,279,351,367,8238,818,2014,2614,2793

31

Table B3. Census Region, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

. Census Region, Number of Buildings and Floorspace, 1999" . Census Region, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","North- east","Midwest ","South","West","All Buildings","North- east","Midwest","South","West" "All Buildings ................",4657,686,1188,1762,1021,67338,12360,16761,23485,14731 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,305,620,916,506,6774,901,1835,2536,1503 "5,001 to 10,000 ..............",1110,169,273,413,255,8238,1302,2045,3058,1834 "10,001 to 25,000 .............",708,130,188,260,130,11153,1954,2881,4194,2124

32

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" 8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All Buildings ................",4657,641,576,627,2813,67338,5736,7593,10745,43264 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,366,230,272,1479,6774,1091,707,750,4227 "5,001 to 10,000 ..............",1110,164,194,149,603,8238,1148,1504,1177,4409

33

Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2Total" SPPurchasedEngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden Building 05K0003 + 195.801526718 + Sweden Building 05K0004 + 174.148148148 + Sweden Building 05K0005 + 340.088495575 + Sweden Building 05K0006 + 211.255924171 + Sweden Building 05K0007 + 144.028151521 + Sweden Building 05K0008 + 171.282051282 + Sweden Building 05K0009 + 140.296360236 + Sweden Building 05K0010 + 300.961098398 + Sweden Building 05K0011 + 98.1045751634 + Sweden Building 05K0012 + 106.609793929 + Sweden Building 05K0013 + 175.776187637 + Sweden Building 05K0014 + 291.160427408 + Sweden Building 05K0015 + 174.193548387 + Sweden Building 05K0016 + 145.793794187 +

34

Building Toxic Metal Characterization and Decontamination Report: Area 6, Building 914  

SciTech Connect

The purpose of this report is to outline the toxic metal characterization and decontamination efforts in Area 6, Building 914. This includes the initial building inspection, the hotspot sampling, results/findings, building cleanup, and the verification sampling. Building 914 is a steel light frame building that was constructed in 1992. It is about 16,454 square feet, and five employees are assigned to this building. According to the building's floor plan blueprints, it could be inferred that this building was once a Wiremen/Lineman shop. In 2002-2004, the National Nuclear Security Administration Nevada Site Office embarked on a broad characterization of beryllium (Be) surface concentrations throughout the North Las Vegas Facility, the Nevada National Security Site (NNSS), and ancillary facilities like the Special Technologies Laboratory, Remote Sensing Laboratory, etc. Building 914 was part of this characterization. The results of the 2002 study illustrated that the metal housekeeping limits were within acceptable limits and from a Be standpoint, the building was determined to be fit for occupancy. On March 2, 2011, based on a request from Building 914 users, National Security Technologies, LLC (NSTec) Industrial Hygiene (IH) collected bulk samples from the southwest corner of Building 914 at heights above 6 feet where black dust had been noticed on this particular wall. IH conducted surface swipe sampling of the area and analyzed the samples for toxic metals, namely, beryllium (Be), cadmium (Cd), chromium (Cr), lead (Pb), and manganese (Mn). The sample results indicated values two to four times above the housekeeping threshold for Be, Cd, Cr, Pb, and Mn. Subsequently, the facility was closed and posted; the necessary personnel were notified; and controls were instituted for ingress and egress of the building. On March 17, 2011, IH performed an extensive sampling event involving the entire warehouse in accordance with NSTec Organization Procedure OP-P250.004, Sampling Procedures. Analysis of the results from this exercise illustrated that toxic metal contamination was ubiquitous throughout the warehouse section of this building but did not extend into the office, restroom, and break room areas. On March 22, 2011, a planning meeting was held with Environment, Safety, Health & Quality management; Operations & Infrastructure (O&I) mangement; Facility Management; Occupational Medicine; O&I Operations; and IH. After a brief discussion concerning the salient facts of the surface sample results, it was agreed that the facility and its contents required cleaning. The facility would then be re-sampled to verify cleanliness and suitability for re-occupancy. On April 18, 2011, warehouse cleanup activites began. On July 5, 2011, upon receipt of the results from the last cleaned section, the cleanup operations were concluded. The building was statistically determined to be clean; thus, it could be reoccupied and the warehouse operations could resume immediately.

NSTec Industrial Hygiene

2011-08-15T23:59:59.000Z

35

Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open Energy  

Open Energy Info (EERE)

OtherElctrty OtherElctrty Jump to: navigation, search This is a property of type String. Other electricity Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 70.305743501 + Sweden Building 05K0002 + 95.9357541899 + Sweden Building 05K0003 + 72.2496632241 + Sweden Building 05K0004 + 65.8830409357 + Sweden Building 05K0005 + 53.5026548673 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 + 56.4810818587 + Sweden Building 05K0010 + 152.219679634 + Sweden Building 05K0011 + 25.5555555556 + Sweden Building 05K0012 + 35.8807888323 + Sweden Building 05K0013 + 61.3267863536 +

36

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy  

Open Energy Info (EERE)

ElctrtyTotal ElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 71.2214478303 + Sweden Building 05K0002 + 95.9357541899 + Sweden Building 05K0003 + 72.2496632241 + Sweden Building 05K0004 + 65.8830409357 + Sweden Building 05K0005 + 54.2477876106 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 + 56.4810818587 + Sweden Building 05K0010 + 152.219679634 + Sweden Building 05K0011 + 25.5555555556 + Sweden Building 05K0012 + 35.8807888323 + Sweden Building 05K0013 + 61.3267863536 +

37

Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtColg | Open Energy  

Open Energy Info (EERE)

DstrtColg DstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 38.7648166048 + Sweden Building 05K0002 + 44.9720670391 + Sweden Building 05K0003 + 11.6524472384 + Sweden Building 05K0004 + 35.3996101365 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 24.0451630889 + Sweden Building 05K0007 + 18.6296832954 + Sweden Building 05K0008 + 15.7692307692 + Sweden Building 05K0009 + 17.2637030643 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 5.09803921569 + Sweden Building 05K0012 + 15.0675825393 + Sweden Building 05K0013 + 21.4822771214 +

38

Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 111.56331078 + Sweden Building 05K0002 + 72.7932960894 + Sweden Building 05K0003 + 111.899416255 + Sweden Building 05K0004 + 72.865497076 + Sweden Building 05K0005 + 285.840707965 + Sweden Building 05K0006 + 128.449958182 + Sweden Building 05K0007 + 63.8377147588 + Sweden Building 05K0008 + 115.128205128 + Sweden Building 05K0009 + 66.5515753129 + Sweden Building 05K0010 + 148.741418764 +

39

Property:Number of Build Out Units Deployed | Open Energy Information  

Open Energy Info (EERE)

Build Out Units Deployed Build Out Units Deployed Jump to: navigation, search Property Name Number of Build Out Units Deployed Property Type String Pages using the property "Number of Build Out Units Deployed" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 50 + MHK Projects/AWS II + 20 + MHK Projects/Algiers Light Project + 500 + MHK Projects/Anconia Point Project + 500 + MHK Projects/Ashley Point Project + 3700 + MHK Projects/Avondale Bend Project + 450 + MHK Projects/Bar Field Bend + 2350 + MHK Projects/Barfield Point + 2851 + MHK Projects/Bayou Latenache + 1260 + MHK Projects/BioSTREAM Pilot Plant + 1 + MHK Projects/Bondurant Chute + 3802 + MHK Projects/Breeze Point + 4942 + MHK Projects/Brilliant Point Project + 1400 +

40

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2ElctrcHeating" SPPurchasedEngyPerAreaKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.745132743363 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 25.8064516129 + Sweden Building 05K0016 + 5.89159465829 + Sweden Building 05K0017 + 0.0 + Sweden Building 05K0018 + 0.0 + Sweden Building 05K0019 + 0.0 +

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

42

Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas  

E-Print Network (OSTI)

: Based on the existing residential buildings in cold areas, this paper takes the existing residential buildings in a certain district in Beijing to provide an analysis of the thermal characteristics of envelope and energy consumption in winter with the software PKPM, and provides the technical and economic analysis, which may provide reference for suitable plans for energy efficient reconstruction of buildings in cold areas.

Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

2006-01-01T23:59:59.000Z

43

Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy  

Open Energy Info (EERE)

This is a property of type String. This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2Other" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 + Sweden Building 05K0018 + 0.0 +

44

Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open Energy  

Open Energy Info (EERE)

WoodChips WoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2WoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

45

Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy  

Open Energy Info (EERE)

Pellets Pellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2Pellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

46

Property:Building/SPPurchasedEngyPerAreaKwhM2Logs | Open Energy Information  

Open Energy Info (EERE)

Logs Logs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2Logs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

47

Property:Building/SPPurchasedEngyPerAreaKwhM2TownGas | Open Energy  

Open Energy Info (EERE)

TownGas TownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2TownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

48

Property:Building/SPPurchasedEngyPerAreaKwhM2NaturalGas | Open Energy  

Open Energy Info (EERE)

NaturalGas NaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2NaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

49

Energy Innovation Hub Report Shows Philadelphia-area Building...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy...

50

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

DigesterLandfillGas DigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

51

DOE/ex-oooos CATEGORICAL EXCLUSION HANFORD PATROL 200 EAST AREA BUILDING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ex-oooos ex-oooos CATEGORICAL EXCLUSION HANFORD PATROL 200 EAST AREA BUILDING (PROJECT S-227) HANFORD SITE, RICHLAND, WASHINGTON PROPOSED ACTION The U.S. Department of Energy (DOE) proposes to construct an insulated concrete form office building in 200 East Area. The proposed facility provides operational support staff office space and parking for government and private vehicles. LOCATION OF ACTION The location of the proposed action is in the 200 East Area of the Hanford Site. The proposed new building will be directly east of the 2721-E Building. The parking lot will be located south of the proposed new building and south of the 2727-E Building. DESCRIPTION OF PROPOSED ACTION The proposed action will construct a 12,000 square foot insulated concrete form building to

52

Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP.

NONE

1997-10-27T23:59:59.000Z

53

100 Area D4 Project Building Completion Report: December 2008 to December 2009  

SciTech Connect

This report documents the final status of buildings after the completion of D4 activities at the 100 Area of the U.S. Department of Energy Hanford Site from December 1, 2008, to December 31, 2009.

K.G. Finucane, J.P. Harrie

2010-10-26T23:59:59.000Z

54

Corrective action plan for CAU Number 339: Area 12 Fleet Operations, Steam Cleaning Discharge Area, Nevada Test Site  

Science Conference Proceedings (OSTI)

The purpose of this Corrective Action Plan (CAP) is to provide the method for implementing the corrective action alternative as provided in the Corrective Action Decision Document (CADD). Detailed information of the site history and results of previous characterizations can be found in the Work Plan, the Preliminary Investigation Report, and the Phase 2 Characterization Report. Previous characterization investigations were completed as a condition of the Temporary Water Pollution Control Permit issued by the Nevada Division of Environmental Protection (NDEP) on July 14, 1992. The scope of this report is to prepare a CAP based upon the selected remedial alternative for closure of the Area 12, Building 12-16 Fleet Operations steam cleaning discharge area. The effluent discharge area has been impacted by volatile organic compounds (VOCs) and total petroleum hydrocarbons (TPH) as oil. The maximum hydrocarbon and VOC concentrations detected in the Preliminary and Phase 2 Site Characterization Investigations are summarized.

NONE

1997-05-01T23:59:59.000Z

55

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

56

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

57

Table B19. Energy End Uses, Number of Buildings and Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manufact-uring",,"Space Heating","Cooling","Water...

58

Table B24. Cooling Energy Sources, Number of Buildings and Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

Sources (more than one may apply)" ,,,"Electricity","Natural Gas","District Chilled Water",,,"Electricity","Natural Gas","District Chilled Water" "All Buildings...

59

300 Area D4 Project Fiscal Year 2007 Building Completion Report  

SciTech Connect

This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

R. A. Westberg

2009-01-15T23:59:59.000Z

60

Building detection in an urban area using lidar data and QuickBird imagery  

Science Conference Proceedings (OSTI)

This article presents a hierarchical approach to detect buildings in an urban area through the combined usage of lidar data and QuickBird imagery. A normalized digital surface model nDSM was first generated on the basis of the difference between a digital ...

Lei Chen; Shuhe Zhao; Wenquan Han; Yun Li

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network (OSTI)

energy assessment." Energy and Buildings 41: 1263-1268.Canada, and USA, Energy and Buildings 36, no. 12 (Decemberlow energy buildings, Energy and Buildings 42, no. 6 (June

Aden, Nathaniel

2010-01-01T23:59:59.000Z

62

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

63

300 Area D4 Project Fiscal Year 2009 Building Completion Report  

SciTech Connect

This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.

B. J. Skwarek

2010-01-27T23:59:59.000Z

64

Derived concentration guideline levels for Argonne National Laboratory's building 310 area.  

Science Conference Proceedings (OSTI)

The derived concentration guideline level (DCGL) is the allowable residual radionuclide concentration that can remain in soil after remediation of the site without radiological restrictions on the use of the site. It is sometimes called the single radionuclide soil guideline or the soil cleanup criteria. This report documents the methodology, scenarios, and parameters used in the analysis to support establishing radionuclide DCGLs for Argonne National Laboratory's Building 310 area.

Kamboj, S., Dr.; Yu, C ., Dr. (Environmental Science Division)

2011-08-12T23:59:59.000Z

65

Building ISOC Status Displays for the Large AreaTelescope aboard the Gamma Ray Large Area Space Telescope (GLAST) Observatory  

DOE Green Energy (OSTI)

In September 2007 the Gamma Ray Large Area Space Telescope (GLAST) is scheduled to launch aboard a Delta II rocket in order to put two high-energy gamma-ray detectors, the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM) into low earth orbit. The Instrument Science Operations Center (ISOC) at SLAC is responsible for the LAT operations for the duration of the mission, and will therefore build an operations center including a monitoring station at SLAC to inform operations staff and visitors of the status of the LAT instrument and GLAST. This monitoring station is to include sky maps showing the location of GLAST in its orbit as well as the LAT's projected field of view on the sky containing known gamma-ray sources. The display also requires a world map showing the locations of GLAST and three Tracking and Data Relay Satellites (TDRS) relative to the ground, their trail lines, and ''footprint'' circles indicating the range of communications for each satellite. The final display will also include a space view showing the orbiting and pointing information of GLAST and the TDRS satellites. In order to build the displays the astronomy programs Xephem, DS9, SatTrack, and STK were employed to model the position of GLAST and pointing information of the LAT instrument, and the programming utilities Python and Cron were used in Unix to obtain updated information from database and load them into the programs at regular intervals. Through these methods the indicated displays were created and combined to produce a monitoring display for the LAT and GLAST.

Ketchum, Christina; /SLAC

2006-09-01T23:59:59.000Z

66

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

67

Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)  

Science Conference Proceedings (OSTI)

In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

2012-08-01T23:59:59.000Z

68

Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1  

Science Conference Proceedings (OSTI)

The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

Not Available

1993-01-01T23:59:59.000Z

69

Development of a California commercial building benchmarking database  

E-Print Network (OSTI)

Used to determine the climate zone. Floor Area. This is usedBuilding Activity, Climate Zone, and Floor Area. A number ofbuildings with. Climate Zone. The California Energy

Kinney, Satkartar; Piette, Mary Ann

2002-01-01T23:59:59.000Z

70

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network (OSTI)

maintenance, and decommissioning. Building and supportingoperations, and decommissioning. Over the following fourtransportation, use, and decommissioning during each phase

Aden, Nathaniel

2010-01-01T23:59:59.000Z

71

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

72

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network (OSTI)

buildings among various climate zones, though results datasummer, cold winter" climate zone according to survey databuilding LCA model uses climate zone inputs to calculate

Aden, Nathaniel

2010-01-01T23:59:59.000Z

73

Application issues for large-area electrochromic windows in commercial buildings  

E-Print Network (OSTI)

building application; energy-efficiency * Corresponding author. E-mail: ESLee@lbl.gov Introduction Electrochromics are a multi-layer coating

Lee, Eleanor S.; DiBartolomeo, D.L.

2000-01-01T23:59:59.000Z

74

Increase in Number of Days with Heavy Precipitation in Tokyo Urban Area  

Science Conference Proceedings (OSTI)

Analysis of daily precipitation in August from 1954 to 1976 shows a recent trend for urban areas of Tokyo to have heavier precipitation than the suburbs, although one would not expect such a situation when it is dry and the total monthly ...

Tsuneharu Yonetani

1982-10-01T23:59:59.000Z

75

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

1997-05-01T23:59:59.000Z

76

Mobile Building Energy Audit and Modeling Tools: Cooperative Research and Development Final Report, CRADA Number CRD-11-00441  

SciTech Connect

Broadly accessible, low cost, accurate, and easy-to-use energy auditing tools remain out of reach for managers of the aging U.S. building population (over 80% of U.S. commercial buildings are more than 10 years old*). concept3D and NREL's commercial buildings group will work to translate and extend NREL's existing spreadsheet-based energy auditing tool for a browser-friendly and mobile-computing platform. NREL will also work with concept3D to further develop a prototype geometry capture and materials inference tool operable on a smart phone/pad platform. These tools will be developed to interoperate with NREL's Building Component Library and OpenStudio energy modeling platforms, and will be marketed by concept3D to commercial developers, academic institutions and governmental agencies. concept3D is NREL's lead developer and subcontractor of the Building Component Library.

Brackney, L.

2013-04-01T23:59:59.000Z

77

Mobile Building Energy Audit and Modeling Tools: Cooperative Research and Development Final Report, CRADA Number CRD-11-00441  

SciTech Connect

Broadly accessible, low cost, accurate, and easy-to-use energy auditing tools remain out of reach for managers of the aging U.S. building population (over 80% of U.S. commercial buildings are more than 10 years old*). concept3D and NREL's commercial buildings group will work to translate and extend NREL's existing spreadsheet-based energy auditing tool for a browser-friendly and mobile-computing platform. NREL will also work with concept3D to further develop a prototype geometry capture and materials inference tool operable on a smart phone/pad platform. These tools will be developed to interoperate with NREL's Building Component Library and OpenStudio energy modeling platforms, and will be marketed by concept3D to commercial developers, academic institutions and governmental agencies. concept3D is NREL's lead developer and subcontractor of the Building Component Library.

Brackney, L.

2013-04-01T23:59:59.000Z

78

Boston Garden and North Station area : building the architectural infrastructure for development  

E-Print Network (OSTI)

In recent years, the advancement of structural technology, the accumulation of capital, and legal manipulation of land ownership have made available for development air rights parcels above existing buildings and, in ...

Lin, Chan-Li

1990-01-01T23:59:59.000Z

79

Recommendations for the analysis and design of naturally ventilated buildings in urban areas  

E-Print Network (OSTI)

The motivation behind this work was to obtain a better understanding of how a building's natural ventilation potential is affected by the complexities introduced by the urban environment. To this end, we have derived in ...

Truong, Phan Hue

2012-01-01T23:59:59.000Z

80

Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 406: Area 3 Building 03-74 & Building 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 & Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

This document constitutes an addendum to the March 2000, Corrective Action Decision Document / Closure Report for Corrective Action Unit 406: Area 3 Building 03-74 & 03-58 Underground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 & Area 9 Building 09-52 Underground Discharge Points (TTR) as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-51-001-0355 Photo Shop UDP, Drains in CAU 429. It should be noted that there are no changes to CAU 406. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Lynn Kidman

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand and annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.

Konopacki, S.; Akbari, H.; Gartland, L. [and others

1997-05-01T23:59:59.000Z

82

Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions  

SciTech Connect

The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. evegetation work is scheduled to commence during the first quarter of FY 2011 to minimize the amount of time that sites are unvegetated and more susceptible to invasion by non-native weedy annual species.

Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

2011-01-01T23:59:59.000Z

83

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

84

Corrective Action Decision Document, Area 15 Environmental Protection Agency Farm Laboratory Building, Corrective Action Unit No. 95, Revision 0  

Science Conference Proceedings (OSTI)

This report is the Corrective Action Decision Document (CADD) for the Nevada Test Site (NTS) Area 15 U.S. Environmental Protection Agency (EPA) Farm, Laboratory Building (Corrective Action Unit [CAU] No. 95), at the Nevada Test Site, Nye County, Nevada. The scope of this CADD is to identify and evaluate potential corrective action alternatives for the decommissioning and decontamination (D and D) of the Laboratory Building, which were selected based on the results of investigative activities. Based on this evaluation, a preferred corrective action alternative is recommended. Studies were conducted at the EPA Farm from 1963 to 1981 to determine the animal intake and retention of radionuclides. The main building, the Laboratory Building, has approximately 370 square meters (4,000 square feet) of operational space. Other CAUS at the EPA Farm facility that will be investigated and/or remediated through other environmental restoration subprojects are not included in this CADD, with the exception of housekeeping sites. Associated structures that do not require classification as CAUS are considered in the evaluation of corrective action alternatives for CAU 95.

NONE

1997-08-18T23:59:59.000Z

85

Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada  

SciTech Connect

This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, Radiation Protection of the Public and the Environment). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTecs Radiological Engineering Calculation, REC-2010-001, Public Dose Estimate from the EMAD 25 Ton Locomotive, concluded that the four scenarios evaluated were below the 25-millirem per year limit, the likely dose scenarios met the few millirem in a year criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

Jeremy Gwin and Douglas Frenette

2010-04-08T23:59:59.000Z

86

A PERCEPTION-INSPIRED BUILDING INDEX FOR AUTOMATIC BUILT-UP AREA DETECTION IN HIGH-RESOLUTION SATELLITE IMAGES  

E-Print Network (OSTI)

This paper addresses the problem of automatic extraction of built-up areas from high-resolution remote sensing images. We propose a new building presence index from the point view of perception. We argue that built-up areas usually result in significant corners and junctions in high-resolution satellite images, due to the man-made structures and occlusion, and thus can be measured by the geometrical structures they contained. More precisely, we first detect corners and junctions by relying on a perception-inspired corner detector, called an a-contrario junction detector. Each detected corner is associated with a perceptual significance, which measures the structural saliency of the corner in the image and is independent of the contrast and scale. All these detected corners together with their significance are then used to compute the building index. The proposed approach is evaluated on a high-resolution satellite image set, including 15 big images from GeoEye-1, QuickBird and IKONOS. The results demonstrated that our method achieves the state-of-the-art results and can be used in practical applications. Index Terms High-resolution satellite images, junction detection, built-up area detection, contrast independent, urban area detection. 1.

Gang Liu; Gui-song Xia; Xin Huang; Wen Yang; Liangpei Zhang

2013-01-01T23:59:59.000Z

87

300 Area D4 Project Fiscal Year 2010 Building Completion Report  

SciTech Connect

This report summarizes the deactiviation, decontamination, decommissioning, and demolition activities of facilities in the 300 Area of the Hanford Site in fiscal year 2010.

Skwarek, B. J.

2011-01-27T23:59:59.000Z

88

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

89

Comparison of Building Energy Modeling Programs: Building Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Building Energy Modeling Programs: Building Loads Title Comparison of Building Energy Modeling Programs: Building Loads Publication Type Report LBNL Report Number...

90

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

91

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

92

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

93

RL-721 Document ID Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 NEPA REVIEW SCREENING FORM DOE/CX-00075 I. Project Title: Project 1-718, Electrical Utili ties Transformer Management Support Facility II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The proposed action includes design, procurement, and construction of a pre-engineered metal building for transformer management; including inspections, routine maintenance, testing, refurbishing, and disposition of excess transformers. The building will be constructed in the previously disturbed, gravel-covered electrical utilities lay-down yard west of the 2101-M Building in 200 East Area of the Hanford Site. The building footprint

94

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

95

100 Area D4 Project Building Completion Report - July 2007 to December 2008  

Science Conference Proceedings (OSTI)

This report documents the decontamination, decommissioning, and demolition of the 105-NB, 163-N, 183-N, 183-NA, 183-NB, 183-NC, 184-N, 184-NA, 184-NB, 184-NC, 184-ND, 184-NE, 184-NF, 1312-N, 1330-N, 1705-N, 1705-NA, 1706-N, 1712-N, 1714-N, 1714-NA, 1714-NB, 1802-N, MO-050, MO-055, MO-358, MO-390, MO-900, MO-911, and MO-950 facilities in the 100 Area of the Hanford Site. The D4 activities for these facilities include utility disconnection, planning, characterization, engineering, removal of hazardous and radiological contaminated materials, equipment removal, decommissioning, deactivation, decontamination, demolition of the structure, and removal of the remaining slabs.

M. T. Stankovich

2009-04-15T23:59:59.000Z

96

Solar Technologies and the Building Envelope  

Science Conference Proceedings (OSTI)

Advances in on-site renewable energy technology have brought the concept of zero-energy buildings within reach. Many single-story residential and commercial buildings have enough favorably oriented roof area to make achieving zero energy technically feasible, assuming no major solar obstructions exist and that energy efficiency has been aggressively implemented in the building design. As the number of stories increases, the potential to have a zero-energy building within the building's footprint decreases. As efficiencies of photovoltaic (PV) cells increase, the potential to have zero-energy buildings increases.

Torcellini, P. A.; Pless, S. D.; Judkoff, R.; Crawley, D.

2007-04-01T23:59:59.000Z

97

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

98

Federal Buildings Supplemental Survey 1993  

Gasoline and Diesel Fuel Update (EIA)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.25. Water-Heating Equipment in FBSS Buildings in Federal Region 3, Number of Buildings and...

99

California commercial building energy benchmarking  

E-Print Network (OSTI)

querying (building type, climate zone, etc) sufficient forBuilding Type Floor Area Climate Zone Building Age Heatingtype, and zip code/climate zone. A memo describing the

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

100

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... keynote address entitled "Green Buildings - The White House Perspective ... in the areas of building materials, lighting, and indoor air ... Selected Papers. ...

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

102

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 37. Refrigeration Equipment, Number of Buildings and Floorspace, 1995 Table 38. Water-Heating Equipment, Number of Buildings and Floorspace, 1995 Table 39. Lighting...

103

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 25. Cooling Energy Sources, Number of Buildings and Floorspace, 1995 Table 26. Water-Heating Energy Sources, Number of Buildings, 1995 Table 27. Water-Heating Energy...

104

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

105

Investigation of geothermal potential in the Waianae Caldera Area, Western Oahu, Hawaii. Assessment of Geothermal Resources in Hawaii: Number 2  

DOE Green Energy (OSTI)

Studies of Lualualei Valley, Oahu have been conducted to determine whether a thermal anomaly exists in the area and, if so, to identify sites at which subsurface techniques should be utilized to characterize the resource. Geologic mapping identifies several caldera and rift zone structures in the Valley and provides a tentative outline of their boundaries. Clay mineralogy studies indicate that minor geothermal alteration of near-surface rocks has occurred at some period in the history of the area. Schlumberger resistivity soundings indicate the presence of a low resistivity layer beneath the valley floor, which has been tentatively attributed to warm water-saturated basalt. Soil and groundwater chemistry studies outline several geochemical anomalies around the perimeter and within the inferred caldera boundaries. The observed anomalies strongly suggest a subsurface heat source. Recommendations for further exploratory work to confirm the presence of a geothermal reservoir include more intensive surveys in a few selected areas of the valley as well as the drilling of at least three shallow (1000-m) holes for subsurface geochemical, geological and geophysical studies.

Cox, M.E.; Sinton, J.M.; Thomas, D.M.; Mattice, M.D.; Kauahikaua, J.P.; Helstern, D.M.; Fan, P.

1979-09-01T23:59:59.000Z

106

Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Under ground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Underground Discharge Points (UDPs) included in both CAU 406 and CAU 429. The CAUs are located in Area 3 and Area 9 of the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada.

DOE /NV

1999-05-20T23:59:59.000Z

107

Home | Buildings Technology & Urban Systems Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Buildings & Urban Systems Buildings Lab Buildings & Urban Systems Buildings Technology & Urban Systems Department Search Search Home About Us Groups Tools & Guides Facilities Publications News Links Contact Us Staff The Building Technology and Urban Systems Department (BTUS) works closely with industry to develop technologies for buildings that increase energy efficiency, and improve the comfort, health, and safety of building occupants. Berkeley Lab Hosts 5 Emerging Leaders During TechWomen 2013 As part of TechWomen 2013, emerging leaders from around the world toured a number of scientific facilities in the Bay Area, including the Advanced Light Source at Berkeley Lab. Pho Read More The Retrocommissioning Sensor Suitcase Brings Energy Efficiency to Small Commercial Buildings The data module communicates wirelessly with the smart pad, which launches

108

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

109

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

110

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

111

Area 2 Photo Skid Wastewater Pit corrective action decision document Corrective Action Unit Number 332: Part 1, and Closure report: Part 2  

SciTech Connect

The Area 2 Photo Skid Wastewater Pit, Corrective Action Site (CAS) Number 02-42-03, the only CAS in Corrective Action Unit (CAU) Number 332, has been identified as a source of unquantified, uncontrolled, and unpermitted wastewater discharge. The Photo Skid was used for photographic processing of film for projects related to weapons testing, using Kodak RA4 and GPX film processing facilities for black and white and color photographs. The CAU is located in Area 2 of the Nevada Test Site, Nye County, Nevada. The CAS consists of one unlined pit which received discharged photographic process wastewater from 1984 to 1991. The Corrective Action Decision Document (CADD) and the Closure Report (CR) have been developed to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CADD and the CR for this CAS have been combined because sample data collected during the site investigation do not exceed regulatory limits established during the Data Quality Objectives (DQO) process. The purpose of the CADD and the CR is to justify why no corrective action is necessary at the CAU based on process knowledge and the results of the corrective action investigation and to request closure of the CAU. This document contains Part 1 of the CADD and Part 2 of the CR.

NONE

1997-06-20T23:59:59.000Z

112

Prediction and visualization of GPS multipath signals in urban areas using LiDAR Digital Surface Models and building footprints  

Science Conference Proceedings (OSTI)

This paper explains a ray tracing method which is applied to prediction and visualization of diffracted and reflected GPS signals in dense urban areas. Reflected and diffracted signals can have a detrimental effect on GPS positioning accuracy especially ... Keywords: 3D visualization, GPS multipath, LiDAR

Jing Li; George Taylor; David Kidner; Mark Ware

2008-11-01T23:59:59.000Z

113

Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"  

U.S. Energy Information Administration (EIA) Indexed Site

Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned Buildings","Federal","State","Local" "All Buildings* ...............",4645,4011,1841,2029,141,635,46,164,425 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2272,980,1205,87,280,"Q",77,183 "5,001 to 10,000 ..............",889,783,384,375,"Q",106,"Q","Q",87

114

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

115

Buildings to Grid Integration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings to Grid Integration Buildings to Grid Integration Buildings to Grid Integration The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to address the integration and optimization of buildings with the nation's energy grid. Buildings and the Energy Grid As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and/or variable generation sources and loads, such as those of electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. For example, the U.S. government, many states, municipalities, and utility service areas are diversifying and distributing their generation mix, including a larger percentage of

116

Buildings to Grid Integration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings to Grid Integration Buildings to Grid Integration Buildings to Grid Integration The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to address the integration and optimization of buildings with the nation's energy grid. Buildings and the Energy Grid As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and/or variable generation sources and loads, such as those of electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. For example, the U.S. government, many states, municipalities, and utility service areas are diversifying and distributing their generation mix, including a larger percentage of

117

Assessing asbestos exposure in public buildings  

Science Conference Proceedings (OSTI)

Airborne asbestos levels were measured by direct transmission electron microscopy in 49 public buildings from three categories: (1) buildings without asbestos-containing material (ACM); (2) buildings with all or most of the ACM in good condition allowing for a limited number of areas of moderate damage; and (3) buildings with at least one area of significantly damaged ACM or numerous areas of moderate damage. Although the absolute airborne asbestos levels were very low, Category (3) had the highest median levels followed by Category (2), Category (1), and outdoors. Category (3) levels were significantly higher than Category (1). Another objective was to field test an assessment method for ACM developed facilitate abatement decision making in the context of an asbestos-management program. Using rate consistency as an evaluation criterion, the three factors showed promise as assessment tools for use in the field. Each factor showed statistically significant consistency among raters.

Hatfield, J.; Stockrahm, J.; Todt, F.; Ogden, J.; Leczynski, B.

1988-05-01T23:59:59.000Z

118

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

119

Corrective Action Plan for Corrective Action Unit 423: Area 3 Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada  

SciTech Connect

The Corrective Action Plan provides the closure methods for Corrective Action Unit (CAU) 423: Area 3 Building 03-60 Underground Discharge Point (UDP), Tonoopah Test Range, Nevada. CAU 423 consists of the UDP and an associated discharge pipeline extending from Building 03-60. Corrective action investigations were completed in January 1998, and are documented in the Corrective Action Decision Document (US DOE, 1998). Results indicate an asymmetrical hydrocarbon plume, measuring 11 meters (m) 35 ft in length, 6 m (20 ft) in width, and 4 to 20 m (14 to 65 ft) in depth, has formed beneath the UDP and migrated westward. Petroleum hydrocarbon levels were identified above the 100 miligrams per kilogram (mg/kg) action level specified in Nevada Administrative Code (NAC) 445A (NAC 1996). The highest petroleum hydrocarbon concentration detected was 2,4000 mg/kg at 6 m, 20 ft, below surface grade as diesel. Corrective actions will consist of administrative controls and in place closure of th e UDP and its associated discharge pipeline.

Bechtel Nevada

1998-10-31T23:59:59.000Z

120

Buildings*","Buildings on Multibuilding Facilities",,"All  

U.S. Energy Information Administration (EIA) Indexed Site

1. Multibuilding Facilities, Number of Buildings and Floorspace for Non-Mall Buildings, 2003" 1. Multibuilding Facilities, Number of Buildings and Floorspace for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)",,,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings on Multibuilding Facilities",,"All Buildings*","Buildings on Multibuilding Facilities" ,,"All Buildings","With Central Physical Plant",,"All Buildings","With Central Physical Plant" "All Buildings* ...............",4645,1477,116,64783,24735,6604 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,771,"Q",6789,2009,"Q" "5,001 to 10,000 ..............",889,259,"Q",6585,1912,"Q"

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

1999 CBECS Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey, or CBECS, covers a wide variety of building types—office buildings, shopping malls, hospitals, churches, and fire stations, to name just a few. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial. For an overview of definitions and examples of the CBECS building types, see Description of Building Types. Compare Activities by... Number of Buildings Building size Employees Building Age Energy Conservation Number of Computers Electricity Generation Capability

122

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

123

Building Scale DC Microgrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale DC Microgrids Title Building Scale DC Microgrids Publication Type Conference Proceedings LBNL Report Number LBNL-5729E Year of Publication 2012 Authors Marnay, Chris, Steven...

124

Building Technologies Office: Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Image comprised of Better Buildings terms, each term having a clickable area. The green terms are Communitywide Competition, Carrotmobs, Neighborhood Infrared Home Scans,...

125

Document ID Number: RL-721  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document ID Number: Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLC (WRPS) will perform an outdoor, terrestrial ecological research study to attempt to control and deter nesting birds at the 241-C Tank Farm. This will be a preventative study to test possible methods for controlling &/or minimizing the presence and impacts of nesting birds inside the tank farm. A nesting bird

126

Low Cost Thin Film Building-Integrated PV Systems: Cooperative Research and Development Final Report, CRADA Number CRD-07-239  

DOE Green Energy (OSTI)

In this CRADA, NREL's Silicon group members performed the following research activities: (1) investigation of the role of hydrogen in growth of a mixed-phase nc-Si:H/a-Si:H material; (2) role of hydrogen in light-induced degradation of a-Si:H and development of Staebler-Wronski effect resistive a-Si:H; and (3) performing characterizations of UniSolar's a-Si:H and nc-Si materials, with goal to help optimizing large-area uniformity and quality of the UniSolar's nanocrystalline Si:H.

Stradins, P.

2011-10-01T23:59:59.000Z

127

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

128

Buildings*","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

B6. Building Size, Number of Buildings for Non-Mall Buildings, 2003" B6. Building Size, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings* ...............",4645,2552,889,738,241,129,65,25,7 "Principal Building Activity" "Education ....................",386,162,56,60,48,39,16,5,"Q" "Food Sales ...................",226,164,44,"Q","Q","Q","Q","N","N"

129

Buildings","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003" A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003" ,"Number of Buildings (thousand)" ,"All Buildings","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",4859,2586,948,810,261,147,74,26,8 "Principal Building Activity" "Education ....................",386,162,56,60,48,39,16,5,"Q" "Food Sales ...................",226,164,44,"Q","Q","Q","Q","N","N"

130

Buildings*","Principal Building Activity"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Principal Building Activity: Part 1, Number of Buildings for Non-Mall Buildings, 2003" 1. Selected Principal Building Activity: Part 1, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Principal Building Activity" ,,"Education","Food Sales","Food Service","Health Care",,"Lodging","Retail (Other Than Mall)" ,,,,,"Inpatient","Outpatient" "All Buildings* ...............",4645,386,226,297,8,121,142,443 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,162,164,202,"N",56,38,241 "5,001 to 10,000 ..............",889,56,44,65,"N",38,21,97 "10,001 to 25,000 .............",738,60,"Q",23,"Q",19,38,83

131

Building Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Equipment Building Technologies Deployment System/Building Integration Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy consumption of the nation's buildings and resulting carbon emissions is essential to achieving a sustainable clean energy future. To address the enormous challenge, Oak Ridge National Laboratory is focused on helping develop new building technologies, whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations in all of these areas.

132

Step 4. Inspect the Building During and After Construction | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

4. Inspect the Building During and After Construction 4. Inspect the Building During and After Construction A number of website resources offer checklists to help officials organize the many energy-code-related areas to inspect on the construction site. Several examples of different checklists are listed below. When applicable and approved for use, REScheck and COMcheck inspection checklists should be provided as part of the energy code compliance documentation for the building. REScheck/COMcheck checklists. The REScheck and COMcheck software programs generate reports that list the energy-code-related items to be inspected. The lists include mandatory items such as air leakage control, duct insulation and sealing, temperature controls, and lighting requirements, and can be used by officials to assist during on-site

133

Corrective Action Investigation Plan for Corrective Action Unit 266: Area 25 Building 3124 Leachfield, Nevada Test Site, Nevada, Revision 1, February 1999  

SciTech Connect

The Corrective Action Investigation Plan for Corrective Action Unit 266, Area 25 Building 3124 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U.S. Department of Defense. Corrective Action Unit 266 consists of the Corrective Action Site 25-05-09 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 266. Corrective Action Unit 266 is located southwest of Building 3124 which is located southwest and adjacent to Test Cell A. Test Cell A was operational during the 1960s to test nuclear rocket reactors in support of the Nuclear Rocket Development Station. Operations within Building 3124 from 1962 through the early 1990s resulted in effluent releases to the leachfield and associated collection system. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with Test Cell A reactor testing operations, various laboratories including a high-level radioactivity environmental sample handling laboratory, and possibly the Treatability Test Facility. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include radionuclides, oil/diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. Samples will also be analyzed for radionuclides and polychlorinated biphenyls not considered during the DQO process. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: (1) Perform a radiological walkover survey. (2) Perform video and radiation surveys of the discharge and outfall lines. (3) Collect samples from within the septic tank. (4) Mark approximate locations of leachfield distribution lines on the ground surface. (5) Collect subsurface soil samples in areas of the collection system including the septic tank and outfall end of the diversion chamber. (6) Collect subsurface soil samples underlying the leachfield distribution pipes. (7) Field screen samples for volatile organic compounds and radiological activity. (8) Drill boreholes and collect subsurface soil samples if required. (9) Analyze soil samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, total petroleum hydrocarbons (oil/diesel-range organics), and polychlorinated biphenyls. (1) Analyze a minimum of 25 percent of the soil samples for gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, isotopic americium, and strontium-90 if radiological field screening levels are exceeded. (2) Collect samples from native soils beneath the distribution system and analyze for geotechnical/hydrologic parameters. (3) Collect and analyze bioassessment samples at Site Supervisors discretion if volatile organic compounds exceed field-screening levels. Additional sampling and analytical details are presented.

U.S. Department Of Energy, Nevada Operations Office

1999-02-24T23:59:59.000Z

134

Corrective Action Decision Document/Closure Report for Corrective Action Unit 266: Area 25 Building 3124 Leachfield, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared for Corrective Action Unit (CAU) 266, Area 25 Building 3124 Leachfield, in accordance with the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 266 includes Corrective Action Site (CAS) 25-05-09. The Corrective Action Decision Document and Closure Report were combined into one report because sample data collected during the corrective action investigation (CAI) indicated that contaminants of concern (COCs) were either not present in the soil, or present at concentrations not requiring corrective action. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's recommendation that no corrective action was necessary for CAU 266. From February through May 1999, CAI activities were performed as set forth in the related Corrective Action Investigation Plan. Analytes detected during the three-stage CAI of CAU 266 were evaluated against preliminary action levels (PALs) to determine COCs, and the analysis of the data generated from soil collection activities indicated the PALs were not exceeded for total volatile/semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, gamma-emitting radionuclides, isotopic uranium/plutonium, and strontium-90 for any of the samples. However, COCs were identified in samples from within the septic tank and distribution box; and the isotopic americium concentrations in the two soil samples did exceed PALs. Closure activities were performed at the site to address the COCs identified in the septic tank and distribution box. Further, no use restrictions were required to be placed on CAU 266 because the CAI revealed soil contamination to be less than the 100 millirems per year limit established by DOE Order 5400.5.

NNSA /NV

2000-02-17T23:59:59.000Z

135

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

136

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings Trend—Detail Commercial Floorspace Trend—Detail Background: Adjustment to data Trends in Buildings and Floorspace Each year buildings are added to and removed from the commercial buildings sector. Buildings are added by new construction or conversion of existing buildings from noncommercial to commercial activity. Buildings are removed by demolition or conversion from commercial to noncommercial activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the United States; by 1992, the number increased 27 percent to 4.8 million (an average annual increase of 1.8%) (Figure 1). In 1995, the estimated number declined to 4.6 million buildings, but it is unlikely that there was an actual decline in the number of buildings. To understand the apparent decline, two factors should be considered—the change in the way that the target population of commercial buildings was defined in 1995 and the uncertainty of estimates from sample surveys:

137

Commercial Buildings Characteristics, 1992  

Science Conference Proceedings (OSTI)

Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

Not Available

1994-04-29T23:59:59.000Z

138

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

139

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

140

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Compare Activities by Number of Computers  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Computers Number of Computers Compare Activities by ... Number of Computers Office buildings contained the most computers per square foot, followed by education and outpatient health care buildings. Education buildings were the only type with more than one computer per employee. Religious worship and food sales buildings had the fewest computers per square foot. Percent of All Computers by Building Type Figure showing percent of all computers by building type. If you need assistance viewing this page, please call 202-586-8800. Computer Data by Building Type Number of Buildings (thousand) Total Floorspace (million square feet) Number of Employees (thousand) Total Computers (thousand) Computers per Million Square Feet Computers per Thousand Employees All Buildings 4,657

142

Commercial Prototype Building Models | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

143

High-Tech Buildings - Market Transformation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech Buildings - Market Transformation Project Title High-Tech Buildings - Market Transformation Project Publication Type Report LBNL Report Number LBNL-49112 Year of Publication...

144

Buildings*","Principal Building Activity"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Selected Principal Activity: Part 2, Number of Buildings for Non-Mall Buildings, 2003" 3. Selected Principal Activity: Part 2, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Principal Building Activity" ,,"Office","Public Assembly","Public Order and Safety","Religious Worship","Service","Warehouse and Storage" "All Buildings* ...............",4645,824,277,71,370,622,597 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,503,119,37,152,434,294 "5,001 to 10,000 ..............",889,127,67,"Q",104,100,110 "10,001 to 25,000 .............",738,116,69,"Q",83,66,130 "25,001 to 50,000 .............",241,43,9,"Q",27,17,27

145

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

146

The Building Design Advisor  

SciTech Connect

The Building Design Advisor (BDA) is a software environment that supports the integrated use of multiple analysis and visualization tools throughout the building design process, from the initial, schematic design phases to the detailed specification of building components and systems. Based on a comprehensive design theory, the BDA uses an object-oriented representation of the building and its context, and acts as a data manager and process controller to allow building designers to quickly navigate through the multitude of descriptive and performance parameters addressed by the analysis and visualization tools linked to the BDA. Through the Browser the user can edit the values of input parameters and select any number of input and/or output parameters for display in the Decision Desktop. The Desktop allows building designers to compare multiple design alternatives with respect to any number of parameters addressed by the tools linked to the BDA.

Papamichael, K.; LaPorta, J.; Chauvet, H.; Collins, D.; Trzcinski, T.; Thorpe, J.; Selkowitz, S.

1996-03-01T23:59:59.000Z

147

Benchmarking Building Performance & the Australian Building Greenhouse  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Building Performance & the Australian Building Greenhouse Benchmarking Building Performance & the Australian Building Greenhouse Rating Scheme Speaker(s): Paul Bannister Date: August 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Stephen Selkowitz (Two topics): Benchmarking Building Performance: In a variety of voluntary and regulatory initiatives around the globe, including the introduction of the European Building Performance Directive, the question of how to assess the performance of commercial buildings has become a critical issue. There are presently a number of initiatives for the assessment of actual building performance internationally, including in particular US Energy Star Buildings rating tools and the Australian Building Greenhouse Rating scheme. These schemes seek to assess building energy performance on the

148

Addendum to the Closure Report for Corrective Action Unit 423: Area 3 Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the July 1999, Closure Report for Corrective Action Unit 423: Area 3 Building 0360 Underground Discharge Point, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: This cover page that refers the reader to the UR Modification document for additional information The cover and signature pages of the UR Modification document The NDEP approval letter The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-002-0308, Underground Discharge Point. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Lynn Kidman

2008-10-01T23:59:59.000Z

149

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

150

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South- and west-facing windows allow more South- and west-facing windows allow more natural light into the building and reduce electricity use * Extensive awnings and overhangs control the light and heat entering the building during the day to reduce cooling loads * Rooftop light monitors in the garden area provide controllable natural light from above to save on electricity consumption * Insulating concrete form block construction with an R-22 insulation value helps control the temperature of the building and maximize

151

A number of organizations,  

E-Print Network (OSTI)

buying power to purchase green power. The city of Chicago has formed an alliance with 47 other local installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green to competition, the city of Chicago and 47 other local government agencies formed the Local Government Power

152

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

153

1999 Commercial Buildings Characteristics--Disaggregated Principal Building  

U.S. Energy Information Administration (EIA) Indexed Site

Disaggregated Principal Building Activities Disaggregated Principal Building Activities Disaggregated Principal Building Activities The 1999 CBECS collected information for 20 general building activities. Five of the activities were aggregated and data for 16 activities are displayed in the detailed tables. Within the aggregated warehouse and storage category, nonrefrigerated warehouses greatly exceeded refrigerated warehouses both in amount of floorspace and number of buildings (compare Figure 1 with Figure 2). Within the mercantile category, the number of retail buildings greatly exceeded strip shopping buildings which, in turn, greatly exceeded enclosed shopping malls (Figure 2). The amount of mercantile floorspace was more evenly distributed (Figure 1) because of differences in average building size-enclosed malls were largest and retail buildings the smallest.

154

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

155

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

156

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

157

Numerical Modeling of 90Sr and 137Cs Transport from a Spill in the B-Cell of the 324 Building, Hanford Site 300 Area  

SciTech Connect

To characterize the extent of contamination under the 324 Building, a pit was excavated on the north side of the building in 2010 by Washington Closure Hanford LLC (WCH). Horizontal closed-end steel access pipes were installed under the foundation of the building from this pit and were used for measuring temperatures and exposure rates under the B-Cell. The deployed sensors measured elevated temperatures of up to 61 C (142 F) and exposure rates of up to 8,900 R/hr. WCH suspended deactivation of the facility because it recognized that building safety systems and additional characterization data might be needed for remediation of the contaminated material. The characterization work included additional field sampling, laboratory measurements, and numerical flow and transport modeling. Laboratory measurements of sediment physical, hydraulic, and geochemical properties were performed by Pacific Northwest National Laboratory (PNNL) and others. Geochemical modeling and subsurface flow and transport modeling also were performed by PNNL to evaluate the possible extent of contamination in the unsaturated sand and gravel sediments underlying the building. Historical records suggest that the concentrated 137Cs- and 90Sr-bearing liquid wastes that were spilled in B-Cell were likely from a glass-waste repository testing program associated with the Federal Republic of Germany (FRG). Incomplete estimates of the aqueous chemical composition (no anion data provided) of the FRG waste solutions were entered into a geochemical speciation model and were charge balanced with nitrate to estimate waste composition. Additional geochemical modeling was performed to evaluate reactions of the waste stream with the concrete foundation of the building prior to the stream entering the subsurface.

Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Lindberg, Michael J.; Clayton, Ray E.

2012-03-19T23:59:59.000Z

158

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

159

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

160

Personalized building comfort control  

E-Print Network (OSTI)

Creating an appropriate indoor climate is essential to worker productivity and personal happiness. It is also an area of large expenditure for building owners. And, with rising fuel costs, finding ways of reducing energy ...

Feldmeier, Mark Christopher, 1974-

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

162

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

163

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

164

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

165

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

166

Table 2. Number of U.S. Housing Units by Census Region and ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 2. Number of U.S. ...

167

Building Airtightness: Research and Practice  

NLE Websites -- All DOE Office Websites (Extended Search)

Fiscal Year 2014. Title Building Airtightness: Research and Practice Publication Type Book Chapter LBNL Report Number LBNL-53356 Year of Publication 2003 Authors Sherman, Max H.,...

168

Property:Building/InteriorHeight | Open Energy Information  

Open Energy Info (EERE)

Building/InteriorHeight Building/InteriorHeight Jump to: navigation, search This is a property of type Number. Interior height, m Pages using the property "Building/InteriorHeight" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 3.5 + Sweden Building 05K0002 + 3 + Sweden Building 05K0003 + 3 + Sweden Building 05K0004 + 3 + Sweden Building 05K0005 + 2.8 + Sweden Building 05K0006 + 3 + Sweden Building 05K0007 + 3.5 + Sweden Building 05K0008 + 3 + Sweden Building 05K0009 + 3 + Sweden Building 05K0010 + 3 + Sweden Building 05K0011 + 3 + Sweden Building 05K0012 + 3 + Sweden Building 05K0013 + 3 + Sweden Building 05K0014 + 3 + Sweden Building 05K0015 + 3.2 + Sweden Building 05K0016 + 3 + Sweden Building 05K0017 + 3 + Sweden Building 05K0018 + 3 +

169

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

170

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

171

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

172

Cooperative Monitoring Center Occasional Paper/13: Cooperative monitoring for confidence building: A case study of the Sino-Indian border areas  

Science Conference Proceedings (OSTI)

This occasional paper identifies applicable cooperative monitoring techniques and develops models for possible application in the context of the border between China and India. The 1993 and 1996 Sino-Indian agreements on maintaining peace and tranquility along the Line of Actual Control (LAC) and establishing certain confidence building measures (CBMs), including force reductions and limitation on military exercises along their common border, are used to examine the application of technically based cooperative monitoring in both strengthening the existing terms of the agreements and also enhancing trust. The paper also aims to further the understanding of how and under what conditions technology-based tools can assist in implementing existing agreements on arms control and confidence building. The authors explore how cooperative monitoring techniques can facilitate effective implementation of arms control agreements and CBMS between states and contribute to greater security and stability in bilateral, regional, and global contexts.

SIDHU,WAHEGURU PAL SINGH; YUAN,JING-DONG; BIRINGER,KENT L.

1999-08-01T23:59:59.000Z

173

EA-1178: 300 Area Steam Plant Replacement, Hanford Site, Richland,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

78: 300 Area Steam Plant Replacement, Hanford Site, Richland, 78: 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington EA-1178: 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for a proposed energy conservation measure for a number of buildings in the 300 Area of the U.S. Department of Energy Hanford Site. The proposed action includes replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing new natural gas pipelines to provide a source for many of these units and constructing a central control building to operate and maintain the system. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 12, 1997 EA-1178: Finding of No Significant Impact

174

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, Rev 0 3, Rev 0 I. Project Title: MSA Annual Categorical Exclusion for Support Buildings under 10 CFR 1021, Subpart D, Appendix B, Bl.l5 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform siting, construction or modification, and operation of support buildings and support structures (including, but not limited to, trailers and prefabricated and modular buildings) within or contiguous to an already developed area (where active utilities and currently used roads are readily accessible). Covered support buildings and structures include, but are not limited to,

175

BUILD UP: Energy Solutions for Better Buildings (Website) | Open Energy  

Open Energy Info (EERE)

BUILD UP: Energy Solutions for Better Buildings (Website) BUILD UP: Energy Solutions for Better Buildings (Website) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BUILD UP: Energy Solutions for Better Buildings (Website) Focus Area: Energy Efficiency Topics: Best Practices Website: www.buildup.eu/home Equivalent URI: cleanenergysolutions.org/content/build-energy-solutions-better-buildin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Building Certification This website serves as a forum for the exchange of best working practices and knowledge and the transfer of tools and resources. The BUILD UP initiative was established by the European Commission to support European

176

Building Green in Greensburg: Dillons Kwik Shop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dillons Kwik Shop Dillons Kwik Shop After a tornado destroyed 95% of Greensburg, Kansas, in May 2007, residents needed a convenience store for gas and groceries. Just a year after the storm, Kroger Company broke ground on a prototype for rural grocery stores. Completed in February 2009, the new Dillons Kwik Shop is a hybrid between a convenience store and a gas station. Kroger Company hopes this type of store will serve the grocer needs of several rural county areas. Additionally, this building includes a number of unique green building and energy efficiency features. ENERGY EFFICIENCY FEATURES * Well-insulated roof with an R-value of R-24 that prevents heat loss and maintains cooler temperatures in summer * A high albedo reflective roof coating reflects heat away from the building in

177

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

178

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

179

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

180

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

182

Phone Numbers for Beam Lines and Other Services | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Phone Numbers for Beam Lines and Other Services Phone Numbers for Beam Lines and Other Services The local area code for SSRL is 650. All numbers listed below should be dialed as 650-926-xxxx from other area codes. When calling an onsite location from within SSRL simply dial the 4-digit extension. When calling an offsite number within the 650 area code dial, dial 9 plus the 7-digit number. To call a number in another area code dial 9-1-area code - phone number. Beam Lines Beam Line Extension 1-4 5214 1-5 5215 2-1 5221 2-2 5222 2-3 5223 3-3 5233 3-4 5234 4-1 5241 4-2 5242 4-3 5243 5-2 5252 5-3 5253 5-4 5254 6-2 5262 7-1 5271 7-2 5272 7-3 5273 8-1 5281 8-2 5282 9-1 5291 9-2 5292 9-3 5293 10-1 5101 10-2 5102 11-1 8648 11-2 8650 11-3 8656 12-2 5212 13-1 5131 13-2 5132 13-3 5133 User Labs/Services Building Lab/Service Extension

183

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

184

buildings | OpenEI  

Open Energy Info (EERE)

buildings buildings Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2

185

Building technology roadmaps  

SciTech Connect

DOE's Office of Building Technology, State and Community Programs (BTS) is facilitating an industry-led initiative to develop a series of technology roadmaps that identify key goals and strategies for different areas of the building and equipment industry. This roadmapping initiative is a fundamental component of the BTS strategic plan and will help to align government resources with the high-priority needs identified by industry.

1999-01-27T23:59:59.000Z

186

Building Component Library | Open Energy Information  

Open Energy Info (EERE)

Building Component Library Building Component Library Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Component Library Agency/Company /Organization: NREL Sector: Energy Focus Area: Buildings Phase: Create a Vision, Evaluate Options, Develop Goals, Prepare a Plan Topics: Resource assessment, Technology characterizations Resource Type: Dataset Website: bcl.nrel.gov Cost: Free OpenEI Keyword(s): buildings, nrel, data, component Language: English Building Component Library Screenshot References: Buildings Component Library[1] The Building Component Library is a repository of building data used to create building energy models. The Building Component Library is a repository of building data used to create building energy models. The data are broken down into separate

187

CATEGORICAL EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, 300 AREA, HANFORD SITE, RICHLAND, WASHINGTON Proposed Action: The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to upgrade a landscaping irrigation system in the 300 Area. Location of Action: In the landscaped area around the 331 Building, Hanford Site Description of the Proposed Action: The proposed action is to upgrade the existing 331 Building landscaping irrigation system by using nearby aquaculture effluent instead of

188

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

189

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

190

Thermal distribution systems in commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal distribution systems in commercial buildings Thermal distribution systems in commercial buildings Title Thermal distribution systems in commercial buildings Publication Type Journal Article LBNL Report Number LBNL-51860 Year of Publication 2003 Authors Diamond, Richard C., Craig P. Wray, Darryl J. Dickerhoff, Nance Matson, and Duo Wang Start Page Chapter Abstract Previous research suggests that HVAC thermal distribution systems in commercial buildings suffer from thermal losses, such as those caused by duct air leakage and poor duct location. Due to a lack of metrics and data showing the potentially large energy savings from reducing these losses, the California building industry has mostly overlooked energy efficiency improvements in this area. The purpose of this project is to obtain the technical knowledge needed to properly measure and understand the energy efficiency of these systems. This project has three specific objectives: to develop metrics and diagnostics for determining system efficiencies, to develop design and retrofit information that the building industry can use to improve these systems, and to determine the energy impacts associated with duct leakage airflows in an existing large commercial building. The primary outcome of this project is the confirmation that duct leakage airflows can significantly impact energy use in large commercial buildings: our measurements indicate that adding 15% duct leakage at operating conditions leads to an increase in fan power of about 25 to 35%. This finding is consistent with impacts of increased duct leakage airflows on fan power that have been predicted by previous simulations. Other project outcomes include the definition of a new metric for distribution system efficiency, the demonstration of a reliable test for determining duct leakage airflows, and the development of new techniques for duct sealing. We expect that the project outcomes will lead to new requirements for commercial thermal distribution system efficiency in future revisions of California's Title 24.

191

Networks in Buildings: Which Path Forward?  

NLE Websites -- All DOE Office Websites (Extended Search)

Networks in Buildings: Which Path Forward? Networks in Buildings: Which Path Forward? Title Networks in Buildings: Which Path Forward? Publication Type Conference Paper LBNL Report Number LBNL-2511E Year of Publication 2008 Authors Nordman, Bruce Conference Name 2008 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords communication and standards, technologies Abstract To date, digital networks have principally been installed for connecting information technology devices, with more modest use in consumer electronics, security, and large building control systems. The next 20 years will see much greater deployment of networks in buildings of all types, and across all end uses. Most of these are likely to be introduced primarily for reasons other than energy efficiency, and add energy use for network interfaces and network products. Widespread networking could easily lead to increased energy use, and experience with IT and CE networks suggests this may be likely. Active engagement by energy efficiency professionals in the architecture and design of future networks could lead to their being a large and highly cost-effective tool for efficiency. However, network standards are complex and take many years to develop and negotiate so that lack of action on this in the near term may foreclose important opportunities for years or decades to come. Digital networks need to be common globally, providing another challenge to building systems and elements that are more commonly designed only for national or regional markets. Key future networks are lighting, climate control, and security/presence. This paper reviews some examples of past network designs and use and the lessons they hold for future building networks. It also highlights key needed areas for research, policy, and standards development.

192

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

193

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

194

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

195

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

196

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

197

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

198

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

199

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

200

Building Technology and Urban Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior and infrared thermograph Office building exterior and infrared thermograph Building Technology and Urban Systems Building Technology and Urban Systems application/pdf icon btus-org-chart-03-2013.pdf In the areas of Building Technology and Urban Systems, EETD researchers conduct R&D and develop physical and information technologies to make buildings and urban areas more energy- and resource-efficient. These technologies create jobs and products for the marketplace in clean technology industries. They improve quality of life, and reduce the emissions of pollutants, including climate-altering greenhouse gases. BTUSD's goal is to provide the technologies needed to operate buildings at 50 to 70 percent less energy use than average today. BTUS develops, demonstrates and deploys: Information technologies for the real-time monitoring and control of

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

202

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

203

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

204

Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Buildings: Metrics, Benchmarks, Actions Title Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions Publication Type Report LBNL Report Number...

205

Validation of the Window Model of the Modelica Buildings Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of the Window Model of the Modelica Buildings Library Title Validation of the Window Model of the Modelica Buildings Library Publication Type Report LBNL Report Number...

206

Office Buildings - End-Use Equipment  

U.S. Energy Information Administration (EIA) Indexed Site

End-Use Equipment End-Use Equipment The types of space heating equipment used in office buildings were similar to those of the commercial buildings sector as a whole (Table 8 and Figure 5). Furnaces were most used followed by packaged heating systems. Individual space heaters were third-most used but were primarily used to supplement the building's main heating system. Boilers and district heat systems were more often used in larger buildings. Table 8. Types of Heating Equipment Used in Office Buildings, 2003 Number of Buildings (thousand) Total Floorspace (million square feet) All Buildings* All Office Buildings All Buildings* All Office Buildings All Buildings 4,645 824 64,783 12,208 All Buildings with Space Heating 3,982 802 60,028 11,929 Heating Equipment (more than one may apply)

207

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

208

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

209

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

210

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

211

Document ID Number: RL-721 REV4 NEPA REVIEW SCREENING FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, Rev 0 6, Rev 0 I. Project Title: MSA Annual Categorical Exclusion for Relocation of Buildings under 10 CFR 1021, Subpart D, Appendix B, B1.22 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform relocation of buildings (including, but not limited to, trailers and prefabricated buildings) to an already developed area (where active utilities and currently used roads are readily accessible) Mobile offices and trailers will be relocated and include installation of supports, tie- down anchors, trailer skirting, stairways, walkways, ramps, and other support systems for

212

RL-721 REV4 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Washington River Protection Solutions LLC - Renovation of 274-AW Under CX B2.l, "Workplace Enhancements" 11. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLC (WRPS) will renovate the 274-AW building. The 274-AW building is a 10-wide modular building located in the 200 East Area near the 241-AW and 241-AP Tank Farms. It was installed in 1993 by Eric R. Brown Construction, Inc. as a support facility for 272-AW. The facility currently serves as an office for WRPS' Base Operations managers and engineers. 274-AW is centrally located and easily accessible,

213

Case Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Name of Petitioner: Name of Petitioner: Date of Filing: Case Number: Department of Energy Washington, DC 20585 JUL 2 2 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Appeal Dean P. Dennis March 2, 2009 TBA-0072 Dean D. Dennis filed a complaint of retaliation under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Mr. Dennis alleged that he engaged in protected activity and that his employer, National Security Technologies, LLC (NSTec ), subsequently terminated him. An Office of Hearings and Appeals (OHA) Hearing Officer denied relief in Dean P. Dennis, Case No. TBH-0072, 1 and Mr. Dennis filed the instant appeal. As discussed below, the appeal is denied. I. Background The DOE established its Contractor Employee Protection Program to "safeguard public

214

JOB NUMBER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . . . . . . . . .: LEAVE BLANK (NARA use only) JOB NUMBER N/-&*W- 9d - 3 DATE RECEIVED " -1s - 9 J - NOTIFICATION TOAGENCY , In accordance with the provisions of 44 U.S.C. 3303a the disposition request. including amendments, is ap roved except , . l for items that may be marke,, ,"dis osition not approved" or "withdrawn in c o i m n 10. 4. NAME OF PERSON WITH WHOM TO CONFER 5 TELEPHONE Jannie Kindred (202) 5&-333 5 - 2 -96 6 AGENCYCERTIFICATION -. ~ - I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal are not now needed for the business of this agency or wiRnot be needed after t G t r & s s d ; and that written concurrence from

215

KPA Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supports CMM-SW Level 3 Supports CMM-SW Level 3 Mapping of the DOE Information Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM-SW) level 3. Date: September 2002 Page 1 KPA Number KPA Activity SEM Section SEM Work Product SQSE Web site http://cio.doe.gov/sqse ORGANIZATION PROCESS FOCUS OPF-1 The software process is assessed periodically, and action plans are developed to address the assessment findings. Chapter 1 * Organizational Process Management * Process Improvement Action Plan * Methodologies ! DOE Methodologies ! SEM OPF-2 The organization develops and maintains a plan for its software process development and improvement activities. Chapter 1 * Organizational Process Management * Process Improvement

216

The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies  

SciTech Connect

Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

Pawloski, G A; Wurtz, J; Drellack, S L

2009-12-29T23:59:59.000Z

217

Building Energy Software Tools Directory: BuildingAdvice  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingAdvice BuildingAdvice BuildingAdvice™ is a user-friendly, Web-based platform designed to assess building energy performance and identify and quantify energy savings opportunities. Target buildings are in the 5k-200k sq. ft. range, with scalability up to 1mm sq. ft. The platform combines 1) portable wireless sensor packages for capture of real-time building data, 2) automated entry of weather data, 3) manual entry of basic building information, and 4) proprietary EnGen™ energy modeling software. Output is a suite of comprehensive reports that benchmark against CBECS; provide key performance parameters including Energy Star rating, energy usage index, energy cost per square foot, and carbon emissions; provide ASHRAE Level II audits that quantify energy usage in four areas of

218

Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT  

E-Print Network (OSTI)

The present paper aims at describing the methodology and presents some final results of a work developed in the field of building energy benchmarking applied to the buildings of the Polytechnic Institute of Leiria, based on a thorough energy performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same typology and against targets previously defined. The energy performance indicator was computed based on two different relevant elements, the net floor area and number of served meals. Then, the results were ranked according to the percentile rules previously established, and compared. An environmental analysis based on equivalent CO2 emissions was also performed for each building.

Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

2012-01-01T23:59:59.000Z

219

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

220

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

222

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

223

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

224

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

225

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

226

Strategic Energy Management Through Optimizing the Energy Performance of Buildings  

E-Print Network (OSTI)

1/12/2007 Strategic Energy Management Through Optimizing the Energy Performance of Buildings Oak ambitious federal energy goals and achieve energy independence. The energy engineers, building equipment Buildings and Industrial Energy Efficiency areas has engendered a unique, comprehensive capability

227

Property:Building/Oid | Open Energy Information  

Open Energy Info (EERE)

Oid Oid Jump to: navigation, search This is a property of type Number. OID, m2 Pages using the property "Building/Oid" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 20,246 + Sweden Building 05K0002 + 7,700 + Sweden Building 05K0003 + 4,920 + Sweden Building 05K0004 + 26,420 + Sweden Building 05K0005 + 2,395 + Sweden Building 05K0006 + 13,957 + Sweden Building 05K0007 + 25,162 + Sweden Building 05K0008 + 8,040 + Sweden Building 05K0009 + 35,830 + Sweden Building 05K0010 + 460 + Sweden Building 05K0011 + 15,780 + Sweden Building 05K0012 + 23,220 + Sweden Building 05K0013 + 20,156 + Sweden Building 05K0014 + 1,487 + Sweden Building 05K0015 + 1,608 + Sweden Building 05K0016 + 2,786 + Sweden Building 05K0017 + 21,860 +

228

Sustainable Building Design Training | Open Energy Information  

Open Energy Info (EERE)

Sustainable Building Design Training Sustainable Building Design Training Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Building Design Training Agency/Company /Organization: United States Department of Energy Focus Area: Buildings Resource Type: Training materials Website: www1.eere.energy.gov/femp/program/sustainable_training.html References: Sustainable Building Design Training[1] Logo: Sustainable Building Design Training This training, sponsored by FEMP and other organizations, provides Federal agencies the essential information and skills needed to plan, implement, and manage sustainable buildings and sites. Overview "Sustainable Design Training Opportunities to learn more about sustainable design are available throughout the year. This training, sponsored by FEMP

229

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

230

Energy Efficiency: Transportation and Buildings  

Science Conference Proceedings (OSTI)

We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings

Michael S. Lubell; Burton Richter

2011-01-01T23:59:59.000Z

231

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

232

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

233

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

234

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

235

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

236

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

237

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

238

INL Green Building Strategy  

Science Conference Proceedings (OSTI)

Green buildings, also known as sustainable buildings, resource efficient buildings, and high performance buildings, are structures that minimize the impact on the environment by using less energy and water, reducing solid waste and pollutants, and limiting the depletion of natural resources. As Idaho National Laboratory (INL) becomes the nations premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish the mission. This infrastructure, particularly the buildings, should incorporate green design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. With this in mind, the recommendations described in this strategy are intended to form the INL foundation for green building standards. The recommendations in this strategy are broken down into three levels: Baseline Minimum, Leadership in Energy and Environmental Design (LEED)Certification, and Innovative. Baseline Minimum features should be included in all new occupied buildings no matter what the purpose or size. These features do not require significant research, design, or capital costs and yet they can reduce Operation and Maintenance (O&M) costs and produce more environmentally friendly buildings. LEED Certification features are more aggressive than the Baseline Minimums in that they require documentation, studies, and/or additional funding. Combined with the Baseline Minimums, many of the features in this level will need to be implemented to achieve the goal of LEED certification. LEED Silver certification should be the minimum goal for all new buildings (including office buildings, laboratories, cafeterias, and visitor centers) greater than 25,000 square feet or a total cost of $10 million. Innovative features can also contribute to LEED certification, but are less mainstream than those listed in the previous two levels. These features are identified as areas where INL can demonstrate leadership but they could require significant upfront cost, additional studies, and/or development. Appendix A includes a checklist summary of the INL Green Building Strategy that can be used as a tool during the design process when considering which green building features to include. It provides a quick reference for determining which strategies have lower or no increased capital cost, yield lower O&M costs, increase employee productivity, and contribute to LEED certification.

Jennifer Dalton

2005-05-01T23:59:59.000Z

239

Better Buildings Neighborhood Program: Connecticut  

NLE Websites -- All DOE Office Websites (Extended Search)

TN | TX | VT | VI | VA WA | WI Connecticut Volunteers Help Connecticut Homeowners Save Energy Photo of a variety of buildings in an urban area, with a river flowing in the...

240

APS Area Emergency Supervisors  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Emergency Supervisors BUILDING AES AAES 400-EAA Raul Mascote Debra Eriksen-Bubulka 400-A (SPX) Tim Jonasson 400-Sectors 25-30 Reggie Gilmore 401-CLO Steve Downey Ed Russell...

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

242

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

243

Buildings*","Energy Used For  

U.S. Energy Information Administration (EIA) Indexed Site

4. Energy End Uses, Number of Buildings for Non-Mall Buildings, 2003" 4. Energy End Uses, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manu- facturing" "All Buildings* ...............",4645,3982,3625,3472,801,119 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,1841,1715,354,"Q" "5,001 to 10,000 ..............",889,782,732,725,155,29 "10,001 to 25,000 .............",738,659,629,607,127,28 "25,001 to 50,000 .............",241,225,216,217,69,"Q" "50,001 to 100,000 ............",129,123,118,119,50,8

244

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

245

Buildings*","Lit Buildings","Lighting Equipment Types  

U.S. Energy Information Administration (EIA) Indexed Site

3. Lighting Equipment, Number of Buildings for Non-Mall Buildings, 2003" 3. Lighting Equipment, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Lit Buildings","Lighting Equipment Types (more than one may apply)" ,,,"Incand- escent","Standard Fluor- escent","Compact Fluor- escent","High-Intensity Discharge","Halogen" "All Buildings* ...............",4645,4248,2184,3943,941,455,565 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2261,1070,2068,382,101,205 "5,001 to 10,000 ..............",889,821,416,772,148,88,107 "10,001 to 25,000 .............",738,716,412,665,189,105,123 "25,001 to 50,000 .............",241,231,145,223,102,60,55

246

Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries  

E-Print Network (OSTI)

Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

Smith, Jonathan Y. (Jonathan York), 1979-

2004-01-01T23:59:59.000Z

247

Area Takeoffs | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conservation Code (IECC) Document type: Technical Articles Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer Contacts Web Site Policies U.S....

248

Area Takeoffs 101 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Type: Commercial Residential Focus: Compliance Software: REScheck Target Audience: ArchitectDesigner Builder Code Official Contractor Engineer State Official Contacts Web Site...

249

Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings  

DOE Green Energy (OSTI)

Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

2004-07-01T23:59:59.000Z

250

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Measured Performance of Building Integrated Photovoltaic Panels. Round 2. Measured Performance of Building Integrated Photovoltaic Panels. ...

251

Building Retrofit and DSM Study in Jiangsu | Open Energy Information  

Open Energy Info (EERE)

Organization Natural Resources Defense Council Sector Energy Focus Area Buildings, Energy Efficiency Topics Background analysis, Pathways analysis, Policiesdeployment...

252

Building Diagnostic Market Deployment - Final Report  

Science Conference Proceedings (OSTI)

Operational faults are pervasive across the commercial buildings sector, wasting energy and increasing energy costs by up to about 30% (Mills 2009, Liu et al. 2003, Claridge et al. 2000, Katipamula and Brambley 2008, and Brambley and Katipamula 2009). Automated fault detection and diagnostic (AFDD) tools provide capabilities essential for detecting and correcting these problems and eliminating the associated energy waste and costs. The U.S. Department of Energy's (DOE) Building Technology Program (BTP) has previously invested in developing and testing of such diagnostic tools for whole-building (and major system) energy use, air handlers, chillers, cooling towers, chilled-water distribution systems, and boilers. These diagnostic processes can be used to make the commercial buildings more energy efficient. The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of AFDD tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: (1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, (2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and (3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations. PNNL has previously developed two diagnostic tools: (1) whole building energy (WBE) diagnostician and (2) outdoor air/economizer (OAE) diagnostician. WBE diagnostician is currently licensed non-exclusively to one company. As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite, Clockworks. PNNL also provided validation data sets and the WBE software tool to validate the KGS implementation. OAE diagnostician automatically detects and diagnoses problems with outdoor air ventilation and economizer operation for air handling units (AHUs) in commercial buildings using data available from building automation systems (BASs). As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite. PNNL also provided validation data sets and the OAE software tool to validate the KGS implementation. Finally, as part of this CRADA project, PNNL developed new processes to automate parts of the re-tuning process and transfer those process to KGS for integration into their software product. The transfer of DOE-funded technologies will transform the commercial buildings sector by making buildings more energy efficient and also reducing the carbon footprint from the buildings. As part of the CRADA with PNNL, KGS implemented the whole building energy diagnostician, a portion of outdoor air economizer diagnostician and a number of measures that automate the identification of re-tuning measures.

Katipamula, S.; Gayeski, N.

2012-04-30T23:59:59.000Z

253

Commercial Reference Building: Warehouse | OpenEI  

Open Energy Info (EERE)

Warehouse Warehouse Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Warehouse for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

254

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eX-00049 Rev. 1 eX-00049 Rev. 1 I. Project Title: Washington River Protection Solutions LLe -Proposed Actions For eY 2013 Scheduled To Take Place Under ex B1.15, "Support Buildings" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions ·e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLe (WRPS) will site, construct, operate small scale support buildings & structures, & undertake small-scale modifications of existing buildings & structures during CY 2013. WRPS will perform all activities in accordance with the categorical exclusion (CX) limitations set forth in 10 CFR 1021, Appendices A, B to Subpart

255

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM DOE/CX-00079  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 I. Project Title: CH2MHill Plateau Remediation Company - Siting, Construction, and Operation of Support Buildings and Support Structures, October 2012 to October 2013 11. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): CH2MHill Plateau Remediation Company (PRC) will be conducting siting, construction, and operation of support buildings and support structures on and near the Hanford Site in accordance with the categorical exclusion (CX) referenced in 10 CFR 1021, Appendix B, ex 81. 15, "Siting, Construction, and Operation of Support Buildings and Support Structures".

256

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

2. Heating Equipment, Number of Buildings, 1999" 2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,240,783,397,"Q",146,589,98 "5,001 to 10,000 ..............",1110,946,100,387,183,"Q",144,302,"Q" "10,001 to 25,000 .............",708,629,81,206,191,19,128,253,22

257

A bottom-up engineering estimate of the aggregate heating andcooling loads of the entire U.S. building stock  

SciTech Connect

A recently completed project for the U.S. Department of Energy's (DOE) Office of Building Equipment combined DOE-2 results for a large set of prototypical commercial and residential buildings with data from the Energy Information Administration (EIA) residential and commercial energy consumption surveys (RECS, CBECS) to estimate the total heating and cooling loads in U.S. buildings attributable to different shell components such as windows, roofs, walls, etc., internal processes, and space-conditioning systems. This information is useful for estimating the national conservation potentials for DOE's research and market transformation activities in building energy efficiency. The prototypical building descriptions and DOE-2 input files were developed from 1986 to 1992 to provide benchmark hourly building loads for the Gas Research Institute (GRI) and include 112 single-family, 66 multi-family, and 481 commercial building prototypes. The DOE study consisted of two distinct tasks : (1) perform DOE-2 simulations for the prototypical buildings and develop methods to extract the heating and cooling loads attributable to the different building components; and (2) estimate the number of buildings or floor area represented by each prototypical building based on EIA survey information. These building stock data were then multiplied by the simulated component loads to derive aggregated totals by region, vintage, and building type. The heating and cooling energy consumption of the national building stock estimated by this bottom-up engineering approach was found to agree reasonably well with estimates from other sources, although significant differences were found for certain end-uses. The main added value from this study, however, is the insight it provides about the contributing factors behind this energy consumption, and what energy savings can be expected from efficiency improvements for different building components by region, vintage, and building type.

Huang, Yu Joe; Brodrick, Jim

2000-08-01T23:59:59.000Z

258

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Sustainable Program Areas » Sustainable Buildings & Campuses » Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the

259

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

260

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Glossary Term - Atomic Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Previous Term (Alpha Particle) Glossary Main Index Next Term (Avogadro's Number) Avogadro's Number Atomic Number Silver's atomic number is 47 The atomic number is equal to...

262

Building Energy Software Tools Directory: Star Perfomer  

NLE Websites -- All DOE Office Websites (Extended Search)

Star Perfomer Star Perfomer Star Perfomer logo. Outlines simple steps to help office building owners, managers and tenants improve their greenhouse and energy efficiency performance, simply by asking some straightforward questions about the size, operating hours, current performance and equipment standards of the building. Star Performer is a diagnostic tool that uses the current operational energy performance of the building measured against a national benchmark, obtained through the Australian Building Greenhouse Rating scheme (see links below), as a basis for making recommendations. The tool covers all areas of the building which affect operational energy performance, including building fabric, equipment and operational practices. Star Perfomer will point you in the right direction and give

263

Solar heated building structure  

Science Conference Proceedings (OSTI)

A solar heated building structure comprises an exterior shell including side walls and a roof section with the major portion of the roof section comprised of light transmitting panels or panes of material to permit passage of sunlight into the attic section of the building structure. The structure is provided with a central vertical hollow support column containing liquid storage tanks for the circulation and collection of heated water from a flexible conduit system located on the floor of the attic compartment. The central column serves as a heating core for the structure and communicates by way of air conduits or ducts with the living areas of the structure. Fan means are provided for continuously or intermittently circulating air over the hot water storage tanks in the core to transfer heat therefrom and distribute the heated air into the living areas.

Rugenstein, R.W.

1980-03-11T23:59:59.000Z

264

Building Description  

Science Conference Proceedings (OSTI)

... a number of environmentally progressive features, such as natural ventilation, energy recovery, a biological wastewater treatment process, and ...

2005-10-07T23:59:59.000Z

265

Better Buildings Neighborhood Program: Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations Innovations Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Innovations to someone by E-mail Share Better Buildings Neighborhood Program: Innovations on Facebook Tweet about Better Buildings Neighborhood Program: Innovations on Twitter Bookmark Better Buildings Neighborhood Program: Innovations on Google Bookmark Better Buildings Neighborhood Program: Innovations on Delicious Rank Better Buildings Neighborhood Program: Innovations on Digg Find More places to share Better Buildings Neighborhood Program: Innovations on AddThis.com... Innovations Image comprised of Better Buildings terms, each term having a clickable area. The green terms are Communitywide Competition, Carrotmobs, Neighborhood Infrared Home Scans, and Energy Data Dashboards. The dark blue terms are Loans that Stay With the Property, Cash for Carbon, and Fast Financing Approval. The medium blue terms are Community Workforce Agreement, Equipment Loans for Businesses, and Rating Contractor Performance. The orange terms are University Partnership, Energy Advisors, and Neighborhood Sweeps. Clicking on each of these terms takes you to the appropriate explanatory area in the interactive graphic below, and all of the terms in this image are also included as links in the graphic below. cash for carbon energy data dashboards neighborhood sweeps rating contractor performance Fast financing approval Carrotmobs neighborhood infrared home scans community workforce agreement Loans that stay with the property Energy advisors equipment loans for businesses University partnership communitywide competition

266

Building Extraction Using Lidar Data  

E-Print Network (OSTI)

Accurate 3D surface models in urban areas are essential for a variety of applications, such as visualization, GIS, and mobile communications. Since manual surface reconstruction is very costly and time consuming, the development of automated algorithms is of great importance. On the other hand LIDAR data is a relatively new technology for obtaining Digital Surface Models (DSM) of the earths surface. It is a fast method for sampling the earths surface with a high density and high point accuracy. In this paper a new approach for building extraction from LIDAR data is presented. The approach utilizes the geometric properties of urban buildings for the reconstruction of the building wire-frames from the LIDAR data. We start by finding the candidate building points that are used to populate a plane parameter space. After filling the plane parameter space, we find the planes that can represent the building roof surfaces. Roof regions are then extracted and the plane parameters are refined using a robust estimation technique and the geometric constraint between adjacent roof facets. The region boundaries are extracted and used to form the building wire-frames. The algorithm is tested on two buildings from a locally acquired LIDAR data sets. The test results show some success in extracting urban area buildings. 1.

Ahmed F. Elaksher; James S. Bethel

2002-01-01T23:59:59.000Z

267

Jackson Park Hospital Green Building Medical Center  

Science Conference Proceedings (OSTI)

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicagoâ??s recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work.

William Dorsey; Nelson Vasquez

2010-03-01T23:59:59.000Z

268

RL-721 REV4 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, Rev 0 11, Rev 0 MSA Annual Categorical Exclusion for Routine Maintenance and Custodial Services under 10 CFR 1021, Subpart D, Appendix B, Bl.3 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform routine maintenance and custodial services on Hanford buildings, structures, infrastructures, and equipment in previously disturbed and developed areas. Routine maintenance and custodial services include those in MSA contract DE-AC06-09RL14728, Attachment J.3. Buildings, structures, infrastructures, and equipment subject to routine maintenance and custodial services

269

Commercial Building Energy Asset Score Sample Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMERCIAL BUILDING COMMERCIAL BUILDING ENERGY ASSET SCORE 1 SUMMARY BUILDING INFORMATION Example Building 2000 A St., Chicago, IL 60601 Building Type: Mixed-Use Gross Floor Area: 140,000 ft 2 Year Built: 2005 Office: 100,000 ft 2 Retail: 40,000 ft 2 Report #: IL-1234567 Score Date: 02/2013 Building ID #: XXXXX ASSET SCORE DATA LEVEL: ¨ Simple Score ¨ Advanced Score ¨ Verified Advanced Score Current Score Potential Score BUILDING USE TYPES: This report includes a Score for the entire building as well as individual Scores for each of the separate use types. CONTENTS BUILDING ASSET SCORE: * Summary.......................................................... Page 1 * Score................................................................ Pages 2-4 * Upgrade Opportunities

270

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

271

Battle of the Buildings EPA National Building Competition  

NLE Websites -- All DOE Office Websites (Extended Search)

WRAP-UP REPORT WRAP-UP REPORT EPA's NATIONAL BUILDING COMPETITION Learn more about EPA's National Building Competition at energystar.gov/BattleOfTheBuildings 2 Battle to the Finish 3 And the Winner Is... 4 Stories Behind the Battle Demarest Elementary School 5 AAFES Ft. Hood Warrior Way Express Store B85001 6 Toms River Verizon Wireless 7 SHAMROCK SPRINGS ELEMENTARY SCHOOL 8 City of Atlanta's Hemphill Water Treatment Plant 9 Kmart 4863 - Gillette, WY 10 Martin Luther King, Jr. Courthouse 11 Bloomfield Middle School 12 North Carolina Area Health Education Center Building 13 Walsh & Associates, Inc. Warehouse 14 Kmart 9348 15 Kmart 7499 Mount Vernon 16 Vons Credit Union 17 Dee Events Center 18 Elk County Jail 19 Bryce Building 20 High Springs Community School 21

272

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

273

Commercial Reference Building: Hospital | OpenEI  

Open Energy Info (EERE)

09 09 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278309 Varnish cache server Commercial Reference Building: Hospital Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Hospital for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

274

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant  

NLE Websites -- All DOE Office Websites (Extended Search)

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles Title Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles Publication Type Journal Article LBNL Report Number LBNL-42414 Year of Publication 2001 Authors Modera, Mark P., Olivier Brzozowski, François Rémi Carrié, Darryl J. Dickerhoff, William W. Delp, William J. Fisk, Ronnen M. Levinson, and Duo Wang Journal Energy & Buildings Volume 34 Start Page Chapter Pagination 705-714 Abstract Electricity energy savings potential by eliminating air leakage from ducts in large commercial buildings is on the order of 10 kWh/m2 per year (1 kWh/ft2). We have tested, in two large commercial buildings, a new technology that simultaneously seals duct leaks and measures effective leakage area of ducts. The technology is based upon injecting a fog of aerosolized sealant particles into a pressurized duct system. In brief, this process involves blocking all of the intentional openings in a duct system (e.g., diffusers). Therefore, when the system is pressurized, the only place for the air carrying the aerosol particles to exit the system is through the leaks. The key to the technology is to keep the particles suspended within the airstream until they reach the leaks, and then to have them leave the airstream and deposit on the leak sites. The principal finding from this field study was that the aerosol technology is capable of sealing the leaks in a large commercial building duct system within a reasonable time frame. In the first building, 66% of the leakage area was sealed within 2.5 hours of injection, and in the second building 86% of the leakage area was sealed within 5 hours. We also found that the aerosol could be blown through the VAV boxes in the second building without impacting their calibrations or performance. Some remaining questions are (1) how to achieve sealing rates comparable to those experienced in smaller residential systems; and (2) what tightness level these ducts systems can be brought to by means of aerosol sealing.

275

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ID Number: ID Number: REV4 NEPA REVIEW SCREENING FORM DOE/CX-00125, Rev 0 I. Project Title: MSA Annual Categorical Exclusion for Actions to Conserve Energy or Water under 10 CFR 1021, Subpart D, Appendix B, B5.1 II. Project Description and location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform actions to conserve energy or

276

commercial buildings | OpenEI  

Open Energy Info (EERE)

buildings buildings Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2

277

Building Software Tools with Interoperability  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Building Software Tools with Interoperability Vladimir Bazjanac, Ricardo Goncalves and Manfred Koethe. Vladimir Bazjanac (left) chairs the open IAI research advisory committee meeting held at San Diego in June. Next to him are Ricardo Goncalves, UNINOVA, and Manfred Koethe, DEC. Recently, architects and engineers (A&E) have begun to make building design and energy simulation software an indispensable part of their toolbox. Most A&E firms now use commercial, off-the-shelf design assistance programs. An increasing number of building professionals are also using software developed at the Center's Building Technology Program: the whole-building energy simulation program DOE-2 to design more energy-efficient structures, RADIANCE for simulating lighting designs, and WINDOW for calculating the

278

Commercial Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and...

279

48 the building is.  

U.S. Energy Information Administration (EIA)

48 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

280

59 the building is.  

U.S. Energy Information Administration (EIA)

59 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

83 the building is.  

U.S. Energy Information Administration (EIA)

83 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

282

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

283

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Events on Twitter Bookmark Building Technologies Office: Events on Google Bookmark Building Technologies Office: Events on Delicious Rank Building Technologies...

284

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

285

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

286

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

287

Better Buildings Neighborhood Program: Better Buildings Partners...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Partners Gather to Plan for the Future to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners Gather to Plan for the Future...

288

ELECTRICAL DISTRICT NUMBER EIGHT  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

289

Building Technologies Office: Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by...

290

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

for technical information on building products, materials, new technologies, business management, and housing systems. DOE's Residential Building Energy Codes - Resource for...

291

Building Technologies Office: Commercial Building Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

292

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Technologies Office Search Search Help Building Technologies Office HOME...

293

Building Technologies Office: Building Energy Software Tools...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Links This directory provides information on 404 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools...

294

Building Technologies Office: Building America Research Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

295

Building Technologies Office: Building Envelope Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building...

296

Building Technologies Office: Contact the Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

297

Commercial Reference Building: Supermarket | OpenEI  

Open Energy Info (EERE)

Supermarket Supermarket Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Supermarket for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

298

Overview of Commercial Buildings, 2003 - Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings Sector-1979 to 2003 Trends in Commercial Buildings Sector-1979 to 2003 Since the first CBECS in 1979, the commercial buildings sector has increased in size. From 1979 to 2003: The number of commercial buildings increased from 3.8 million to 4.9 million (Figure 3). The amount of commercial floorspace increased from 51 billion to 72 billion square feet (Figure 4). Total energy consumed increased from less than 5,900 trillion to more than 6,500 trillion Btu (Figure 5). Electricity and natural gas consumption, nearly equal in 1979, diverged; electricity increased to more than 3,500 trillion Btu by 2003 while natural gas declined to 2,100 trillion Btu. Figure 3. The number of commercial buildings increased from 1979 to 2003. Figure 3. The number of commercial buildings increased from 1979 to 2003.

299

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

Kinney, Satkartar; Piette, Mary Ann

2003-07-01T23:59:59.000Z

300

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

2 2 Case Study, The Cambria Department of Environmental Protection Office Building, Ebensburg, Pennsylvania (Office) Building Design Floor Area: Floors: 2 Open office space (1) File storage area Two small labratories Conference rooms Break room Storage areas Two mechanical rooms Telecom room Shell Windows Material: Triple Pane, low-e with Aluminum Frames and Wood Frames Triple Pane Triple Pane Aluminum Frames Wood Frames U-Factor 0.24 U-Factor 0.26 Wall/Roof Primary Material R-Value Wall : Insulating Concrete Forms 27.0 Roof: Decking and Insulation 33.0 HVAC Total Capacities(thousand Btu/hr) 12 Ground Source Heat Pumps 644 (2) 12 Auxiliary Electric Resistance Heaters 382 (3) Lighting Power Densities(W/SF) Open Office Area: 0.75 Office Area Task Lighting(4): 0.5 Energy/Power PV System: 18.2 kW grid-tie system (5)

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

302

Special Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Building Renovations Special Building Renovations Special Building Renovations October 16, 2013 - 4:58pm Addthis A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following Federal building types with specific design considerations for renewable energy: data centers, historic buildings, hospitals, laboratories, remote facilities, residential, and warehouses and service buildings. Data Centers Because data centers account for an ever-growing amount of energy consumption, designing high efficiency data centers is both a sustainable and economic option. Coupled with energy efficiency measures, renewable energy technologies can provide some opportunities for data centers. Since

303

Analysis of Building Envelope Construction in 2003 CBECS  

SciTech Connect

The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOEs Reference Buildings .

Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

2007-06-01T23:59:59.000Z

304

Buildings and Climate Change | Open Energy Information  

Open Energy Info (EERE)

Buildings and Climate Change Buildings and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Buildings and Climate Change Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policies/deployment programs, Pathways analysis Resource Type: Publications, Lessons learned/best practices Website: www.unep.org/sbci/pdfs/SBCI-BCCSummary.pdf Buildings and Climate Change Screenshot References: Buildings and Climate Change[1] "This report - Buildings & Climate Change: A Summary for Decision-makers draws together the findings of three years of research by UNEP's Sustainable Buildings & Climate Initiative (SBCI) and it's partners. It sets out priority actions that can be taken by policy makers and industry

305

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

Building Technologies Program Website Building Technologies Program Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Technologies Program Website Focus Area: Energy Efficiency Topics: Best Practices Website: www1.eere.energy.gov/buildings/index.html Equivalent URI: cleanenergysolutions.org/content/building-technologies-program-website Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Building Codes,Appliance & Equipment Standards and Required Labeling" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

306

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ... structures; thermal response; flameproofing; radiative ...

307

84 the building is.  

U.S. Energy Information Administration (EIA)

84 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA009449 Keywords:

308

87 the building is.  

U.S. Energy Information Administration (EIA)

87 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: STRO000469 Keywords:

309

80 the building is.  

U.S. Energy Information Administration (EIA)

80 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

310

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC400003 Keywords:

311

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

312

97 the building is.  

U.S. Energy Information Administration (EIA)

97 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

313

78 the building is.  

U.S. Energy Information Administration (EIA)

78 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC200470 Keywords:

314

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Emergency Response Operations ... Safety Investigation of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ...

315

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... rise buildings; building collapse; disasters; fire safety ... structural analysis; structural damage; structural response ...

316

Safety of Building Occupants  

Science Conference Proceedings (OSTI)

... systems have evolved in response to specific ... behavior, needs of emergency responders, or ... behavior during building emergencies, the Building ...

2013-07-17T23:59:59.000Z

317

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... systems; surface temperature; deflection; insulation; thermometers; structural ... effects of fires in buildings, for use ... the analysis of building response to ...

318

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building materials; thermal conductivity; databases; insulation; building technology; density; fibrous glass; guarded hot plate; heat flow; insulation ...

319

BUILDING TECHNOLOGIES PROGRAM | Green Building Codes A Guide to Creating Effective  

NLE Websites -- All DOE Office Websites (Extended Search)

i i BUILDING TECHNOLOGIES PROGRAM | Green Building Codes A Guide to Creating Effective Green Building Programs for Energy Efficient and Sustainable Communities Going Beyond Code Preface The Going Beyond Code Guide is designed to help state and local governments design and implement successful "beyond code" programs for new commercial and residential buildings. The goal is to help states and localities establish voluntary or mandatory programs that go well beyond traditional minimum code requirements for new buildings. The guide addresses keys to successful adoption and implementation and discusses the primary areas that are typically included in beyond code or green building programs, including energy efficiency materials and resource conservation, water efficiency,

320

Glossary Term - Avogadro's Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic Number Previous Term (Atomic Number) Glossary Main Index Next Term (Beta Decay) Beta Decay Avogadro's Number Avogadro's number is the number of particles in one mole of a...

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Record of Technical Change {number_sign}2 for ''Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada,'' Revision 0, DOE/NV--532  

Science Conference Proceedings (OSTI)

This Record of Technical Change updates the technical informatioin provided in ''Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada,'' Revision 0, DOE/NV--532.

USDOE Nevada Operations Office

2000-03-16T23:59:59.000Z

322

NREL/OAS-Regional Building Efficiency Workshop | Open Energy Information  

Open Energy Info (EERE)

NREL/OAS-Regional Building Efficiency Workshop NREL/OAS-Regional Building Efficiency Workshop < NREL Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL/OAS-Regional Building Efficiency Workshop Agency/Company /Organization: National Renewable Energy Laboratory, Organization of American States (OAS) Sector: Energy Focus Area: Buildings, Buildings - Commercial, Buildings - Residential, Water Conservation Resource Type: Presentation, Training materials, Online calculator Website: www.nrel.gov/international/ Language: English References: NREL/OAS-Regional Building Efficiency Workshop[1] "NREL/OAS staff held a regional four-day training workshop to provide selected personnel with detailed knowledge of how to conduct a building efficiency audit. Topics covered included lighting, water conservation,

323

Energy Performance Certification of Buildings: A Policy Tool to Improve  

Open Energy Info (EERE)

Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary Name: Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: www.iea.org/papers/pathways/buildings_certification.pdf Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Screenshot References: nergy Performance Certification of Buildings[1] Logo: Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency

324

Performance of thermal distribution systems in large commercial buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of thermal distribution systems in large commercial buildings Performance of thermal distribution systems in large commercial buildings Title Performance of thermal distribution systems in large commercial buildings Publication Type Journal Article LBNL Report Number LBNL-44331 Year of Publication 2002 Authors Xu, Tengfang T., François Rémi Carrié, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Duo Wang, and Mark P. Modera Journal Energy and Buildings Volume 34 Start Page Chapter Pagination 215-226 Abstract This paper presents major findings of a field study on the performance of five thermal distribution systems in four large commercial buildings. The five systems studied are typical single-duct or dual-duct constant air volume (CAV) systems and variable air volume (VAV) systems, each of which serves an office building or a retail building with floor area over 2,000 m2. The air leakage from ducts are reported in terms of effective leakage area (ELA) at 25 Pa reference pressure, the ASHRAE-defined duct leakage class, and air leakage ratios. The specific ELAs ranged from 0.7 to 12.9 cm2 per m2 of duct surface area, and from 0.1 to 7.7 cm2 per square meter of floor area served. The leakage classes ranged from 34 to 757 for the five systems and systems sections tested. The air leakage ratios are estimated to be up to one-third of the fan- supplied airflow in the constant-air-volume systems. The specific ELAs and leakage classes indicate that air leakage in large commercial duct systems varies significantly from system to system, and from system section to system section even within the same thermal distribution system. The duct systems measured are much leakier than the ductwork specified as "unsealed ducts" by ASHRAE. Energy losses from supply ducts by conduction (including convection and radiation) are found to be significant, on the scale similar to the losses induced by air leakage in the duct systems. The energy losses induced by leakage and conduction suggest that there are significant energy-savings potentials from duct-sealing and insulation practice in large commercial buildings

325

National System Templates: Building Sustainable National Inventory  

Open Energy Info (EERE)

National System Templates: Building Sustainable National Inventory National System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable National Inventory Management Systems Agency/Company /Organization: United States Environmental Protection Agency, United States Agency for International Development Sector: Energy, Land Focus Area: Non-renewable Energy, Forestry, Agriculture Topics: GHG inventory Resource Type: Guide/manual, Training materials Website: www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/templ National System Templates: Building Sustainable National Inventory Management Systems Screenshot References: National System Templates: Building Sustainable National Inventory Management Systems[1]

326

Tech Area II: A History  

E-Print Network (OSTI)

This report documents the history of the major buildings in Sandia National Laboratories' Technical Area II. It was prepared in support of the Department of Energy's compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission's integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area's primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on hi...

Rebecca Ullrich; Rebecca Ullrich

1998-01-01T23:59:59.000Z

327

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit...  

Open Energy Info (EERE)

European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment, Background analysis Resource...

328

Energy performance of office buildings in different climate zones in China.  

E-Print Network (OSTI)

??Buildings, energy and the environment are key issues that the building professions and energy policy makers have to address, especially in the area of sustainable (more)

Tsang, Ching Luen (???)

2010-01-01T23:59:59.000Z

329

Eagle County - Eagle County Efficient Building Code (ECO-Green Build) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eagle County - Eagle County Efficient Building Code (ECO-Green Eagle County - Eagle County Efficient Building Code (ECO-Green Build) Eagle County - Eagle County Efficient Building Code (ECO-Green Build) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Colorado Program Type Building Energy Code Provider Eagle County In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction and renovations/additions over 50% of the existing floor area of single-family and multifamily residences, and commercial buildings.

330

Energy use in office buildings  

SciTech Connect

This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

None

1980-10-01T23:59:59.000Z

331

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

332

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

E-Print Network (OSTI)

1b] over different ranges of building area. Table 5. Results6. Results from Model [1b] for Different Ranges of BuildingArea Building Area ?50k sq. ft. 50<<600k sq. ft. ?600k sq.

Blum, Helcio

2010-01-01T23:59:59.000Z

333

Ventilation measurements in large office buildings  

SciTech Connect

Ventilation rates were measured in nine office buildings using an automated tracer gas measuring system. The buildings range in size from a two-story federal building with a floor area of about 20,000 ft/sup 2/ (1900 m/sup 2/) to a 26-story office building with a floor area of 700,000 ft/sup 2/ (65,000 m/sup 2/). The ventilation rates were measured for about 100 hours in each building over a range of weather conditions. The results are presented and examined for variation with time and weather. In most cases, the ventilation rate of a building is similar for hot and cold weather. In mild weather, outdoor air is used to cool the building and the ventilation rate increases. In the buildings where infiltration is a significant portion of the total ventilation rate, this total rate exhibits a dependence on weather conditions. The measured ventilation rates are discussed in relation to the outdoor air intake strategy in each building. The ventilation rates are also compared to the design rates in the buildings and ventilation rates based on the ASHRAE Standard 62-81. Some of the buildings are at times operated at lower ventilation rates than recommended in Standard 62-81.

Persily, A.K.; Grot, R.A.

1985-01-01T23:59:59.000Z

334

OpenEI - buildings  

Open Energy Info (EERE)

Hourly Energy Emission Hourly Energy Emission Factors for Electricity Generation in the United States http://en.openei.org/datasets/node/488 Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers.  Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions.  Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. 

License

335

Green Building- Efficient Life Cycle  

E-Print Network (OSTI)

Energy saving does not just apply to traffic, production or agriculture. Buildings are also contributing to the climate change. The focus here is on the energy they use and on their CO2 emissions. Each year, Siemens invests more than two billion euros in the appropriate research and development. For customers, this means that Siemens is already providing them with energy efficient solutions that save resources and reduce emissions. Siemens Real Estate (SRE) has taken on the task of ensuring that Siemens AG will become 20 percent more energy efficient by 2011, and it has turned an efficiency program for existing real estate, which has been in existence since 2005, into an integrated green building initiative. This initiative comprises the components Sustainable Building Design, Life Cycle Cost Analysis, Green Building Certification and Natural Resources Management. These components are deliberately arranged around the life cycle of the real estate concerned. This allows a different emphasis to be placed on the different questions in each project phase and each phase of a buildings life and for them to be answered in a targeted manner. Sustainable Building Design comes into effect during the tasking and preliminary planning phase of a building project; and, by providing a specially developed sustainability manual, it helps with the definition of target values and the drawing up of efficiency strategies for the planning of the building. The manual epitomizes, and sets out clearly, the attitude of SRE to all building-specific sustainability matters. In addition, it is used in the offering of rewards for project competitions. As a result, through a selection of different energy-efficiency measures that have been roughly conceived beforehand, the primary energy consumption can already be restricted in the project definition phase. Life Cycle Cost Analysis comes into effect when the blueprint for buildings is being drawn up. Up to now, when components and systems were being chosen, the main focus was usually on the investment costs involved. By using a cost tool developed specifically to meet the needs of the company, SRE will in future be able to estimate the component-specific utilization costs such as cleaning, maintenance, and the use of energy at an early planning stage. Green Building Certification is used in building projects during the planning and implementation phase, and it thus ensures the quality of the new real estate over the long term. Siemens is implementing the Green Building Program of the European Commission in new building projects and renovation work in EU countries. In all other countries that are not taking part in the EU Green Building Program, SRE uses certification in accordance with LEED (Leadership in Energy and Environmental Design). In the LEED certification, a transparent and easy-to-use catalog of criteria is employed to make an assessment of the use of energy and other aspects of sustainability, such as the selection of the plot of land, the efficient use of water, the quality of air within buildings, and the selection of materials. This ensures that a neutral and independent assessment is made of all new building and large-scale renovation projects. The action program Natural Resources Management rounds off the range of measures in the area of existing real estate. The aim of the program is to identify and highlight all latent efficiency potential in existing buildings. This includes, for instance, modernizing the control equipment used for the heating and ventilation systems. This entails replacing electrical power units with more efficient models, and retrofitting fans and pumps with frequency converters. Sixty buildings have now been inspected, and savings of almost eight million Euros have been achieved. The average payback period is less than two years. One example of this is an old Siemens building from the 1970s at the Munich-Perlach site. Through energy optimization, it has been possible to cu

Kohns, R.

2008-10-01T23:59:59.000Z

336

Building Envelopes | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Envelope SHARE Building Envelopes MFEL.jpg The building envelope-the materials that separate the indoor and outdoor environments-primarily determines the amount of energy required to heat, cool, and ventilate a building. The envelope also can significantly influence energy needs in areas accessible to sunlight. To cost-effectively improve the energy efficiency, moisture-durability, and environmental sustainability of building envelopes, ORNL is exploring new and emerging materials, components, and systems as well as the fundamentals of heat, air, and moisture transfer. Research is also focused on multifunctional solutions where the envelope serves as a filter that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling, ventilation, and lighting.

337

Building & Site Services Coordination  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQs FAQs Conference Center and APS Site Activity Coordination Management and/or Coordination of APS Site Work/Services Safety & Emergency Management Database Maintenance Personnel Building and Site Services Coordination "We're at the End of our Pagers" The mission of the Building & Site Services Coordination is to efficiently manage and minimize the impact of APS building and site activities and to provide optimal support to APS staff and users in all 400 buildings and areas. FAQs Conference Center and APS Site Activity Coordination Locations Reservations Setups Visits & Tours Management and/or Coordination of APS Site Work/Services Work Entry Clearances Utility Shutdowns Telephone System Rigging Stockroom Office Furniture Installation Safety & Emergency Management

338

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

339

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

340

The Cost of Enforcing Building Energy Codes: Phase 1  

NLE Websites -- All DOE Office Websites (Extended Search)

of Enforcing Building Energy Codes: Phase 1 Title The Cost of Enforcing Building Energy Codes: Phase 1 Publication Type Report LBNL Report Number LBNL-6181E Year of Publication...

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Property:Buildings/ReportNumber | Open Energy Information  

Open Energy Info (EERE)

Showing 2 pages using this property. G General Merchandise 50% Energy Savings Technical Support Document 2009 + NRELTP-550-46100 + Grocery Store 50% Energy Savings...

342

Berkeley Lab to Help Build Straw Bale Building  

DOE Green Energy (OSTI)

The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

Worsham, S.A.; Van Mechelen, G.

1998-12-01T23:59:59.000Z

343

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

121, Rev 0 121, Rev 0 I. Project Title: MSA Annual Categorical Exclusion for Building and Equipment Instrumentation under 10 CFR 1021, Subpart D, Appendix B, B2.2 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Mission Support Alliance (MSA) and its subcontractors perform installation of, or improvements to, building and equipment instrumentation (including, but not limited to, remote control panels, remote monitoring capability, alarm and surveillance systems, control systems to provide automatic shutdown, fire detection and protection systems, water consumption monitors and flow control systems, announcement and emergency warning systems,

344

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Rev. 1 9 Rev. 1 I. Project Title: Washington River Protection Solutions LLC - Proposed Actions For CY 2013 Scheduled To Take Place Under CX B1.22, "Relocation of Buildings" 11. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLC (WRPS) will relocate buildings during Calendar Year 2013. WRPS will perform all activities in accordance with the categorical exclusion (CX) limitations set forth in 10 CFR 1021' Appendices A & B to Subpart D, & ex B1.22. WRPS' facilities include all those identified in the Tank Operations Contract Sections J.13 and

345

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 Rev. 1 60 Rev. 1 I. Project Title: Washington River Protection Solutions LLC - Proposed Actions For CY 2013 Scheduled To Take Place Under ex B1.23, "Demolition and Disposal of Buildings" 11. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions -e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLC (WRPS) will demolish and dispose of buildings during Calendar Year 2013. WRPS will perform all activities in accordance with the categorical exclusion (CX) limitations set forth in 10 CFR 1021' Appendices A & B to Subpart D, & ex 81.23. WRPS' facilities include all those identified in the Tank Operations

346

Building America  

Science Conference Proceedings (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

347

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

348

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

349

Buildings Performance Database | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database Buildings Performance Database Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV Source Department of Energy's Buildings Performance Database Date Released July 09th, 2012 (2 years ago) Date Updated Unknown Keywords Buildings Performance Database Dayton Electricity Gainesville Natural Gas open data Residential Data application/zip icon BPD Dayton and Gainesville Residential csv files in a zip file (zip, 2.8 MiB) text/csv icon BPD Dayton and Gainesville Residential Building Characteristics data (csv, 1.4 MiB) text/csv icon BPD Dayton and Gainesville Residential data headers (csv, 5.8 KiB)

350

Building Energy Software Tools Directory: SBEM  

NLE Websites -- All DOE Office Websites (Extended Search)

SBEM SBEM SBEM screen Simplified tool which provides an analysis of a building's energy consumption primarily for the purposes of assessing compliance with Part L (England & Wales), Section 6 (Scotland) and Part F (Northern Ireland) of Building Regulations and eventually for building performance certification EPBD in UK. SBEM (Simplified Building Energy Model) calculates monthly energy use and carbon dioxide emissions of a building given a description of the building’s geometry, construction, use, and HVAC and lighting equipment. It was originally based on the Dutch methodology NEN 2916:1998 (Energy Performance of Non-Residential Buildings) and has since been modified to comply with the emerging CEN Standards. SBEM makes use of standard sets of data for different activity areas and calls on databases

351

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

352

Toward a virtual building laboratory  

SciTech Connect

In order to achieve in a timely manner the large energy and dollar savings technically possible through improvements in building energy efficiency, it will be necessary to solve the problem of design failure risk. The most economical method of doing this would be to learn to calculate building performance with sufficient detail, accuracy and reliability to avoid design failure. Existing building simulation models (BSM) are a large step in this direction, but are still not capable of this level of modeling. Developments in computational fluid dynamics (CFD) techniques now allow one to construct a road map from present BSM's to a complete building physical model. The most useful first step is a building interior model (BIM) that would allow prediction of local conditions affecting occupant health and comfort. To provide reliable prediction a BIM must incorporate the correct physical boundary conditions on a building interior. Doing so raises a number of specific technical problems and research questions. The solution of these within a context useful for building research and design is not likely to result from other research on CFD, which is directed toward the solution of different types of problems. A six-step plan for incorporating the correct boundary conditions within the context of the model problem of a large atrium has been outlined. A promising strategy for constructing a BIM is the overset grid technique for representing a building space in a CFD calculation. This technique promises to adapt well to building design and allows a step-by-step approach. A state-of-the-art CFD computer code using this technique has been adapted to the problem and can form the departure point for this research.

Klems, J.H.; Finlayson, E.U.; Olsen, T.H.; Banks, D.W.; Pallis, J.M.

1999-03-01T23:59:59.000Z

353

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

354

Energy Efficient Building Ventilation Systems: Innovative Building-Integrated Enthalpy Recovery  

Science Conference Proceedings (OSTI)

BEETIT Project: A2 is developing a building moisture and heat exchange technology that leverages a new material and design to create healthy buildings with lower energy use. Commercial building owners/operators are demanding buildings with greater energy efficiency and healthier indoor environments. A2 is developing a membrane-based heat and moisture exchanger that controls humidity by transferring the water vapor in the incoming fresh air to the drier air leaving the building. Unlike conventional systems, A2 locates the heat and moisture exchanger within the depths of the buildings wall to slow down the air flow and increase the surface area that captures humidity, but with less fan power. The systems integration into the wall reduces the size and demand on the air conditioning equipment and increases liable floor area flexibility.

None

2010-10-15T23:59:59.000Z

355

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

356

Massachusetts' Green Buildings Kevin Porter, Exeter Associates  

E-Print Network (OSTI)

building. The preferred benchmark is the U.S. Green Building Council's Leadership in Energy ABOUT THIS CASE STUDY SERIES A number of U.S. states have recently established clean energy funds of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under Contract No. DE-AC03- 76SF

357

Multiple missions: The 300 Area in Hanford Site history  

SciTech Connect

This report provides an historical overview of the role of the 300 Area buildings at the Hanford Reservation. Topics covered are: Early fuel fabrication at the Hanford site (313 and 314 Buildings); N reactor fuel fabrication in the 300 Area; 305 test pile was Hanford`s first operating reactor; Early process improvement chemical research (321 and 3706 Buildings); Major 1952 and 1953 expansions in the 300 area (325 and 329 Buildings); Early 300 area facilities constructed to support reactor development (326 and 327 Buildings); Hanford site ventures with the peaceful atom (309, 308 and 318 Buildings); Modern 300 Area Buildings; Significant miscellaneous buildings in the 300 area; 300 Area process waste handling and disposal.

Gerber, M.S.

1993-09-01T23:59:59.000Z

358

Building Technologies Office: Subscribe to Building America Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

359

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes Resource Guide: COMMERCIAL BUILDINGS for Architects Prepared by: Building Energy Codes Program (BECP) and the American...

360

Rangely Oilfield Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Field Information Development Area: Number of Production Wells: Number of Injection Wells: Number of Replacement Wells: Average Temperature of Geofluid: Sanyal...

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Field Information Development Area: Number of Production Wells: Number of Injection Wells: Number of Replacement Wells: Average Temperature of Geofluid: Sanyal...

362

Opportunities to Apply Phase Change Materials to Building Enclosures Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2011 1, 2011 Opportunities to Apply Phase Change Materials to Building Enclosures Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-950-6757; Pass code: 6420234 1 | Building America Program www.buildingamerica.gov Building America: Introduction November 11, 2011 Chuck Booten Chuck.Booten@nrel.gov Building Technologies Program 2 | Building America Program www.buildingamerica.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved

363

Energy Efficiency Standards for Federal Buildings | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Site Map Printable Version Development Adoption Compliance Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards...

364

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

365

Thick Buildings [Standards  

E-Print Network (OSTI)

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

366

Lighting Controls in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Controls in Commercial Buildings Lighting Controls in Commercial Buildings Title Lighting Controls in Commercial Buildings Publication Type Report Year of Publication 2012 Authors Williams, Alison A., Barbara A. Atkinson, Karina Garbesi, Erik Page, and Francis M. Rubinstein Series Title The Journal of the Illuminating Engineering Society of North America Volume 8 Document Number 3 Pagination 161-180 Date Published January ISBN Number 1550-2716 Keywords controls, daylighting, energy, occupancy sensors, tuning. Abstract Researchers have been quantifying energy savings from lighting controls in commercial buildings for more than 30 years. This study provides a meta-analysis of lighting energy savings identified in the literature-240 savings estimates from 88 papers and case studies, categorized into daylighting strategies, occupancy strategies, personal tuning, and institutional tuning. Beginning with an overall average of savings estimates by control strategy, successive analytical filters are added to identify potential biases introduced to the estimates by different analytical approaches. Based on this meta-analysis, the bestestimates of average lighting energy savings potential are 24 percent for occupancy, 28 percent for daylighting, 31 percent for personal tuning, 36 percent for institutional tuning, and 38 percent for multiple approaches. The results also suggest that simulations significantly overestimate (by at least 10 percent) the average savings obtainable from daylighting in actual buildings.

367

Indoor air quality issues related to the acquisition of conservation in commercial buildings  

Science Conference Proceedings (OSTI)

The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

1990-09-01T23:59:59.000Z

368

Federally Funded Programs Related to Building Energy Use: Overlaps, Challenges, and Opportunities for Collaboration  

SciTech Connect

As energy efficiency in buildings continues to move from discreet technology development to an integrated systems approach, the need to understand and integrate complementary goals and targets becomes more pronounced. Whether within Department of Energys (DOE) Building Technologies Program (BTP), across the Office of Energy Efficiency and Renewable Energy (EERE), or throughout DOE and the Federal government, mutual gains and collaboration synergies exist that are not easily achieved because of organizational and time constraints. There also cases where federal agencies may be addressing similar issues, but with different (and sometimes conflicting) outcomes in mind. This report conducts a comprehensive inventory across all EERE and other relevant Federal agencies of potential activities with synergistic benefits. A taxonomy of activities with potential interdependencies is presented. The report identifies a number of federal program objectives, products, and plans related to building energy efficiency and characterizes the current structure and interactions related to these plans and programs. Areas where overlap occurs are identified as are the challenges of addressing issues related to overlapping goals and programs. Based on the input gathered from various sources, including 20 separate interviews with federal agency staff and contractor staff supporting buildings programs, this study identifies a number of synergistic opportunities and makes recommends a number of areas where further collaboration could be beneficial.

Cort, Katherine A.; Butner, Ryan S.; Hostick, Donna J.

2010-10-01T23:59:59.000Z

369

REFERENCE APPENDICES For the 2013 Building Energy Efficiency Standards  

E-Print Network (OSTI)

. ADDITION is any change to a building that increases conditioned floor area and conditioned volume. Addition is also any change that increases the floor area or volume of an unconditioned building of an occupancy group or type regulated by Part 6. Addition is also any change that increases the illuminated area

370

Title Project Number  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

371

Buildings*","Year Constructed"  

U.S. Energy Information Administration (EIA) Indexed Site

B8. Year Constructed, Number of Buildings for Non-Mall Buildings, 2003" B8. Year Constructed, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2003" "All Buildings* ...............",4645,330,527,562,579,731,707,876,334 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,174,315,331,298,350,438,481,165 "5,001 to 10,000 ..............",889,71,107,90,120,180,98,158,66 "10,001 to 25,000 .............",738,55,64,90,95,122,103,151,58 "25,001 to 50,000 .............",241,19,23,26,33,48,32,39,21

372

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

373

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Planning for Construction and Building R&D. National Planning for Construction and Building R&D. (576 K) Wright ...

374

Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Kristen Taddonio DOEEEREBTOCommercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office...

375

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

376

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events ICMA 99th Annual Conference September 22-25, 2013 Register Now for the 2013...

377

Food Sales Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings, though they comprised only 1 percent of commercial floorspace. Their total energy intensity was the third highest of all the building types, and their electricity...

378

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was just slightly below the commercial average. Public assembly buildings...

379

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of this building in two challenging North American climates. ... building in its native climate were performed ... were formulated-a single-zone model with ...

380

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... These estimates, and other analyses of energy consumption in office buildings, are based on building energy analysis programs such as DOE-2. ...

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United...

382

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

383

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... will build an instrument that will provide the building industry with better measurement capabilities to judge the effectiveness of thermal insulation ...

384

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

385

Review of Building Energy Saving Techniques  

E-Print Network (OSTI)

The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use efficiency. The approach of realizing energy savings is to exploit greatly and use reproducible new energy while trying to reduce total energy demand quantity in buildings. It can then reduce the utilization of energy that can easily lead to environmental pollution in building areas. Reducing total energy demand quantity in building mainly embarks from the following aspects: building programming and design, round safeguard structure, enhancing energy using efficiency of the end-User and heightening total energy using efficiency. The utilization of new energy plays an important role in the aspects of saving energy and protecting the environment. In contrast with the past, building energy savings put forward a higher requirement for building materials. Building materials play a very important role in building energy savings.

Zeng, X.; Zhu, D.

2006-01-01T23:59:59.000Z

386

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

Construction Statistics of New Homes Completed/Placed Year Thousand Units Average SF Thousand Units Average SF 1980 234 1981 229 1982 234 1983 278 1984 288 1985 283 1986 256 1987 239 1988 224 1989 203 1990 195 1991 174 1992 212 1993 243 1994 291 1995 319 1996 338 1997 336 1998 374 1999 338 2000 281 2001 196 2002 174 2003 140 2004 124 2005 123 2006 112 2007 95 2008 81 2009 55 2010 50 Source(s): 496 2,392 155 1,172 701 DOC, 2010 Characteristics of New Housing, 2010, "Median and Average Square Feet of Floor Area in New Single-Family Houses Completed by Location", "Presence of Air-Conditioning in New Single Family Houses", "Number of Multifamily Units Completed by Number of Units Per Building", "Median and Average Square Feet of Floor Area in Units in New Multifamily Buildings Completed", "Placements of New Manufactured Homes by Region and Size of Home, 1980-

387

1992 Commercial Buildings Characteristics -- Overview/Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Overview Overview Overview Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace By Census Region divider line Executive Summary Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

388

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM DOE/CX-00074  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

74 74 I. Project Title: Project Z-064, Waste Sampling and Characterization Facility Heating, Ventilation, and Air Conditioning System Upgrade II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions * e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The Waste Sampling and Characterization Facility (WSCF) is an analytical laboratory located between the 200 East and 200 West Areas of the Hanford Site along Route 3. The WSCF North Laboratory utilizes a distributed system for controlling and monitoring equipment and building conditions; including the heating, ventilation, and air conditioning (HVAC) system. The HVAC sys~em is based on an old and obsolete Robert Shaw OMS 350A control

389

Solar buildings. Overview: The Solar Buildings Program  

DOE Green Energy (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

390

Energy Efficiency Evaluation and Planning for Existing Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Energy Program Areas » Sustainable Buildings & Campuses » Energy Efficiency Evaluation and Planning for Existing Buildings Energy Efficiency Evaluation and Planning for Existing Buildings October 4, 2013 - 4:51pm Addthis For meeting Federal sustainability requirements, agencies can use evaluation methods-such as benchmarking and energy audits-and planning to make their existing buildings energy efficient. To comply with energy reduction requirements agencies should follow a few basic steps: Benchmark buildings Conduct energy audits Create an action plan Monitor progress. This is a cyclical process that will need to be continually updated. For meeting water use reduction requirements in buildings, see Water Efficiency. Benchmark Buildings The first step in managing a building stock's sustainability is to

391

Advanced Energy Retrofit Guide Retail Buildings  

Science Conference Proceedings (OSTI)

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

392

Advanced Energy Retrofit Guide Office Buildings  

SciTech Connect

The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-27T23:59:59.000Z

393

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

394

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

395

Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;  

Gasoline and Diesel Fuel Update (EIA)

9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; 9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts) Total United States 311 Food 1,115 13,271 107,293.7 32,953 3.1 3112 Grain and Oilseed Milling 126 602 443,178.6 5,207 24.8 311221 Wet Corn Milling 14 59 270,262.7 982 18.3 31131 Sugar Manufacturing

396

Application of solar technologies in buildings  

DOE Green Energy (OSTI)

The objective of the buildings energy research carried out at SERI is to provide the buildings industry with technological innovations in materials, components, and systems that enable them to reduce the usage and cost of energy. The scope of research includes eight technology areas, including advanced windows, storage material composites, advanced insulation, desiccant cooling, air management, building performance monitoring, building design guidelines, and active water heating. This paper outlines the benefits, the results to date, and the current research activities associated with these eight technology options. 16 refs., 6 figs.

Flowers, L.T.; Groff, G.C. (Solar Energy Research Inst., Golden, CO (USA); Marquardt Switches, Inc., Cazenovia, NY (USA))

1989-01-01T23:59:59.000Z

397

Better Buildings Challenge - Lend Lease Commitment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Challenge Buildings Challenge Lend Lease Commitment Krista Sprenger, VP-Director Sustainability, Americas Duncan Prahl, Research Architect, IBACOS March, 2012 Goals of the Better Buildings Challenge Make buildings 20% more efficient by 2020; save $40 billion annually for US organizations; create American jobs  Overcoming market barriers/persistent obstacles with replicable, marketplace solutions  Market leaders stepping forward to share data and real solutions  Demonstrating leadership  Showcasing real solutions  Connecting the market  Partnering with industry leaders to better understand policy and technical opportunities 3 More Than 50 Years' Property Experience *Areas of operation highlighted in green Lend Lease  Creating innovative property and infrastructure

398

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

399

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

400

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

402

Building Green in Greensburg: Business Incubator Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

403

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

404

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

405

Comparison of Building Energy Modeling Programs: HVAC Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Programs: HVAC Systems Title Comparison of Building Energy Modeling Programs: HVAC Systems Publication Type Report LBNL Report Number LBNL-6432E Year of Publication 2013...

406

Wynkoop Building Performance Measurement: Water  

SciTech Connect

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (< 30 psi) is less than half the pressure on the 7th floor (>80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

407

Wynkoop Building Performance Measurement: Water  

Science Conference Proceedings (OSTI)

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

408

Cutting-Edge Building Technologies Offer Big Energy Savings Potential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013, the program awarded nearly 6 million for nine projects, covering such areas as building insulation and window, air conditioning and heat pump technologies. Four of these...

409

Building Technologies Office: Key Activities in Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

work in three key areas in order to continually develop innovative, cost-effective energy saving solutions. research and development (R&D), market stimulation, and building...

410

Computers in Commercial Buildings - Table 2  

U.S. Energy Information Administration (EIA) Indexed Site

EIA Home > Commercial Home > Data Reports > EIA Home > Commercial Home > Data Reports > Computers in Commercial Buildings >Table 2 Table 2. Photocopiers in Commercial Buildings, 1999 Number of Buildings (thousand) Total Floorspace (million square feet) Number of Employees (thousand) Total Photocopiers (thousand) Photocopiers per Million Square Feet Photocopiers per Thousand Employees All Buildings 4,657 67,338 81,852 4,934 73 60 Principal Building Activity Education 327 8,651 8,927 433 50 48 Food Sales 174 994 980 41 42 42 Food Service 349 1,851 4,031 Q Q 26 Health Care 127 2,918 6,219 401 138 65 Inpatient 11 1,865 3,350 187 100 56 Outpatient 116 1,053 2,869 214 204 75 Lodging 153 4,521 2,356 78 17 33 Mercantile 667 10,398 11,384 526 51 46

411

Buildings Performance Database Analysis Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Buildings Commercial Buildings » Buildings Performance Database » Buildings Performance Database Analysis Tools Buildings Performance Database Analysis Tools The Buildings Performance Database will offer four analysis tools for exploring building data and forecasting financial and energy savings: a Peer Group Tool, a Retrofit Analysis Tool, a Data Table Tool, and a Financial Forecasting Tool. Available now: Peer Group Tool The Peer Group Tool allows users to peruse the BPD, define peer groups, and analyze their performance. Users can create Peer Groups by filtering the dataset based on parameters such as building type, location, floor area, age, occupancy, and system characteristics such as lighting and HVAC type. The graphs show the energy performance distribution of those

412

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

413

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2003 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2003 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed

414

A Look at Education Buildings - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Home: A Look at CBECS Building Activities How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they on multibuilding complexes? How do they use energy and how much does it cost? How do they use electricity? How do they use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) EDUCATION BUILDINGS There were an estimated 309,000 education buildings in the U.S. in 1995. Number of Buildings In the Commercial Buildings Energy Consumption Survey (CBECS), education buildings include those that are used for academic or technical classroom instruction. They include preschools, elementary schools, middle or junior high schools, high schools, vocational schools, and college or university classrooms.

415

PNNL EERE Program: Building Technologies Program (Overview)  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, Energy Efficiency and Renewable Energy Program Laboratory, Energy Efficiency and Renewable Energy Program Home Program Areas Contacts Related Sites Energy Directorate PNNL Home Security & Privacy PNNL Buildings Program Overview PNNL Buildings Portfolio Science Foundation EE & Demand Response High-Performance Sustainable Design Codes and Standards Overcoming Market Barriers Analysis and Planning Key Buildings Projects Contacts Publications & Presentations PNNL Buildings Program Buildings account for about 40 percent of our nation's energy use. That's 72 percent of U.S. electricity and 55 percent of natural gas, resulting in 39 percent of U.S. carbon dioxide emissions and a range of other negative environmental impacts. The buildings sciences team at Pacific Northwest National Laboratory (PNNL) is committed to dramatically improving the

416

Gaussian random number generators  

Science Conference Proceedings (OSTI)

Rapid generation of high quality Gaussian random numbers is a key capability for simulations across a wide range of disciplines. Advances in computing have brought the power to conduct simulations with very large numbers of random numbers and with it, ... Keywords: Gaussian, Random numbers, normal, simulation

David B. Thomas; Wayne Luk; Philip H.W. Leong; John D. Villasenor

2007-11-01T23:59:59.000Z

417

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... economic analysis; energy conservation; energy economics; life cycle cost analysis; public buildings; renewable energy; water conservation ...

418

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: roofs; building integrated photovoltaics; photovoltaic cells; renewable energy; single-crystalline; solar energy Abstract: ...

419

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building technology; concretes; durability; effective medium theory; electrical conductivity; interfacial zone; mortar; percolation; fluid flow; sand ...

420

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: building technology; brazed plate; compact heat exchanger; evaporator; condenser; gravity Abstract: This study ...

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Results discussed include whole building air change rates, energy consumption and contaminant concentrations. The ...

422

Building Songs 3  

E-Print Network (OSTI)

. Sman shad building song 3.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 2.WAV Title of track Building Songs 3 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

423

Building Songs 2  

E-Print Network (OSTI)

. Sman shad building song 2.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 3.WAV Title of track Building Songs 2 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

424

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management systems. GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ...

425

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal insulation; building technology; guarded hot plate; thermal conductivity; thermal resistance; uncertainty; transmission; mathematical models ...

426

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... heaters; water heaters; blowing agents; insulation; residential buildings; physical properties; thermal conductivity; polyurethane foams Abstract: ...

427

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... computer simulation; technology utilization; insulation; thermal resistance; evaluation ... to the widespread use of building integrated photovoltaic ...

428

Addendum to the corrective action plan for Underground Storage Tanks 1219-U, 1222-U, 2082-U, 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID {number_sign}0-010117  

Science Conference Proceedings (OSTI)

This document represents an addendum to the Corrective Action Plan (CAP) for underground storage tanks 1219-U, 2082-U, and 2068-U located at Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, TN. The site of the four underground storage tanks is commonly referred to as the Rust Garage Facility. The original CAP was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review in May 1992. During the time period after submission of the original CAP for the Rust Garage Facility, Y-12 Plant Underground Storage Tank (UST) Program personnel continued to evaluate improvements that would optimize resources and expedite the activities schedule presented in the original CAP. Based on these determinations, several revisions to the original corrective action process options for remediation of contaminated soils are proposed. The revised approach will involve excavation of the soils from the impacted areas, on-site thermal desorption of soil contaminants, and final disposition of the treated soils by backfilling into the subject site excavations. Based on evaluation of the corrective actions with regard to groundwater, remediation of groundwater under the Y-12 Plant CERCLA Program is proposed for the facility.

Not Available

1994-01-01T23:59:59.000Z

429

Heat Recovery in Building Envelopes  

SciTech Connect

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. Previous laboratory and simulation research has indicated that such heat transfer between the infiltrating air and walls may be substantial. In this study, Computational Fluid Dynamics was used to simulate sensible heat transfer in typical envelope constructions. The results show that the traditional method may over-predict the infiltration energy load by up to 95 percent at low leakage rates. A simplified physical model has been developed and used to predict the infiltration heat recovery based on the Peclet number of the flow and the fraction of the building envelope active in infiltration heat recovery.

Sherman, Max H.; Walker, Iain S.

2001-01-01T23:59:59.000Z

430

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

431

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

432

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

433

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

434

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

435

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

436

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

437

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

438

Summary of Prinicpal Building Activities in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Sumary Comparison Table Sumary Comparison Table Return to: A Look at CBECS Building Activities SUMMARY COMPARISON TABLE Number of Buildings (thousand) Total Floorspace (million square feet) Average Square Feet per Building (thousand) Total Workers (thousand) Average Square Feet per Worker All Commercial Buildings 4,579 58,772 12.8 76,767 766 Building Activity Retail and Service 1,289 12,728 9.9 13,464 945 -- Retail 704 9,127 13.0 8,675 1,052 --- Strip Mall 130 2,887 22.3 3,529 818 --- Enclosed Mall 12 1,817 Q 1,814 1,001 --- Other Retail 562 4,423 7.9 3,332 1,328 --Service 585 3,601 6.2 4,788 752 Office 705 10,478 14.9 27,053 387 Warehouse 580 8,481 14.6 4,904 1,730 Public Assembly 326 3,948 12.1 2,997 1,317 Education 309 7,740 25.1 10,096 767

439

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

440

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE - Better Building  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

442

A Look at Office Buildings - Index  

U.S. Energy Information Administration (EIA) Indexed Site

Office Office Home: A Look at CBECS Building Activities How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they on multibuilding complexes? How do they use energy and how much does it cost? How do they use electricity? How do they use natural gas? What types of equipment do they use? How do they measure up on conservation efforts? Summary Comparison Table (All Activities) OFFICE BUILDINGS There were an estimated 705,000 office buildings in the U.S. in 1995. Number of Buildings In the Commercial Buildings Energy Consumption Survey (CBECS), office buildings include buildings used for general office space, professional offices, and administrative offices. For example, an office may be a computer center, bank, consultant's office, law office, or medical office. An office building may also be part of a campus or complex, such as an administrative building on a college campus. (See Description of Building Types on the main CBECS page for a more detailed description.)

443

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

444

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

445

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-01-01T23:59:59.000Z

446

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-12-01T23:59:59.000Z

447

Building thermal envelope systems and materials (BTESM) monthly progress report for DOE Office Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-11-01T23:59:59.000Z

448

RL-721 Document ID Number: REV4 NEPA REVIEW SCREENING FORM DOE/CX-00081  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 81 I. Project Title: 300 Area Electrical Service Project, Hanford Site,Richland, Washington II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions ·e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Currently, the Pacific Northwest National Laboratory (PNNL) obtains electrical services on the 300 Area of the Hanford Site from the U.S. Department of Energy, Richland Operations Office {DOE-RL), Mission Support Alliance (MSA} I and Washington Closure Hanford (WCH). PNNL, with concurrence from the Pacific Northwest Site Office (PNSO) and DOE-RL, is proposing to obtain 300 Area electrical services from the City of Richland (COR). The proposed plan for establishing new 12.47 kV power service is to install overhead power

449

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NAECA NAECA The National Appliance Energy Conservation Act of 1987, 42 USC 6291 et seq., as amended, Public Law 100-12. NAGDM National Association of Garage Door Manufacturers. NCSBCS The National Conference of States on Building Codes and Standards. NEEA Northwest Energy Efficiency Alliance. NEEP Northeast Energy Efficiency Partnerships. Net Wall Area The net wall area includes the opaque wall area of all above-grade walls enclosing conditioned spaces, the opaque area of conditioned basement walls less than 50% below grade (including the below-grade portions), and peripheral edges of floors. The net wall area does not include windows, doors, or other such openings, because they are treated separately. NFPA National Fire Protection Association. NFRC National Fenestration Rating Council.

450

Building Technologies Office: About the Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

and others to implement real-world energy saving opportunities. Commercial Building Basics Federal, state, and local governments as well as private companies, own, operate...

451

Better Buildings Partners: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Network The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the...

452

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable...

453

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial...

454

Building Technologies Office: Commercial Building Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

455

Building Technologies Office: About the Buildings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

456

Building Technologies Office: High Performance Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

457

Building Technologies Program: Building America Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

search Most Popular Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report) The addition of insulation to the exterior of buildings is an effective...

458

Better Buildings Partners: Better Buildings Residential Network...  

NLE Websites -- All DOE Office Websites (Extended Search)

work they are doing to advance energy efficiency. AFC First Alabama Energy Doctors Austin Energy BC Hydro Boulder County, Colorado Building Sustainable Solutions, LLC California...

459

Commercial Reference Building: Medium Office | OpenEI  

Open Energy Info (EERE)

Medium Office Medium Office Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Medium Office for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

460

Commercial Reference Building: Small Office | OpenEI  

Open Energy Info (EERE)

Office Office Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Small Office for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

Note: This page contains sample records for the topic "building number area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings  

E-Print Network (OSTI)

Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered