Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Highly Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

2

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

3

Windows and Building Envelope | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and market challenges in the windows and building envelope sector. Image: National Renewable Energy Laboratory Read more Insulation and Window Projects Named as Top Energy...

4

Highly Insulating Windows - Publ  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Insulating Windows - Publications Future Advanced Windows for Zero-Energy Homes, J. Apte, D. Arasteh, J. Huang, 2003 ASHRAE Annual Meeting, 2002 Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Performance Criteria for Residential Zero Energy Windows, D. Arasteh, H. Goudey, J. Huang, C. Kohler, R. Mitchell, 2006, submitted to ASHRAE Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate.

5

Highly Insulating Windows - Fram  

NLE Websites -- All DOE Office Websites (Extended Search)

Frames Frames Research performed at the Norwegian University of Science and Technology and LBNL has identified various highly insulating frame solutions. A report was released in 2007 describing some of these frames. This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

6

Building Technologies Office: Vacuum Insulation Panels Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Insulation Vacuum Insulation Panels Research Project to someone by E-mail Share Building Technologies Office: Vacuum Insulation Panels Research Project on Facebook Tweet about Building Technologies Office: Vacuum Insulation Panels Research Project on Twitter Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Google Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Delicious Rank Building Technologies Office: Vacuum Insulation Panels Research Project on Digg Find More places to share Building Technologies Office: Vacuum Insulation Panels Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research

7

List of Building Insulation Incentives | Open Energy Information  

Open Energy Info (EERE)

Air conditioners Building Insulation Windows Doors Ground Source Heat Pumps No Alabama Power - Residential Heat Pump and Weatherization Loan Programs (Alabama) Utility Loan...

8

Vacuum Glazing; A Thermally Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing; A Thermally Insulating Window Technology Vacuum Glazing; A Thermally Insulating Window Technology Speaker(s): Cenk Kocer Date: May 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sunnie Lim The vacuum glazing consists of two panes of glass separated by a sub-millimetre vacuum gap. Under the action of atmospheric pressure the separation of the panes is maintained by an array of high strength spacers in the gap. The glass panes are hermetically sealed at the edge using a low melting point glass frit (solder glass). Since 1913 many have worked on a practical implementation of such a flat insulating glass structure, with success finally being reported in 1989 by Collins et al. at the University of Sydney. The purpose of this talk is to present a brief history of the vacuum glazing research at the University of Sydney, and outline in detail

9

Apparatus for insulating windows and the like  

DOE Patents (OSTI)

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

Mitchell, R.A.

1984-06-19T23:59:59.000Z

10

Apparatus for insulating windows and the like  

DOE Patents (OSTI)

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

1984-01-01T23:59:59.000Z

11

Laser sealed vacuum insulating window  

DOE Patents (OSTI)

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, D.K.; Tracy, C.E.

1985-08-19T23:59:59.000Z

12

Laser sealed vacuum insulation window  

DOE Patents (OSTI)

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1987-01-01T23:59:59.000Z

13

Building Technologies Office: High Performance Windows Volume Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

14

Highly Insulating Windows Volume Purchase Program Final Report  

SciTech Connect

This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

2013-02-01T23:59:59.000Z

15

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

these windows incorporating hear mirror films are staticS. , "Thin Film Coatings for Energy Efficient Windows", LBLglazed windows with single and double plastic film inserts

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

16

High-Efficiency Window Air Conditioners - Building America Top...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive,...

17

Basement Insulation Systems- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

18

Vacuum Insulation for Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

evacuated materials-so small that they are invisible-integrated with low-e-coated plastic films. The materials will have better insulation values than vacuum-insulated glass...

19

Detailed thermal performance data on conventional and highly insulating window systems  

SciTech Connect

Data on window heat-transfer properties (U-value and shading coefficient (SC)) are usually presented only for a few window designs at specific environmental conditions. With the introduction of many new window glazing configurations (using low-emissivity coatings and gas fills) and the interest in their annual energy performance, it is important to understand the effects of window design parameters and environmental conditions on U and SC. This paper discusses the effects of outdoor temperature, wind speed, insolation, surface emittance, and gap width on the thermal performance of both conventional and highly insulating windows. Some of these data have been incorporated into the fenestration chapter of the ''ASHRAE Handbook - 1985 Fundamentals.'' The heat-transfer properties of multiglazed insulating window designs are also presented. These window systems include those having (1) one or more low-emittance coatings; (2) low-conductivity gas-fill or evacuated cavities; (3) a layer of transparent silica aerogel, a highly insulating microporous material; or (4) combinations of the above. Using the detailed building energy analysis program, DOE 2.1B, we show that these systems, which all maintain high solar transmittance, can add more useful thermal energy to a space than they lose, even in a northern climate. Thus, in terms of seasonal energy flows, these fenestration systems out-perform insulated walls or roofs.

Arasteh, D.; Selkowitz, S.; Hartmann, J.

1986-01-01T23:59:59.000Z

20

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Building Technologies Office: Windows, Skylights, and Doors Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows, Skylights, and Windows, Skylights, and Doors Research to someone by E-mail Share Building Technologies Office: Windows, Skylights, and Doors Research on Facebook Tweet about Building Technologies Office: Windows, Skylights, and Doors Research on Twitter Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Google Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Delicious Rank Building Technologies Office: Windows, Skylights, and Doors Research on Digg Find More places to share Building Technologies Office: Windows, Skylights, and Doors Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

22

Movable insulation. A guide to reducing heating and cooling losses through the windows in your home  

SciTech Connect

A typical house loses 25 to 30% of its heat through windows, and a house with large windows may lose as much as 50%. Numerous movable-insulation systems that will cut the heat loss through windows in half are described. Chapters are: The Energy-Responsive Dwelling, Past to Present; Window Heat Losses and Gains; Enhanced Glazing Systems; Choosing a Window-Insulation Design for Your Home; Pop-In Shutters; Thermal Curtains - Blankets that Fold; Thermal Shades - Blankets that Roll; Thermal Shutters and Folding Screens; Insulation Between Glazing and Interior Louvers; Exterior Hinged and Sliding Shutters; Sun-Shading Screens; Exterior Roll Shutters; Shutters for Skylights; Shutters for Clerestory Windows; Interior Greenhouse Insulation Systems; Exterior Insulation for Greenhouses; Movable Insulation to Assist Passive Space Heating; and Movable Insulation to Assist Solar Water Heaters. Appendices include the following: insulated shade and shutter construction; the economics of window insulation; movable insulation products, hardware, and components; further technical information; and design sources. (MCW)

Langdon, W.K.

1980-01-01T23:59:59.000Z

23

Building Technologies Office: Energy-Efficient Window Air Conditioner  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Efficient Window Energy-Efficient Window Air Conditioner Ratings Research Project to someone by E-mail Share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Facebook Tweet about Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Twitter Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Google Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Delicious Rank Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Digg Find More places to share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on

24

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network (OSTI)

1.2 quads. Future window technologies offer energy savingsImpact of Window Technologies for Commercial BuildingsEnvironmental Energy Technologies Division October 2009 This

Hong, Tianzhen

2014-01-01T23:59:59.000Z

25

Noise and the Sound Insulation of Buildings  

Science Journals Connector (OSTI)

...Noise and the Sound Insulation of Buildings F. Ingerslev It is claimed that noise...well-being. An outstanding task for the building industry in the 1980s is to ensure a proper noise climate in new buildings. The target must be to obtain a noise...

1972-01-01T23:59:59.000Z

26

High Reliability R-10 Windows Using Vacuum Insulating Glass Units  

SciTech Connect

The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ? 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where the unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.

Stark, David

2012-08-16T23:59:59.000Z

27

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

7 7 Nonresidential Window Stock and Sales, by Glass Type Existing U.S. Stock Vision Area of New Windows (Million Square Feet) Type (% of buildings) 1995 2001 2003 2005 2007 2009 Single Pane 56 57 48 56 60 48 Insulating Glass (1) 294 415 373 407 476 389 Total 350 472 421 463 536 437 Clear 36% 49% 43% 44% 38% 33% Tinted 40% 24% 17% 15% 11% 10% Reflective 7% 8% 6% 4% 3% 3% Low-e 17% 19% 34% 37% 48% 54% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): (2) 1) Includes double- and triple-pane sealed units and stock glazing with storm windows. 2) Included as part of the Tinted category. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, June 2006, Table B1 for stock data; AAMA/NWWDA, 1996 Study of the U.S. Market for Windows and Doors, Table 27, p. 60 for 1995 usage values; 2003 AAMA/WDMA Study of the U.S. Market

28

Pennsylvania: Window Technology First of Its Kind for Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

29

Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

30

Building America Expert Meeting Report: Interior Insulation Retrofit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interior Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce...

31

Research and Development Roadmap: Windows and Building Envelope  

Energy.gov (U.S. Department of Energy (DOE))

Windows and building envelope research and development is a high priority for the Building Technologies Office. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

32

Windows and Building Envelope Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of building energy performance and human factors (comfort, indoor environmental quality (IEQ), occupant satisfaction and acceptance of technologies) for emerging window...

33

Drafty Windows: Is it Better to Insulate or Replace Them? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drafty Windows: Is it Better to Insulate or Replace Them? Drafty Windows: Is it Better to Insulate or Replace Them? Drafty Windows: Is it Better to Insulate or Replace Them? February 9, 2010 - 8:45am Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I've lived in my condominium for several years, and though it naturally stays cooler in the summer (with all west-facing windows) I struggle to keep it warm in the winter without taking out a loan to pay utilities. Like any homeowner, I must answer the question: Is it better to try and insulate my existing window, or am I better off replacing it? Sometimes the answer is purely about upfront costs, but other times the inefficiency more than justifies the cost of replacement. There are several ways to make windows more efficient: The least expensive

34

Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch  

NLE Websites -- All DOE Office Websites (Extended Search)

EI2 Insulation EI2 Insulation Helps Anxious Pooch Find Calm in the Storm to someone by E-mail Share Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Facebook Tweet about Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Twitter Bookmark Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Google Bookmark Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Delicious Rank Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Digg Find More places to share Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on AddThis.com...

35

A study on the proposes of energy analysis indicator by the window elements of office buildings in Korea  

Science Journals Connector (OSTI)

Abstract Recently, the window area ratio of buildings has increased but the thermal insulation performance of windows is lower than the wall. Therefore, many studies have been carried out to reduce this heat loss. The Republic of Korea policies and guidelines for windows do not consider the optical and design elements of windows because it is more important to the insulation performance of windows. This paper proposes the supplement point of the Korea's policies and guidelines regarding windows through a comparison of Korea's policies and guidelines for windows, checks the variation of the energy consumption of buildings through the variation of the window elements, and proposes an energy analysis indicator for the Republic of Korea's situation. This study confirmed that the variation of the window elements affect to energy consumption by previous studies to consider in window design according to the policies and guidelines. The window elements were divided into performance elements of the windows and architectural/equipment plan element. By analyzing the energy consumption by changing the element, this study confirmed the variation of energy consumption by using the COMFEN4.0 simulation tool. This paper proposes an actual energy analysis indicator in the Republic of Korea.

Seok-Hyun Kim; Sun-Sook Kim; Kwang-Woo Kim; Young-Hum Cho

2014-01-01T23:59:59.000Z

36

Highly Insulating Residential Windows Using Smart Automated Shading...  

Office of Environmental Management (EM)

Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window...

37

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

38

Highly Insulating Residential Windows Using Smart Automated Shading  

Energy.gov (U.S. Department of Energy (DOE))

Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

39

12 - Life cycle assessment (LCA) of building thermal insulation materials  

Science Journals Connector (OSTI)

Abstract: In this chapter thermal insulation materials and types of plaster and their properties are described. The impact of the selected thermal insulation materials and plaster on the environment is assessed using LCA analysis. A method of assessing the ecological and economic benefits resulting from thermal insulation of the external walls of buildings is proposed. On this basis, ecological and economic payback periods for thermal insulation are defined as well as the ecological efficiency of thermal insulation. The conducted analyses conclude that thermal insulation of the external walls of buildings is environmentally favourable.

R. Dylewski; J. Adamczyk

2014-01-01T23:59:59.000Z

40

Building Energy Software Tools Directory: Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Window WINDOW screenshot. Calculates thermal performance of fenestration products; heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). Screen Shots Keywords fenestration, thermal performance, solar optical characteristics, windows, glazing Validation/Testing N/A Expertise Required Some knowledge about windows. Users 2000+ in the U.S. and abroad. Audience Manufacturers, engineers, architects, researchers, sales personnel. Input Interactive program: user-provided data files for frames (from the THERM program) and glazing layers (from the Optics program) optional. Output Reports for the total window can be saved to disk or printed; files can be generated to be used as input to the DOE-2 and EnergyPlus programs;

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

State-of-the-Art Highly Insulating Window Frames - Research and Market  

NLE Websites -- All DOE Office Websites (Extended Search)

State-of-the-Art Highly Insulating Window Frames - Research and Market State-of-the-Art Highly Insulating Window Frames - Research and Market Review Title State-of-the-Art Highly Insulating Window Frames - Research and Market Review Publication Type Report LBNL Report Number LBNL-1133E Year of Publication 2007 Authors Gustavsen, Arlid, Bjørn Petter Jelle, Dariush K. Arasteh, and Christian Kohler Call Number LBNL-1133E Abstract This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

42

Building America Expert Meeting: Cladding Attachment Over Exterior Insulation  

Energy.gov (U.S. Department of Energy (DOE))

This expert meeting was conducted by Building Science Corporation on July 28, 2012 and focused on issues surrounding cladding attachment and performance of walls with exterior insulating sheathing.

43

Building Technologies Office: Windows, Skylights, and Doors Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows, Skylights, and Doors Research Windows, Skylights, and Doors Research The Emerging Technology team conducts research into technologies related to windows, skylights, and doors. These technologies can decrease energy demands, save money, and improve occupant thermal comfort. By working with industry partners, researchers, and other stakeholders, the U.S. Department of Energy also seeks to improve the availability of these products in the market. Research in windows, skylights, and doors includes: Daylighting and Shading Photo of a wall of windows with shades built over them to block out the noon sun. Daylighting and shading technologies alter the way that natural light affects a building, either by allowing more of it in (to light a room) or by preventing it from coming in. These technologies are important in that they allow building operators and managers to lower a building's lighting energy needs, as well as reducing the energy used in heating, ventilation, and air conditioning (HVAC) systems.

44

Building Technologies Office Window and Envelope Technologies...  

Energy Savers (EERE)

(pre-2010 buildings) 19 Air Sealing System: Residential (pre-2010 buildings) 20 Air Sealing System: Commercial 21 22 Highest Priority R&D Area: Building Envelope R&D...

45

Super Building Insulation by CO2 Foaming Process Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Super Building Insulation by CO2 Foaming Emerging Technologies » Super Building Insulation by CO2 Foaming Process Research Project Super Building Insulation by CO2 Foaming Process Research Project The Department of Energy is currently researching the development of building superinsulation through a carbon dioxide (CO2) foaming process. Project Description This project seeks to develop building super insulation through a carbon dioxide foaming process that does not use hydrofluorocarbons (HFCs), and which produces insulation with a high R-value. Project Partners Research is being undertaken between the Department of Energy and The Industrial Science & Technology Network. Project Goals The goal of this project is to develop advanced insulation without HFC, and to achieve a competitive processing cost for CO2 foaming technology.

46

13 - Aerogel materials for insulation in buildings  

Science Journals Connector (OSTI)

Abstract: Aerogel materials have recently received much attention since they give many exciting applications in a wide range of areas. This chapter highlights the processing of these materials, the resulting physicochemical properties and their applications. Thus, fundamental understandings in the techniques for processing of aerogel materials including conventional drying, supercritical drying, freeze-drying, ambient-pressure drying with regards to material density and void size distribution, thermal conductivity, optical and acoustic properties are provided. In addition, a number of chemical post-treatments for surface engineering of aerogel materials are included. Finally, potentially new applications of using these materials as thermal insulation for building, optical sensor, space dust collector and catalysis are discussed.

C.-H. Yu; Q.J. Fu; S.C.E. Tsang

2010-01-01T23:59:59.000Z

47

Highly Insulating Residential Windows Using Smart Automated Shading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and in a networked configuration. Project Impact LBNL is aiming toward a mature market cost increment of 12ft2 of window. LBNL will also work with code officials to...

48

Insulation Workers  

Science Journals Connector (OSTI)

Insulation workers apply insulation materials on objects and buildings for thermal insulation and/or waterproofing.

R. Riala

2012-01-01T23:59:59.000Z

49

Identification of building applications for a variable-conductance insulation  

SciTech Connect

Recent experiments have confirmed the feasibility of controllable, reversible disabling of a vacuum insulation panel, which may result in the development of energy-efficient building envelope components. These components could extend the managed energy exchange through the building envelope from about 30% (typical with fenestration systems in commercial buildings), to as much as 90% of the gross wall and roof areas. Further investigation will be required to optimized the thermal response and the magnitude of the R-value swing (from a difference between insulating and conducting insulating values of 4 to as high as a factor of 100). The potential for energy reduction by using the variable-conductance insulation in the building envelope is discussed, and other potential building applications are mentioned.

Potter, T.F. [National Renewable Energy Lab., Golden, CO (United States); Tuluca, A. [Winter (Steven) Associates, Inc., New York, NY (United States)

1992-07-01T23:59:59.000Z

50

Exterior Rigid Insulation Best Practices- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Field and lab studies by Building America teams BSC, PHI, and Northern STAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

51

Validation of the Window Model of the Modelica Buildings Library  

E-Print Network (OSTI)

LBNL-5735E Validation of the Window Model of the Modelica Buildings Library Thierry Stephane of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University

52

Effect of window type, size and orientation on the total energy demand for a building in Indian climatic conditions  

Science Journals Connector (OSTI)

Windows in a building allow daylight to enter a building space but simultaneously they also result in heat gains and losses affecting energy balance. This requires an optimisation of window area from the point of view of total energy demand viz., for lighting and cooling/heating. This paper is devoted to this kind of study for Indian climatic conditions, which are characterised by six climatic zones varying from extreme cold to hot, dry and humid conditions. Different types of windows have been considered because the optimised size will also depend on the thermo-optical parameters like heat transfer coefficient (U-value), solar heat gain coefficient (g), visual (?), and total transmittance (T) of the glazing in the window. It is observed that in a non-insulated building, cooling/heating energy demand far exceeds lighting energy demand, making the optimisation of window area a futile exercise from the point of view of total energy demand. Only for buildings with U-value below 0.6 W/m²K can optimisation be achieved. The optimised window area and the corresponding specific energy consumption have been calculated for different climates in India, for different orientations, and for three different advanced window systems.

Inderjeet Singh; N.K. Bansal

2004-01-01T23:59:59.000Z

53

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

5 5 Residential Prime Window Sales, by Glass Type (Million Units) 1980 8.6 34% 0.0 0% 16.6 66% 25.2 100% 1990 4.9 14% 12.0 34% 18.7 53% 35.6 100% 1993 2.8 14% 17.2 84% 0.4 2% 20.4 100% 1995 5.5 12% 37.8 85% 1.3 3% 44.5 100% 1999 4.8 8% 55.2 89% 2.0 3% 62.0 100% 2001 3.9 7% 50.9 90% 1.5 3% 56.3 100% 2003 4.7 7% 55.9 89% 2.2 4% 62.8 100% 2005 4.2 6% 63.8 91% 2.5 3% 70.5 100% 2007 2.7 5% 55.0 93% 1.4 2% 59.1 100% 2009 1.6 4% 36.2 93% 1.2 3% 38.9 100% Note(s): 1) IG = insulated glazing. Source(s): Double Pane Single Pane Sealed IG (1) Other Total AAMA/NWWDA, Study of the U.S. Market for Windows and Doors, 1996, Table 22, p.49; AAMA/WDMA, Study of U.S. and Canadian Market for Windows and Doors, Apr. 2000, Exhibit E.7, p. 55; AAMA/WDMA, Study of the Market for U.S. Doors, Windows and Skylights, Apr. 2004, Exhibit D.4, p. 46; AAMA/WDMA, Study of U.S. Market for Windows, Doors, and Skylights, Apr. 2006, Exhibit D.8 Conventional Window Glass Usage, p. 50; AAMA/WDMA, Study of U.S.

54

Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The OptiQ™ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America’s commercial building space.

55

10 - Polymeric foam materials for insulation in buildings  

Science Journals Connector (OSTI)

Abstract: This chapter discusses polymeric foams used mainly for building insulation with a view to saving energy. It deals first with a brief foam history, the necessary materials for foam production, the polymers and the foaming (blowing) agents, and the foaming mechanism. It continues with the type of processing polymers for foam production and underlines the thermoplastic and thermosetting foams manufactured for the construction industry. It ends with foam main properties and future trends in the field of polymeric insulation materials.

D. Feldman

2010-01-01T23:59:59.000Z

56

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network (OSTI)

Predictive Clothing Insulation Models based on Outdoor AirPREDICTIVE CLOTHING INSULATION MODELS ON BUILDING ENERGYthat the clothing insulation is equal to a constant value of

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

57

9 - Thermoset insulation materials in appliances, buildings and other applications  

Science Journals Connector (OSTI)

Abstract: Thermoset foam products are widely used for many technical insulation applications. They offer superior thermal insulation, a very favorable strength-to-weight ratio, and durability in a broad range of service conditions. Furthermore, fabrication technology is eased by the processing of a liquid reaction mixture and the auto-adhesive bond of reacting foam to most common substrates and facings materials. Polyurethane rigid foam is the material of choice for the whole cold-chain insulation industry, from food-processing, storage and transportation, to retailers and fridges at home. Polyurethane products are also largely used for the thermal insulations of buildings and for heat-management in pipelines and hot-water tanks. Phenolic foams find applications in some specific segments, thanks to their excellent fire and smoke behavior characteristics.

A. Fangareggi; L. Bertucelli

2012-01-01T23:59:59.000Z

58

Windows and Building Envelope Facilities | Department of Energy  

Office of Environmental Management (EM)

Advanced Windows Testbed 1 of 2 LBNL's Advanced Windows Testbed This outdoor test facility contains three, thermally-isolated chambers that have been instrumented to...

59

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

60

Building Scientific Workflows for Earth System Modelling with Windows Workflow Foundation  

E-Print Network (OSTI)

Building Scientific Workflows for Earth System Modelling with Windows Workflow Foundation Matthew J developed a framework for the composition, execution and management of integrated Earth system models

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network (OSTI)

electrochromic windows were technically successful, but it will take a number of years for significant market

Hong, Tianzhen

2014-01-01T23:59:59.000Z

62

Building America Update - June 2013 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Building America Update, which features articles on: Articles from Green Building Advisor magazine; "What's Wrong With This Picture?" for crawlspace, insulation, and window...

63

Building Energy Software Tools Directory: Window Heat Gain  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Heat Gain Window Heat Gain Window Heat Gain image Calculates the solar heat gain through vertical windows in temperate latitudes. Screen Shots Keywords Solar, window, energy Validation/Testing N/A Expertise Required None. Users Few (new program). Audience Architects, energy analysts. Input Location, window characteristics, ground characteristics. Output Daily/monthly heat gain through window. Computer Platform Web Programming Language JavaScript Strengths Allows default locations/windows/surfaces or custom user data. Incorporates lots of ASHRAE SHGF data that is otherwise burdensome to deal with. Weaknesses Only works for windows facing close to due north, south, east, or west. Doesn't address conductive losses or shading. Contact Company: Sustainable By Design Address: 3631 Bagley Avenue North

64

Window Use in Mixed-Mode Buildings: A Literature Review  

E-Print Network (OSTI)

adaptive behaviour in green buildings. Intelligent Buildingsmore tolerant of ‘green’ buildings? Building Research &this trend to the “green” building movement, but this is

Ackerly, Katie; Baker, Lindsay; Brager, Gail

2011-01-01T23:59:59.000Z

65

Use of PCM-Enhanced Insulations in the Building Envelope  

SciTech Connect

A phase change material (PCM) alters the heat flow across the building envelope by absorbing and releasing heat in response to cycling ambient temperatures. The benefit of a PCM is reduction in heating and cooling loads and in many cases a shift in peak-load demands and the time of day of the peak load. Ambient or interior temperature cycling past the phase change temperature range is necessary for the PCM to function. The design of a PCM application requires selection of material, identification of PCM location and bounding thermal resistances, and specification of the amount of PCM to be used. PCM can be distributed in an insulation or building material or packaged for localized application. This paper describes small-scale laboratory testing, large- scale laboratory testing, and field studies undertaken to evaluate the energy savings potential for PCM in the building envelope.

Kosny, Jan [ORNL; Yarbrough, David W [ORNL

2008-01-01T23:59:59.000Z

66

Building America Technology Solutions for New and Existing Homes: Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

67

Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements  

Science Journals Connector (OSTI)

This paper presents and optimizes the annual heating, cooling and lighting energy consumption associated with applying different types and properties of window systems in a building envelope. Through using building simulation modeling, various window properties such as U-value, solar heat gain coefficient (SHGC), and visible transmittance (Tvis) are evaluated with different window wall ratios (WWRs) and orientations in five typical Asian climates: Manila, Taipei, Shanghai, Seoul and Sapporo. By means of a regression analysis, simple charts for the relationship between window properties and building energy performance are presented as a function of U-value, SHGC, Tvis, WWR, solar aperture, effective aperture, and orientation. As a design guideline in selecting energy saving windows, an optimized window system for each climate is plotted in detailed charts and tables.

J.W. Lee; H.J. Jung; J.Y. Park; J.B. Lee; Y. Yoon

2013-01-01T23:59:59.000Z

68

Assessment of the Energy Rating of Insulated Wall Assemblies - A Step Towards Building Energy Labeling  

E-Print Network (OSTI)

Considerable efforts are recently focusing on energy labeling of components and systems in buildings. In Canada, the energy rating of windows was established, which provides a protocol to rate different types of windows with respect to their energy...

Elmahdy, H.; Maref, W.; Saber, H.; Swinton, M.; Glazer, R.

2010-01-01T23:59:59.000Z

69

Building America Technology Solutions for New and Existing Homes: Excavationless: Exterior-Side Foundation Insulation for Existing Homes (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This project describes an innovative, minimally invasive building foundation insulation upgrade technique on an existing home that uses hydrovac excavation technology combined with a liquid insulating foam.

70

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network (OSTI)

average commercial buildings site energy usage of 91 kBtu/commercial buildings, even though the average Energy Usage

Hong, Tianzhen

2014-01-01T23:59:59.000Z

71

Heat insulation solar glass and application on energy efficiency buildings  

Science Journals Connector (OSTI)

Abstract Building integrated photovoltaics are among the best methods for generating power using solar energy. To promote and respond to the concept of BIPVs, this study developed a type of multi-functional heat insulation solar glass (HISG) that differs from traditional transparent PV modules, providing functions such as heat insulation and self-cleaning in addition to power generation. This study also made thorough preparations for the safety of future HISG installation on curtain walls in large-scale buildings. Furthermore, this study provides a comprehensive discussion regarding the energy-saving performance of HISG and relevant practical applications. Two experimental houses were constructed, which independently employed HISG and single-layer tempered glass. Taiwan's climate was adopted as the environmental condition for the experiment, and the effects of HISG and single-layer tempered glass on indoor temperature variation and the energy consumed by air conditioners and heaters were explored. Related software was also employed to simulate, compare, and verify HISG efficacy.

Chin-Huai Young; Yi-Lin Chen; Po-Chun Chen

2014-01-01T23:59:59.000Z

72

Calculation program for design of windows in residential buildings Ins Palma Santos and Svend Svendsen*  

E-Print Network (OSTI)

sustainable buildings at the Department of Civil Engineering at the Technical University of Denmark1 Calculation program for design of windows in residential buildings Inês Palma Santos and Svend Svendsen* Department of Civil Engineering, Brovej, Building 118, Technical University of Denmark, DK-2800

73

Validation of the Window Model of the Modelica Buildings Library  

E-Print Network (OSTI)

Recent developments of the Modelica buildings library forthe 8th International Modelica Conference. Dresden, Germany,transfer in rooms in the Modelica "Buildings" library. Proc.

Nouidui, Thierry Stephane

2014-01-01T23:59:59.000Z

74

Building America Expert Meeting Report: Windows Options for New...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation,...

75

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

NLE Websites -- All DOE Office Websites (Extended Search)

Window-Related Energy Consumption in the US Window-Related Energy Consumption in the US Residential and Commercial Building Stock Joshua Apte and Dariush Arasteh, Lawrence Berkeley National Laboratory LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate

76

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

window related primary energy consumption of the US building= 1.056 EJ. “Primary” energy consumption includes a site-to-the amount of primary energy consumption required by space

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

77

[send to printer] [close this window] What's Happening from Environmental Building News  

E-Print Network (OSTI)

[send to printer] [close this window] What's Happening from Environmental Building News July 1-by-step move toward the goals of Architecture 2030's "2030 Challenge" to eliminate fossil-fuel use in all new

78

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

1 1 Residential Prime Window Sales, by Frame Type (Million Units) (1) New Construction 1990 1995 2000 2005 2007 2009 Remodeling/Replacement 1990 1995 2000 2005 2007 2009 Total Construction 1990 1995 2000 2005 2007 2009 Note(s): Source(s): AAMA, Industry Statistical Review and Forecast 1992, 1993 for Note 2; AAMA/NWWDA, Industry Statistical Review and Forecast 1996, 1997, Table 6, p. 6 for 1990; AAMA/WDMA, 2000 AAMA/WDMA Industry Statistical Review and Forecast, Feb. 2001, p. 6 for 1995; 2003 AAMA/WDMA Industry Statistical Review and Forecast, June 2004, p. 6 for 2000 and 2003; and LBNL, Savings from Energy Efficient Windows, Apr. 1993, p. 6 for window life span; AAMA/WDMA, Study of U.S. Market For Windows, Doors, and Skylights, Apr. 2006, p. 41 for 2005; AAMA/WDMA, U.S. Industry Statistical Review and

79

High-Efficiency Window Air Conditioners- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Top Innovation profile highlights research into making window air conditioners much more energy efficient, and recommendations for homeowners about how to improve the operating efficiency of their units.

80

State-of-the-Art Highly Insulating Window Frames - Research and Market Review  

E-Print Network (OSTI)

through vacuum and electrochromic vacuum glazed windows,technologies, such as an electrochromic vacuum glazedof rebate depth on an electrochromic vacuum glazed window.

Gustavsen, Arild

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector October 19, 2011 - 1:10pm Addthis An insulation worker installs argon-filled panels behind the radiators in the LEED Gold-rated New York Power Authority building in White Plains. The unique construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. | Photo courtesy of FiFoil, Inc. An insulation worker installs argon-filled panels behind the radiators in the LEED Gold-rated New York Power Authority building in White Plains. The unique construction of the gas-filled panels developed at the Lawrence

82

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

6 6 2005 Residential Prime Window Stock (Million Households) Double Pane Census Division New England 5.3 Middle Atlantic 15.0 East North Central 17.3 West North Central 7.7 South Atlantic 21.3 East South Central 6.8 West South Central 12.1 Mountain 7.3 Pacific 16.4 United States 109.2 Selected States New York 7.0 Florida 6.7 Texas 7.6 California 12.0 Note(s): Source(s): 1) Respondents were shown pictures of different types of window glass and were asked "Which picture best describes the type of glass in the windows of your home/apartment?" 2) An additional 1.3 million households not counted here use other types of windows such as triple-pane windows. EIA, 2005 Residential Energy Consumption Survey, Tables HC 11.5, HC 12.5, HC 13.5, HC 14.5, and HC 15.5, April 2008. 5.1 2.5

83

Building America Whole-House Solutions for New Homes: Affordable Cold Climate Infill Housing with Hybrid Insulation Approach  

Energy.gov (U.S. Department of Energy (DOE))

Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)

84

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

3 3 Nonresidential Window Sales, by Type and Census Region (Million Square Feet of Vision Area) (1) Northeast Midwest South West Total Type 1995 2009 1995 2009 1995 2009 1995 2009 1995 2009 New Construction Commercial Windows (2) 4 15 16 22 21 58 13 25 54 120 Curtain Wall 3 10 6 16 16 41 8 18 33 84 Store Front 7 10 11 16 14 41 11 18 43 85 Total (3) 14 36 33 53 51 140 32 60 130 289 Remodeling/Replacement Commercial Windows (2) 18 12 25 17 46 45 27 19 116 93 Curtain Wall 4 2 6 3 8 7 10 3 28 15 Store Front 12 5 18 8 24 20 22 9 76 41 Total (3) 34 18 49 27 78 72 59 31 220 148 Total Commercial Windows (2) 22 27 41 40 67 103 40 45 170 213 Curtain Wall 7 12 12 18 24 48 18 21 61 99 Store Front 19 15 29 23 38 61 33 26 119 125 Total (3) 48 54 82 80 129 211 91 91 350 437 Note(s): Source(s): 1) Usage is a good indication of sales. 2) Formerly referred to as Architectural. Includes both shop-fabricated (true architectural) and site-

85

A Protocol for Lifetime Energy and Environmental Impact Assessment of Building Insulation Materials  

SciTech Connect

This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors, and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist that provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines.

Shrestha, Som S [ORNL] [ORNL; Biswas, Kaushik [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

2014-01-01T23:59:59.000Z

86

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Storm Windows Storm Windows Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by adding interior or exterior storm panels. Storm Window Panels exit disclaimer Storm windows can reduce the air leakage and improve the insulating value of existing windows. They can be installed on the interior or exterior side of windows, and can be mounted permanently or for seasonal use. Interior storm windows can be more easily installed and removed for ventilation or cleaning. Storm windows can reduce air leakage. However, it is important that humid

87

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South- and west-facing windows allow more South- and west-facing windows allow more natural light into the building and reduce electricity use * Extensive awnings and overhangs control the light and heat entering the building during the day to reduce cooling loads * Rooftop light monitors in the garden area provide controllable natural light from above to save on electricity consumption * Insulating concrete form block construction with an R-22 insulation value helps control the temperature of the building and maximize

88

Building America Top Innovations 2013 Profile … Window Replacement, Rehabilitation, & Repair Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are also discussed. are also discussed. Water infiltration is dealt with at considerable length because windows are one of the likeliest components in the building structure for water entry and because water intrusion and resultant damage may have gone on unnoticed for some time as water can enter the wall cavity through and around the window assembly. Suggestions for investigating sources of water intrusion are provided. The condition of the decorative trim around the window can be an indication of water damage but deterioration of the trim is typically an aesthetic problem not a performance problem. However, if the window sill is damaged, it should be replaced because it is the means by which water will drain out away from the house or, incorrectly, into the wall. Damaged or deteriorating window sashes, frames, or casings

89

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network (OSTI)

Energy Usage Intensity (EUI) of commercial buildings showednatural gas. The site energy EUI listed in Table 15 to Tableis calculated as, Site Energy EUI (kBtu/ft²) = Site Energy (

Hong, Tianzhen

2014-01-01T23:59:59.000Z

90

Building America Technology Solutions for Existing Homes: Initial and Long-Term Cladding Over Exterior Insulation  

Energy.gov (U.S. Department of Energy (DOE))

This research conducted by Building Science Corporation evaluated the system mechanics and long-term performance of the use of wood furring strips attached through the insulation back to the structure to provide a convenient cladding attachment location for exterior insulation.

91

Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies  

Energy.gov (U.S. Department of Energy (DOE))

The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. T

92

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

8 8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3) Triple-Glazed (2) with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas (3) Note(s): Source(s): The Efficient Windows Collaborative (http://www.efficientwindows.org) 0.14 0.33 0.56 1) Spectrally selective. 2) Includes double glazing with suspended film. 3) Center of glass properties, does not include frame or installation

93

insulation  

Science Journals Connector (OSTI)

The material used to insulate an electrical conductor, i.e., to enable a point to maintain an insulated state. Note: Insulations consist of dielectric materials. Airspace may serve...See also ...

2001-01-01T23:59:59.000Z

94

E-Print Network 3.0 - affordable window insulation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

focus of this work was on the combined... , the objective was to simultaneously decrease heat loss by increasing insulation and reducing infiltration Source: Chen, Qingyan "Yan" -...

95

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

E-Print Network (OSTI)

Norway Abstract The thermal performance of windows is important for energyNorway Norwegian University of Science and Technology Howdy Goudey Lawrence Berkeley National Laboratory Environmental Energy

Gustavsen, Arild

2012-01-01T23:59:59.000Z

96

SINTEF Building and Infrastructure State-of-the-Art Highly Insulating  

E-Print Network (OSTI)

: Windows, window frame, energy use, thermal transmittance, U-value, Passivhaus Figures on coverpage an agreement with Kopinor, the Reproduction Rights Organisation for Norway. Any use contrary to legislation is supported by the Assistant Secretary of Energy Efficiency and Renewable Energy, Office of Building

97

Building America Expert Meeting: Windows Options for New and Existing Homes  

Energy.gov (U.S. Department of Energy (DOE))

The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.

98

Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings  

E-Print Network (OSTI)

Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

Lian, Y.; Hao, Y.

2006-01-01T23:59:59.000Z

99

Submitted to Energy and Buildings February 23, 2005 and accepted for publication March 1, 2006. Subject responses to electrochromic windows  

E-Print Network (OSTI)

. LBNL-57125 Subject responses to electrochromic windows R.D. Clear* , V. Inkarojrit, E.S. Lee Building in a private office with switchable electrochromic windows, manually- operated Venetian blinds, and dimmable fluorescent lights. The electrochromic window had a visible transmittance range of approximately 3

100

Building America Top Innovations 2013 Profile … Window Replacement, Rehabilitation, & Repair Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

such as working on scaffolding are also discussed. such as working on scaffolding are also discussed. Water infiltration is dealt with at considerable length because windows are one of the likeliest components in the building structure for water entry and because water intrusion and resultant damage may have gone on unnoticed for some time as water can enter the wall cavity through and around the window assembly. Suggestions for investigating sources of water intrusion are provided. The condition of the decorative trim around the window can be an indication of water damage but deterioration of the trim is typically an aesthetic problem not a performance problem. However, if the window sill is damaged, it should be replaced because it is the means by which water will drain out away from the house or,

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

INTERROOM RADIATIVE COUPLINGS THROUGH WINDOWS AND LARGE OPENINGS IN BUILDINGS : PROPOSAL OF A SIMPLIFIED MODEL  

E-Print Network (OSTI)

INTERROOM RADIATIVE COUPLINGS THROUGH WINDOWS AND LARGE OPENINGS IN BUILDINGS : PROPOSAL OF A SIMPLIFIED MODEL H. Boyer1 , M. Bojic2 , H. Ennamiri1 , D. Calogine1 , S. Guichard1 1 University of La Corresponding author : harry.boyer@univ-reunion.fr ABSTRACT A simplified model of indoor short wave radiation

Paris-Sud XI, Université de

102

Windows, Doors, & Skylights | Department of Energy  

Energy Savers (EERE)

Logan Architects. Windows affect home aesthetics as well as energy use. Window Types A wood-frame window with insulated window glazing. | Photo courtesy of iStockphoto...

103

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES OFFICE BUILDING TECHNOLOGIES OFFICE Building America Case Study Technology Solutions for New and Existing Homes Moisture Durability of Vapor Permeable Insulating Sheathing PROJECT INFORMATION Construction: Existing homes with vapor open wall assemblies Type: Residential Climate Zones: All PERFORMANCE DATA Insulation Ratio The R-value ratio of exterior to interior insulation (e.g., R-15 exterior insulation on R-11 cavity insulation has a ratio of 0.58). This variable controls sheathing temperature. Vapor Permeable Insulation An insulation with vapor permeance greater than five U.S. perms (e.g., rigid mineral fiber insulations). This variable controls water vapor flow and sheathing temperatures. Water Resisting Barrier A membrane that resists liquid water transfer. Permeable WRBs allow water

104

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Residential Duct Insulation and Sealing Requirements TOPIC BRIEF 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Insulation and Sealing Requirements TOPIC BRIEF 1 Duct Insulation and Sealing Requirements TOPIC BRIEF 1 Residential Duct Insulation and Sealing Requirements Studies show that duct air leakage results in major energy losses. A ll versions of the International Energy Conservation Code (IECC) require ducts, air handlers, filter boxes, and air cavities used as ducts to be sealed, and reference Chapter 16 of the International Residential Code for details on air sealing. This sealing is required on all ducts and other air distribution components regardless of whether they are located inside or outside the conditioned living space. For single-family homes and other low-rise residential buildings, the 2009 and 2012 IECC have duct insulation and sealing requirements in Section 403.2. Both codes require insulation

105

Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed  

E-Print Network (OSTI)

lifetime prediction of electrochromic windows for buildingsenergy performance of electrochromic windows. ” Proceedingsin the Proceedings. Electrochromic Windows for Commercial

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

2000-01-01T23:59:59.000Z

106

Building America Technology Solutions for New and Existing Homes: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes  

Energy.gov (U.S. Department of Energy (DOE))

This project by Building Science Corporation focuses on the field implementation of taped board insulation as the drainage plane in both new and retrofit residential applications.

107

Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities  

Science Journals Connector (OSTI)

The advantages and disadvantages of the thermal building insulation materials and solutions have been treated. Both traditional, state-of-the-art and possible materials and solutions beyond these have been investigated. Examples of these may be mineral wool, expanded polystyrene, extruded polystyrene, polyurethane, vacuum insulation panels, gas insulation panels, aerogels, and future possibilities like vacuum insulation materials, nano insulation materials and dynamic insulation materials. Various properties, requirements and possibilities have been compared and studied. Among these are thermal conductivity, perforation vulnerability, building site adaptability and cuttability, mechanical strength, fire protection, fume emission during fire, robustness, climate ageing durability, resistance towards freezing/thawing cycles, water resistance, costs and environmental impact. Currently, there exist no single insulation material or solution capable of fulfilling all the requirements with respect to the most crucial properties. That is, for the buildings of today and the near future, several insulation materials and solutions are used and will have to be used depending on the exact circumstances and specifications. As of today, new materials and solutions like e.g. vacuum insulation panels are emerging, but only slowly introduced in the building sector partly due to their short track record. Therefore it will be of major importance to know the limitations and possibilities of all the insulation materials and solutions, i.e. their advantages and disadvantages. In this respect new conceptual thermal building insulation materials are also discussed.

Bjørn Petter Jelle

2011-01-01T23:59:59.000Z

108

Prospects of the treatment of acoustical insulation in building codes of México.  

Science Journals Connector (OSTI)

The acoustical insulation of dwellings in order to protect them from environmental noise is an issue not yet addressed in building regulations in Mexico but the Federal Government through the National Housing Commission (CONAVI) has promoted the development of a Building Code for Dwellings which in the future could include provisions about this subject. So far authorities have focused their attention on the problems of energy efficiency and thermal insulation of public buildings. On the subject of housing they have proposed levels of thermal insulation that could be adopted as standards and have also promoted the study of constructive solutions appropriate to those standards. The levels of acoustical and thermal insulation that are produced by various constructive solutions used by housing developers in the metropolitan area of the city of Puebla Mexico are analyzed in this work in order to compare their performance with international standards. A more comprehensive regulatory framework is needed in Mexico and the results of this research will produce recommendations on acoustical insulation capacities that the National Housing Commission could include in its code. [Project supported by funds from CONACYT and CONAVI.

Mario E. Vergara

2010-01-01T23:59:59.000Z

109

Prospects of the treatment of acoustical insulation in building codes of Mexico  

Science Journals Connector (OSTI)

The acoustical insulation of dwellings in order to protect them from environmental noise is an issue not yet addressed in building regulations in Mexico but the Federal Government through the National Housing Commission (CONAVI) has promoted the development of a Building Code for Dwellings which in the future could include provisions about this subject. So far authorities have focused their attention on the problems of energy efficiency and thermal insulation of public buildings. On the subject of housing they have proposed levels of thermal insulation that could be adopted as standards and have also promoted the study of constructive solutions appropriate to those standards. The levels of acoustical and thermal insulation that are produced by various constructive solutions used by housing developers in the metropolitan area of the city of Puebla Mexico are analyzed in this work in order to compare their performance with international standards. A more comprehensive regulatory framework is needed in Mexico and the results of this research will produce recommendations on acoustical insulation capacities that the National Housing Commission could include in its code. [Project supported by funds from CONACYT and CONAVI.

Mario E. Vergara Balderas

2012-01-01T23:59:59.000Z

110

Building America Top Innovations Hall of Fame Profile … Basement Insulation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Efficient and durable construction practices are critical for basements because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Basement Insulation Systems Building America research has provided essential guidance for one of the most challenging construction assemblies in cold-climate high-performance homes. Basements can easily develop mold, rot, and odor problems if not designed properly. Building America researchers have investigated basement insulation systems that keep the space dry, healthy, and odor-free. These systems effectively address the

111

Design and prototype of a partial window replacement to improve the energy efficiency of 90-year-old MIT buildings  

E-Print Network (OSTI)

The existing windows of the 90-year-old buildings on the main MIT campus are not energy efficient and compromise comfort levels. The single panes of glass allow too much heat transfer and solar heat gain. In addition, the ...

Chen, YunJa

2007-01-01T23:59:59.000Z

112

Windows in the buildings of tomorrow: Energy losers or energy gainers?  

Science Journals Connector (OSTI)

One of the most effective actions for reduction of energy loss through the building envelope is to optimize the thermal performance, area and localization of the transparent components in the façade in order to obtain minimal heat losses and optimal solar gains. When considering the thermal performance of these transparent components, one should consider, not only heat loss (or gains) caused by thermal transmission, but also the beneficial effects of incident solar radiation and hence reduced demand for heating and artificial lighting. This study presents calculations for a range of windows as part of a building where the coupled effects of incident solar radiation and thermal transmission heat losses are accounted for in terms of a net energy balance for the various solutions. Effects of varying thermal transmittance values (U-values) are studied in connection with solar heat gain coefficients. Three different rating methods have been proposed and applied to assess the energy performance of several window configurations. It has been found that various rating methods give different energy saving potentials in terms of absolute figures. Furthermore, it has been found that windows, even with existing technology, might outperform an opaque wall in terms of heating and cooling demands.

Steinar Grynning; Arild Gustavsen; Berit Time; Bjørn Petter Jelle

2013-01-01T23:59:59.000Z

113

The energy-savings potential of electrochromic windows in the US commercial buildings sector  

E-Print Network (OSTI)

Alone Photovoltaic-Powered Electrochromic Smart Window.Subject responses to electrochromic windows. To be publishedAnalysis of Prototype Electrochromic Windows, ASHRAE

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-01-01T23:59:59.000Z

114

Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction- August 13, 2014- Cladding Attachment Over Thick Exterior Rigid Insulation  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, Cladding Attachment Over Thick Rigid Exterior Insulation, was delivered at the Building America webinar on August 13, 2014.

115

New and Underutilized Technology: High R-Value Windows | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High R-Value Windows High R-Value Windows New and Underutilized Technology: High R-Value Windows October 8, 2013 - 2:47pm Addthis The following information outlines key deployment considerations for high R-value windows within the Federal sector. Benefits High R-value windows are highly insulated windows rated at triple pane, R5 or greater (U value 0.22 and lower). Application High R-value windows are appropriate for deployment within most building categories. These windows should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment High R-value windows are available within the Federal sector and should be considered in building design, renovation, or during window replacement projects. The U.S. Department of Energy (DOE) has a volume purchasing program in

116

Buildings Energy Data Book: 5.1 Building Materials/Insulation  

Buildings Energy Data Book (EERE)

3 3 Thermal Performance of Insulation Fiberglass (2) Perlite/Vermiculite Batts (3) Loose-Fill 2.1 - 3.7 Loose-Fill Foam Boards Spray-Applied Expanded Polystyrene 3.9 - 4.4 Rock Wool (2) Polyisocyanurate/Polyurethane 5.6 - 7.0 Loose-Fill Phenolic 4.4 - 8.2 Cellulose Reflective Insulation 2 - 17 Loose-Fill Vacuum Powder Insulation 25 - 30 Spray-Applied Vacuum Insulation Panel 20 - 100 Note(s): Source(s): 3.1 - 3.7 2.9 - 3.5 1) Hr-SF-F/Btu-in. Does not include the effects of aging and settling. 2) Mineral fiber. 3) System R-Value depends on heat-flow direction and number of air spaces. ASHRAE, 1997 ASHRAE Handbook: Fundamentals, p. 24-4, 22-5; DOE, Insulation Fact Sheet, Jan. 1988, p. 6; Journal of Thermal Insulation, 1987, p. 81-95; ORNL, ORNL/SUB/88-SA835/1, 1990; ORNL, Science and Technology for a Sustainable Energy Future, Mar. 1995, p. 17; and ORNL for vacuum insulation

117

Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cladding Attachment Over Thick Cladding Attachment Over Thick Exterior Insulating Sheathing Project InformatIon: Project name: Cladding Attachment Over Thick Exterior Insulating Sheathing Partners: Building Science Corporation www.buildingscience.com The Dow Chemical Company www.dow.com James Hardie Building Products www.jameshardie.com Building component: Building envelope component application: New and/or retrofit; Single and/or multifamily Year research conducted: 2011 through 2012 applicable climate Zone(s): All The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal

118

Key Elements of and Materials Performance Targets for Highly Insulating  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Elements of and Materials Performance Targets for Highly Insulating Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Title Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Publication Type Journal Article LBNL Report Number LBNL-5099E Year of Publication 2011 Authors Gustavsen, Arlid, Steinar Grynning, Dariush K. Arasteh, Bjørn Petter Jelle, and Howdy Goudey Journal Energy and Buildings Volume 43 Issue 10 Pagination 2583-2594 Date Published 10/2011 Keywords Fenestration, heat transfer modeling, thermal performance, thermal transmittance, u-factor, window frames Abstract The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.

119

Buildings Energy Data Book: 5.1 Building Materials/Insulation  

Buildings Energy Data Book (EERE)

(1) Insulation Type 1992 2001 2006 (1) Fiberglass 2,938 55% 3,760 54% 4,085 53% Foamed Plastic 1,223 23% 1,775 25% 1,955 26% Cellulose 485 9% 665 9% 730 10% Mineral Wool 402 8% 445...

120

1 | Building America eere.energy.gov DOE's Building America  

E-Print Network (OSTI)

window replacement Opportunity · Low-E Storm Windows offer affordable way to insulate and air seal.63 0.25 ­ 0.30 0.56 0.48 Air leakage (cfm/ft2) 1 ­ 4 0.1 ­ 0.3 0.3 0.1 - 0.3 #12;6 | Building America

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building America Case Study: Excavationless Exterior-Side Foundation Insulation for Existing Homes, Minneapolis, Minnesota (Fact Sheet)  

SciTech Connect

Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

NorthernSTAR

2014-09-01T23:59:59.000Z

122

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

BTU/yr) Non. Wind Infilt SHGC Wind. Solar Wind. Cond InfiltU Factor Other Loads SHGC Window Solar Cond Infiltrationof average U-factor and SHGC for current window sales. We

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

123

Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives  

E-Print Network (OSTI)

Norway, Lian Trevarefabrikk and Lawrence Berkeley National Laboratory (LBNL) through the NTNU and SINTEF research project ”Improved Window Technologies for Energy

Bergh, Sofie Van Den

2014-01-01T23:59:59.000Z

124

Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives  

E-Print Network (OSTI)

2012) [53] Bystronic Glass, Sashlite, http://www.bystronic-products_architectural_ glass/window_manufacturing/sashline/Production and Quality, Glass Processing Days (2005) 228-

Bergh, Sofie Van Den

2014-01-01T23:59:59.000Z

125

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Considerations for Window Performance Considerations for Window Performance Advanced window technologies can have a major effect on comfort and on the annual energy performance of a house. However, there is a broader and possibly more significant impact of the recent revolution in window performance. Because the new glazing technologies provide highly effective insulating value and solar protection, there are important implications for how a house is designed. There is a long-established set of window design guidelines and assumptions intended to reduce heating and cooling energy use. These are based, in part, on the historical assumption that windows were the weak link in the building envelope. These assumptions frequently created limitations on design freedom or generated conflicts with other performance requirements,

126

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

The High Performance Windows Volume Purchase (WVP) Program The High Performance Windows Volume Purchase (WVP) Program The U.S. Department of Energy's Building Technologies Program (BTP) is coordinating a volume purchase program intended to overcome cost and awareness barriers to the wider adoption of highly-insulating windows and low-E storm windows. These products include windows meeting a number of specifications including a U-factor of 0.22 or less as well as storm windows with low-emissivity glass. Buyer groups with a potential interest in purchasing these products in volume will learn about their availability and cost through the program's product listings. Over 50 manufacturers proposed products for the first round of these listings, for which submittals were due by February 19, 2010. DOE does not purchase any products through this project, nor does DOE

127

Corrosiveness of wet residential building thermal insulation---Mechanisms and evaluation of electrochemical methods for assessing corrosion behavior  

SciTech Connect

An evaluation has been made of the corrosiveness of selected wet residential building thermal insulation materials in contact with low carbon steel. Investigations were conducted both in wet insulations and in filtered leachates from insulations derived from thirteen cellulosic, three mineral fiber and four foam products. Potentiodynamic polarization measurements are reported from which the overall corrosion response was assessed and then the techniques of Tafel and polarization resistance analysis applied to estimate corrosion rates. Corrosion rates were also estimated electrochemically using a direct reading instrument which performs the rate calculation based on the polarization resistance principle. Direct determinations of corrosion rate were based on weight loss measurements.

Stansbury, E.E. [Stansbury (E.E.), Knoxville, TN (United States)

1991-10-01T23:59:59.000Z

128

Building America Best Practices Series: Volume 12. Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation A Guide for Contractors to Share with Homeowners PREPARED BY Pacific Northwest National Laboratory & Oak Ridge National Laboratory May 2012 May 2012 * PNNL-20972 BUILDING AMERICA BEST PRACTICES SERIES VOLUME 17. R BUILDING AMERICA BEST PRACTICES SERIES Energy Renovations Volume 17: Insulation A Guide for Contractors to Share with Homeowners Prepared by Pacific Northwest National Laboratory Michael C. Baechler, Project Manager K. T. Adams, M. G. Hefty, and T. L. Gilbride and Oak Ridge National Laboratory Pat M. Love May 2012 Prepared for the U.S. Department of Energy Building America Program PNNL-20972 Pacific Northwest National Laboratory Richland, Washington 99352 Contract DE-AC05-76RLO 1830 This report was prepared as an account of work sponsored by an agency of the

129

A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory  

SciTech Connect

This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

1991-09-01T23:59:59.000Z

130

Sound insulation in buildings: linking theory and University of Liverpool, School of Architecture, Abercromby Square, L69 7ZN Liverpool, UK  

E-Print Network (OSTI)

Sound insulation in buildings: linking theory and practice C. Hopkins University of Liverpool at the design stage. As the sound insulation in-situ is determined by both direct and flanking transmission. With increasing emphasis on the importance of sound insulation at low-frequencies, indications are given on how

Paris-Sud XI, Université de

131

A procedure for analyzing energy and global warming impacts of foam insulation in U.S. commercial buildings  

SciTech Connect

The objective of this paper is to develop a procedure for evaluating the energy and global warming impacts of alternative insulation technologies for US commercial building applications. The analysis is focused on the sum of the direct contribution of greenhouse gas emissions from a system and the indirect contribution of the carbon dioxide emission resulting from the energy required to operate the system over its expected lifetime. In this paper, parametric analysis was used to calculate building related CO{sub 2} emission in two US locations. A retail mail building has been used as a model building for this analysis. For the analyzed building, minimal R-values of insulation are estimated using ASHRAE 90.1 requirements.

Kosny, J.; Yarbrough, D.W.; Desjarlais, A.O.

1998-11-01T23:59:59.000Z

132

Research on Buildings General Quality of Insulation, Especially with Respect to Developing and Improving Methods of Post Insulation  

Science Journals Connector (OSTI)

Urea formaldehyde foam for cavity walls insulation has been investigated due to thermal conductivity...3.... There is doubt about the number of companies and of products in Denmark, that are able to observe this ...

N. H. Bertelsen; G. C. Larsen; T. Nielsen; A. D. Olsen

1984-01-01T23:59:59.000Z

133

Window-Related Energy Consumption in the US Residential andCommercial Building Stock  

SciTech Connect

We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

Apte, Joshua; Arasteh, Dariush

2006-06-16T23:59:59.000Z

134

Application issues for large-area electrochromic windows in commercial buildings  

E-Print Network (OSTI)

Handbook of inorganic electrochromic materials. 1995.R. Sullivan. A Review of Electrochromic Window Performancetime of large-scale electrochromic devices. In Large-Area

Lee, Eleanor S.; DiBartolomeo, D.L.

2000-01-01T23:59:59.000Z

135

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

3 3 Case Study, The Visitor Center at Zion National Park, Utah (Service/Retail/Office) Building Design Vistors Center (1): 8,800 SF Comfort Station (2): 2,756 SF Fee Station: 170 SF Shell Windows Type U-Factor SHGC (3) South/East Glass Double Pane Insulating Glass, Low-e, Aluminum Frames, Thermally Broken 0.44 0.44 North/West Glass Double Pane Insulating Glass, Heat Mirror, Aluminum Frames, Thermally Broken 0.37 0.37 Window/Wall Ratio: 28% Wall/Roof Materials Effective R-Value Trombe Walls: Low-iron Patterned Trombe Wall, CMU (4) 2.3 Vistor Center Walls: Wood Siding, Rigid Insulation Board, Gypsum 16.5 Comfort Station Walls: Wood Siding, Rigid Insulation Board, CMU (4) 6.6 Roof: Wood Shingles; Sheathing; Insulated Roof Panels 30.9 HVAC Heating Cooling Trombe Walls Operable Windows Electric Radiant Ceiling Panels

136

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building Technologies, U.S.and Renewable Energy (2005). 2005 Buildings Energy Databook,Buildings Energy Databook Table 1.2.3 (US DOE Office of Energy Efficiency and Renewable

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

137

Human Behavior Meets Building Intelligence: How Occupants Respond to “Open Window” Signals  

E-Print Network (OSTI)

©2012 ACEEE Summer Study on Energy Efficiency in BuildingsSummer Study on Energy Efficiency in Buildings de Dear, R.J.Study on Energy Efficiency in Buildings personal benefits

Ackerly, Katie; Brager, Gail

2012-01-01T23:59:59.000Z

138

Building America Top Innovations 2013 Profile … High-Efficiency Window Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

inexpensive, portable, and can be installed by inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, a window air conditioner is required to meet only modest minimum efficiency standards, and its typical installation in a window causes air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of

139

Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed  

E-Print Network (OSTI)

electrochromic window products will appear on the market.market and technology assessments apply conventional life-cycle cost analysis methods to determine the viability of electrochromicmarket assessments have been conducted by industry, but this information remains proprietary. Electrochromic

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

2000-01-01T23:59:59.000Z

140

Pushing the Envelope: A Case Study of Building the First Manufactured Home Using Structural Insulated Panels  

SciTech Connect

This paper for the ACEEE Summer Study describes construction of the first manufactured home ever produced from structural insulated panels. The home was built in July 2000 by Champion Enterprises at its Silverton, Oregon, plant. The house was completed on the assembly line in 9 days including a 300-mile road test. The paper examines the design and approval process leading to the project, the manufacturing process and its adjustment to SIPs, and the transportation and energy performance of the house after it was built. PNNL coordinated this project and conducted long-term monitoring on the house. The WSU Energy Program conducted building diagnostics testing once the house was occupied. PNNL’s and WSU’s involvement was funded by the U.S. DOE Building America Program. The Oregon Office of Energy conducted blower door and duct blaster tests. The completed home was estimated to reduce energy consumption by 50% and to have twice the structural strength required by HUD code for manufactured homes. The demonstration proved that the manufactured home production line could support SIPs production simultaneously with traditional construction and without major modifications, the line work in parallel with SIPs and traditional materials. The project revealed severl possibilities for further improving cost and time savings with SIPs construction, that might translate into increased capacity.

Baechler, Michael C.; Hadley, Donald L.; Sparkman, Ronald; Lubliner, Michael

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Window Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

142

Window Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

143

Cost-Optimized Attic Insulation Solution for Factory-Built Homes- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This 2014 Top Innovation describes a dense-pack solution to increasing attic insulation R-value for manufactured homes.

144

Atmospheric Pressure Deposition for Electrochromic Windows |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmospheric Pressure Deposition for Electrochromic Windows Atmospheric Pressure Deposition for Electrochromic Windows Emerging Technologies Project for the 2013 Building...

145

Building America Top Innovations 2013 Profile … High-Efficiency Window Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an inexpensive, portable form of spot cooling, an inexpensive, portable form of spot cooling, making them a good solution for supplemental cooling, for air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, window air conditioners have low minimum efficiency standards, and their installation typically results in air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of climates and conditions at NREL's Advanced Heating, Ventilation, and

146

The energy-savings potential of electrochromic windows in the US commercial buildings sector  

E-Print Network (OSTI)

Fig. 12. Market penetration rates of electrochromic windowsmarket penetration level in that year. Keywords: Building energy-efficiency, electrochromic

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-01-01T23:59:59.000Z

147

Performance Criteria for Residential Zero Energy Windows  

E-Print Network (OSTI)

neutral energy impact of windows (energy consumption of buildingneutral energy impact of windows (energy consumption of buildingneutral energy impact of windows (energy consumption of building

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

148

Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives  

E-Print Network (OSTI)

International) AG, TruSeal Technologies Edgetech GlasslamSeals, Science and Technology of Building Seals, Sealants,of Canada, Construction Technology Update no. 58 (2003) 1-4.

Bergh, Sofie Van Den

2014-01-01T23:59:59.000Z

149

Windows and Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior Office building exterior Windows and Daylighting Windows research is aimed at improving energy efficiency in buildings and homes across the nation. Research includes: New glazing materials Windows simulation software Advanced high-performance fenestration systems Daylighting technologies Measurement of window properties Windows performance in residential and commercial buildings. Contacts Stephen Selkowitz SESelkowitz@lbl.gov (510) 486-5064 Eleanor Lee ESLee@lbl.gov (510) 486-4997 Charlie Curcija DCCurcija@lbl.gov (510) 495-2602 Links Windows and Daylighting Daylighting the New York Times Headquarters Building Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

150

Windows, Doors, & Skylights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows, Doors, & Skylights Windows, Doors, & Skylights Windows, Doors, & Skylights Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Energy-efficient windows, doors, and skylights-also known as fenestration-can help lower a home's heating, cooling, and lighting costs. Learn about the energy performance ratings to consider when selecting windows, doors, and skylights, and how to maximize their energy efficiency in your home. Featured Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto

151

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

roughly 2.7% of total US energy consumption. The final tworoughly 1.5% of total US energy consumption. The final twoSpace Conditioning Energy Consumption in US Buildings Annual

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

152

High Performance Window Attachments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Window High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but they have widely unknown

153

Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application of Spray Foam Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing PROJECT aPPliCaTiON Construction: Existing homes with unvented cathedralized roofs. Type: Residential Climate Zones: All TEam mEmbERs Building Science Corporation www.buildingscience.com BASF www.basf.com Dow Chemical Company www.dow.com Honeywell http://honeywell.com Icynene www.icynene.com COdE COmPliaNCE 2012 International Code Council, International Residential Code Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and

154

Developing Low-Conductance Window Frames: Capabilities and Limitations of  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Limitations of Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Title Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Publication Type Journal Article LBNL Report Number LBNL-1022E Year of Publication 2008 Authors Gustavsen, Arlid, Dariush K. Arasteh, Bjørn Petter Jelle, Dragan C. Curcija, and Christian Kohler Journal Journal of Building Physics Volume 32 Pagination 131-153 Call Number LBNL-1022E Abstract While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames.

155

New and Underutilized Building Envelope Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New and Underutilized Building Envelope Technologies New and Underutilized Building Envelope Technologies New and Underutilized Building Envelope Technologies October 8, 2013 - 2:45pm Addthis The following building envelope technologies are underutilized within the Federal sector. These technologies have been identified by FEMP as the most promising for Federal agency deployment. Review each technology for potential facility energy savings. Additional information is available by clicking on the individual technology, including technology application, key factors and considerations for deployment, and points of contact. Technology Benefits Application Weighted Score High R-Value Windows Highly insulated windows triple pane R5 or greater (U value 0.22 and lower) windows Appropriate for deployment within most building categories. These windows should be considered in building design, renovation, or during window replacement projects. 65

156

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

157

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

5.1 Building Materials/Insulation 5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 5 contains market and technology data on building materials and equipment. Sections 5.1 and 5.2 cover the building envelope, including building assemblies, insulation, windows, and roofing. Sections 5.3 through 5.7 cover equipment used in buildings, including space heating, water heating, space cooling, lighting, thermal distribution (ventilation and hydronics), and appliances. Sections 5.8 and 5.9 focus on energy production from on-site power equipment. The main points from this chapter are summarized below:

158

Text-Alternative Version of Building America Webinar: Low-e Storms: The Next "Big Thing" in Window Retrofits  

Energy.gov (U.S. Department of Energy (DOE))

Low-e Storms:  The Next “Big Thing” in Window RetrofitsOfficial Webinar Transcript (September 9, 2014)

159

Thermal properties optimization of envelope in energy-saving renovation of existing public buildings  

Science Journals Connector (OSTI)

Abstract The shape factor and windows-to-wall ratio are different from building to building. How to design the thermal properties of building envelope affects energy-saving renovation economy of existing public buildings. The limited heat consumption per unit volume and equivalent heat transfer coefficient of external windows and wall were proposed based on the prescription of China national standard “Design standard for energy efficiency of public buildings”(GB50189-2005) for envelope design. Mathematical model on economical thermal insulation thickness of building envelope and thermal properties optimizing of envelope were built considering the impact of house orientation, windows-to-wall ratio and types of windows. The model is verified to be feasible by an existing public building in Shenyang. The variation of windows-to-wall ratio for different orientation leads to the different economical thermal insulation thickness of building envelope and payback period. The project optimization design for envelope renovation could be determined by the technical and economic analysis considering the impact of house orientation, windows-to-wall ratio, types of insulation materials and windows.

Jianen Huang; Henglin Lv; Tao Gao; Wei Feng; Yanxia Chen; Tai Zhou

2014-01-01T23:59:59.000Z

160

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

162

Theoretical and Experimental Thermal Performance Analysis of Building Shell Components Containing Blown Fiber Glass Insulation Enhanced with Phase Change Material (PCM)  

SciTech Connect

Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central US climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed paper presents experimental and numerical results from thermal performance studies. These studies focus on blown fiber glass insulation modified with a novel spray-applied microencapsulated PCM. Experimental results are reported for both laboratory-scale and full-size building elements tested in the field. In order to confirm theoretical predictions, PCM enhanced fiber glass insulation was evaluated in a guarded hot box facility to demonstrate heat flow reductions when one side of a test wall is subjected to a temperature increase. The laboratory work showed reductions in heat flow of 30% due to the presence of approximately 20 wt % PCM in the insulation. Field testing of residential attics insulated with blown fiber glass and PCM was completed in Oak Ridge, Tennessee. Experimental work was followed by detailed whole building EnergyPlus simulations in order to generate energy performance data for different US climates. In addition, a series of numerical simulations and field experiments demonstrated a potential for application of a novel PCM fiber glass insulation as enabling technology to be utilized during the attic thermal renovations.

Miller, William A [ORNL] [ORNL; Kosny, Jan [ORNL] [ORNL; Yarbrough, David W [ORNL] [ORNL; Childs, Phillip W [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL; Atchley, Jerald Allen [ORNL] [ORNL; Bianchi, Marcus V [ORNL] [ORNL; Smith, John B [ORNL] [ORNL; Fellinger, Thomas [ORNL] [ORNL; Kossecka, Elizabeth [Institute of Fundamental Technological Research, Polish Academy of Sciences] [Institute of Fundamental Technological Research, Polish Academy of Sciences; Lee, Edwin S [ORNL] [ORNL

2010-01-01T23:59:59.000Z

163

Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade – Madison Residence (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This basement insulation project included a dimple map conveying inbound moisture to a draintile, airtight spray polyurethane foam wall and floor insulation, and radiant floor heat installation.

164

The Efficient Window Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 The Efficient Window Collaborative http://www.efficientwindows.org Energy-efficient windows make up only about 35% of the U.S. residential window market, even though they are cost-effective in approximately 80% or more of all applications. To ensure that efficient windows reach their optimum potential in homes throughout the U.S., the Department of Energy and key players in the U.S. window industry have formed the Efficient Window Collaborative (EWC). The EWC's goal is doubling the market share of efficient windows by 2005. With 31 charter members from the window and glass industries, the EWC is managed jointly by the Washington, D.C.-based Alliance to Save Energy and the Center for Building Science's Windows and Daylighting Group. The EWC serves as a focal point for voluntary

165

Development of a Process to Build Polyimide Insulated Magnets For Operation at 350C  

SciTech Connect

An extensive R&D program has been conducted that has confirmed the feasibility of designing and fabricating copper alloy magnets that can successfully operate at temperatures as high as 350C. The process, originally developed for the possibility of manufacturing in-vessel resonant magnetic field perturbation (RMP) coils for JET, has been optimized for insulated magnet (and, potentially, other high temperature component) applications. One of the benefits of high temperature operation is that active cooling may no longer be required, greatly simplifying magnet/component design. These elevated temperatures are beyond the safe operating limits of conventional OFHC copper and the epoxies that bond and insulate the turns of typical magnets. This would necessitate the use an alternative copper alloy conductor such as C18150 (CuCrZr). Coil manufacture with polyimide is very similar to conventional epoxy bonded coils. Conductors would be dry wound then impregnated with polyimide of low enough viscosity to permit saturation, then cured; similar to the vacuum pressure impregnation process used for conventional epoxy bonded coils. Representative polyimide insulated coils were mechanically tested at both room temperature and 350C. Mechanical tests included turn-to-turn shear bond strength and overall polyimide adhesion strength, as well as the flexural strength of a 48-turn polyimide-bonded coil bundle. This paper will detail the results of the testing program on coil samples. These results demonstrate mechanical properties as good, or better than epoxy bonded magnets, even at 350C.

Zatz, Irving J.

2013-07-09T23:59:59.000Z

166

Thermal Insulation for Energy Conservation  

Science Journals Connector (OSTI)

The use of thermal insulations to reduce heat flow across the building ... decades. Materials available for use as building insulation include naturally occurring fibers and particles, man ... plastics, evacuated...

Dr. David W. Yarbrough Ph.D.; PE

2012-01-01T23:59:59.000Z

167

A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme  

SciTech Connect

Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

Not Available

1994-02-01T23:59:59.000Z

168

Building Technologies Office: About Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

169

Building America Top Innovations 2013 Profile … Exterior Rigid Insulation Best Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

teams has provided the critical scientific basis for acceptance of foam sheathing by the codes community and understanding of the best practices for implementation to ensure thermal performance as well as air barrier and drainage plane integrity. Although rigid foam has long been recognized as one of the key Building America technologies for high-R walls, the practice lacked a precise engineering basis for the basic elements of the wall system such as foam thickness, connection schedules, and cladding requirements to resist wind loading. As prescriptive construction provisions in residential building codes came under increased scrutiny in building code forums, the need for a consistent, building-science-based methodology became apparent. Research by the Partnership for Home Innovation, led by the Home

170

Building America Top Innovations 2013 Profile … Exterior Rigid Insulation Best Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

teams teams has provided the critical scientific basis for acceptance of foam sheathing by the codes community and an understanding of best practices for installation to ensure thermal performance as well as air barrier and drainage plane integrity. Although rigid foam has long been recognized as one of the key Building America technologies for high-R walls, the practice lacked a precise engineering basis for the basic elements of the wall system such as foam thickness, connection schedules, and cladding requirements to resist wind loading. As prescriptive construction provisions in residential building codes came under increased scrutiny in building code forums, the need for a consistent, building-science-based methodology became apparent. Research by the Partnership for Home Innovation led by the Home

171

Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

SciTech Connect

This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

Not Available

2013-06-01T23:59:59.000Z

172

New Window Technology Saves Energy and the View | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Gabrial Boeckman NREL Communications Manager for Buildings & Communities What does this project do? With funding from the Energy Department, the National Renewable Energy Laboratory is working to develop innovative insulating window film

173

New Window Technology Saves Energy and the View | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Gabrial Boeckman NREL Communications Manager for Buildings & Communities What does this project do? With funding from the Energy Department, the National Renewable Energy Laboratory is working to develop innovative insulating window film

174

Atmospheric Pressure Deposition for Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

175

Atmospheric Pressure Deposition for Electrochromic Windows  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

176

window.xp  

NLE Websites -- All DOE Office Websites (Extended Search)

New New in Building Energy Efficiency Selecting Windows for Energy Efficiency New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection. S electing the right window for a specific home invariably requires tradeoffs between dif- ferent energy performance features, and with other non-energy issues. An understanding of some basic energy concepts is therefore essential to choosing appropriate windows and skylights. As illustrated on the fol-

177

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

178

Advancement of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancement of Electrochromic Windows Advancement of Electrochromic Windows Title Advancement of Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59821 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Date Published 04/2006 Other Numbers CEC-500-2006-052 Keywords commercial buildings, daylight, daylighting controls, Electrochromic windows, energy efficiency, human factors, peak demand, switchable windows, visual comfort Abstract This guide provides consumer-oriented information about switchable electrochromic (EC) windows. Electrochromic windows change tint with a small applied voltage, providing building owners and occupants with the option to have clear or tinted windows at any time, irrespective of whether it's sunny or cloudy. EC windows can be manually or automatically controlled based on daylight, solar heat gain, glare, view, energy-efficiency, peak electricity demand response, or other criteria. Window controls can be integrated with other building systems, such as lighting and heating/cooling mechanical systems, to optimize interior environmental conditions, occupant comfort, and energy-efficiency.

179

Energy Savings from Window Attachments  

Energy.gov (U.S. Department of Energy (DOE))

This study presents energy-modeling results for a large number of window combinations with window attachments in typical residential buildings and in varied climates throughout the United States.

180

Nanolens Window Coatings for Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nanolens Window Coatings for Daylighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

182

Window Daylighting Demo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

183

Window Daylighting Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

184

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Selection Process for Replacement Windows Selection Process for Replacement Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Assess Your Existing Windows Assess whether your windows should be repaired, retrofitted, or replaced. While most new windows have labels indicating their energy properties, such information is not often available for existing windows. Download Window Energy Efficiency Checklist for assistance. Window Replacement

185

21 - Life cycle assessment (LCA) of windows and window materials  

Science Journals Connector (OSTI)

Abstract: Windows are a significant component in sustainable buildings in both the impacts caused by their material life cycles and by their influence on the performance of a building over its service life. Life cycle assessment (LCA) studies have compared the impacts of different framing materials with mixed results. LCA has also been used to estimate the environmental payback of higher manufacturing impacts from producing better performing windows. Future sustainable window selection should make use of standardized LCA data for windows and utilize advanced technologies to optimize window performance.

J. Salazar

2014-01-01T23:59:59.000Z

186

Anaheim Public Utilities - Green Building and New Construction Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - Green Building and New Construction Anaheim Public Utilities - Green Building and New Construction Rebate Program Anaheim Public Utilities - Green Building and New Construction Rebate Program < Back Eligibility Commercial Construction Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate Commercial Green Building: $75,000 Residential Green Building: $100,000 LEED Certification: $30,000 Green Building Rater Incentive: $6,000 Program Info State California Program Type Utility Rebate Program

187

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

5 5 Case Study, The Thermal Test Facility, National Renewable Energy Laboratory, Golden, Colorado (Office/Laboratory) Building Design Floor Area: 10,000 SF Floors(1): 2 Aspect Ratio: 1.75 Offices Laboratories Conference Room Mechanical Level Shell Windows Material U-factor SHGC(2) Viewing Windows: Double Pane, Grey Tint, Low-e 0.42 0.44 Clerestory Windows: Double Pane, Clear, Low-e 0.45 0.65 Window Area(SF) North 38 South(3) 1,134 East 56 West 56 Wall/Roof Material Effective R-Value North Wall Concrete Slab/Rigid Polystyrene 5.0 South/East/West Steel Studs/Batt Insulation/Concrete 23.0 Roof: Built-up/Polyisocianurate Covering/Steel Supports 23.0 HVAC VAV air handling unit Hot water supply paralell VAV boxes Direct and Indirect evaporative cooling system Single zone roof top unit(4) Hot Water Coil(4)

188

Domestic Heating and Thermal Insulation  

Science Journals Connector (OSTI)

... DIGEST 133 of the Building Research Station, entitled "Domestic Heating and Thermal Insulation" (Pp. 7. London : H.M. Stationery Office, 1960. 4insulation, the standard of heating, the ventilation-rate and the length of the heating season ...

1960-09-17T23:59:59.000Z

189

Building America Solution Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America America Solution Center Building America Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR®

190

Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior Rigid Foam Insulation at Exterior Rigid Foam Insulation at the Edge of a Slab Foundation Fresno, California PROJECT INFORMATION Construction: New Home Type: Single-family, affordable Builder: Wathen-Castanos Hybrid Homes, Inc., www.wchomes.com Size: 1,789 ft 2 Price Range: Starting at $205,000 Date completed: 2011 Climate Zone: Hot-dry PERFORMANCE DATA Using BEopt version 1.3 modeling on the house plan and specifications noted for this Fresno, California, unoccupied test house, the research team deter- mined that the house will achieve energy savings of 35.5% with respect to the Building America House Simulation Protocols*. * Hendron, R. and Engebrecht, C. NREL/TP-550-49426. "Building America House Simulation Protocols." Golden, CO: National Renewable Energy Laboratory, 2010.

191

High Performance Window Retrofit  

SciTech Connect

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

Shrestha, Som S [ORNL] [ORNL; Hun, Diana E [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

2013-12-01T23:59:59.000Z

192

Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade- Minneapolis Residence (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless gypsum board and steel framing.

193

City of Scottsdale - Green Building Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scottsdale - Green Building Incentives Scottsdale - Green Building Incentives City of Scottsdale - Green Building Incentives < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Other Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Solar Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Program Info State Arizona Program Type Green Building Incentive Provider City of Scottsdale Scottsdale's Green Building Program, established in 1998, was the first such program in Arizona with an emphasis on residential home construction.

194

Building Technologies Office: Building America Solution Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Solution Center Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR® checklists, alphabetical lists, a house diagram with selectable components, and an information map. Logged-in users can quickly save any of these elements into their personal Field Kit.

195

Thermal Insulation of Houses  

Science Journals Connector (OSTI)

... THE Thermal Insulation (Dwellings) Bill which Mr. G. Nabarro introduced into the House of Commons on ... , sponsored by members of both major political parties, extends the principle of the Thermal Insulation (Industrial Buildings) Act of July 1957 to all new dwelling houses built in the ...

1958-02-22T23:59:59.000Z

196

Low-Cost Solutions for Dynamic Window Material | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Solutions for Dynamic Window Material Low-Cost Solutions for Dynamic Window Material Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer...

197

Insulation Workers  

Science Journals Connector (OSTI)

Insulation workers install or spray insulation on pipes, boilers, walls, roofs, floors, etc. to improve thermal insulation or waterproofing. Most thermal insulation is now composed of man-made mineral ... rock wo...

R. Riala

2000-01-01T23:59:59.000Z

198

Impact of the insulation materials’ features on the determination of optimum insulation thickness  

Science Journals Connector (OSTI)

The optimum thickness of the building envelope insulation materials depends on a large number of ... used in the building, and specifically the insulation ones, are included in the process to calculate the optimu...

Jérôme Barrau; Manel Ibanez; Ferran Badia

2014-07-01T23:59:59.000Z

199

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Control Window Film Solar Control Window Film Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by applying a film. High-Reflectivity Window Films exit disclaimer International Window Film Association For more information on window film, check the Window Film Information Center exit disclaimer . Solar control window film reduces solar heat gain by reflection and absorption. As they also block solar heat gain in winter months, these films are ideal for cooling-dominated climates. Window films can be tinted

200

Window Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Properties: measurements, simulations and ratings Window Properties: measurements, simulations and ratings Determining the thermal and optical performance of window systems is essential to researchers striving to develop improved products and to window manufacturers who need to demonstrate the energy performance of their products to architects, engineers, builders, and the general public. LBNL is involved in basic research in this field, in developing software and test procedures to analyze and quantify window heat transfer and optics, and in developing standards and rating procedures. Infrared Laboratory experiments provide surface temperature maps of window products. A companion Traversing System measures air velocity and air temperatures near the surface of test specimens. The MoWiTT facility provides accurate measurements of the heat flow through complete window systems subjected to real weather conditions. MoWiTT results have been used to validate the performance of emerging technologies and research prototypes as well as to validate thermal performance models.

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Building America Best Practices Series: Volume 12. Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners  

Energy.gov (U.S. Department of Energy (DOE))

This guide will help contractors and homeowners identify ways to make their homes more comfortable, more energy efficient, and healthier to live in. It also identifies the steps to take, with the help of a qualified home performance contractor, to increase their home’s insulation, ensure healthy levels of ventilation, and prevent moisture problems.

202

Building America Case Study: Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation (Fact Sheet)  

SciTech Connect

Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

Not Available

2014-10-01T23:59:59.000Z

203

Foundation Insulation for Existing Homes | Department of Energy  

Energy Savers (EERE)

Foundation Insulation for Existing Homes Foundation Insulation for Existing Homes This presentation was delivered at the U.S. Department of Energy Building America Technical Update...

204

New and Underutilized Technology: Aerogel Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aerogel Insulation Aerogel Insulation New and Underutilized Technology: Aerogel Insulation October 8, 2013 - 2:54pm Addthis The following information outlines key deployment considerations for aerogel insulation within the Federal sector. Benefits Aerogel insulation products displace current insulation materials. The thermal conductivity of aerogel is very low, allowing it to retain insulation properties at a much thinner thickness. Application Aerogel insulation is appropriate for deployment across piping, ducts, and within most building categories. It should be considered in building design, construction, or major renovation. Key Factors for Deployment Aerogel insulations are more expensive than typical insulations. However, they are ideal for special applications, such as translucent wall panels.

205

Empirical assessment of a prismatic daylight-redirecting window film in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Empirical assessment of a prismatic daylight-redirecting window film in a Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Title Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Publication Type Conference Paper LBNL Report Number LBNL-6496E Year of Publication 2013 Authors Thanachareonkit, Anothai, Eleanor S. Lee, and Andrew McNeil Conference Name Illuminating Engineering Society (IES) Annual Conference 2013 Date Published 10/2013 Conference Location Huntington Beach, California Keywords building energy efficiency., daylighting, microstructure film, prismatic film, windows Abstract Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-to-wall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare= probability and other metrics used to evaluate visual discomfort.

206

Building America Whole-House Solutions for New Homes: John Wesley Miller, Tucson, Arizona  

Energy.gov (U.S. Department of Energy (DOE))

Case study of John Wesley Miller Companies, who worked with the NAHBRC to build two net-zero energy homes with foam-sheathed masonry walls, low-E windows 2.9 ACH50 air sealing, transfer grilles, ducts in insulated attic, PV, and solar water heating.

207

Building America Whole-House Solutions for New Homes: Rural Development, Inc., Greenfield, Massachusetts  

Energy.gov (U.S. Department of Energy (DOE))

Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV.

208

Building Energy Software Tools Directory: FRESA  

NLE Websites -- All DOE Office Websites (Extended Search)

FRESA FRESA A first-order screening tool to identify potentially cost-effective applications of renewable energy technology on a building and facility level. FRESA (Federal Renewable Energy Screening Assistant) is useful for determining which renewable energy applications require further investigation. Technologies represented include: active solar heating, active solar cooling, solar hot water, daylighting with windows, daylighting with skylights, photovoltaic, solar thermal electric (parabolic dish, parabolic trough, central power tower), wind electricity, small hydropower, biomass electricity (wood, waste, etc.), and cooling load avoidance (multiple glazing, window shading, increased wall insulation, infiltration control). Life-cycle cost calculations comply with 10 CFR 436.

209

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

2 2 Case Study, The Cambria Department of Environmental Protection Office Building, Ebensburg, Pennsylvania (Office) Building Design Floor Area: Floors: 2 Open office space (1) File storage area Two small labratories Conference rooms Break room Storage areas Two mechanical rooms Telecom room Shell Windows Material: Triple Pane, low-e with Aluminum Frames and Wood Frames Triple Pane Triple Pane Aluminum Frames Wood Frames U-Factor 0.24 U-Factor 0.26 Wall/Roof Primary Material R-Value Wall : Insulating Concrete Forms 27.0 Roof: Decking and Insulation 33.0 HVAC Total Capacities(thousand Btu/hr) 12 Ground Source Heat Pumps 644 (2) 12 Auxiliary Electric Resistance Heaters 382 (3) Lighting Power Densities(W/SF) Open Office Area: 0.75 Office Area Task Lighting(4): 0.5 Energy/Power PV System: 18.2 kW grid-tie system (5)

210

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass Glass Vacuum-insulated Glass Vacuum-insulated glazing units are made up of 2 panes of glass with a very small air space. The air space contains spacers which help maintain the separation between the panes. Most of the emerging glass technologies are available or nearly on the market. These include insulation-filled and evacuated glazings to improve heat transfer by lowering U-factors. Evacuated Windows The most thermally efficient gas fill would be no gas at all-a vacuum. The window industry is pursuing the development of vacuum-insulated glass (VIG) for use in window units in which the space between the panes is evacuated. If the vacuum pressure is low enough, there would be no conductive or convective heat exchange between the panes of glass, thus lowering the U-factor. A vacuum glazing must have a good low-E coating to

211

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

1 1 Case Study, The Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio (Education) Building Design Floor Area: Floors: 2 Footprint: 3 Classrooms (1) 1 Conference Room 1 Adminstration Office Auditorium, 100 seats 6 Small Offices Atrium Wastewater Treatment Facility Shell Windows Material: Green Tint Triple Pane Argon Fill Insulating Glass Grey Tint Double Pane Argon Fill Insulating Glass Fenestration(square feet) Window Wall (2) window/wall l Atrium, Triple Pane (3) Building, Double Pane North 1,675 4,372 38% l U-Factor 0.34 U-Factor 0.46 South 2,553 4,498 58% l SHGC 0.26 SHGC 0.46 East 1,084 2,371 46% l West 350 2,512 14% l Overall 6,063 43% l Wall/Roof Main Material R-Value Wall : Face Brink 19 Roof: Steel/Stone Ballast 30 HVAC COP(4) Offices/Classrooms: Individual GSHPs (5) 3.9-4.6

212

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

6 6 Case Study, The Solaire, New York, New York (Apartments/Multi-Family) Building Design Floor Area: 357,000 SF Units: 293 Maximum Occupancy: 700 Floors: 27 Site Size: 0.38 Acres Typical Occupancy(1): 578 Black-Water Treatment Facility (2) Shell Windows Material: Double Glazed, Low-e, Thermal Breaks with Insulated Spacers Operable Windows Fixed Windows Visual Transminttance 0.68 0.68 Solar Heat Gain Coefficient 0.35 0.35 U-Factor 0.47 0.41 Wall/Roof Material R-Value Exterior Walls: Insulated brick and concrete block 8.4 Roof: Roof top garden(green roof) 22.7 HVAC Two direct-fired natural gas absorption chillers 4-Pipe fan-coil units in individual aparments Power/Energy(3) PV System(4): 1,300 SF (76 custom panels) of west facing PV rated for 11 kW . These panels are integrated into the building facade.

213

Window and Envelope Technologies Overview - 2014 BTO Peer Review...  

Energy Savers (EERE)

Research and Development Roadmap: Windows and Building Envelope Research & Development Roadmap: Emerging Water Heating Technologies Research & Development Roadmap: Emerging HVAC...

214

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network (OSTI)

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

215

Impacts of Operating Hardware on Window Thermal Performance  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology,Building Technologies Program of the U.S. Department ofproject ”Improved Window Technologies for Energy Efficient

Hart, Robert

2014-01-01T23:59:59.000Z

216

Industrial Risks and Land use Planning Study of blast window resistance  

E-Print Network (OSTI)

glasses with or without anti-explosion film, laminated glasses...), mobile frames or window locking a short time (inferior to 10 ms). Coevert and al. [5] also studied security window film and insulating/16/4 with Insulating glass fabricated with laminated glass (a) Figure 4: (a) security window film, (c) · The behaviour

Boyer, Edmond

217

Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Affordable Affordable Cold Climate Infill Housing with Hybrid Insulation Approach Wyandotte, Michigan PROJECT INFORMATION Construction: New home Type: Single-family, affordable Builder: City of Wyandotte with various local homebuilders www.wyandotte.net Size: 1,150 to 1,500 ft 2 Price Range: $113,000-$138,000 Date completed: 2012 Climate Zone: Cold PERFORMANCE DATA HERS index: * 2009 IECC = 102 * Case study house 1,475 ft 2 * With renewables = NA * Without renewables = 75 Projected annual energy cost savings: $604 Incremental cost of energy efficiency measures: $30,947 (including GSHP and well) Incremental annual mortgage: $2,631/yr Annual cash flow: -$1,375 Billing data: Not available Even builders who are relatively new to energy-efficient construction can

218

Carpe Diem: Install Insulated Roman Shades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades March 16, 2010 - 11:44am Addthis John Lippert As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows. I should have bought window quilts for all of our windows, but I refrained from doing so on two downstairs windows to save money (which, in the long run, I didn't). There were window shades already there; they didn't do much from a thermal perspective, but they did provide privacy and room darkening. Well, they need to be replaced now, and I'm looking again at high efficiency thermal window shades. This time I'm considering thermal Roman shades. About a dozen years ago my wife and I went on the Tour of Solar Homes, the local component of the annual National Solar Tour sponsored by the American

219

LBNL Window & Daylighting Software -- RESFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS GET A COPY DOCUMENTATION KNOWLEDGE BASE Overview Today's energy-efficient windows can dramatically lower the heating and cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick the most efficient window for a residence. Product information typically offers window properties: U-factors or R-values, Solar Heat Gain Coefficients or Shading Coefficients, and air leakage rates. However, the relative importance of these properties depends on site- and building-specific conditions. Furthermore, these properties are based on static evaluation conditions that are very different from the real situation a window will be used in.

220

Energy audit, an approach to apply the concept of green building for a building in Jordan  

Science Journals Connector (OSTI)

Abstract An energy audit for one department at the faculty of Engineering and Technology at the University of Jordan has been conducted as a way to apply the concept of green building to an existing structure. According to the Jordanian green building code, a classification for the green building has been carried out according to its saving in energy and water in addition to the other factors such as indoor quality and material. The heating and cooling loads were calculated and the results were compared with the values for the same building after amendments to the windows and walls. The insulation for external walls of the building has been introduced in addition the double glazing instead of the current single glass windows for the building. The electricity for the lighting consumption of this building was obtained and analyzed and the potential of utilizing a lighting sensor for different halls and rooms was studied and analyzed. The boiler performance has been studied and an estimation of efficiency enhancement was proposed. It has been found that choosing a larger window area facing south, east and west can save more energy in winter and decreasing the heating costs using a certain types of double glazing, while decreasing the glazing area facing north can save money and energy. Also, it has been found that the payback period for the annual saving in fuel and electricity bills is less than 3 years. The needed investment for obtaining the energy saving is shown in the paper.

K. Hassouneh; A. Al-Salaymeh; J. Qoussous

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Window Replacement Options Assessing Window Replacement Options What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Performance Standards Energy Rating Programs Building America Program Documents Measure Guideline: Energy-Efficient Window Performance and Selection exit disclaimer Measure Guideline: Wood Window Repair, Rehabilitation, and Replacement exit disclaimer Whether you would like to improve the energy performance of your existing windows or replace them with new energy-efficient windows, several options are available. An energy audit can help you identify good strategies for more efficient windows and a more efficient house. Whichever energy efficiency measures you consider, the federal government as well as state, local, and utility programs may offer financing help or weatherization assistance.

222

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

4 4 Case Study, The Philip Merrill Environmental Center, Annapolis, Maryland (Office) Building Design Floor Area: 31,000 SF Floors: 2 Footprint: 220 ft. x (1) 2 Floors of open office space Attached pavilion containing: Meeting space Kitchen Staff dining Conference room Shell Windows U-Factor SHGC (2) Type: Double Pane, Low-e, Argon Filled Insulating Glass 0.244 0.41 Wall/Roof Material Effective R-Value Interior Wall plywood, gypsum, SIP foam, and sheathing 28.0 Exterior Wall gypsum and insulated metal framing 9.3 Roof plywood, gypsum, SIP foam, and sheathing 38.0 HVAC 18 ground source heat pumps fin and tube radiators connected to a propane boiler 1 air condtioning unit Lighting Power Densities (W/SF) First Floor: 1.2 Second Floor: 1.6 Conference Room: 1.4 Energy/Power PV System: 4.2 kW thin-film system

223

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

224

Savings Project: Install Exterior Storm Windows With Low-E Coating...  

Energy Savers (EERE)

with an ultra-thin, virtually invisible layer of metal, low-e windows reflect infrared heat back into the home. This coating improves the window's insulation ability, in turn...

225

Building America Technology Solutions for New and Existing Homes: A Homeowner’s Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This step-by-step guide developed by the National Renewable Energy Laboratory describes proper installation of window air conditioning units, in order to improve energy efficiency, save money, and improve comfort for homeowners

226

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

227

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Maintenance: Windows, Windows, Windows! Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

228

2658 heat insulation [n] (1)  

Science Journals Connector (OSTI)

constr. (1. Protection against cold provided by cold-shielding materials in outer walls of a building to conserve heat and save energy. 2. In English, the generic term thermal insulation is used for ...

2010-01-01T23:59:59.000Z

229

Building America Webinar: High Performance Building Enclosures...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

used to improve energy performance of building envelopes while dealing with issues like ice damming during exterior "overcoat" insulation retrofits? How can deep energy retrofits...

230

Insulation Resistance  

Science Journals Connector (OSTI)

n...(1) The electrical resistance between two conductors or systems of conductors separated only by an insulating material. The resistance of a particular insulation may be measured by dividing the v...

Jan W. Gooch

2011-01-01T23:59:59.000Z

231

Insulation resistance  

Science Journals Connector (OSTI)

n....(1) The electrical resistance between two conductors or systems of conductors separated only by an insulating material. The resistance of a particular insulation may be measured by dividing the ...

2007-01-01T23:59:59.000Z

232

Insulation and Air Sealing Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services May 30, 2012 - 9:52am Addthis Insulation and Air Sealing Products and Services Use the following links to get product information and locate professional services for insulation and air sealing. Product Information Cellulose Facts Cellulose Insulation Manufacturers Association Information on cellulose insulation, including technical bulletins, special reports, and video Concrete Masonry Units Concrete Homes-Portland Cement Association Describes construction methods that use concrete block systems Cotton Insulation (PDF) Build it Green Information on cotton insulation and a comparison to conventional insulation Expanded Polystyrene Molders Association

233

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Selection Process for New Windows Selection Process for New Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Meet the Energy Code and Look for the ENERGY STAR® Windows must meet the locally applicable energy code requirements. Windows that are ENERGY STAR qualified typically meet or exceed energy code requirements. A home's climate and location determine the relative importance of heating and cooling energy use, the applicable building energy code requirements, and the qualification criteria for ENERGY STAR windows. ENERGY STAR

234

Making Smart Windows Smarter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Windows Smarter Smart Windows Smarter Making Smart Windows Smarter April 5, 2011 - 2:00pm Addthis "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Roland Risser Roland Risser Program Director, Building Technologies Office What does this project do? Pleotint, LLC has developed a specialized glass film that uses the energy generated by the sun to limit excess heat and light from coming into homes and buildings. When you look out the window, you might notice whether the sun is shining, a nice view of the outdoors or an interesting cloud passing by. What most people probably don't notice is that traditional windows waste about 30

235

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Standards Performance Standards Even the expert eye cannot easily tell an efficient window from a conventional window. That is why energy ratings, endorsement programs and consumer incentives play an important role in creating awareness for window energy efficiency among consumers, builders, architects and performance standard programs. Learn about NFRC certification and labeling Learn about ENERGY STAR® for windows, doors and skylights High Performance Windows and Low-E Storm Windows Volume Purchase Program Utility and State Incentives for energy efficiency improvements Building Codes Most locations have building energy codes that mandate minimum performance levels for windows, doors, and skylights. The builder, contractor or homeowner must adhere to the code requirements, which typically cover

236

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance on Window Durability Guidance on Window Durability There is no simple rating or absolute guarantee of the durability of a window. You may want to study the design and workmanship of the window and rely on recommendations from others who have used similar products. The advice of experienced architects and builders can be helpful. As with other products, warranties can be an indicator of the reliability of the window and its manufacturer. Durability may vary with location; for example, some materials are degraded by salt near the ocean. These aspects of window durability deserve special attention: frame and sashes; insulating glass seals; weatherstripping; and local requirements for structural integrity. Frame and Sashes Although design and workmanship may be the most important factors

237

Microsoft PowerPoint - WINDOW6-ComplexGlazingTypeSummary-ForPresentation.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Christian Kohler, Mike Rubin, Jacob Jonsson Christian Kohler, Mike Rubin, Jacob Jonsson Dariush Arasteh, Robin Mitchell Windows & Daylighting Research Group March 2008 Complex Glazing Summary Complex Glazing Summary Environmental Energy Technologies Division Software Tools Overview Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing Data Base) calculation calculation calculation WINDOW (Whole Window) Environmental Energy Technologies Division WINDOW6 Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing

238

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior Shading Exterior Shading Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by various additions to an existing window. Awnings exit disclaimer Blinds exit disclaimer Draperies exit disclaimer Overhangs exit disclaimer Shades exit disclaimer Shutters exit disclaimer Awnings in Residential Buildings Study showing that awnings have advantages that contribute to more sustainable buildings. Download Awnings in Residential Buildings exit disclaimer The most effective way of reducing solar heat gain is to block the sun's

239

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Guide for Early-Market Electrochromic Windows. LBNL-59950.Guide for Early-Market Electrochromic Windows Attachment 17:electrochromic prototype windows that were deemed sufficiently mature for market

2006-01-01T23:59:59.000Z

240

Zero Energy Windows  

E-Print Network (OSTI)

Energy Performance of Electrochromic Windows Controlled for2006). Advancement of Electrochromic Windows, CaliforniaSavings Potential of Electrochromic Windows in the U.S.

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

List of Windows Incentives | Open Energy Information  

Open Energy Info (EERE)

Windows Incentives Windows Incentives Jump to: navigation, search The following contains the list of 604 Windows Incentives. CSV (rows 1-500) CSV (rows 501-604) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

242

Effectiveness of External Window Attachments Based on Daylight Utilization and Cooling Load Reduction for Small Office Buildings in Hot Humid Climates  

E-Print Network (OSTI)

savings in the building. Computer simulations using an hourly energy calculation model were conducted to predict the building's total energy consumption using each strategy. The economics of each strategy were analyzed with lifecycle costing techniques...

Soebarto, V. I.; Degelman, L. O.

1994-01-01T23:59:59.000Z

243

Excavationless Exterior Foundation Insulation Exploratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Excavationless Exterior Foundation Excavationless Exterior Foundation Insulation Exploratory Study NorthernSTAR Building America Team Garrett Mosiman Technical Approach The project begins with the concept of an "excavationless" exterior foundation insulation upgrade that is cost-competitive with current methods, and involves little impact to existing landscape and site features. Process: 1. Literature review to establish the building science case for the advantages of exterior foundation insulation vs. interior insulation 2. Presentation and analysis of two exterior, full-excavation exterior insulation upgrades to establish a base case for costs 3. Survey of five typical twin-cities neighborhoods to categorize and quantify typical obstructions 4. Web-based search to identify available materials and technologies that have

244

Buildings Energy Efficiency Policy  

E-Print Network (OSTI)

Efficiency Wind Biomass Natural Gas Combined Cycle Nuclear Coal IGCC Photovoltaics Rangeof · Emphasized lighting · Insulation, HVAC, motors, windows also significant · Savings typically 1-10% per

Oak Ridge National Laboratory

245

Energy Savings from Window Attachments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

246

Energy Savings from Window Attachments  

NLE Websites -- All DOE Office Websites (Extended Search)

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

247

The use of coated micropowders to reduce radiation heat transfer in foam insulation  

E-Print Network (OSTI)

Polyurethane foam is the most effective insulation currently available for buildings. Chlorofluorocarbon (CFC) blowing agents, which have low thermal conductivities, contribute highly to the effectiveness of this insulation. ...

Marge, Arlene Lanciani

1991-01-01T23:59:59.000Z

248

Energy retrofitting of a typical old Danish multi-family building to a “nearly-zero” energy building based on experiences from a test apartment  

Science Journals Connector (OSTI)

The purpose of the research described in this paper was to demonstrate that an old Danish multi-family building built in 1896 could be retrofitted to a “nearly-zero” energy building. Three types of retrofit measures were implemented in a “test” apartment to obtain practical experiences. The first measure was the installation of two different types of interior insulation, specifically, an insulation component consisting of an aerogel–stone wool mixture or vacuum insulation panels. The second measure related to the retrofit of windows in which five measures were completed that consisted of applying a secondary frame, a sash mounted on the frame or to coupled frames. The third measure consisted of installing a decentralised mechanical ventilation system with heat recovery. The results showed that following the retrofit the building's theoretical energy use diminished from 162.5 kWh/(m2 year) to 51.5 kWh/(m2 year), corresponding to a reduction in energy use of 68%. The theoretical energy use after retrofitting fulfilled the requirements for new buildings in Denmark. The practical experiences that were retained following the retrofit were that the ventilation system ought to be installed with low noise components, insulation materials must be sized and cut to fit on site, and that new windows were selected.

Martin Morelli; Leif Rønby; Svend Erik Mikkelsen; Maja G. Minzari; Troels Kildemoes; Henrik M. Tommerup

2012-01-01T23:59:59.000Z

249

Buried and Encapsulated Ducts- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Top Innovation profile highlights Building America research into insulating ductwork that is in unconditioned attics.

250

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

CGDB Import Into WINDOW CGDB Import Into WINDOW Updated: 11/14/12 Detailed Instructions for Importing CGDB data into WINDOW These instructions apply to either WINDOW 6 or 7. WINDOW 6 vs WINDOW 7 Because the database structure of WINDOW 6 is different that WINDOW 7, there are different CGDB files to go with each version of WINDOW. There are also different versions of the XML files for each version, because in WINDOW 7 some problems with the files were fixed. Setup of CGDB The CGDB consists of a WINDOW database of records in the Shading Layer, Shade Material Library, and Glass Library, as well as a set of text files for systems that reference BSDF XML files. Database: The installation will put two databases into the "LBNL Shared" directory: (the location will depend on your operating system):

251

New and Underutilized Technology: Smart Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Windows Smart Windows New and Underutilized Technology: Smart Windows October 8, 2013 - 2:55pm Addthis The following information outlines key deployment considerations for smart windows within the Federal sector. Benefits Smart windows are made of electrochromic glass, which uses electrical energy to transition between clear and darkened state to control light and heat gain. Darkened glass transmits less light and reduces heat gain, especially in dual-pane windows. Application Smart windows are appropriate for deployment within most building categories and should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment Window orientation is a factor that must be considered prior to smart window implementation. Ranking Criteria

252

New and Underutilized Technology: Window Films | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Films Window Films New and Underutilized Technology: Window Films October 8, 2013 - 2:50pm Addthis The following information outlines key deployment considerations for window films within the Federal sector. Benefits Window films are a spectrally-selective film used to decrease heat gain through a window. Application Window films are appropriate for deployment within most building categories and should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment Window orientation is a factor that must be considered prior to window film implementation. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are ranked 0-5 with 0 representing the lowest ranking and 5 representing the highest ranking. The weighted score is ranked 0-100 with 0 representing the

253

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

SciTech Connect

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

254

Spray Foam Exterior Insulation with Stand-Off Furring  

SciTech Connect

IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

Herk, A.; Baker, R.; Prahl, D.

2014-03-01T23:59:59.000Z

255

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing & Incentives Financing & Incentives Financing or incentive programs may be available to you if: You intend to replace old windows with high-performance, energy efficient windows. You plan to build a new home with windows that keep energy costs low and provide for a comfortable interior. If you are looking for utility programs within your state that can help you finance such an investment in efficient windows, download an overview of utility and state programs. Incentives and Rebates for Energy-Efficient Windows Offered through Utility and State Programs Utility and State Incentives We have provided an overview of utility and state programs that can help you as a resident, building owner, or builder to finance improvements in window energy efficiency. Download an overview of utility and state

256

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

257

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

258

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies Window Technologies Operator Types Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. This section on Operator Types describes how these typical windows work. Operator Types Glazing Types Traditionally, windows have been made from clear glass, but advanced technologies have significantly improved the thermal performance of glass. This section on Glazing Types describes some of these technologies. Glazing Types Gas Fills Gas fills improve the thermal performance of insulating glazing units by reducing the conductance of the air space between the layers. This section on Gas Fills describes the thermal performance benefits of adding gas to an IGU.

259

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduced Condensation Reduced Condensation Condensation High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. High-performance windows create warmer interior glass surfaces, reducing frost and condensation. High-performance windows with warm edge technology and insulating frames have such a warm interior surface that condensation on any interior surfaces is significantly reduced under all conditions. Condensation occurs when the interior surface temperature of the glass drops below either the dewpoint or frost point. A window's frame and/or glazing system can contribute to the possibility of condensation if they are poor performers for a specific climate. High-performance windows create warmer interior glass surfaces, reducing condensation and frost.

260

Foundation Insulation for Existing Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do We Retrofit Tough Buildings? Foundation Insulation for Existing Homes Building America Technical Update April 29 & 30, 2013 Patrick H. Huelman Cold Climate Housing Coordinator University of Minnesota Extension Foundation Insulation for Existing Homes * Context - Focused on basements and crawlspaces. - Aimed at cold climates (Climate Zones 6 & 7). - Generally aimed at liquid active walls. * Approach - Managing risks - Current solutions & best practices - Evaluating new approaches * Primary focus is to reduce energy use by 30 to 50% with emphasis on existing homes. * Promote building science solutions using a systems engineering and integrated design approach. * "Do no harm" => must ensure that safety, health, and durability are maintained or improved.

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Energy Software Tools Directory: TREAT  

NLE Websites -- All DOE Office Websites (Extended Search)

TREAT TREAT TREAT logo. Performs hourly simulations for single family, multifamily, and mobile homes. Comprehensive analysis tool includes tools for retrofitting heating and cooling systems, building envelopes (insulation and infiltration), windows and doors, hot water, ventilation, lighting and appliances, and more. Weather normalizes utility bills for comparison to performance of model. Highly accurate calculations which consider waste heat (baseload), solar heat gain, and fully interacted energy savings calculations. Create individual energy improvements or packages of interactive improvements. Also performs load sizing. Generates XML file for upload to online database tracking systems. Complies with HERS BESTEST. Approved by the U.S. Department of Energy for use in Weatherization Assistance Programs. Screen

262

Building Energy Software Tools Directory: TREAT  

NLE Websites -- All DOE Office Websites (Extended Search)

TREAT TREAT TREAT logo. Performs hourly simulations for single family, multifamily, and mobile homes. Comprehensive analysis tool includes tools for retrofitting heating and cooling systems, building envelopes (insulation and infiltration), windows and doors, hot water, ventilation, lighting and appliances, and more. Weather normalizes utility bills for comparison to performance of model. Highly accurate calculations which consider waste heat (baseload), solar heat gain, and fully interacted energy savings calculations. Create individual energy improvements or packages of interactive improvements. Also performs load sizing. Generates XML file for upload to online database tracking systems. Complies with HERS BESTEST. Approved by the U.S. Department of Energy for use in Weatherization Assistance Programs. Screen

263

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Ensure Proper Installation of New Windows Ensure Proper Installation of New Windows Information Regarding Lead-based Hazards Comprehensive information about lead paint exit disclaimer by U.S. EPA Literature ASTM E 2112, "Standard Practice for Installation of Exterior Windows, Doors and Skylights." www.astm.org exit disclaimer Water Management Guide, Joseph W. Lstiburek, Energy & Environmental Building Association. www.eeba.org exit disclaimer Proper installation is necessary for optimal window performance, to ensure an airtight fit and avoid water leakage. Always follow manufacturers installation guidelines and use trained professionals for window installation. The Importance of Quality Window Installation Quite simply, windows are only as good as their installation. Proper installation will:

264

Characterization of New Glass Coated Foam Glass Insulating Tiles by Standard Tests  

Science Journals Connector (OSTI)

A good thermal insulation of buildings is today more and more...1). Among insulating materials, foam glasses are increasing their importance because of...2). Foam glasses are fiber-free inorganic insulation mater...

Andrea Ventrella; Federico Smeacetto…

2012-11-01T23:59:59.000Z

265

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies: Low Conductance Spacers Window Technologies: Low Conductance Spacers Spacers The lites of glass in an insulating unit must be held apart at the appropriate distance by spacers. In addition to keeping the glass lites separated, the spacer system must serve a number of functions: accommodate stress induced by thermal expansion and pressure differences; provide a moisture barrier that prevents passage of water or water vapor that would fog the unit; provide a gas-tight seal that prevents the loss of any special low-conductance gas in the air space; create an insulating barrier that reduces the formation of interior condensation at the edge. Spacers The standard solution for insulating glass units (IGUs) is the use of metal spacers and sealants. These spacers, typically aluminum, also

266

Magnetic insulation  

Science Journals Connector (OSTI)

... by Winterberg1, led me to look into the background of the idea of 'magnetic insulation'. The purpose of this letter is to point out that the scheme described in ... were presented earlier in a longer article2. In that article he suggested that 'magnetic insulation' might make possible a transformer for 109 V. A year later the same objections ...

JOHN P. BLEWETT

1974-06-28T23:59:59.000Z

267

City of Detroit - SmartBuildings Detroit Grant Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Detroit - SmartBuildings Detroit Grant Program City of Detroit - SmartBuildings Detroit Grant Program City of Detroit - SmartBuildings Detroit Grant Program < Back Eligibility Commercial Institutional Local Government Multi-Family Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Buying & Making Electricity Solar Water Heating Wind Maximum Rebate 25% of eligible costs Program Info Expiration Date 06/02/2013 State Michigan Program Type Local Grant Program Provider City of Detroit '''''Note: This program is no longer accepting applications. Check the

268

Building America Whole-House Solutions for New Homes: Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California  

Energy.gov (U.S. Department of Energy (DOE))

Exterior rigid foam insulation at the edge of the slab foundation was a unique feature for this low-load, unoccupied test house in a hot-dry climate and maybe more appropriate for climates with higher heating loads.

269

A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeowners in the United States spend Homeowners in the United States spend one out of every eight dollars of utility costs on cooling their living space. Window air conditioners (A/Cs) are an inexpensive alternative to central systems, and are sold in greater numbers each year than all other residential cooling systems. They are purchased to cool a specific room and are easy for anyone to install. In contrast to these benefits, window A/Cs come at a cost-they operate less efficiently (using more energy to do the same cooling) than most other residential A/C systems. Researchers at the National Renewable Energy Laboratory (NREL) studied window A/Cs on behalf of the U.S.

270

A Tale of Three Windows: Part 1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Tale of Three Windows: Part 1 A Tale of Three Windows: Part 1 A Tale of Three Windows: Part 1 August 1, 2012 - 12:37pm Addthis The original windows in Andrea's home. | Photo courtesy of Andrea Spikes. The original windows in Andrea's home. | Photo courtesy of Andrea Spikes. Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I will admit right up front that, despite the fact that our aluminum windows are more than 20 years old, and are obviously inefficient, we never bothered to replace them simply because we didn't want to shell out the bucks. We've lived with these windows (two standard windows plus a patio door) for nearly ten years, and have simply used insulating blinds and curtains, plus the old standby heat-shrink plastic, to keep the winter cold and summer heat at bay. Those methods are certainly budget-friendly,

271

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Notes Release Notes Updated: 11/07/11 History of COMFEN 3.1 Releases New Features Glazed Wall Assembly In addition to modeling individual windows, COMFEN now has the capability of modeling "Glazed Wall Assemblies" which allow you to specify the number of horizontal and vertical framing members, as well as their spacing, and the program automatically generates the facade. Click here for more details. Material Library COMFEN now has a Material Library, which can be used in the Wall Construction and Spandrel Libraries. See the User Manual for more details. Wall Library COMFEN now has a Wall Library which can be used to build up layers from the Material Library to define a wall. See the User Manual for more details. Spandrel Library COMFEN now has a Spandrel Library which can be used to build up layers from the Material Library to define a spandrel, including glass and glazing systems as the outer-most layers. See the User Manual for more details.

272

A Smart Window for Solar Energy Co-utilization  

Science Journals Connector (OSTI)

Aiming at thermal comfort and integrated to the building envelope, a low-emissivity, double-glazed window is presented, with adjustable blinds and spectrally selective heat reflection,...

Horowitz, Flavio; de Azambuja, Giovane; Pereira, Marcelo B

273

Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities  

E-Print Network (OSTI)

the two-dimensional heat transfer through building products.Gustavsen, A. 2001. Heat transfer in window frames withand CFD Simulations of Heat Transfer in Horizontal Window

Gustavsen, Arlid

2008-01-01T23:59:59.000Z

274

Analysis of the Chinese Market for Building Energy Efficiency  

SciTech Connect

China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

Yu, Sha; Evans, Meredydd; Shi, Qing

2014-03-20T23:59:59.000Z

275

Thermal insulation with paper honeycombs with solar gain  

SciTech Connect

In this contribution the authors describe the concept and the model for the heat flux and the effective U-value of paper honeycombs (PHC) used as efficient and cheap transparent insulation material. With this thermal-insulation-material static U-values of U = 0.25 W/(m{sup 2}K) are obtained due to the very low thermal conduction value {lambda} = 0.04 W/(mK), which is comparable to thermal insulators as PU-foam or mineral wool. Contrary to conventional insulation materials PHC also gathers solar radiation due to its geometry, thereby providing heat flux into the interior of the building. Because the angle of incidence of the sun in wintertime is low, the direct solar radiation is absorbed approximately within the outermost 3 centimeters of the PHC. Even at ambient temperatures below 0 C, this region is warmed up to 60 C. By conduction the heat is brought to the brick wall underneath, which acts as reservoir and gets to temperatures between 15 and 30 C. Calculated across the full heating period, it is shown, that effective U values of 0.14 W/(m{sup 2}K) are reached by using PHC, reducing the brick wall U value by a factor of 3/4. Contrary to other transparent thermal insulation systems, e.g. developed by the Fraunhofer Institute for Solar Energy Systems, this system does not overheat during summertime, because the capillary structure is shielding the solar rays. A Windows based program solves the heat conduction equation with finite element methods.

Hingerl, K.; Baumgartner, G.; Aschauer, H.

1996-12-31T23:59:59.000Z

276

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

(6.3.74 -- February 14, 2012) Release Notes Updated: 02/15/13 If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 6.3.74 Program Changes Window LIbrary: Window Types In previous versions of WINDOW 6.3, there were two different Window Type lists, with conflicting ID numbers, which resulted in the possibility of a Window Library made with one set of Window Types would become corrupted (the wrong Window Types assigned) if the database records were imported into a another database with the different Window Type list. To solve this problem, we have added a database "migration" with this version of WINDOW -- when it opens any older database, it will update the Window Types list to have the choices (and IDs) shown below and then it will also update all the Window Library records to map to the new Window Types based on what the records were set to originally.

277

Building America Case Study: Project Overcoat: Airtightness Strategies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NorthernSTAR Building America Partnership, environment.umn.edu formsprojectview.php?id273 Building Components: Building envelope, roofattic air seal, and insulation...

278

Retrofit of a Multifamily Mass Masonry Building in New England  

SciTech Connect

Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

2013-08-01T23:59:59.000Z

279

LBNL Windows & Daylighting Software -- WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW WINDOW NFRC Certification Version Release Version Beta Version WINDOW 6.3 (For NFRC Certification and modeling Complex Glazing Systems) WINDOW 7.1 For modeling vacuum glazing, deflected glass, vertical venetian blinds and perforated screens WINDOW 7.2 For modeling Cellular Shades, in addition to vacuum glazing, deflected glass, vertical venetian blinds and perforated screens Download WINDOW 6.3 (for NFRC Certification and complex glazing systems) Download WINDOW 7.1 Download WINDOW 7.2 Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) New Features

280

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6 and THERM 6 Technical Documentation WINDOW 6 and THERM 6 Technical Documentation Algorithm Documentation WINDOW6 and THERM6 implement the ISO 15099 algorithms: bullet ISO 15099 The algorithms in WINDOW6 and THERM6 follow the procedures presented in ISO 15099: "Thermal performance of windows, doors and shading devices - Detailed calculations." See: http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO+15099%3A2003 In addition to implementing ISO 15099 algorithms in WINDOW6 and THERM6, we have added additional capabilities to WINDOW6. The following reports and papers describe these additional capabilities and/or elaborate on ISO15099. bullet Thermal Algorithm Documentation for THERM6: Conrad 5 & Viewer 5 Technical and Programming Documentation June 20, 2006 bullet Thermal Algorithm Documentation for WINDOW6:

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Crustation insulation  

Science Journals Connector (OSTI)

... nervous systems by wrapping it in multilayered sheaths of a fatty material called myelin. This insulation allows electrical nerve impulses to be conveyed over long distances much more rapidly. Considering ...

Eleanor Lawrence

1999-04-15T23:59:59.000Z

282

insulation blocking  

Science Journals Connector (OSTI)

In a cable, such as a coaxial cable, a paired cable, a twisted pair, or a fiber optic cable, the ability of the outer covering, such as a jacket, sheath, or insulation, to withstand elevated temperatures without ...

2001-01-01T23:59:59.000Z

283

Building America Technlogy Solutions for New and Existing Homes...  

Energy Savers (EERE)

Sheet) Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade - Madison Residence (Fact Sheet) This basement insulation project...

284

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

of a thin-film ceramic electrochromic window: Field studyof a Thin-Film Ceramic Electrochromic Window: Field StudyEC window product characteristics The EC is a thin-film WO3-

2006-01-01T23:59:59.000Z

285

End User Impacts of Automated Electrochromic Windows in a Pilot  

E-Print Network (OSTI)

LBNL-6027E End User Impacts of Automated Electrochromic Windows in a Pilot Retrofit Application E Electrochromic Windows in a Pilot Retrofit Application Eleanor S. Lee1 Abstract , Erin S. Claybaugh Building Independence Avenue, S.W., Washington, DC 20585 USA Automated electrochromic (EC) windows, advanced thermally

286

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Guide for Early-Market Electrochromic Windows. LBNL-59950.Granqvist, C.G. 2000. "Electrochromic Tungsten Oxide Films:the performance of the electrochromic windows. Proceedings

2006-01-01T23:59:59.000Z

287

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: ENERGY STAR® Windows Measuring Performance: ENERGY STAR® Windows Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. View the criteria for windows for the ENERGY STAR Most Efficient Program. Energy Star Most Efficient Program The Department of Energy (DOE) and the Environmental Protection Agency (EPA) have developed an ENERGY STAR exit disclaimer designation for products meeting certain energy performance criteria. Windows that have the ENERGY STAR designation will be labeled showing the zones in which it is qualified. Since energy efficient performance of windows, doors, and skylights varies by climate, product recommendations are given for four U.S. climate zones. For making comparisons among ENERGY STAR products, use the NFRC label or

288

Performance Testing of Window Installation and Flashing Details  

E-Print Network (OSTI)

Protection of interface at windows and other penetrations from rainwater intrusion is a primary need of building structures. This is especially true when the building is in a high weather exposure location or in a climate in which the ability...

Weston, T. A.; Herrin, J.

2002-01-01T23:59:59.000Z

289

Analysis of a Fabric/Desiccant Window Cavity Dehumidifier  

E-Print Network (OSTI)

This paper presents the results of an exploratory study of a fabric/desiccant window cavity dehumidifier system for possible use in commercial buildings. The objective was to evaluate fabrics commonly used in buildings, and system concepts...

Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

1994-01-01T23:59:59.000Z

290

Types of Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Types of Insulation Types of Insulation Types of Insulation May 30, 2012 - 11:43am Addthis In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. Icynene plastic insulation blown into the walls of a home near Denver. Icynene fills cracks and crevices and adheres to the framing. | Photo courtesy of Paul Norton, NREL.

291

Window annual energy rating systems: What they tell us about residential window design and selection  

SciTech Connect

Residential window annual energy rating systems have been developed in Canada and the US. These systems combine window properties of solar heat gain coefficient, U-factor, and air-infiltration into a single number representative of the energy performance for each of the heating season and the cooling season. These systems provide a simple means for designers to select the best energy performing window for low-rise residential buildings over the heating and cooling seasons. The two systems, which rank windows in the same order, give different information on optimum window design and selection than just a simple U-factor comparison. These systems show the importance of a high window SHGC in cold climates and a low SHGC in hot climates. The impact of window air infiltration is surprisingly small relative to the solar heat gain and heat conduction losses.

Carpenter, S.C.; McGowan, A.G.; Miller, S.R. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

292

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Specular Glazing Systems Specular Glazing Systems NFRC THERM 6.3 / WINDOW 6.3 Simulation Manual July 2013: bullet Entire Manual in PDF Format approximate 8 MB Comparison of WINDOW 5 / THERM 5 and WINDOW 6 / THERM 6 Results for Specular Glazing Systems (PDF Format) NFRC WINDOW 6 / THERM 6 Training for Specular Systems (Power Point Presentation, Oct/Nov 2010) Tutorials Complex Glazing Systems bullet WINDOW 6.2 / THERM 6.2 Research Version User Manual (Documents features in WINDOW6 and THERM 6 for modeling complex glazing systems) bullet WINDOW 6.2 / THERM 6.2 Simulation Manual Chapter for Complex Glazing (Draft) This was used for NFRC Simulator training in June 2009, and includes detailed descriptions for modeling venetian blinds between glass and frits. bullet Complex Glazing Summary -- PDF File

293

Aerogel Impregnated Polyurethane Piping and Duct Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aerogel Impregnated Polyurethane Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation system that will adhere to housing duct work and pipe structures while conforming to complex geometries. New insulations must increase the R-value of existing materials and be easy to apply or retrofit to existing structures.

294

Window, Door, and Skylight Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services June 18, 2012 - 8:33am Addthis Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR® Information on ENERGY STAR performance ratings for windows, doors, and skylights. Product Ratings National Fenestration Rating Council Find energy performance ratings and manufacturers of windows, doors, and skylights. Residential Windows, Doors, and Skylights

295

Noise?insulation requirements for multi?family dwellings  

Science Journals Connector (OSTI)

Noise insulation standards are part of the California Administrative Code (Title 25 Section 1092). These standards apply to all new multi?family dwelling units such as hotels apartments duplexes townhouses and condominium units. Detached single?family dwellings are specifically excluded. The standards establish minimum requirements for the isolation of interior spaces from exterior noise and set minimum ratings for noise insulation of partitions between dwelling units. A community noise equivalent level (CNEL) of 45 dB is set as the maximum for intrusive noise from exterior sources such as rail or road traffic or aircraft operations. American Society for Testing and Materials (ASTM) testing procedures for party wall and floor/ceiling system sound transmission provide the basis for setting minimum acceptable performance for separations between units. As a consultant to builders planners and architects the site planning and design of residential projects have been examined and field evaluations have been performed on completed projects. Building designs and the selection of suitable building elements (wall construction composites window assemblies vent configurations etc.) which assure compliance with the standards have been identified. The paper provides a brief description of the standards their enforcement pitfalls and an assessment of their impact on residential construction in California.

John J. Van Houten

1981-01-01T23:59:59.000Z

296

Cutting-Edge Building Technologies Offer Big Energy Savings Potential...  

Energy Savers (EERE)

vacuum insulation materials. This combines low thermal emissivity (or low-e) coated plastic films to boost the energy efficiency of current window retrofit technologies by as...

297

Building America Solution Center - 2014 BTO Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and construction. Topics include air sealing and insulation; heating, ventilation, and air conditioning (HVAC) components; windows; indoor air quality; and more. Each topic...

298

#AskEnergySaver: Building Envelopes | Department of Energy  

Energy Savers (EERE)

for flashing and for insulating to minimize water and moisture intrusion and energy loss? What are the most energy-efficient window types in cold environments? -- from Daniel...

299

Building America Case Study: Meeting DOE Challenge Home Program...  

Energy Savers (EERE)

included an enhanced enclosure (added insulation and better windows), increased mechanical systems efficiencies, and improved lighting and appliances. A series of checklists...

300

City of Plano - LEED Standard for Public Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plano - LEED Standard for Public Buildings Plano - LEED Standard for Public Buildings City of Plano - LEED Standard for Public Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Insulation Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info State Texas Program Type Energy Standards for Public Buildings Provider City of Plano As of January 2007, the City of Plano adopted a policy to "finance, plan, design, construct, manage, renovate, and maintain its facilities and buildings to be sustainable." This standard applies to new construction and major remodels. The City will use the U.S. Green Building Council's LEED

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluating Fenestration Products for Zero-Energy Buildings: Issuesfor Discussion  

SciTech Connect

Computer modeling to determine fenestration product energy properties (U-factor, SHGC, VT) has emerged as the most cost-effective and accurate means to quantify them. Fenestration product simulation tools have been effective in increasing the use of low-e coatings and gas fills in insulating glass and in the widespread use of insulating frame designs and materials. However, for more efficient fenestration products (low heat loss products, dynamic products, products with non-specular optical characteristics, light re-directing products) to achieve widespread use, fenestration modeling software needs to be improved. This paper addresses the following questions: (1) Are the current properties (U, SHGC, VT) calculated sufficient to compare and distinguish between windows suitable for Zero Energy Buildings and conventional window products? If not, what data on the thermal and optical performance, on comfort, and on peak demand of windows is needed. (2) Are the algorithms in the tools sufficient to model the thermal and optical processes? Are specific heat transfer and optical effects not accounted for? Is the existing level of accuracy enough to distinguish between products designed for Zero Energy Buildings? Is the current input data adequate?

Arasteh, Dariush; Curcija, Charlie; Huang, Joe; Huizenga,Charlie; Kohler, Christian

2006-07-25T23:59:59.000Z

302

Insulation products promote thermal efficiency  

SciTech Connect

The judicious use of thermal insulation products in non-residential buildings can provide a number of advantages including increased energy efficiency, lower first costs (by avoiding overside HVAC systems), improved fire safety and better acoustics. Thermal insulation products are those products which retard the flow of heat energy. Materials include glass, plastics, and organic materials such as wood fibers, vermiculite and perlite. Forms range from the familiar batts and blankets of glass fibers to foamed plastic, rigid boards, losse fill and systems combining two or more products, such as polystyrene boards covered with insulating plaster. The R values of selected insulation materials with a cost/sq. ft. of each material at R 10 are given. Costs cover both the material and installation and may vary depending on local conditions.

Chalmers, R.

1985-04-01T23:59:59.000Z

303

Next Generation Insulation Materials: Challenges and Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Insulation Materials: Challenges and Opportunities Nov 14 2014 03:00 PM - 04:00 PM Kaushik Biswas, Building Technologies Research and Integration Center, Oak Ridge...

304

Fire Behaviour of Rigid Foam Insulation Boards  

Science Journals Connector (OSTI)

Low density cellular polymers have established a significant share of the market for insulating materials in the building industry due to their unique combination of low density and low thermal conductivity. Manu...

P. J. Briggs

1986-01-01T23:59:59.000Z

305

Field Evaluation of Low-E Storm Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Evaluation of Low-E Storm Windows Field Evaluation of Low-E Storm Windows Title Field Evaluation of Low-E Storm Windows Publication Type Conference Paper LBNL Report Number LBNL-1940E Year of Publication 2007 Authors S. Craig Drumheller, Christian Kohler, and Stefanie Minen Conference Name Thermal Performance of the Exterior Envelopes of Whole Buildings X International Conference Volume 277 Date Published 12/2007 Conference Location Clearwater Beach, FL Abstract A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homes had traditional clear glass. Overall heating load reduction due to the storm windows was 13% with the clear glass and 21% with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years for the low-e storm windows.

306

REScheck | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance » Software & Web Tools Compliance » Software & Web Tools Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center REScheck Subscribe to updates To receive updates about compliance tools subscribe to the BECP Mailing List. Residential Compliance Using REScheck(tm) The REScheck product group makes it fast and easy for builders, designers, and contractors to determine whether new homes, additions, and alterations meet the requirements of the IECC or a number of state energy codes. REScheck also simplifies compliance determinations for building officials, plan checkers, and inspectors by allowing them to quickly determine if a low-rise residence meets the code. REScheck is appropriate for insulation and window trade-off calculations in

307

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. The U.S. EPA will add qualifying models to the ENERGY STAR Most Efficient 2013 product list for windows from January 1, 2013 through December 31, 2013. The following products are not eligible for Most Efficient recognition in 2013: Windows for commercial buildings Doors Skylights Tubular Daylighting Devices Energy Star Most Efficient Program Energy Star Zones The ENERGY STAR Most Efficient designation recognizes the most efficient products among those that qualify for the ENERGY STAR. These exceptional products represent the leading edge in energy efficient products for a given year. Criteria Windows must be ENERGY STAR qualified consistent with applicable ENERGY

308

Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Insulation Where to Insulate Learn where to insulate in a home to save money and improve comfort. Read more Insulation Get the facts about how insulation works. Read more Estimate the Payback Period for Insulation Adding insulation to your home will likely have an attractive payback. Read more You can reduce your home's heating and cooling costs through proper insulation and air sealing techniques. These techniques will also make your home more comfortable. Any air sealing efforts will complement your insulation efforts, and vice versa. Proper moisture control and ventilation strategies will improve the effectiveness of air sealing and insulation, and vice versa. Featured Insulation for New Home Construction Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL.

309

North Carolina | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Carolina Carolina Last updated on 2013-11-04 Current News On Friday, June 24, 2011, Governor Beverly Perdue signed SB 708 into law and approved a new Energy Conservation Code for the residential and commercial buildings in North Carolina. This new code will save home and business owners money on their monthly energy bills and help retain and create jobs in every region of the state. It delivers significant improvements in insulation levels, window performance and building envelope air leakage reduction. The new code also includes the High Efficiency Residential Option (HERO) Appendix which delivers a 30% improvement in minimum energy efficiency over the state's current energy code. The new NC Energy Conservation Code became effective January 1, 2012 with mandatory

310

List of Equipment Insulation Incentives | Open Energy Information  

Open Energy Info (EERE)

Insulation Incentives Insulation Incentives Jump to: navigation, search The following contains the list of 242 Equipment Insulation Incentives. CSV (rows 1 - 242) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Central Air conditioners Chillers Custom/Others pending approval Energy Mgmt. Systems/Building Controls Equipment Insulation Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Programmable Thermostats Refrigerators Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation

311

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets & Publications: Books Fact Sheets & Publications: Books Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Residential Windows: A Guide to New Technology and Energy Performance, 3rd Edition John Carmody, Stephen Selkowitz, Dariush Arasteh and Lisa Heschong Residential Windows The Department of Energy's Windows and Glazing Research Program supported the development of this book. Support was provided

312

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

313

5 Steps to Making Your Windows More Energy Efficient | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps to Making Your Windows More Energy Efficient Steps to Making Your Windows More Energy Efficient 5 Steps to Making Your Windows More Energy Efficient December 13, 2013 - 4:06pm Addthis Keep your hard-earned dollars from flying out the window by following the latest guidelines for window repair, rehabilitation and replacement. | Photo courtesy of the Weatherization Assistance Program Technical Assistance Center. Keep your hard-earned dollars from flying out the window by following the latest guidelines for window repair, rehabilitation and replacement. | Photo courtesy of the Weatherization Assistance Program Technical Assistance Center. Eric Werling Building America Program Coordinator, Building Technologies Office

314

Energy-efficient rehabilitation of multifamily buildings in the Midwest  

SciTech Connect

This report addresses the opportunities available to make multifamily housing more affordable by using energy efficiency practices in housing rehabilitation. Use of the energy conservation measures discussed in this report enables developers of multifamily housing to substantially reduce annual energy costs. The reduction in natural gas usage was found to be approximately 10 Btu per square foot per heating degree-day. The study focuses on a number of Chicago multifamily buildings. The buildings were examined to compare energy efficiency measures that are commonly found in multifamily building rehabilitation with the high-energy-efficiency (HE) techniques that are currently available to community developers but are often unused. The HE measures include R-43 insulation in attics, R-19 insulation in exterior walls, low-emissivity coatings on windows, air infiltration sealing, and HE heating systems. The report describes the HE features and their potential benefits for making housing more affordable. It also describes the factors influencing acceptance. This report makes recommendations for expanding cost-effective energy conservation in the multifamily building sector. Among the recommendations are: expand HE rehab and retrofit techniques to multifamily building rehabs in which demolition of the interior structures is not required (moderate rehabs) or buildings are not vacant (e.g., weatherization upgrades); and expand research into the special opportunities for incorporating energy conservation in low-income communities.

Katrakis, J.T.; Knight, P.A.; Cavallo, J.D. [Argonne National Lab., IL (United States). Policy and Economic Analysis Group

1994-09-01T23:59:59.000Z

315

Daylighting control performance of a thin-film ceramic electrochromic window: field study results  

E-Print Network (OSTI)

1 Daylighting control performance of a thin-film ceramic electrochromic window: field study results-film electrochromic (EC) windows were initiated at the new full-scale Window Systems testbed facility at the Lawrence of this emerging technology. Keywords: Building energy-efficiency; Electrochromic windows; Daylighting; Control

316

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-E Coatings Low-E Coatings Low-E Center-of-glass values of double pane units with and without low-E coatings. When heat or light energy is absorbed by glass, it is either convected away by moving air or reradiated by the glass surface. The ability of a material to radiate energy is called its emissivity. All materials, including windows, emit (or radiate) heat in the form of long-wave, far-infrared energy depending on their temperature. This emission of radiant heat is one of the important components of heat transfer for a window. Thus reducing the window's emittance can greatly improve its insulating properties. Standard clear glass has an emittance of 0.84 over the long-wave portion of the spectrum, meaning that it emits 84% of the energy possible for an object at its temperature. It also means that 84% of the long-wave

317

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Comfort Improved Comfort Comfort High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. During cold weather, exterior temperatures drive interior glass surface temperatures down below the room air temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior glass surface temperature is 52˚F or less, it is most likely that there will be discomfort. During warm weather, solar radiation can cause discomfort. Just as people turn up the heat to compensate for cold windows in cold weather, they may use

318

Energy performance of a dual airflow window under different climates  

Science Journals Connector (OSTI)

Ventilated windows have shown great potential in conserving energy in buildings and provide fresh air to improve indoor air quality. This paper reports our effort to use EnergyPlus to simulate the energy performance of a dual airflow window under different climates. Our investigation first developed a network model to account for the two-dimensional heat transfer in the window system and implemented it in EnergyPlus. The two-dimensional assumption and the modified EnergyPlus program were validated by the measured temperatures of the window and the energy demand of a test cell with the window under actual weather conditions. Then EnergyPlus was applied to analyze energy performance of a small apartment installed with the dual airflow windows in five different climate zones in China. The energy used by the apartment with blinds windows and low-e windows was also calculated for comparison. The dual airflow window can reduce heating energy of the apartment, especially in cold climate. The cooling energy reduction by the window was less important than that by shading solar radiation. The dual airflow window is recommended for colder climate. If improving air quality is a major consideration for a building, the window can be used in any climate.

Jingshu Wei; Jianing Zhao; Qingyan Chen

2010-01-01T23:59:59.000Z

319

Building America Technology Solutions for New and Existing Homes: Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This case study describes Building Science Corporation’s research into spray polyurethane foams in residential roofs, performing hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs.

320

Window Daylighting Demo  

Energy.gov (U.S. Department of Energy (DOE))

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Adding Insulation to an Existing Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adding Insulation to an Existing Home Adding Insulation to an Existing Home Adding Insulation to an Existing Home May 23, 2013 - 1:44pm Addthis Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. What does this mean for me? Adding insulation to your home saves money and improves comfort. Adding insulation to your home is a sound investment that is likely pay for itself quickly in reduced utility bills. Insulation inhibits heat flow through the building envelope of your home, saving money and improving comfort. Unless your home was specially constructed for energy efficiency, you can probably reduce your energy bills by adding more insulation. Many older

322

MoWiTT:Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

323

LBNL-5800E Thermal Performance Impacts of Center-of- Glass Deflections in Installed Insulating  

NLE Websites -- All DOE Office Websites (Extended Search)

00E 00E Thermal Performance Impacts of Center-of- Glass Deflections in Installed Insulating Glazing Units R.G. Hart Lawrence Berkeley National Laboratory C.W. Goudey Lawrence Berkeley National Laboratory D.K. Arasteh Lawrence Berkeley National Laboratory D.C. Curcija Lawrence Berkeley National Laboratory Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division June 2012 To be published in Energy and Buildings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of

324

Building America Technology Solutions for New and Existing Homes...  

Energy Savers (EERE)

insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption. casestudymoisturevaporpermeable.pdf More Documents & Publications Vapor...

325

Energy-Efficient Commercial Buildings Tax Deduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Commercial Buildings Tax Deduction Energy-Efficient Commercial Buildings Tax Deduction Energy-Efficient Commercial Buildings Tax Deduction < Back Eligibility Commercial Construction Fed. Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate 1.80 per square foot Program Info Start Date 1/1/2006 Program Type Corporate Deduction Rebate Amount 0.30-1.80 per square foot, depending on technology and amount of energy reduction Provider U.S. Internal Revenue Service The federal Energy Policy Act of 2005 established a tax deduction for

326

Tax Incentives for Residential Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Tax Incentives for Residential Buildings On this page you'll find information about the tax deductions available for purchasing and installing energy-efficient products and constructing new energy-efficient homes. The American Recovery and Reinvestment Act of 2009 offers tax credits for residential energy efficiency measures and renewable energy systems. Many of these credits were originally introduced in the Energy Policy Act of 2005 (EPACT) and amended in the Emergency Economic Stabilization Act of 2008 (P.L. 110-343). Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 30% of the cost for improvements to windows, roofing, insulation, and heating and cooling equipment. These improvements must be placed in service from January 1,

327

Excavationless Exterior Foundation Insulation Field Study  

SciTech Connect

Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

Schirber, T.; Mosiman, G.; Ojczyk, C.

2014-10-01T23:59:59.000Z

328

High Performance Windows Volume Purchase: The Windows Volume Purchase RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

The Windows The Windows Volume Purchase RFP to someone by E-mail Share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Facebook Tweet about High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Twitter Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Google Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Delicious Rank High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Digg Find More places to share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on AddThis.com... Home About FAQs Low-E Storm Windows Request for Proposal Contacts For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers

329

Building America Technology Solutions for New and Existing Homes...  

Office of Environmental Management (EM)

Building America Technology Solutions for New and Existing Homes: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes Building America Technology Solutions...

330

SciTech Connect: Cold Climate Building Enclosure Solutions  

Office of Scientific and Technical Information (OSTI)

COST EFFECTIVENESS; RETROFIT; AEROGEL; VACUUM INSULATION PANEL; VIP; EIFS; Electricity, Resources, and Buildings Systems; Buildings Word Cloud More Like This Full Text...

331

Zero Energy Windows  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building Technologies, U.S.Efficiency and Renewable Energy, Building Technologies, U.S.and Renewable Energy (2005). 2005 Buildings Energy Databook,

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

332

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets & Publications Fact Sheets & Publications Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer State Fact Sheets for New and Existing Construction The EWC State Fact Sheets provide a simple, portable step-by-step guide to selecting energy efficient windows considering the conditions in that state. Each one summarizes the key considerations found elsewhere on this site, and provides a summary of results from the Window Selection Tool for key cities in that state.

333

NREL Electrochromic Window Research Wins Award  

ScienceCinema (OSTI)

Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

None

2013-05-29T23:59:59.000Z

334

Insulation Monitors Settings Selection  

Science Journals Connector (OSTI)

In the chapter general requirements set to insulation monitors selection in AC and DC networks ... given. Examples of regulations requirements for circuits insulation equivalent resistance are presented. Traditio...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

335

Insulation Resistance Measurement Methods  

Science Journals Connector (OSTI)

A traditional method of insulation resistance measurement in live DC networks is ... of an ammeter is described. Formulas for insulation equivalent resistance calculation are derived with help...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

336

IEA Task 27 BUILDING ENVELOPE COMPONENTS  

E-Print Network (OSTI)

IEA Task 27 BUILDING ENVELOPE COMPONENTS Performance, durability and sustainability of advanced windows and solar components for building envelopes Energy Performance Assessment Methodology Starting................................................................................................................................................. 3 2 Concepts of Energy Performance Assessment of Building Envelopes

337

An Experimental Study of the Performance of PCM-Enhanced Cellulose Insulation Used in Residential Building Walls Exposed to Full Weather Conditions  

E-Print Network (OSTI)

and could potentially cause installation problems. Hydrated Salt Hydrated salts are formed by anhydrous salts and a few fixed number of water molecules, which are usually called ?water of crystallization? (Telkes, 1980). Hydrated salts have...-Enhanced Building Envelopes in Current ORNL Research Projects. Oak Ridge National Laboratory website. Telkes M. 1980. Thermal Storage in Salt-hydrates. Solar Materials Science, Academic Press: 337-404 Zhu D., 2005, A comparative heat transfer examination...

Fang, Y.; Medina, M.; Evers, A.

338

Purchasing Energy-Efficient Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in the light and the rays of the sun and can make even the smallest room seem bright and spacious. Operable windows let fresh air in and stale air out. Windows that are properly selected, well designed and constructed, and properly installed can make a world of difference to a home, helping it to be warm and cozy in the winter, and cool and comfortable in the summer. Yet windows have traditionally been the weak spot in the home's building envelope-that part of the house connected to the outdoors. They can be one of the leading sources of drafts, heat loss (or unwanted heat gain in

339

Purchasing Energy-Efficient Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in the light and the rays of the sun and can make even the smallest room seem bright and spacious. Operable windows let fresh air in and stale air out. Windows that are properly selected, well designed and constructed, and properly installed can make a world of difference to a home, helping it to be warm and cozy in the winter, and cool and comfortable in the summer. Yet windows have traditionally been the weak spot in the home's building envelope-that part of the house connected to the outdoors. They can be one of the leading sources of drafts, heat loss (or unwanted heat gain in

340

Insulation Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/CE-0180 DOE/CE-0180 2008 Department of Energy Assistant Secretary Energy Efficiency and Renewable Energy Contents: Introduction Why Insulate Your House? How Insulation Works Which Kind of Insulation is Best? What Is an R-Value? Reading the Label Insulation Product Types Insulating a New House Where and How Much Air Sealing Moisture Control and Ventilation Installation Issues Precautions Attics Walls Design Options Crawlspaces and Slabs Advanced Wall Framing Metal Framing Insulating Concrete Forms Massive Walls Structural Insulated Panels External Insulation Finish System Attic Ventilation or a Cathedralized Attic Adding Insulation to an Existing House Where and How Much How Much Insulation Do I Already Have? Air Sealing Moisture Control and Ventilation Insulation Installation, the Retrofit Challenge

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Window industry technology roadmap  

SciTech Connect

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

342

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Optics 6.0 Optics 6.0 (6.0 -- February 13, 2012) Release Notes Updated: 07/16/12 Program Changes Microsoft Windows 7 / Vista Operating System"Aware" Optics now installs and operates much better under the Microsoft Windows 7 and Vista operating systems. It is no longer necessary to run the "VistaFix" batch file after installing the program. Fixed Bugs If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to OpticsHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. Paths Appear in Tools/Options In the Microsoft Windows 7 / Vista Operating System environments, the program would not display the directory paths in the Tools / Options "File Locations" dialog box. This is now fixed.

343

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellular / Honeycomb Shades Cellular / Honeycomb Shades Updated 09/30/2013 It is now possible to model cellular / honeycomb shading systems in the Shading System Library and then add them to a glazing system in the Glazing System Library. NOTE: Before attempting to calculate a glazing system with a cellular shade, you must make the following change to the THERM7.ini file, which is located in C:\Users\Public\LBNL\Settings. Close WINDOW7 before making this change. DocPath=C:\Users\Public\LBNL\WINDOW7\debug Shading Layer Library A cellular / honeycomb shade can now be defined in the Shading Layer Library. Defining this type of shading system requires an XML file which contains information about the cell geometry and the material thermal and optical properties. WINDOW can model two different types of cellular shades:

344

Indoor environmental quality, adaptive action and thermal comfort in naturally ventilated and mixed-mode buildings  

E-Print Network (OSTI)

92. IBPSA-USA History of Building Energy Modeling, http://title=History_of_Building_Energy_Modeling, 2014. Indragantipaper on window modeling in Danish buildings argue that

Honnekeri, Anoop N

2014-01-01T23:59:59.000Z

345

Stanek Windows | Open Energy Information  

Open Energy Info (EERE)

Stanek Windows Stanek Windows Jump to: navigation, search Name Stanek Windows Address 4565 Willow Parkway Place Cuyahoga Heights, Ohio Zip 44125 Sector Buildings, Efficiency Product Consulting; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution;Trainining and education Phone number 216-341-7700 Website http://www.stanekwindows.com Coordinates 41.435755°, -81.650183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.435755,"lon":-81.650183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Reducing Energy Demand in Buildings Through State Energy Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review Atmospheric Pressure Deposition for Electrochromic Windows Building America System Research...

347

Expert Meeting Report: Windows Options for New and Existing Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows Options for New and Existing Homes Windows Options for New and Existing Homes Expert Meeting Report: Windows Options for New and Existing Homes The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and

348

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

349

Calcium silicate insulation structure  

DOE Patents (OSTI)

An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

350

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

For more information about the National Green Building Standard, see For more information about the National Green Building Standard, see information from the NAHB Research Center www.nahbrc.com exit disclaimer . The National Green Building Standard Certification exit disclaimer provides third-party proof for product performance claims. The Green Scoring Tool exit disclaimer allows the scoring of a project to the Standard and includes support materials such as how to verify, intent, how to implement, resources, and green approved products. National Green Building Standard(tm) The National Green Building Standard provides recognition for sustainable and energy-saving building practices, including the use of energy-efficient windows, in all types of residential construction. This standard has been developed for by a consensus committee assembled by the National

351

Plasma window characterization  

SciTech Connect

Parameters of an arc Ar plasma discharge used as a plasma window with a discharge current of {approx}50 A and a voltage of {approx}58 V are presented. It is shown that this arc discharge allows one to decrease the pressure at the low pressure end of the plasma window almost 380 times using relatively low pumping at the low pressure end of the plasma window. Calculations of the plasma parameters and their spatial distribution using a simple wall-stabilized arc model showed a satisfactory agreement with the experimentally obtained data. It is shown that a significant decrease in gas flow through the plasma window occurs due to the increase in plasma viscosity. An improvement of the plasma window ignition and some of its design aspects are described as well.

Krasik, Ya. E.; Gleizer, S.; Gurovich, V.; Kronhaus, I.; Hershcovitch, A.; Nozar, P.; Taliani, C. [Physics Department, Technion, 32000 Haifa (Israel); Brookhaven National Laboratory, New York 11973-5000 (United States); Istituto per lo Studio dei Materiali Nanostrutturati, 40 129 Bologna (Italy)

2007-03-01T23:59:59.000Z

352

Building America Expert Meeting: Foundations Research Results...  

Energy Savers (EERE)

Key results were: * Greater understanding of the role of moisture transport through foundation and insulation materials and its potential impact on building durability * Greater...

353

Retrofit Ventilation Strategies in Multifamily Buildings Webinar...  

Energy Savers (EERE)

Retrofit of Mass Masonry Wall Assemblies Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade - Madison Residence (Fact Sheet)...

354

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Government, Research, and Educational Organizations Alliance to Save Energy ewc@ase.org www.ase.org exit disclaimer Building Codes Assistance Project (BCAP) www.bcap-energy.org exit disclaimer BCAP's Online Code Environment & Advocacy Network (OCEAN) energycodesocean.org exit disclaimer Center for Sustainable Building Research csbr@umn.edu www.csbr.umn.edu exit disclaimer ENERGY STAR Windows Program www.energystar.gov exit disclaimer Florida Solar Energy Center (FSEC) www.fsec.ucf.edu exit disclaimer Lawrence Berkeley National Laboratory (LBNL) windows.lbl.gov exit disclaimer National Fenestration Rating Council (NFRC) info@nfrc.org www.nfrc.org exit disclaimer National Renewable Energy Laboratory Center for Buildings and Thermal Energy Systems (NREL) www.nrel.gov exit disclaimer

355

LBNL Windows & Daylighting Software -- THERM  

NLE Websites -- All DOE Office Websites (Extended Search)

THERM 5.2 (older version) THERM 5.2 (older version) Download New Features Knowledge Base (Check here first if you are experiencing a problem with the software) Documentation Two-Dimensional Building Heat-Transfer Modeling THERM is a state-of-the-art, Microsoft Windows™-based computer program developed at Lawrence Berkeley National Laboratory (LBNL) for use by building component manufacturers, engineers, educators, students, architects, and others interested in heat transfer. Using THERM, you can model two-dimensional heat-transfer effects in building components such as windows, walls, foundations, roofs, and doors; appliances; and other products where thermal bridges are of concern. THERM's heat-transfer analysis allows you to evaluate a product’s energy efficiency and local temperature patterns, which may relate directly to problems with

356

New York City - Green Building Requirements for Municipal Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

357

Field Evaluation of Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Windows Evaluation of Windows Last Updated: 10/20/2009 Various tools can be used to evaluate windows in the field. Unless a new window still has the NFRC label attached to it, it is nearly impossible to determine by sight what the thermal and optical performance of a window is. These tools can provide information, such as low-e coating, gap width and gas fill, that can be used to approximate the performance of a window. Solar gain and Low-e detector This device can be used to determine if a low-e coating is present in the window, what type of coating it is, and where it is located. The type of low-e coating will indicate the amount of solar gain that is admitted through the coating. Readings can be "low", "medium" or "high". The device will also indicate on which glass surface the low-e coating is in relation to the position of the device. Limitations: Only works on glass of 1/8" (3 mm) or thinner. Cost: around $350 from EDTM.com

358

Determining the Solar Optical Properties of Windows with Shading Devices-  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining the Solar Optical Properties of Windows with Shading Devices- Determining the Solar Optical Properties of Windows with Shading Devices- New Measurement and Modeling Techniques Speaker(s): Nathan Kotey Date: October 5, 2009 - 12:00pm Location: 90-3122 The global interest to reduce energy use in buildings has focussed new efforts to more aggressively reduce energy used by all major building components, such as window systems. Although good progress has been made in reducing heat loss, the contribution of windows to heat gain, peak cooling loads and cooling energy consumption is increasingly viewed globally as a problem. While glass coatings provide some control, shading devices on windows have the potential to do an even better job to reduce peak cooling load and annual energy consumption because there are more design parameters

359

Tips: Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows Windows Tips: Windows June 18, 2012 - 9:43am Addthis Tips: Windows Windows can be one of your home's most attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill by letting heat out. During the summer, your air conditioner must work harder to cool hot air from sunny windows. Install ENERGY STAR®-qualified windows and use curtains and shade to give your air conditioner and energy bill a break. If your home has single-pane windows, consider replacing them with double-pane windows with high-performance glass-low-e or spectrally selective coatings. In colder climates, select gas-filled windows with low-e coatings to reduce heat loss. In warmer climates, select windows with

360

Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems  

SciTech Connect

The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of 2012 compared to previous winters. This project achieved its goal of developing a system that is constructible, offers protection to the VIPs, and meets all performance targets established for the project.

Carbary, Lawrence D. [Dow Corning Corporation] [Dow Corning Corporation; Perkins, Laura L. [Dow Corning Corporation] [Dow Corning Corporation; Serino, Roland [Dryvit Systems, Inc] [Dryvit Systems, Inc; Preston, Bill [Dryvit Systems, Inc] [Dryvit Systems, Inc; Kosny, Jan [Fraunhofer USA, Inc. CSE] [Fraunhofer USA, Inc. CSE

2014-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Insulation May 30, 2012 - 9:14am Addthis Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler.

362

Completed April 30, 2004. LBNL-54966. The Energy-Savings Potential of Electrochromic Windows  

E-Print Network (OSTI)

% market penetration level in that year. Keywords: Building energy-efficiency, electrochromic windows1 Completed April 30, 2004. LBNL-54966. The Energy-Savings Potential of Electrochromic Windows Road, Berkeley, CA 94720, USA Abstract Switchable electrochromic (EC) windows have been projected

363

Subject Responses to Electrochromic Windows  

E-Print Network (OSTI)

Visual quality assessment of electrochromic and conventionalissues for large-area electrochromic windows in commercialOffice worker preferences of electrochromic windows: a pilot

Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

2006-01-01T23:59:59.000Z

364

Measure Guideline: Energy-Efficient Window Performance and Selection  

SciTech Connect

This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

Carmody, J.; Haglund, K.

2012-11-01T23:59:59.000Z

365

CH7 Windows Introduction  

E-Print Network (OSTI)

4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe Windows NT 4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe

Collette. Sébastien

366

Zero Energy Windows  

E-Print Network (OSTI)

estimates of the U-factor and SHGC for today’s installedtoday's window stock U-factor and SHGC properties used thosepoint. U-factor and SHGC estimates vary by prototypical

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

367

Seeing Windows Through  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Seeing Windows Through A profusion of gases, glazings, and gap sizes are among the factors that confound efforts to measure the energy performance of a window or skylight. The increasing variety of efficiency-enhancing options for windows and their frames poses a formidable challenge to builders, utilities, code officials, and consumers. Fortunately, a new system for accurately rating and labeling these products promises to help demystify them and to foster nationwide improvements in energy efficiency. NFRC is Born Window trade groups have historically organized around specific materials or components (such as glass or frames), and energy has rarely been their focal point. This changed in 1989 with the formation of the National Fenestration Rating Council. One impetus behind the industry's

368

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Insulation and Duct Insulation and Sealing Requirements in Commercial Buildings 2009 and 2012 IECC; ASHRAE 90.1-2007 and 2010; 2009 and 2012 IMC Duct insulation and sealing, especially insulated supply ducts delivering conditioned air within a building, save energy. The intent of energy efficiency codes, as related to duct insulation and sealing, is to keep mechanically warmed or cooled air as close to a constant, desired temperature as possible and prevent the conditioned air from escaping the duct system while it is being moved to spaces where it is needed. If reduced heat transfer through insulated ducts is accounted for in the heating, ventilating, and air conditioning (HVAC) load calculations, it may even be possible to reduce the size of HVAC equipment.

369

Photo of the Week: The First Energy-Efficient Dual-Paned Windows |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The First Energy-Efficient Dual-Paned Windows The First Energy-Efficient Dual-Paned Windows Photo of the Week: The First Energy-Efficient Dual-Paned Windows December 5, 2013 - 12:53pm Addthis Researchers at Berkeley Lab helped develop the first energy-efficient dual-paned windows, now used in buildings and homes worldwide for billions of dollars in energy savings. Current windows research in the Environmental Energy Technologies Division at Berkeley Lab is aimed at developing new glazing materials, windows simulation software and other advanced high-performance window systems. The building shown here, located at Berkeley Lab, is a windows testing facility. | Photo courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory. Researchers at Berkeley Lab helped develop the first energy-efficient

370

Issue 5: Optimizing High Levels of Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issue 5: Optimizing High Levels of Insulation NREL, Ren Anderson Building America Technical Update Meeting July 25 th , 2012 Issue 5 - How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? Key Factors to Consider: -Cost of savings vs. cost of grid-supplied energy -Cost of efficiency savings vs. cost of savings from renewable generation. -Savings from envelope improvements vs. other efficiency options Context * It is widely believed that code-specified insulation levels also represent cost-effective limits. * However, the cost-effective insulation levels exceed IECC values in many climates. * The homeowner-driven value of modest increases in enclosure performance can create economies of scale that will reduce

371

Insulation Monitoring Systems  

Science Journals Connector (OSTI)

In this chapter there is presented general information on insulation deterioration signalization systems for AC IT networks. Few systems of continuous insulation supervision are described. The old concepts includ...

Piotr Olszowiec

2013-01-01T23:59:59.000Z

372

Building Technologies Office: Appliances Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances Research to Appliances Research to someone by E-mail Share Building Technologies Office: Appliances Research on Facebook Tweet about Building Technologies Office: Appliances Research on Twitter Bookmark Building Technologies Office: Appliances Research on Google Bookmark Building Technologies Office: Appliances Research on Delicious Rank Building Technologies Office: Appliances Research on Digg Find More places to share Building Technologies Office: Appliances Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub Building Energy Modeling

373

BT::Electrochromic Windows Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

spacer spacer spacer spacer Resources spacer Industry Contacts | CA Utility Contacts | R&D Organizations | Technical Reports | References | Acknowledgements | Project Team spacer Industry Contacts As of 2006, SAGE Electrochromics, Inc. is the only manufacturer in the U.S. selling electrochromic-coated glass units for building applications: Lou Podbelski SAGE Electrochromics, Inc. One Sage Way Faribault, MN 55021 (507) 331-4935 http://www.sage-ec.com/ SAGE's first market entry was to provide electrochromic coated glass to Velux for their switchable electrochromic skylight product line: electric venting skylights, fixed skylights, and fixed curb-mounted skylights in various rectangular sizes. They now market to a variety of window and curtain wall suppliers; contact SAGE for current supplier information.

374

Determining window solar heat gain coefficient  

SciTech Connect

The solar heat gain characteristics of fenestration systems impact daytime building energy performance, occupant comfort and utility load demands. A measure of the fraction of available solar energy entering a building interior per unit window area is defined as the solar heat gain coefficient (SHGC). Together with a window's thermal transmittance (U-value), the SHGC is used to compare fenestration products, and it allows for the calculation of energy rating number and annual energy performance. The need to measure and compared advances in window technology has led to the development of experimental and analytical methods for the determination of SHGC performance. Several test facilities currently or previously capable of performing SHGC measurements exist worldwide. Results experimentally determined using these facilities have provided design data for handbook tables, and have been instrumental in the development and validation of predictive analytical methods and computer simulation tools. However, these facilities have operated without a standard test procedure for SHGC performance. Consequently, recent efforts have been focused on developing consensus test procedures for the evaluation of window energy performance.

Harrison, S.J.; Wonderen, S.J. van (Queen's Univ., Kingston, Ontario (Canada). Solar Calorimetry Lab.)

1994-08-01T23:59:59.000Z

375

City of Detroit - SmartBuildings Detroit Green Fund Loan | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Detroit - SmartBuildings Detroit Green Fund Loan City of Detroit - SmartBuildings Detroit Green Fund Loan City of Detroit - SmartBuildings Detroit Green Fund Loan < Back Eligibility Commercial Institutional Local Government Multi-Family Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Windows, Doors, & Skylights Water Buying & Making Electricity Energy Sources Solar Water Heating Wind Maximum Rebate 40% of eligible costs, up to $100,000 Program Info Funding Source The American Reinvestment and Recovery Act (ARRA) of 2009; State Energy Program State Michigan Program Type Local Loan Program

376

Modeling Windows in Energy Plus with Simple Performance Indices  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Windows in Energy Plus with Simple Performance Indices Modeling Windows in Energy Plus with Simple Performance Indices Title Modeling Windows in Energy Plus with Simple Performance Indices Publication Type Report LBNL Report Number LBNL-2804E Year of Publication 2009 Authors Arasteh, Dariush K., Christian Kohler, and Brent T. Griffith Date Published 10/2009 Call Number LBNL-2804E Abstract The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: performance metrics measurement system requirements data acquisition and archiving data visualization and reporting The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance.

377

Simplified Prescriptive Options in the Texas Residential Building Energy Code Make Compliance Easy  

E-Print Network (OSTI)

.65; SHGCs less than 0.40; R-30 or greater insulation in the ceilings; and R-13 or greater insulation in the walls. B. Building Energy Efficiency Requirements for Additions to Existing Homes and Replacement Windows. Even easier than the IRC...,000 ? 2,499 0.65 0.40 R-30 R-13 R-11 R-5 R-0 R-6 2,500 ? 2,999 0.60 0.40 R-30 R-13 R-19 R-6 R-4, 2 ft. R-7 3,000 ? 3,499 0.55 0.40 R-30 R-13 R-19 R-7 R-4, 2 ft. R-8 3,500 ? 3,999 0.50 Any R-30 R-13 R-19 R-8 R-5, 2 ft. R-10 4...

Stone, G. A.; DeVito, E. M.; Nease, N. H.

2002-01-01T23:59:59.000Z

378

Effects of Overhangs on the Performance of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Overhangs on the Performance of Electrochromic Windows Effects of Overhangs on the Performance of Electrochromic Windows Title Effects of Overhangs on the Performance of Electrochromic Windows Publication Type Journal Article LBNL Report Number LBNL-61137 Year of Publication 2006 Authors Tavil, Aslihan, and Eleanor S. Lee Journal Architectural Science Review Call Number LBNL-61137 Abstract In this study, various facade designs with overhangs combined with electrochromic (EC) window control strategies were modeled for a typical commercial office building in a hot and cold climate using the DOE 2.1E building energy simulation program. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. Annual total energy use (ATE), peak electric demand (PED), average daylight illuminance (DI), and daylight glare index (DGI) for south-facing private offices were computed and compared to determine which combinations of fa?ade design and control strategies yielded the greatest energy efficiency, daylight amenity, and visual comfort.

379

Future Advanced Windows for Zero-Energy Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Advanced Windows for Zero-Energy Homes Future Advanced Windows for Zero-Energy Homes Title Future Advanced Windows for Zero-Energy Homes Publication Type Conference Paper LBNL Report Number LBNL-51913 Year of Publication 2002 Authors Apte, Joshua S., Dariush K. Arasteh, and Yu Joe Huang Conference Name ASHRAE Transactions Volume 109, pt 2 Date Published 06/2003 Conference Location Kansas City, MO Call Number LBNL-51913 Abstract Over the past 15 years, low-emissivity and other technological improvements have significantly improved the energy efficiency of windows sold in the United States. However, as interest increases in the concept of zero-energy homes-buildings that do not consume any nonrenewable or net energy from the utility grid-even today's highest-performance window products will not be sufficient. This simulation study compares today's typical residential windows, today's most efficient residential windows, and several options for advanced window technologies, including products with improved fixed or static properties and products with dynamic solar heat gain properties. Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Windows with dynamic solar heat gain properties are found to offer significant potential in reducing energy use and peak demands in northern and central climates, while windows with very low (static) solar heat gain properties offer the most potential in southern climates.

380

Energy efficiency buildings program, FY 1980  

SciTech Connect

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

Not Available

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building America Whole-House Solutions for New Homes: Exterior...  

Energy Savers (EERE)

Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California Building America Whole-House Solutions for New Homes: Exterior Rigid Foam Insulation at the Edge...

382

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

383

Recycling Polyurethane Foam and its Use as Filler in Renovation Mortar with Thermal Insulating Effect  

Science Journals Connector (OSTI)

Once the building have dried, it is necessary to assess the state of the renovation mortar with thermal insulating effect as well as the backing wall. If the building is not affected by the degrading effects, it ...

V. Václavík; T. Dvorský; V. Dirner…

2013-01-01T23:59:59.000Z

384

Insulation Strategies to Meet Upcoming Code and Above Code Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Strategies to Meet Insulation Strategies to Meet Upcoming Code and Above Code Programs 1 Christopher Little, BASF Corporation, Center for Building Excellence 3/2/2012 Presentation Overview Innovative insulating & wall assembly strategies  Typical assembly  New innovations  Features & benefits of each 2 3/2/2012 Typical Site Built Residential Wall Concept: Site built wood frame wall with exterior sheathing and batt insulation Components:  Exterior Finish (bulk moisture control)  Building wrap  Exterior sheathing 2x4 Studs @16" O.C.  Batt Insulation (+/- 3.7 R per inch)  Gypsum board Benefits: Relatively low cost ICF Site-built 3 3/2/2012 Typical Site Built Residential Wall Key performance deficiencies  Low effective R-value  Difficulty meeting IECC 2012 R-value

385

Energy Performance Analysis of Electrochromic Windows in New York  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Performance Analysis of Electrochromic Windows in New York Energy Performance Analysis of Electrochromic Windows in New York Commercial Office Buildings Title Energy Performance Analysis of Electrochromic Windows in New York Commercial Office Buildings Publication Type Report LBNL Report Number LBNL-50096 Year of Publication 2002 Authors Lee, Eleanor S., L. Zhou, Mehry Yazdanian, Vorapat Inkarojrit, Jonathan L. Slack, Michael D. Rubin, and Stephen E. Selkowitz Call Number LBNL-50096 Abstract A DOE-2.1E energy simulation analysis of a switchable electrochromic (EC) glazing with daylighting controls has been conducted for prototypical office buildings in New York (NY). The modeling included four types of office buildings: old and New vintages and large (10,405 m2, 112,000 ft2) and small (502m2, 5400 ft2) buildings. Five commercially available, base case windows with and without interior shades were modeled. Window area varied from 0 to 60% of the exterior floor-to-floor wall area. The electric lighting had either no controls or continuous daylighting controls. The prototypes were modeled in New York City or Buffalo.

386

Building Energy Asset Score | Department of Energy  

Office of Environmental Management (EM)

- such as the building envelope (roof, walls and windows) and lighting, hot water and HVAC systems - have a significant impact on how efficiently energy is used within a building...

387

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing Modeling Vacuum Glazing Modeling It is now possible to model vacuum glazing in WINDOW 7. The first step is to define a new vacuum "gap" in the "Gap Library" (formerly the Gas Library). Then that vacuum gap is used in a glazing system to calculate the thermal characteristics of the glazing system with a vacuum gap. Gap Library The Gas Library has been renamed the Gap Library. To define a vacuum gap, check the "Vacuum" checkbox (this is only available for single gases, not gas mixtures). When this box is checked, new input variables will appear, including the vacuum pressure, the specific heat ratio and molecular weight of the vacuum gas. It is also necessary to define a pillar system for the vacuum gap. Pillar Definition Double click the double arrow to the right of the Pillar Definition pulldown to define a new pillar system. Define the shape and dimensions of the pillar system.

388

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 (7.2.29 -- December 29 2013) Release Notes Updated: 12/29/13 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.29 (December 29, 2013) Program Changes Glazing System Shading System Details For shading system in a Glazing System Library construction, the emittances, conductance and TIR are not displayed, as they are only available after a calculation has been completed. Perforated Screens An input value for "Effective Openness Factor" has been added to the Shading Layer Library for perforated screens. At a future date, we will update the program to calculate this value automatically.

389

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Deflection Modeling Deflection Modeling It is now possible to model the effects of glass deflection in WINDOW 7. Glazing System Library The Glazing System Library is where the deflection modeling input values are entered. When the "Model Deflection" box is checked, a Deflection input box appears. When the Glazing System is calculated, two rows of results, one for the undeflected state and one for the deflected state, appear for Center of Glass Results, Temperature Data and Angular data. In addition, a Deflection tab appears, which shows the deflection of each glass layer and the resulting gap width for each gap. Glazing System Deflect Input There are two options for defining the deflection in a glazing system, by choosing from the "Input" pulldown list:

390

Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior  

Energy.gov (U.S. Department of Energy (DOE))

Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households.

391

Honeywell's Solstice liquid blowing agent approved by EPA for foam insulation  

Science Journals Connector (OSTI)

Honeywell has announced that its new low global-warming-potential (LGWP) blowing agent for foam insulation has received final approval from the US Environmental Protection Agency under the latter's Significant New Alternatives Policy (SNAP) programme. The approval allows the company's Solstice™ Liquid Blowing Agent (LBA) to be used in foam insulation in refrigerators, spray foam insulation for residential and commercial buildings, insulated metal panels and other applications in the USA.

2012-01-01T23:59:59.000Z

392

Expert Meeting Report: Cladding Attachment Over Exterior Insulation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cladding Attachment Over Exterior Insulation Cladding Attachment Over Exterior Insulation Expert Meeting Report: Cladding Attachment Over Exterior Insulation The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1.

393

Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet)  

SciTech Connect

The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

ARBI

2014-09-01T23:59:59.000Z

394

A Design Guide for Early-Market Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Early-Market Electrochromic Windows Early-Market Electrochromic Windows Title A Design Guide for Early-Market Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59950 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Call Number LBNL-59950 Abstract Switchable variable-tint electrochromic windows preserve the view out while modulating transmitted light, glare, and solar heat gains and can reduce energy use and peak demand. To provide designers objective information on the risks and benefits of this technology, this study offers data from simulations, laboratory tests, and a 2.5-year field test of prototype large-area electrochromic windows evaluated under outdoor sun and sky conditions. The study characterized the prototypes in terms of transmittance range, coloring uniformity, switching speed, and control accuracy. It also integrated the windows with a daylighting control system and then used sensors and algorithms to balance energy efficiency and visual comfort, demonstrating the importance of intelligent design and control strategies to provide the best performance. Compared to an efficient low-e window with the same daylighting control system, the electrochromic window showed annual peak cooling load reductions from control of solar heat gains of 19-26% and lighting energy use savings of 48-67% when controlled for visual comfort. Subjects strongly preferred the electrochromic window over the reference window, with preferences related to perceived reductions in glare, reflections on the computer monitor, and window luminance. The EC windows provide provided the benefit of greater access to view year-round. Though not definitive, findings can be of great value to building professionals.

395

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

heat gain coefficient (SHGC) range of 0.42–0.09. Findingslow-e windows (Tv=0.42, SHGC=0.22) to serve as a referencewall for glare (Tv =0.05, SHGC=0.09) reduced average daily

2006-01-01T23:59:59.000Z

396

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to the Efficient Windows Collaborative Welcome to the Efficient Windows Collaborative YOUR GATEWAY TO INFORMATION ON HOW TO CHOOSE ENERGY-EFFICIENT RESIDENTIAL WINDOWS 101 Efficient Windows Collaborative (EWC) members have made a commitment to manufacture and promote energy-efficient windows. This site provides unbiased information on the benefits of energy-efficient windows, descriptions of how they work, and recommendations for their selection and use. Selecting Windows for New Construction Window Selection Tool Selection Process Design Guidance Installation Selecting Replacement Windows Window Selection Tool Assessing Replacement Options Selection Process Design Guidance Installation Understanding Windows Benefits of Energy Efficient Windows Design Considerations How to Measure Performance Window Technologies

397

Market Transformation Efforts for Residential Energy Efficient Windows: An  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Efforts for Residential Energy Efficient Windows: An Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Title Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Publication Type Report LBNL Report Number LBNL-46620 Year of Publication 2000 Authors Ward, Alecia, Margaret Suozzo, and Joseph H. Eto Date Published 01/2000 Publisher LBNL Abstract With the burst of recent initiatives to accelerate adoption of energy-efficient fenestration technologies in the marketplace, an update on window market transformation efforts is needed. Because of the impact of glazing on total home energy performance, the residential window market has received increasing attention over the past two years. National programs such as the ENERGY STAR Windows program, the Efficient Windows Collaborative, and regional initiatives such as the California Windows Initiative and the Northwest Collaborative have begun to move markets toward higher-efficiency windows. The results have included increasing sales of efficient products, stocking of more efficient/ENERGY STAR qualifying products, and price reductions of high-efficiency product, all of which secure dramatic energy savings at a national level. This paper takes stock of publicly supported national and regional transformation efforts for residential windows underway in the U.S. In particular, it documents ways in which National Fenestration Rating Council certification, Efficient Windows Collaborative education, and ENERGY STAR marketing, are working together to change window markets across the United States. Although it is too early to quantify the national-level impacts changes of these efforts, the authors offer a preliminary qualitative evaluation of efficient window promotion efforts to gain insight into the broader impacts that these and other future activities will achieve. Finally, the paper summarizes how other federally-funded building industry initiatives that emphasize "whole house" performance can complement these window technology-specific and component-specific initiatives. Demonstration houses from the Building America, ENERGY STAR Homes, and PATH projects all contribute to the success of windows-specific initiatives.

398

Basement Insulation Systems - Building America Top Innovation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for basements are critical because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces...

399

Commercial Air Barrier Requirements for Insulated Ceilings - Code Notes |  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Barrier Requirements for Insulated Ceilings - Code Notes Air Barrier Requirements for Insulated Ceilings - Code Notes The 2009 International Energy Conservation Code requires openings in the building envelope to be sealed to prevent air leakage into and out of the space, including an air barrier at insulation installations. Publication Date: Wednesday, June 22, 2011 cn_commercial_air_barrier_requirements_for_insulated_ceilings.pdf Document Details Prepared by: Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-2007 2009 IECC Document type: Code Notes Target Audience: Architect/Designer Builder Code Official Contractor Engineer Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Thursday, September 20, 2012 - 17:25

400

MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department...  

Energy Savers (EERE)

with little or no insulation, drafty windows, and significant air leaks-energy efficiency is vitally important. Using 4.5 million in seed funding from the U.S. Department of...

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Turning low solar heat gain windows into energy savers in winter  

SciTech Connect

The reduction in summer peak cooling loads of buildings with a large ratio of window to floor areas is often achieved by windows with a low solar heat gain coefficient (SHGC). These windows are typically double glazed with the exterior pane tinted or selectively absorbing. Absorbed solar radiation is rejected to the environment. This is undesirable in the cold season. The authors suggest that by turning south-facing windows by 180{degree} for the duration of the cold season, the solar heat gain of these windows can be increased significantly. By means of a computer simulation, they estimate seasonal energy savings for a model room in several climates. The effect of building heat capacity on the savings is also studied. Windows whose positions can be reversed for ease of cleaning are commercially available. This study shows that in a suitable climate the achievable savings easily compensate for the additional effort and possible investment over the lifetime of the window.

Feuermann, D.; Novoplansky, A. [Ben-Gurion Univ. of the Negev, Sede Boker (Israel). Jacob Blaustein Inst. for Desert Research

1996-10-01T23:59:59.000Z

402

Topological insulators/Isolants topologiques An introduction to topological insulators  

E-Print Network (OSTI)

Topological insulators/Isolants topologiques An introduction to topological insulators Introduction in the first Brillouin Zone, and their associated energies. In an insulator, an energy gap around the chemical topology, the insulator is called a topological insulator. We introduce this notion of topological order

Paris-Sud XI, Université de

403

Building Technologies Program: Tax Incentives for Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Tax Incentives for Residential Buildings On this page you'll find information about the tax deductions available for purchasing and installing energy-efficient products and constructing new energy-efficient homes. The American Recovery and Reinvestment Act of 2009 offers tax credits for residential energy efficiency measures and renewable energy systems. Many of these credits were originally introduced in the Energy Policy Act of 2005 (EPACT) and amended in the Emergency Economic Stabilization Act of 2008 (P.L. 110-343). Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 30% of the cost for improvements to windows, roofing, insulation, and heating and cooling equipment. These improvements must be placed in service from January 1, 2009 through December 31, 2010 and there is a limit of $1,500 for all products. Improvements made in 2008 are not eligible for a tax credit. See the ENERGY STAR® Web site for a detailed listing of eligible improvements.

404

Microsoft Word - CX-TroutdaleWindowReplacement_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Eric Weekley Project Manager - NWM-4 Proposed Action: Replace existing steel windows at the Troutdale Substation control house PP&A Project No.: PP&A-1699 Budget Information: Work Order No. 242796 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities and custodial services for buildings, structures, ... Location: Bonneville Power Administration's (BPA) Troutdale Substation located in Troutdale, Oregon Proposed by: BPA Description of the Proposed Action: BPA proposes to replace the deteriorating existing steel windows at the Troutdale Substation control house with new, in-kind steel windows.

405

Polyurethane/polyisocyanurate foam thermal insulation. (Latest citations from the Rubber and Plastics Research Association database). Published Search  

SciTech Connect

The bibliography contains citations concerning the use of polyisocyanurate/polyurethane foam for thermal insulation building materials. The topics discussed include flammability and smoke generation characteristics, building frame sheathing materials, fiber reinforcement, laminated insulation foam boards, substitution for controversial formaldehyde foams and aging characteristics. Performance evaluations of existing buildings with installed foam insulation are included. (Contains a minimum of 187 citations and includes a subject term index and title list.)

Not Available

1994-06-01T23:59:59.000Z

406

A Simple Holographic Insulator  

E-Print Network (OSTI)

We present a simple holographic model of an insulator. Unlike most previous holographic insulators, the zero temperature infrared geometry is completely nonsingular. Both the low temperature DC conductivity and the optical conductivity at zero temperature satisfy power laws with the same exponent, given by the scaling dimension of an operator in the IR. Changing a parameter in the model converts it from an insulator to a conductor with a standard Drude peak.

Mefford, Eric

2014-01-01T23:59:59.000Z

407

A Simple Holographic Insulator  

E-Print Network (OSTI)

We present a simple holographic model of an insulator. Unlike most previous holographic insulators, the zero temperature infrared geometry is completely nonsingular. Both the low temperature DC conductivity and the optical conductivity at zero temperature satisfy power laws with the same exponent, given by the scaling dimension of an operator in the IR. Changing a parameter in the model converts it from an insulator to a conductor with a standard Drude peak.

Eric Mefford; Gary T. Horowitz

2014-06-16T23:59:59.000Z

408

The Window Strategy with Options  

E-Print Network (OSTI)

The window strategy is one of several marketing strategies using futures and options to establish a floor price and allow for upside price potential. It also reduces option premium costs. This publication discusses how the window strategy works...

McCorkle, Dean; Amosson, Stephen H.; Fausett, Marvin

1999-06-23T23:59:59.000Z

409

Plastics and Insulation  

Science Journals Connector (OSTI)

... the Institution of Electrical Engineers on March 24 to discuss a paper on “Plastics and Insulation” by L. Hartshorn, N. J. L. Megson and E. Rushton. It ...

1938-04-02T23:59:59.000Z

410

Windows Bitmap .bmp or .dib  

E-Print Network (OSTI)

platforms' GDI subsystem, where the specific format used is the Windows and OS/2 bitmap file format, usually

Gribaudo, Marco

411

AN ENERGY EFFICIENT WINDOW SYSTEM FINAL REPORT.  

E-Print Network (OSTI)

for a variety of glass window films and so provides thetesting metallized mylar window films. They involve exposingconsumers to install window film products. The rigid sheet

Authors, Various

2011-01-01T23:59:59.000Z

412

A Review of Electrochromic Window Performance Factors  

E-Print Network (OSTI)

ratio of 0.30. The electrochromic windows were controlled toProceedings. A Review of Electrochromic Window Performanceand economic benefits of electrochromic smart windows,"

Selkowitz Ed, S.E.

2010-01-01T23:59:59.000Z

413

Energy Efficiency and Green Building Standards for State Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

414

High-Performance Building Requirements for State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

415

Storm Windows (Even with a Low-E Coating!) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Windows (Even with a Low-E Coating!) Storm Windows (Even with a Low-E Coating!) Storm Windows (Even with a Low-E Coating!) November 11, 2008 - 3:45pm Addthis John Lippert Earlier I wrote about purchasing energy-efficient windows. Jen followed up with an excellent blog on improving your existing windows, which mentioned low-e films. One fairly well-kept secret-low-emissivity (low-e) storm windows-lies somewhere between these two options. They aren't the simple, low-cost, do-it-yourself option that Jen spoke of. But they are a less expensive option than the replacement windows I wrote about. I'm an avid reader and subscriber to the Environmental Building News newsletter. Alex Wilson, the newsletter founder and Executive Editor, wrote an article entitled "Should I replace my windows?" in the Brattleboro

416

Windows Forensic Analysis DVD Toolkit  

Science Journals Connector (OSTI)

The only book available on the market that addresses and discusses in-depth forensic analysis of Windows systems. Windows Forensic Analysis DVD Toolkit takes the reader to a whole new, undiscovered level of forensic analysis for Windows systems, providing ... Keywords: Computer Science, Security

Harlan Carvey

2007-04-01T23:59:59.000Z

417

A First-Generation Prototype Dynamic Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

A First-Generation Prototype Dynamic Residential Window A First-Generation Prototype Dynamic Residential Window Title A First-Generation Prototype Dynamic Residential Window Publication Type Report LBNL Report Number LBNL-56075 Year of Publication 2004 Authors Kohler, Christian, Howdy Goudey, and Dariush K. Arasteh Call Number LBNL-56075 Abstract We present the concept for a smart highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available off-the-shelf components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The units predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

418

Gas insulated transmission line with insulators having field controlling recesses  

DOE Patents (OSTI)

A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

1984-01-01T23:59:59.000Z

419

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Glazing Glazing Double-Glazed, Clear Glass This figure illustrates the performance of a typical double-glazed unit with two lites of clear glass. The inner and outer layers of glass are both clear and separated by an air gap. Double glazing, compared to single glazing, cuts heat loss in half due to the insulating air space between the glass layers. In addition to reducing the heat flow, a double-glazed unit with clear glass will allow the transmission of high visible light and high solar heat gain. Double Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

420

Infiltration and indoor air quality in a sample of passive-solar and super-insulated houses  

SciTech Connect

Infiltration rates and indoor air quality were measured in 16 solar and super insulated houses in California. In this area careful construction can, at reasonable cost, reduce infiltration to 0.2 to 0.5 air changes per hour (40 to 100 ft/sup 3//min). To evaluate possible indoor air quality problems at these low infiltration rates, levels of three pollutants were monitored in early 1982 during weather cold enough to encourage occupants to keep their windows closed. NO/sub 2/, formaldehyde, and radon were measured using inexpensive, passive monitors. The blower door infiltration measurements are described and relationships between relevant building and occupant characteristics and observed levels of pollutants are discussed. These levels are also compared to current standards; implications for housing design and construction techniques are discussed, and further research needs are suggested.

Wagner, B.S,; Rosenfeld, A.H.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building America Whole-House Solutions for New Homes: Affordable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Homes: Affordable Cold Climate Infill Housing with Hybrid Insulation Approach Building America Whole-House Solutions for New Homes: Affordable Cold Climate Infill Housing with...

422

Buried and Encapsulated Ducts - Building America Top Innovation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Encapsulated Ducts - Building America Top Innovation photo of worker blowing insulation on ducts in an attic. Ductwork installed in unconditioned attics can significantly...

423

Next Generation Building Envelope Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Envelope Materials Next Generation Building Envelope Materials Addthis 1 of 3 Vacuum insulation panels (left); Modified atmosphere panels (right) Image: Oak Ridge National...

424

Building America Technology Solutions for New and Existing Homes...  

Energy Savers (EERE)

Excavationless: Exterior-Side Foundation Insulation for Existing Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Excavationless: Exterior-Side...

425

Building America Technlogy Solutions for New and Existing Homes...  

Energy Savers (EERE)

Sheet) Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade - Minneapolis Residence (Fact Sheet) This interior foundation...

426

The Better Buildings Neighborhood Program for a Better Future...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cracks and not enough insulation. We have to address existing buildings; we have to transform the built environment. Cynthia Adams, Program Manager, Charlottesville, Virginia: We...

427

Building America Technology Solutions for Existing Homes: Initial...  

Energy Savers (EERE)

Existing Homes: Initial and Long-Term Cladding Over Exterior Insulation Building America Technology Solutions for Existing Homes: Initial and Long-Term Cladding Over Exterior...

428

Building America Technology Solutions for New and Existing Homes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of insulation to the exterior of buildings to increase the thermal resistance of wood-framed walls and mass masonry wall assemblies. casestudycladdingattachment.pdf More...

429

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Characteristics of a Typical Single-Family Home (1) Year Built | Building Equipment Fuel Age (5) Occupants 3 | Space Heating Natural Gas 12 Floorspace | Water Heating Natural Gas 8 Heated Floorspace (SF) 1,934 | Space Cooling 8 Cooled Floorspace (SF) 1,495 | Garage 2-Car | Stories 1 | Appliances Size Age (5) Foundation Concrete Slab | Refrigerator 19 Cubic Feet 8 Total Rooms (2) 6 | Clothes Dryer Bedrooms 3 | Clothes Washer Other Rooms 3 | Range/Oven Full Bathroom 2 | Microwave Oven Half Bathroom 0 | Dishwasher Windows | Color Televisions 3 Area (3) 222 | Ceiling Fans 3 Number (4) 15 | Computer 2 Type Double-Pane | Printer Insulation: Well or Adequate | Note(s): Source(s): 2-Door Top and Bottom Electric Top-Loading Electric 1) This is a weighted-average house that has combined characteristics of the Nation's stock homes. Although the population of homes with

430

Tips: Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Tips: Insulation May 2, 2012 - 6:03pm Addthis Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Insulation is made from a variety of materials, and it usually comes in four types: rolls and batts, loose-fill, rigid foam, and foam-in-place. Rolls and Batts Rolls and batts -- or blankets -- are flexible products made from mineral

431

Heat transfer in microsphere insulation  

Science Journals Connector (OSTI)

The results of an investigation of heat transfer in a new type of insulation (microsphere insulation) are presented. The effects of the ... gas pressure on the thermal conductivity of the insulation were investig...

R. Wawryk; J. Rafa?owicz

432

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Triple Low-E Glazing Triple Low-E Glazing Triple-Glazed, High-solar-gain Low-E Glass This figure illustrates the performance of a window with a very low heat loss rate (low U-factor). In this case there are three glazing layers and two low-E coatings, ½" argon gas or ¼" krypton gas fill between glazings, and low-conductance edge spacers. The middle glazing layer can be glass or suspended plastic film. Some windows use four glazing layers (two glass layers and two suspended plastic films). This product is suited for buildings located in very cold climates. Both Low-E coatings in this product have high solar heat and visible light transmittance, which is ideal for passive solar design. The use of three layers, however, results in lower solar heat gain relative to double glazing with high-solar-gain Low-E.

433

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary A B C D E F G H I J K L M N O P R S T U V W A AAMA. American Architectural Manufacturers Association. A national trade association that establishes voluntary standards for the window, door, storefront, curtain wall, and skylight industries. Absorptance. The ratio of radiant energy absorbed to total incident radiant energy in a glazing system. Acrylic. A thermoplastic with good weather resistance, shatter resistance, and optical clarity, used for glazing. Aerogel. A microporous, transparent silicate foam used as a glazing cavity fill material, offering possible U-values below 0.10 BTU/(h-sq ft-°F) or 0.56 W/(sq m-°C). Air infiltration. The amount of air leaking in and out of a building through cracks in walls, windows and doors.

434

Behaviour of Insulation  

Science Journals Connector (OSTI)

... to say in effect, even if I do inadvertently misquote. "The trouble with our insulation is that it is too thick". The lessons at any rate are clear: ... The book Dielectric Relaxation has certainly contributed greatly to our understanding of the behaviour of insulation for a specialist few.

COLIN ADAMSON

1968-12-07T23:59:59.000Z

435

Magnetic insulation (reply)  

Science Journals Connector (OSTI)

... DR WINTERBERG REPLIES: Contrary to Blewett's belief, magnetic insulation has not only been experimentally confirmed2 since I proposed it several years ago1, but ... generators (for example, the MJ Aurora machine). The magnetic field needed for the insulation effect in this case is generated by the strong azimuthal self-induced field of the ...

F. WINTERBERG

1974-06-28T23:59:59.000Z

436

Insulation of Electrical Equipment  

Science Journals Connector (OSTI)

... A VACATION 'school' on the insulation of electrical equipment was held in the Electrical Engineering Department of the Imperial College of ... the universities. The purpose of the course was to consider the factors which are limiting insulation design in the main classes of electrical equipment, and the general principles which should ...

1952-12-13T23:59:59.000Z

437

INSULATION OF HEATING SYSTEMS  

Science Journals Connector (OSTI)

... C. PALLOT gave a Cantor Lecture to the Royal Society of Arts on “Thermal Insulation at Medium Temperature” on November 23 ; the lecture, which included many topics of ... many topics of current interest, has now been published1. In a bulletin on heat insulation issued by the Ministry of Fuel and Power, it was pointed out that "In ...

1943-05-22T23:59:59.000Z

438

Topological insulators and superconductors  

Science Journals Connector (OSTI)

Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

Xiao-Liang Qi and Shou-Cheng Zhang

2011-10-14T23:59:59.000Z

439

Chapter 9 - Pipeline Insulation  

Science Journals Connector (OSTI)

Oilfield pipelines are insulated mainly to conserve heat. The need to keep the product in the pipeline at a temperature higher than the ambient could exist for the following reasons: preventing the formation of gas hydrates, preventing the formation of wax or asphaltenes, enhancing the product flow properties, increasing the cooldown time after shutting down, and meeting other operational/process equipment requirements. On the other hand, in liquefied gas pipelines, such as LNG, insulation is required to maintain the cold temperature of the gas to keep it in a liquid state. This chapter describes the commonly used insulation materials, insulation finish on pipes, and general requirements for insulation of offshore and deepwater pipelines.

Boyun Guo; Shanhong Song; Ali Ghalambor; Tian Ran Lin

2014-01-01T23:59:59.000Z

440

Thermal Insulation of Clothing (Icl)  

Science Journals Connector (OSTI)

The intrinsic insulation of a clothing assembly. The effective insulation of clothing is (Icl + Ia)...2 · W?1] and sometimes in [clo].

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Equipment Insulation | Open Energy Information  

Open Energy Info (EERE)

List of Equipment Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleEquipmentInsulation&oldid267163" Category: Articles with outstanding TODO tasks...

442

The influence of different electricity-to-emissions conversion factors on the choice of insulation materials  

Science Journals Connector (OSTI)

Abstract The current practice of building energy upgrade typically uses thick layers of insulation in order to comply with the energy codes. Similarly, the Norwegian national energy codes for residential buildings are moving towards very low U-values for the building envelope. New and more advanced materials, such as vacuum insulation panels (VIPs) and aerogel, have been presented as alternative solutions to commonly used insulation materials. Both aerogel and \\{VIPs\\} offer very high thermal resistance, which is a favourable characteristic in energy upgrading as the same insulation level can be achieved with thinner insulation layers. This paper presents the results of energy use and lifecycle emissions calculations for three different insulation materials (mineral wool, aerogel, and vacuum insulation panels) used to achieve three different insulation levels (0.18 W/m2 K, 0.15 W/m2 K, and 0.10 W/m2 K) in the energy retrofitting of an apartment building with heat pump in Oslo, Norway. As advanced insulation materials (such as VIP and aerogel) have reported higher embodied emissions per unit of mass than those of mineral wool, a comparison of performances had to be based on equivalent wall U-values rather than same insulation thicknesses. Three different electricity-to-emissions conversion factors (European average value, a model developed at the Research Centre on Zero Emission Buildings – ZEB, and the Norwegian inland production of electricity) are used to evaluate the influence of the lifecycle embodied emissions of each insulation alternative. If the goal is greenhouse gas abatement, the appraisal of buildings based solely on their energy use does not provide a comprehensive picture of the performance of different retrofitting solutions. Results show that the use of the conversion factor for Norwegian inland production of electricity has a strong influence on the choice of which of the three insulation alternatives gives the lowest lifecycle emissions.

Nicola Lolli; Anne Grete Hestnes

2014-01-01T23:59:59.000Z

443

Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry to engineer durable, moisture-tolerant  

E-Print Network (OSTI)

Exterior Insulation Finish System (EIFS) Walls ORNL provides the tools to enable industry the insulating value of walls and the energy efficiency of buildings. The EIFS concept came to America from in both moisture control and insulating value. EIFS's are inherently superior on thermal performance

Oak Ridge National Laboratory

444

Development of microwave foaming method for phenolic insulation foams  

Science Journals Connector (OSTI)

Many types of foams are used for thermal insulation in building, frozen food industries and LNG containment systems. Low thermal conductivity, low density and low flammability are required for thermal insulation. Among many foams, phenolic foams are preferred for thermal insulation due to its lower flammability and lower gas generation than any other polymer insulation foams. However, it takes long time to manufacture large size phenolic foams and the environmental regulation limits the use of blowing agents. Urethane foams and polystyrene foams are widely used in spite of their high flammability and toxic gas generation because conventional phenolic foams usually have higher thermal conductivity than expected. In this work, a foaming method for the resole-type phenolic foams was developed using microwave and air instead of blowing agents, and its thermal and mechanical properties were measured. From the measured results, it was found that the phenolic foams developed had low thermal conductivity and low density suitable for insulation foams.

Bu Gi Kim; Dai Gil Lee

2008-01-01T23:59:59.000Z

445

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools Tools Looking for windows for a new home? Use the Window Selection Tool to compare annual energy performance for windows in new construction. Window Selection Tool Looking for replacement windows? Use the Window Selection Tool to compare annual energy performance for replacement windows. Window Selection Tool Window Selection Tool Use the Window Selection Tool for new or replacement windows to compare the annual energy performance of different window types and design conditions for a typical house. Find manufacturers who offer windows and skylights within the generic results shown. Learn more about manufacturers' specific product options. Use the Window Selection Tool to: Compare how various window or skylight types affect estimated energy cost for a typical house in your location.

446

Insulation fact sheet  

SciTech Connect

Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

NONE

1997-08-01T23:59:59.000Z

447

WINDOW 5 Glass Library Update  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6 or 7 Glass Library Update WINDOW 6 or 7 Glass Library Update Last update:12/09/13 07:26 PM Automatic IGDB Update Feature in WINDOW 6 and 7 The latest versions of WINDOW 6 and 7 have an automatic IGDB database update function in the Glass Library. When you first open the program, it checks to see if there is an IGDB version later than what you already have installed, and will notify you if there is an update. Then you can download and install the IGDB database, and click on the Update IGDB button in the Glass Library in order to start the automatic update. For older versions of WINDOW 6 and 7 without the automatic IGDB update function bullet How to Check the Current WINDOW5 IGDB Version bullet Updating the Glass Library bullet Problem Updating the Glass Library bullet Discontinued Records or Reused NFRC IDs

448

Window and Envelope Technologies Overview- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Window and Envelope Technologies activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

449

Windows on Computer Science Department of Computer and Information Science  

E-Print Network (OSTI)

1 CSCI 120 Windows on Computer Science Department of Computer and Information Science IUPUI What is Computer Science? Is Computer Science the study of computers (Building computers, and writing computer programs) ? Computer Science is no more about computers than astronomy is about telescopes, or biology

Fang, Shiaofen

450

Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack Frost Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack Frost January 17, 2012 - 4:25pm Addthis The frost patterns on your window might be pretty, but they're not helping you save any energy. Energy efficient windows provide an effective barrier from inclement weather. | Photo courtesy of Callie Reed. The frost patterns on your window might be pretty, but they're not helping you save any energy. Energy efficient windows provide an effective barrier from inclement weather. | Photo courtesy of Callie Reed. Roland Risser Roland Risser Program Director, Building Technologies Office

451

Building Technologies Office | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Building Technologies Office Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. About the Building Technologies Office The Energy Department's Building Technologies Office leads a network of research and industry partners to continually develop innovative, cost-effective energy-saving solutions for homes and buildings. Learn more about the Building Technologies Office. How We Help Homes & Buildings Save Energy Value-Driven Applications Advanced energy efficiency technologies like lighting, HVAC, windows, appliances, and commercial equipment. Practical Standards

452

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-E Glazing Low-E Glazing Double-Glazed, High-solar-gain Low-E Glass This figure illustrates the characteristics of a typical double-glazed window with a high-solar gain low-E glass with argon gas fill. These windows are designed to reduce heat loss but admit solar gain. High-solar-gain low-E glass products are best suited for buildings located in heating-dominated climates and are the product of choice for passive solar design projects. High-solar-gain low-E glass is often made with pyrolytic low-E coatings, although sputtered high-solar-gain low-E is also available. Double HSG Low-E Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

453

Energy performance of a dual airflow window under different climates Jingshu Wei1  

E-Print Network (OSTI)

great po tential in conserving energy in buildings and provide fresh air to improve indoor air qua lity that by shading solar radiation. The dual airflow window is recomm ended for colder climate. If improving air airflow window; Energy demand; Indoor air quality; Different climates 1. Introduction Energy dem

Chen, Qingyan "Yan"

454

Plasma Magnetic Insulation  

Science Journals Connector (OSTI)

29 June 1987 research-article Plasma Magnetic Insulation B. B. Kadomtsev Theoretically the strong magnetic field of a tokamak should confine electrons and ions in a high-temperature...

1987-01-01T23:59:59.000Z

455

Cooper Pairs in Insulators?!  

ScienceCinema (OSTI)

Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

James Valles

2010-01-08T23:59:59.000Z

456

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Replacement Windows for Existing Homes Homes Replacement Windows for Existing Homes Homes Window Selection Tool Use the Window Selection Tool for existing homes (replacement windows) to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Assessing Options This section provides guidance the options available to improve the performance of your existing windows or to replace them. You can assess whether to repair, retrofit or replace your existing windows. Window Selection Process This section provides step-by-step guidance on the window selection process for replacement windows including issues of code, energy, durability, and installation.

457

Insulator for laser housing  

DOE Patents (OSTI)

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

Duncan, David B. (Auburn, CA)

1992-01-01T23:59:59.000Z

458

Insulator for laser housing  

DOE Patents (OSTI)

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

Duncan, D.B.

1992-12-29T23:59:59.000Z

459
460

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

462

University Buildings Landmark Buildings  

E-Print Network (OSTI)

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

463

Test Report: Cost Effective Foundation Insulation  

SciTech Connect

A field experiment was conducted to demonstrate and quantify the thermal effectiveness of rigid insulation board when installed on the exterior of a buried concrete foundation wall. A heated, insulated box was constructed along one wall of an existing, unheated building to simulate the living space of a home. The crawl space beneath the living space was divided into two sections. One featured external foundation insulation, while the other side had none. 36 temperature and heat flux sensors were installed at predetermined locations to measure the temperature profile and heat flow out of the living space. The temperature profile through the foundation was then used to calculate the total heat flow out of the foundation for both cases. This experiment showed that a significant energy savings is available with exterior foundation insulation. Over the course of 3 months, the heat-loss differential between the insulated and non-insulated foundations was 4.95 kilowatt-hours per lineal foot of foundation wall, for a ratio of 3:1. For a 2200 sq. ft home with a foundation perimeter 200 ft. long, this would amount to a savings of 990 kW-hrs in just 3 months, or 330 kW-hrs per month. Extrapolating to an 8-month heating year, we would expect to save over 2640 kW-hrs per year for such a home. The savings for a basement foundation, rather than a crawlspace, would be approach twice that amount, nearing 5280 kW-hr per year. Because these data were not collected during the coldest months of the year, they are conservative, and greater savings may be expected during colder periods.

Jeffrey M. Lacy; T. E. Rahl; G. A. Twitchell; R. G. Kobbe

2003-06-01T23:59:59.000Z

464

Buildings Energy Data Book: 3.6 Office Building Markets and Companies  

Buildings Energy Data Book (EERE)

7 7 Advanced Energy Design Guide for Small Office Buildings (1) Shell Percent Glass (WWR) 20-40% Window U-Factor 0.33-0.56 SHGC 0.31-0.49 Wall R-Value 7.6-15.2 Roof R-Value Attic 30-60 Insulation Above Deck 15-30 Wall Material Mass (HC > 7 Btu/ft^2) Lighting Average Power Density (Watts/SF) 0.9 System and Plant System and Plant Packaged Single-Zone Packaged Single-Zone w/ Economizer Cooling Capacity > 54 kBtu Heating Plant: Gas Furnace 80% Combustion Efficiency Cooling Plant: Air conditioner (135-240 thousand Btu*hr.) 10.8 EER/11.2 IPLV - 11.0 EER/11.5 IPLV Service Hot Water: Gas Water Heater 90% Thermal Efficiency Note(s): Source(s): 1) Guide provides approximate parameters for constructing a building which is 30% more efficient than ASHRAE 90.1-1999. Ranges are because of climate zone dependencies.

465

A window on urban sustainability  

SciTech Connect

Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

Stigt, Rien van, E-mail: rien.vanstigt@hu.nl [Research Center for Technology and Innovation, Utrecht University of Applied Sciences, P.O. Box 182, 3500 AD Utrecht (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands); Spit, Tejo J.M., E-mail: T.J.M.Spit@uu.nl [Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands)

2013-09-15T23:59:59.000Z

466

Building America Webinar: May 21, 2014:  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is delivered at the webinar, High Performance Building Enclosures: Part I, Existing Homes, on May 21, 2014, and provides information about the strategies for exterior insulation without removing old cladding.

467

Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)  

SciTech Connect

The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

Not Available

2014-12-01T23:59:59.000Z

468

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

469

Electoral Competition, Political Uncertainty and Policy Insulation  

E-Print Network (OSTI)

Uncertainty and Policy Insulation Horn, Murray. 1995. TheUncertainty and Policy Insulation United States Congress.UNCERTAINTY AND POLICY INSULATION Rui J. P. de Figueiredo,

de Figueiredo, Rui J. P. Jr.

2001-01-01T23:59:59.000Z

470

Training: Mechanical Insulation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conjunction with the National Insulation Association and the International Association of Heat and Frost Insulators and Allied Workers. Mechanical insulation can play a significant...

471

List of issues for next dynamic window prototype/longer-term research  

NLE Websites -- All DOE Office Websites (Extended Search)

075 075 A First-Generation Prototype Dynamic Residential Window Christian Kohler, Howdy Goudey, and Dariush Arasteh Windows and Daylighting Group Lawrence Berkeley National Laboratory Berkeley CA 94720 October 26, 2004 Abstract We present the concept for a "smart" highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available "off-the-shelf" components. It is a stand-alone, standard-size

472

Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T. Griffith ASHRAE Member, Howdy Goudey, and Dariush Arasteh P.E. ASHRAE Member Building Technologies Program Environment Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley CA 94720 USA August 2, 2001 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Surface Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith 1 , Howdy Goudey, and Dariush Arasteh

473

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network (OSTI)

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied… (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

474

Building Technologies Office: Water Heating Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heating Research Water Heating Research to someone by E-mail Share Building Technologies Office: Water Heating Research on Facebook Tweet about Building Technologies Office: Water Heating Research on Twitter Bookmark Building Technologies Office: Water Heating Research on Google Bookmark Building Technologies Office: Water Heating Research on Delicious Rank Building Technologies Office: Water Heating Research on Digg Find More places to share Building Technologies Office: Water Heating Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub

475

Building 32 35 Building 36  

E-Print Network (OSTI)

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

476

Retrofit Ventilation Strategies in Multifamily Buildings Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foundation Retrofits Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4 Foundations w. bulk water issues  Severe and rapid damage to interior insulation and finishes due to bulk water intrusion Hybrid Foundation Retrofits 5 Insulation Location Choices * Retrofits: interior insulation is often the only

477

Integrated window systems: An advanced energy-efficient residential fenestration product  

SciTech Connect

The last several years have produced a wide variety of new window products aimed at reducing the energy impacts associated with residential windows. Improvements have focused on reducing the rate at which heat flows through the total window product by conduction/convection and thermal radiation (quantified by the U-factor) as well as in controlling solar heat gain (measured by the Solar Heat Gain Coefficient (SHGC) or Shading Coefficient (SC)). Significant improvements in window performance have been made with low-E coated glazings, gas fills in multiple pane windows and with changes in spacer and frame materials and designs. These improvements have been changes to existing design concepts. They have pushed the limits of the individual features and revealed weaknesses. The next generation of windows will have to incorporate new materials and ideas, like recessed night insulation, seasonal sun shades and structural window frames, into the design, manufacturing and construction process, to produce an integrated window system that will be an energy and comfort asset.

Arasteh, D.; Griffith, B.; LaBerge, P.

1994-03-01T23:59:59.000Z

478

This guide is designed to help select windows, doors and skylights that will mee  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii. The Hawaii. The requirements in the 2009 IECC are the same for windows used in new buildings, remodeling & additions to existing buildings, and as replacements of existing windows. Step-by-Step Instructions 1. Use the "IECC Prescriptive Window Energy Efficiency Requirements" (on the back of this sheet) to determine the window performance requirements associated with the climate zone. 2. Construct the home with windows that have area weighted average U-factor and SHGC values less than or equal to the values for the climate zone and meet the code maximum air leakage requirements. The 2009 International Energy Conservation Code The 2009 IECC was developed by the International Code Council (ICC) and is currently available to states for adoption. The IECC is the national model standard for energy-efficient

479

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Last Updated: 12/29/2013 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2 (7.2.29) (12/29/2013) Release Notes -- Please read these before running this version ! This version contains these new modeling features Honeycomb shades Dynamic Glazing (Thermochromic and Electrochromic) This version is compatible with THERM 7.1 Please send us emails as you find issues in the program -- that is the only way that we can make it more robust. We hope to iterate versions fairly quickly in the next month or so to get the bugs ironed out. Radiance for WINDOW 7 Get a copy of Radiance for WINDOW 7.2 Must be used with WINDOW 7.0.59 or later

480

LBNL Windows & Daylighting Software -- WINDOW5: Knowledge Base  

NLE Websites -- All DOE Office Websites (Extended Search)

6.3 Knowledge Base 6.3 Knowledge Base Tip - use the Find function in your browser to search this page Last update:11/04/13 01:16 PM Download WINDOW 6.3 Send feedback via email to WindowHelp@lbl.gov. Also as bugs and comments are submitted by testers, the will be posted on this Knowledge Base, so check here for the latest information about the program. CONTENTS INSTALLATION KNOWN BUGS ** Operating Systems -- Microsoft Windows 7 and Vista ** Environmental Conditions -- Kimura convection model not working Locked Files with Install/De-install Environmental Conditions -- Fixed Combined Coefficient Bug Installation Problems Error Message during Calc due to decimal point of "," Minimum computer requirements Importing THERM file into WINDOW generates "Unnamed file has a bad format" error message

Note: This page contains sample records for the topic "building insulation windows" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

7.0 7.0 Last Updated: 05/20/2013 EN 673 / ISO 10077 Using WINDOW 7 and THERM 7 for EN 673 / ISO 10077 Calculations If you are interested in using WINDOW and THERM for EN 673 / ISO 10077 calculations, we have added that option to WINDOW 7. The calculation is not fully automated in the program yet, so there are many steps and a spreadsheet for the final calculation. We are interested in feedback (email WINDOWHelp@lbl.gov) about the process and the results from anyone who tests this feature. CAUTION: Do not model shading systems with the EN 673 thermal model. The program will produce results but they will most likely not be correct. Download this zip file (EN673.zip) which contains the following: Description of how to use WINDOW 6 and THERM 6 for the EN 673 / ISO 10077 calculations (PDF file)

482

Window-Related Energy Consumption in the US Residential and Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Window-Related Energy Consumption in the US Residential and Commercial Window-Related Energy Consumption in the US Residential and Commercial Building Stock Title Window-Related Energy Consumption in the US Residential and Commercial Building Stock Publication Type Report LBNL Report Number LBNL-60146 Year of Publication 2006 Authors Apte, Joshua S., and Dariush K. Arasteh Call Number LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

483

Electron gun with cylindrical window  

SciTech Connect

This paper describes a three-electrode electron gun with a foil window in the form of a cylinder 300 mm in diameter and 200 mm high. With an accelerating voltage of 140 kV in the pulse mode (10 usec at 2 Hz) with grid modulation, the current extracted from the foil is 5.5 A. The ratio of the window area to the mass of the gun (23.7 cm/sup 2//kg) is greater by a factor of 3-5 than that of similar guns with flat windows.

Grigorev, Y.V.; Stepanov, A.V.

1986-01-01T23:59:59.000Z

484

Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain  

SciTech Connect

On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle carbon assessment of facade parameters. Black-Right-Pointing-Pointer Greatest environmental impact occurs during the operational phase. Black-Right-Pointing-Pointer Masonry blocks are responsible for 70-90% of the total CO2 emissions of facade construction. Black-Right-Pointing-Pointer Window contribution of CO2 emissions depends on the number and size of windows. Black-Right-Pointing-Pointer Without insulation, AAC walls offer more savings in CO2 emissions.

Radhi, Hassan, E-mail: h_alradhi@yahoo.com [Global Engineering Bureau, P.O Box 33130, Manama, Kingdom of Bahrain (Bahrain); Sharples, Stephen, E-mail: steve.sharples@liverpool.ac.uk [School of Architecture, University of Liverpool (United Kingdom)

2013-01-15T23:59:59.000Z

485

Elements of an Energy Efficient House Designing and building an energy-efficient home that conforms to the many considerations faced by home builders can be  

E-Print Network (OSTI)

in the ceilings. Carefully applied fiberglass batt or roll, wet-spray cellulose, or foam insulations will fill assemblies, insulation, windows, doors, finishes, weather-stripping, and air/vapor retarders. Specific items, thus reducing costly wood use and saving space for insulation. However, workmanship must

Kostic, Milivoje M.

486

Building Envelope Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Envelope Research Building Envelope Research Building Envelope Research The Emerging Technology team conducts research into technologies and processes related to the building envelope. The goal of these efforts is to help reduce the amount of energy used in the building envelope by 20% compared to 2010 levels. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst in developing new materials, coatings, and systems designed to improve energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building that's under construction. Building foundation insulation systems can help improve energy efficiency, but are affected by variables that can be hard to detect, such moisture.

487

Contaminant trap for gas-insulated apparatus  

DOE Patents (OSTI)

A resinous body is placed in gas-insulated electrical apparatus to remove particulate material from the insulating gas.

Adcock, J.L.; Pace, M.O.; Christophorou, L.G.

1984-01-01T23:59:59.000Z

488

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

489

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

490

Switching Surges and Air Insulation  

Science Journals Connector (OSTI)

...research-article Switching Surges and Air Insulation B. Jones Some thirteen years ago...reduction was noticed in the strength of air insulation when subjected to slowly rising positive...collected in high voltage laboratories. Insulation against switching surges is now seen...

1973-01-01T23:59:59.000Z

491

Analysis of the Benefits of Photovoltaic in High Rise Commercial Buildings  

E-Print Network (OSTI)

further, recent studies have integrated photovoltaic glazed window systems into the building shell. To understand the relationship between photovoltaic windows, energy use and human satisfaction, this paper presents a study of the effects of photovoltaic...

Sylvester, K. E.; Haberl, J. S.

2000-01-01T23:59:59.000Z

492

Building Technologies Office: Commercial Building Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development Photo of NREL researcher Jeff Tomberlin working on a data acquisition panel at the Building Efficiency Data Acquisition and Control Laboratory at NREL's Thermal Test Facility. The Building Technology Program funds research that can dramatically improve energy efficiency in commercial buildings. Credit: Dennis Schroeder, NREL PIX 20181 The Building Technologies Office (BTO) invests in technology research and development activities that can dramatically reduce energy consumption and energy waste in buildings. Buildings in the United States use nearly 40 quadrillion British thermal units (Btu) of energy for space heating and cooling, lighting, and appliances, an amount equivalent to the annual amount of electricity delivered by more than 3,800 500-megawatt coal-fired power plants. The BTO technology portfolio aims to help reduce building energy requirements by 50% through the use of improved appliances; windows, walls, and roofs; space heating and cooling; lighting; and whole building design strategies.

493

High Performance Building Standards in State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Oklahoma Program Type Energy Standards for Public Buildings Provider Oklahoma Department of Central Services In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification program for state construction and renovation projects. The standard, which

494

City of Chandler - Green Building Requirement for City Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chandler - Green Building Requirement for City Buildings Chandler - Green Building Requirement for City Buildings City of Chandler - Green Building Requirement for City Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Energy Standards for Public Buildings Provider City of Chandler The mayor and city council of Chandler, AZ adopted Resolution 4199 in June 2008, establishing a requirement for all new occupied city buildings larger than 5,000 square feet to be designed and built to achieve the Silver level

495

Building Energy Software Tools Directory: BuildingSim  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingSim BuildingSim BuildingSim logo BuildingSim allows users to model a building and analyze the heating and cooling energy costs in any climate. Users can create any building—from a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90 climates around the world to numerically solve the full thermodynamic differential equations every minute of the year, giving the user the actual energy use down to the cent. The simulation algorithm fully accounts for thermostat and HVAC controls, allowing the user to analyze the effects of different thermostat algorithms (programmable thermostats, setback, split-zone, etc.) on the energy costs for a specific building and climate. Screen Shots

496

How to buy energy-efficient residential windows  

SciTech Connect

Section 161 of the Energy Policy Act of 1992 (EPACT) encourages energy-efficient federal procurement. Executive Order 12902 and FAR section 23.704 direct agencies to purchase products in the upper 25% of energy efficiency. Agencies that use these guidelines to buy efficient products can realize substantial operating cost savings and help prevent pollution. As the world`s largest consumer, the federal government can help pull the entire US market towards greater energy efficiency, while saving taxpayer dollars. The General Services Administration (GSA) will soon include residential windows in its Federal Supply Schedule 56-IV(A), ``Construction and Building Materials.`` When contracting for residential windows, specify NFRC-rated SHGC and U-factor values that meet this Efficiency Recommendation for your geographic region. When buying commercially, look for windows with the EPA/DOE ENERGY STAR{reg_sign} label, all of which meet this Recommendation.

NONE

1998-07-01T23:59:59.000Z

497

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies: Operator Types Window Technologies: Operator Types Window Sash Operation When you select a window, there are numerous operating types to consider. Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. In addition, the window market includes fixed windows, storm windows, sliding and swinging patio doors, skylights and roof windows, and window systems that can be added to a house to create bay or bow windows, miniature greenhouses, or full sun rooms. Looking for information on skylights? More information on skylight