National Library of Energy BETA

Sample records for building hvac systems

  1. HVAC & Building Management Control System Energy Efficiency Replacements

    SciTech Connect (OSTI)

    Hernandez, Adriana

    2012-09-21

    The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

  2. Building America Top Innovations Hall of Fame Profile … Integration of HVAC System Design with Simplified Duct Distribution

    Energy Savers [EERE]

    research team IBACOS worked with S&A Homes to design a compact HVAC layout with all ducts in conditioned space in several homes in Pittsburgh. Poor-quality HVAC design and installation can reduce the overall HVAC system energy efficiency up to 30%. HVAC quality installation practices are essential to realizing the promise of high-performance homes. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions

  3. Integration of HVAC System Design with Simplified Duct Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building ...

  4. HVAC Cabinet Air Leakage Test Method - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cabinet Air Leakage Test Method - Building America Top Innovation HVAC Cabinet Air Leakage Test Method - Building America Top Innovation While HVAC installers have improved their air sealing practices to reduce the amount of air leaking at ducts and duct boots, testing showed that distribution systems still leaked at air handlers and furnace HVAC Air Leakage Fig 1 Air handler furnace cabinet with pressure taps.jpg cabinets. This has hampered the ability of HVAC

  5. Text-Alternative Version of Building America Webinar: High Performance HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications | Department of Energy HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications Text-Alternative Version of Building America Webinar: High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications November 16, 2015 Speakers Andrew Poerschke,

  6. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    SciTech Connect (OSTI)

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance. Architects, professional engineers, and commercial real estate developers will benefit from the availability of information that quantifies energy savings, first cost construction differences, and additional operating costs created when office space must be reconfigured to accommodate new tenants.

  7. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  8. 1999 Commercial Buildings Characteristics--HVAC Conservation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Those commercial buildings that used HVAC conservation features...

  9. An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings

    SciTech Connect (OSTI)

    Trcka, Marija; Wetter, Michael; Hensen, Jan L.M.

    2010-07-01

    Integrated performance simulation of buildings and heating, ventilation and air-conditioning (HVAC) systems can help reducing energy consumption and increasing level of occupant comfort. However, no singe building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to accommodate the ever-increasing complexity and rapid innovations in building and system technologies. One way to alleviate this problem is to use co-simulation. The co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This paper elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in a co-simulation prototype. The prototype is verified and validated against the results obtained from the traditional simulation approach. It is further used in a case study for the proof-of-concept, to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling frequency. The paper concludes by defining requirements and recommendations for generic cosimulation implementations.

  10. Better Buildings Neighborhood Program Business Models Guide: HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Business Model | Department of Energy HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model. PDF icon HVAC Contractor Business Model More Documents & Publications Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion Better Buildings Neighborhood Program Business Models

  11. HVAC Cabinet Air Leakage Test Method - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cabinet Air Leakage Test Method - Building America Top Innovation HVAC Cabinet Air Leakage Test Method - Building America Top Innovation While HVAC installers have improved their ...

  12. Integration of HVAC System Design with Simplified Duct Distribution -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovation | Department of Energy Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation This photo shows framed walls and HVAC distribution systems. This Top Innovation profile describes work by Building America research team IBACOS who field tested simplified duct designs in hundreds of homes, confirming the performance of

  13. Alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor Alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor The document outlines alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor. PDF icon HVAC Credentialing Alternate HVAC Systems Bulletin 07012015.pdf More Documents & Publications ENERGY STAR Certified Homes, Version 3 (Rev. 07) Inspection Checklists for National Program Requirements DOE Zero Energy

  14. enVerid Systems - HVAC Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enVerid Systems - HVAC Load Reduction enVerid Systems - HVAC Load Reduction Credit: Enverid Systems Credit: Enverid Systems Lead Performer: enVerid Systems Inc. - Houston, TX DOE Funding: $2,400,000 Cost Share: $2,400,000 Project Term: October 1, 2014 - September 30, 2017 Funding Opportunity: DE-FOA-0001084 PROJECT OBJECTIVE The objective is to install and operate modular HVAC Load Reduction (HLR) retrofits in multiple and diverse buildings, monitor their performance, analyze the energy savings

  15. Energy Department Invests Nearly $8 Million to Develop Next-Generation HVAC Systems for Buildings

    Broader source: Energy.gov [DOE]

    The Energy Department today announced nearly $8 million to advance research and development of next-generation heating, ventilating, and air conditioning (HVAC) technologies, supporting the Administration's goal of saving money by saving energy, and phasing down the use of chemicals that have a devastating effect on the global climate.

  16. Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion, Summary of HVAC Contractor Insights.

  17. Heat recovery and the economizer for HVAC systems

    SciTech Connect (OSTI)

    Anantapantula, V.S. . Alco Controls Div.); Sauer, H.J. Jr. )

    1994-11-01

    This articles examines why a combined heat reclaim/economizer system with priority to heat reclaim operation is most likely to result in the least annual total HVAC energy. PC-based, hour-by-hour simulation programs evaluate annual HVAC energy requirements when using combined operation of heat reclaim and economizer cycle, while giving priority to operation of either one. These simulation programs also enable the design engineer to select the most viable heat reclaim and/or economizer system for any given type of HVAC system serving the building internal load level, building geographical location and other building/system variables.

  18. Building America Top Innovations 2014 Profile: HVAC Cabinet Air...

    Energy Savers [EERE]

    HVAC Cabinet Air Leakage Test Method (top left) Building America teams evaluated several testing methods to identify a robust, repeatable test to recommend for air leakage ...

  19. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation PDF icon ...

  20. Building America Expert Meeting: Transitioning Traditional HVAC Contractors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Whole House Performance Contractors | Department of Energy Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Building America Expert Meeting: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the

  1. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.

  2. Building America Whole-House Solutions for New Homes: HVAC Design Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for a Hot-Humid Production Builder | Department of Energy HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this project, BSC worked with the builder to develop a cost-effective design for moving the HVAC system into conditioned space and increase the energy performance of future production houses in anticipation of 2015 IECC codes. PDF icon HVAC Design Strategy for a

  3. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    SciTech Connect (OSTI)

    Patrick O'Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among all the team members. Fortunately, the project team performed exceptionally well together and was able to work through the various challenges that this presented - for example, when one software tool required a detailed description of the output of a second tool, before that tool had been fully designed.

  4. Pre-Commercial Demonstration of Cost-Effective Advanced HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC energy reduction versus state-of- the-art building automation systems. This technology targets building automation systems for medium-size buildings with central HVAC systems. ...

  5. Building America Expert Meeting: Transitioning Traditional HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the ...

  6. Building America Expert Meeting: Transitioning Traditional HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major ...

  7. A PDI for your HVAC System

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "HVAC proper installation energy savings: over-promising or under-deliverying?"

  8. Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction.

  9. Building America Best Practices Series Vol. 14: Energy Renovations - HVAC:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Guide for Contractors to Share with Homeowners | Department of Energy Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners This guide, which is part of a series of Best Practices guides produced by DOE's Building America program, describes ways homeowners can reduce their energy costs and improve the comfort, health, and safety of their

  10. Review of Residential Low-Load HVAC Systems

    SciTech Connect (OSTI)

    Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

    2013-09-01

    In support of the U.S. Department of Energys (DOEs) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNLs planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  11. Building America Envelope and Advanced HVAC Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Envelope and Advanced HVAC Research Building America Envelope and Advanced HVAC Research Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN Project Term: FY 2016 - FY 2018 Funding Type: Direct Lab Funding PROJECT OBJECTIVE ORNL's work in roof and attic research will address the industry need for clear guidance on unvented attics. The wall assemblies research involves a comprehensive evaluation of high-R assemblies. This research supports the Lab and Field Moisture Risk

  12. Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS highlighted the key criteria required to create accurate heating and cooling load calculations. Current industry rules of thumb, perceptions and barriers to right-sizing HVAC were also discussed. File webinar_hvac_calculatingloads_20110428.wmv More Documents & Publications HVAC Right-Sizing Part 1:

  13. Thermal model of solar absorption HVAC systems

    SciTech Connect (OSTI)

    Bergquam, J.B.; Brezner, J.M.

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  14. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect (OSTI)

    Abdelaziz, Omar; West, David L; Mallow, Anne M

    2012-01-01

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  15. Building America Whole-House Solutions for New Homes: HVAC Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this ...

  16. HVAC Performance Maps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... models for building energy simulation tools (mathematical framework - what are the right ... integrated HPWHs were performance mapped in NREL's Advanced HVAC Systems Laboratory. ...

  17. Case study field evaluation of a systems approach to retrofitting a residential HVAC system

    SciTech Connect (OSTI)

    Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

    2003-09-01

    This case study focusing on a residence in northern California was undertaken as a demonstration of the potential of a systems approach to HVAC retrofits. The systems approach means that other retrofits that can affect the HVAC system are also considered. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC system can be used. Secondly, we wanted to examine the practical issues and interactions with contractors and code officials required to accomplish the systems approach because it represents a departure from current practice. We identified problems in the processes of communication and installation of the retrofit that led to compromises in the final energy efficiency of the HVAC system. These issues must be overcome in order for HVAC retrofits to deliver the increased performance that they promise. The experience gained in this case study was used to optimize best practices guidelines for contractors (Walker 2003) that include building diagnostics and checklists as tools to assist in ensuring the energy efficiency of ''house as a system'' HVAC retrofits. The best practices guidelines proved to be an excellent tool for evaluating the eight existing homes in this study, and we received positive feedback from many potential users who reviewed and used them. In addition, we were able to substantially improve the energy efficiency of the retrofitted case study house by adding envelope insulation, a more efficient furnace and air conditioner, an economizer and by reducing duct leakage.

  18. Building America Webinar: HVAC Right-Sizing Part 1-Calculating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the key criteria required to create accurate heating and cooling load calculations. ... HVAC Right-Sizing Part 1: Calculating Loads ZERH Webinar: Low Load HVAC in Zero Energy ...

  19. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review | Department of Energy HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation PDF icon CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review CBEI: Lessons Learned from

  20. Building America Case Study: Ventilation System Effectiveness...

    Energy Savers [EERE]

    Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Tyler, Texas ... Building Component: Heating, ventilating, and air conditioning (HVAC), whole-building ...

  1. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Broader source: Energy.gov (indexed) [DOE]

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Energy Efficient HVAC System for Distributed Cooling...

  2. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Discusses progress on thermal comfort modeling and detailed design, ...

  3. SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    M.M. Ansari

    2005-04-05

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

  4. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Building Technologies Office report assesses heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development.

  5. Building America Expert Meeting Report. Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, Arlan

    2011-10-01

    This expert meeting was hosted by the IBACOS Building America research team to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting.

  6. Measuring Advances in HVAC Distribution System Design

    SciTech Connect (OSTI)

    Franconi, E.

    1998-05-01

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  7. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, A.

    2011-10-01

    This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational profile of an integrated whole house performance contracting company and identify the most significant challenges facing a traditional HVAC contractor looking to transition to a whole house performance contractor. To facilitate the discussion, IBACOS divided the business operations profile of a typical integrated whole house performance contracting company (one that performs both HVAC and shell repair/upgrade work) into seven Operational Areas with more detailed Business Functions and Work Activities falling under each high-level Operational Area. The expert panel was asked to review the operational profile or 'map' of the Business Functions. The specific Work Activities within the Business Functions identified as potential transition barriers were rated by the group relative to the value in IBACOS creating guidance ensuring a successful transition and the relative difficulty in executing.

  8. Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope & IAQ (301)

    Energy Savers [EERE]

    Peer Exchange Call Series: Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope & IAQ (301) July 21, 2015 Call Slides and Discussion Summary Agenda  Call Logistics and Introductions  Opening Polls  Residential Network and Peer Exchange Call Overview  Introduction to Building America Technology to Market Roadmaps  Eric Werling, Building America Program Director, DOE Building Technologies Office  Questions, Discussion, and

  9. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  10. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  11. Building America Best Practices Series Volume 14 - HVAC. A Guide for Contractors to Share with Homeowners

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Hand, James R.; Love, Pat M.

    2011-08-01

    This guide, which is part of a series of Best Practices guides produced by DOE’s Building America program, describes ways homeowners can reduce their energy costs and improve the comfort, health, and safety of their homes by upgrading their heating, ventilation, and air conditioning (HVAC) equipment.

  12. CBERD: Advanced HVAC Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rensselaer Polytechnic Institute - Troy, NY -- Centre for ... The U.S.-India Joint Center for Building Energy Research and ... Related Publications PDF icon 2014 BTO Peer Review ...

  13. HVAC Packages for SMSCB

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Packages for SMSCB* 2015 Building Technologies Office Peer Review * Small and Medium Sized Commercial Buildings Russell D. Taylor, TaylorRD@utrc.utc.com CBEI - United ...

  14. Low-Load HVAC Systems for Single and Multifamily Applications

    Energy Savers [EERE]

    Low-Load HVAC Systems for Single and Multifamily Applications Anthony Grisolia Managing Director Innovation Programs Andrew Poerschke Specialist Innovation Programs CONFIDENTIAL Agenda Basis for Thermal Comfort Comparative Modeling Newtown Townhouse Case Study Plug and Play System Future Work How IBACOS Thinks About Comfort Risks Home 24 Home 25 Home 26 Same Plan Same Street Same Orientation Different Occupants 0.5 CLO 1.0 MET ASHRAE 55 Comfort Aggregate of 36 Homes 0.5 CLO 1.0 MET 47% of data

  15. Pre-Commercial Demonstration of Cost-Effective Advanced HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimal control coordination of heating, ventilation, and air conditioning (HVAC) equipment can reduce energy by more than 20% over current building automation systems (BASs) but ...

  16. Issue #3: HVAC Proper Installation Energy Savings: Over-Promising...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A PDI for your HVAC System Guidelines on Airflow and Refrigerant Charge Verification and Diagnostics Building America Expert Meeting: Summary for Diagnostic and Performance ...

  17. Building Systems Diagnostics and Predictive Maintenance

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Pratt, Robert G.; Braun, J.

    2001-01-01

    There has been an increasing interest in the development of methods and tools for automated fault detection and diagnostics (FDD) of building systems and components in the 1990s. This chapter, written for the CRC Handbook for HVAC&R Engineering, will describe the status of these methods and and methodologies as applied to HVAC&R and building systems and present certain illustrative case studies.

  18. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  19. Combined solar and internal load effects on selection of heat reclaim-economizer HVAC systems

    SciTech Connect (OSTI)

    Sauer, H.J. Jr.; Howell, R.H.; Wang, Z. . Dept. of Mechanical Engineering)

    1990-05-01

    The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would result in heat being exhausted which might have been recovered. Others suggest that the economizer cycle can be used economically in a heat recovery system if properly controlled to maintain an overall building heat balance. This study looks at potential energy savings of such combined systems with particular emphasis on the effects of the solar load (amount of glass) and the internal load level (lights, people, appliances, etc.). For systems without thermal storage, annual energy savings of up to 60 percent are predicted with the use of heat reclaim systems in conjunction with economizers when the heat reclaim has priority. These results demonstrate the necessity of complete engineering evaluations if proper selection and operation of combined heat recovery and economizer cycles are to be obtained. This paper includes the basic methodology for making such evaluations.

  20. High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications

    Broader source: Energy.gov [DOE]

    The Building America Program hosted this no-cost webinar that will discuss the current research on comfort in residential buildings. Results will be presented from 37 new homes that were monitored...

  1. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency. PDF ...

  2. Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system

    SciTech Connect (OSTI)

    Carpenter, S.C.; Kokko, J.P.

    1998-12-31

    This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

  3. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006a, b) and in this report.

  4. HVAC Efficiency Controls Could Mean Significant Savings

    Broader source: Energy.gov [DOE]

    According to a new report from Pacific Northwest National Lab, commercial building owners could save an average 38 percent on their heating and cooling bills just by installing a few new controls onto their HVAC systems.

  5. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION Project Name: Long-Term Monitoring of Occupied Test House Location: Roseville, CA Partners: K. Hovnanian® Homes®, www.khov.com IBACOS www.ibacos.com Building Component: Envelope, structural, HVAC ducts Construction: New Application: New; single and/or multifamily Year Tested: 2012 Applicable Climate Zone(s): Hot-dry climate PERFORMANCE DATA HERS Index: 52 Projected Energy Savings: 11 million Btu/year heating

  6. NREL Delivers In-Home HVAC Efficiency Testing Solutions (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivers In-Home HVAC Efficiency Testing Solutions Researchers at the National Renewable Energy Laboratory (NREL) have recently developed two simple in-home efficiency test methods that can be used by technicians, researchers, or interested homeowners to verify the correct opera- tion and energy efficiency of a home's air conditioning and heating equipment. An efficiency validation method for mini-split heat pumps (MSHPs)-highly efficient refrigerant-based air conditioning and heating systems

  7. Unified HVAC and Refrigeration Control Systems for Small Footprint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    refrigeration systems and integrate photovoltaic sources Key Issues: Low-cost, "low-touch" retrofit of control technology into buildings and refrigeration systems to facilitate ...

  8. High Performance HVAC Systems, Part II: Low-Load HVAC Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The presenters will also discuss results from a modeling exercise that identified the impact house design, system design, and control strategies on comfort and energy consumption. ...

  9. Variable-Speed, Low-Cost Motor for Residential HVAC Systems ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable-Speed, Low-Cost Motor for Residential HVAC Systems Lower-Cost, Variable-Speed ... DynaMotors Inc., with the aid of a grant from DOE's Inventions and Innovation Program, ...

  10. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.

  11. Learning Based Bidding Strategy for HVAC Systems in Double Auction Retail Energy Markets

    SciTech Connect (OSTI)

    Sun, Yannan; Somani, Abhishek; Carroll, Thomas E.

    2015-07-01

    In this paper, a bidding strategy is proposed using reinforcement learning for HVAC systems in a double auction market. The bidding strategy does not require a specific model-based representation of behavior, i.e., a functional form to translate indoor house temperatures into bid prices. The results from reinforcement learning based approach are compared with the HVAC bidding approach used in the AEP gridSMART® smart grid demonstration project and it is shown that the model-free (learning based) approach tracks well the results from the model-based behavior. Successful use of model-free approaches to represent device-level economic behavior may help develop similar approaches to represent behavior of more complex devices or groups of diverse devices, such as in a building. Distributed control requires an understanding of decision making processes of intelligent agents so that appropriate mechanisms may be developed to control and coordinate their responses, and model-free approaches to represent behavior will be extremely useful in that quest.

  12. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling

    Broader source: Energy.gov [DOE]

    Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

  13. Integrated high efficiency blower apparatus for HVAC systems

    DOE Patents [OSTI]

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  14. Systems and methods for controlling energy use in a building management system using energy budgets

    DOE Patents [OSTI]

    Wenzel, Michael J; Drees, Kirk H

    2014-09-23

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  15. Development of a Thermoelectric Device for an Automotive Zonal HVAC System

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Presents development of a thermoelectric device using liquid working fluid on the wasteŽ side and air as working fluid on the mainŽ side to enable zonal or distributed heating/cooling systems within a vehicle PDF icon barnhart.pdf More Documents & Publications Thermoelectric HVAC for Light-Duty Vehicle Applications Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving efficiency of a

  16. HVAC Installed Performance

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

  17. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect (OSTI)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  18. Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrades: Leveraging HVAC Upgrades for Greater Impact (201) Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201) Better Buildings Residential Network Peer Exchange Call...

  19. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermoelectric HVAC for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications ...

  20. Comparison of heating and cooling energy consumption by HVAC system with mixing and displacement air distribution for a restaurant dining area in different climates

    SciTech Connect (OSTI)

    Zhivov, A.M.; Rymkevich, A.A.

    1998-12-31

    Different ventilation strategies to improve indoor air quality and to reduce HVAC system operating costs in a restaurant with nonsmoking and smoking areas and a bar are discussed in this paper. A generic sitting-type restaurant is used for the analysis. Prototype designs for the restaurant chain with more than 200 restaurants in different US climates were analyzed to collect the information on building envelope, dining area size, heat and contaminant sources and loads, occupancy rates, and current design practices. Four constant air volume HVAC systems wit h a constant and variable (demand-based) outdoor airflow rate, with a mixing and displacement air distribution, were compared in five representative US climates: cold (Minneapolis, MN); Maritime (Seattle, WA); moderate (Albuquerque, NM); hot-dry (Phoenix, AZ); and hot-humid (Miami, FL). For all four compared cases and climatic conditions, heating and cooling consumption by the HVAC system throughout the year-round operation was calculated and operation costs were compared. The analysis shows: Displacement air distribution allows for better indoor air quality in the breathing zone at the same outdoor air supply airflow rate due to contaminant stratification along the room height. The increase in outdoor air supply during the peak hours in Miami and Albuquerque results in an increase of both heating and cooling energy consumption. In other climates, the increase in outdoor air supply results in reduced cooling energy consumption. For the Phoenix, Minneapolis, and Seattle locations, the HVAC system operation with a variable outdoor air supply allows for a decrease in cooling consumption up to 50% and, in some cases, eliminates the use of refrigeration machines. The effect of temperature stratification on HVAC system parameters is the same for all locations; displacement ventilation systems result in decreased cooling energy consumption but increased heating consumption.

  1. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    Energy Savers [EERE]

    Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Arlan Burdick IBACOS, Inc. October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  2. Comparative guide to emerging diagnostic tools for large commercial HVAC systems

    SciTech Connect (OSTI)

    Friedman, Hannah; Piette, Mary Ann

    2001-05-01

    This guide compares emerging diagnostic software tools that aid detection and diagnosis of operational problems for large HVAC systems. We have evaluated six tools for use with energy management control system (EMCS) or other monitoring data. The diagnostic tools summarize relevant performance metrics, display plots for manual analysis, and perform automated diagnostic procedures. Our comparative analysis presents nine summary tables with supporting explanatory text and includes sample diagnostic screens for each tool.

  3. Systems and methods for controlling energy use in a building management system using energy budgets

    DOE Patents [OSTI]

    Wenzel, Michael J.

    2012-06-17

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A mathematical linear operator is found that transforms the unused or deferred cooling power usage of the HVAC system based on pre-determined temperature settings to a target cooling power usage. The mathematical operator is applied to the temperature settings to create a temperature setpoint trajectory expected to provide the target cooling power usage.

  4. Energy Savings Potential and RD&D Opportunities for Residential Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Systems | Department of Energy Residential Building HVAC Systems Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical

  5. Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol

    SciTech Connect (OSTI)

    Romberger, J.

    2014-11-01

    The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions. This protocol addresses only HVAC-related equipment and the energy savings estimation methods associated with installing such control systems as an energy efficiency measure. The affected equipment includes: Air-side equipment (air handlers, direct expansion systems, furnaces, other heating- and cooling-related devices, terminal air distribution equipment, and fans); Central plant equipment (chillers, cooling towers, boilers, and pumps). These controls may also operate or affect other end uses, such as lighting, domestic hot water, irrigation systems, and life safety systems such as fire alarms and other security systems. Considerable nonenergy benefits, such as maintenance scheduling, system component troubleshooting, equipment failure alarms, and increased equipment lifetime, may also be associated with these systems. When connected to building utility meters, these systems can also be valuable demand-limiting control tools. However, this protocol does not evaluate any of these additional capabilities and benefits.

  6. The Impact of Uncertain Physical Parameters on HVAC Demand Response

    SciTech Connect (OSTI)

    Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai; Fuller, Jason C.

    2014-03-01

    HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units. These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.

  7. Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201)

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201), November 18, 2015.

  8. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    1 Market Share of Major HVAC Equipment Manufacturers ($2009 Million) Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123 Source(s): Total Market Size BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

  9. Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications

    Broader source: Energy.gov [DOE]

    Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency.

  10. Workshop 1: Advanced HVAC&R Research Effort | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Advanced HVAC&R Research Effort Workshop 1: Advanced HVAC&R Research Effort The Building Technologies Office (BTO) is exploring the launch of a major HVAC&R research effort in ...

  11. Recent Developments of the Modelica"Buildings" Library for Building Energy and Control Systems

    SciTech Connect (OSTI)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry Stephane

    2011-04-01

    At the Modelica 2009 conference, we introduced the Buildings library, a freely available Modelica library for building energy and control systems. This paper reports the updates of the library and presents example applications for a range of heating, ventilation and air conditioning (HVAC) systems. Over the past two years, the library has been further developed. The number of HVAC components models has been doubled and various components have been revised to increase numerical robustness.The paper starts with an overview of the library architecture and a description of the main packages. To demonstrate the features of the Buildings library, applications that include multizone airflow simulation as well as supervisory and local loop control of a variable air volume (VAV) system are briefly described. The paper closes with a discussion of the current development.

  12. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    SciTech Connect (OSTI)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R.

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  13. Greenbelt Homes Pilot Program. Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    SciTech Connect (OSTI)

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-22

    The U.S. Department of Energy Building America team Partnership for Home Innovation wrote a report on Phase 1 of the project that summarized a condition assessment of the homes and evaluated retrofit options within the constraints of the cooperative provided by GHI. Phase 2 was completed following monitoring in the 2013–2014 winter season; the results are summarized in this report. Phase 3 upgrades of heating equipment will be implemented in time for the 2014–2015 heating season and are not part of this report.

  14. Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC

    Buildings Energy Data Book [EERE]

    1 Efficiency Standards for Residential Central Air Conditioners and Heat Pumps (1) Type SEER (3) HSPF (4) Split System Air Conditioners 13.0 -- Split System Heat Pumps 13.0 7.7 Single Package Air Conditioners 13.0 -- Single Package Heat Pumps 13.0 7.7 Through-the-Wall Air Conditioners and Heat Pumps: -Split System (2) 10.9 7.1 -Single Package (2) 10.6 7.0 Small Duct, High Velocity Systems 13.0 7.7 Space Constrained Products -Air Conditioners 12.0 -- -Heat Pumps 12.0 7.4 Note(s): Source(s): 1)

  15. Greenbelt Homes Pilot Program: Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    SciTech Connect (OSTI)

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. It presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressing the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements.

  16. Synergetic Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Sector: Buildings, Solar Product: Start-up planning to install parabolic concentrated solar collector systems on large flat-roofed buildings to power their HVAC systems, and...

  17. Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

    SciTech Connect (OSTI)

    Wang, Liping; Hong, Tianzhen

    2013-01-01

    Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensors used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct modeling with EnergyPlus, 2) using the energy management system feature of EnergyPlus, and 3) modifying EnergyPlus source code. The results demonstrated the importance of maintenance for HVAC systems on energy performance of buildings. The research is intended to provide a guideline to help practitioners and building operators to gain the knowledge of maintaining HVAC systems in efficient operations, and prioritize HVAC maintenance work plan. The paper also discusses challenges of modeling building maintenance issues using energy simulation programs.

  18. Energy Savings From System Efficiency Improvements in Iowas HVAC SAVE Program

    SciTech Connect (OSTI)

    Yee, S.; Baker, J.; Brand, L.; Wells, J.

    2013-08-01

    The objective of this project is to explore the energy savings potential of maximizing furnace and distribution system performance by adjusting operating, installation, and distribution conditions. The goal of the Iowa HVAC System Adjusted and Verified Efficiency (SAVE) program is to train contractors to measure installed system efficiency as a diagnostic tool to ensure that the homeowner achieves the energy reduction target for the home rather than simply performing a tune-up on the furnace or having a replacement furnace added to a leaky system. The PARR research team first examined baseline energy usage from a sample of 48 existing homes, before any repairs or adjustments were made, to calculate an average energy savings potential and to determine which system deficiencies were prevalent. The results of the baseline study of these homes found that, on average, about 10% of the space heating energy available from the furnace was not reaching the conditioned space. In the second part of the project, the team examined a sample of 10 homes that had completed the initial evaluation for more in-depth study. For these homes, the diagnostic data shows that it is possible to deliver up to 23% more energy from the furnace to the conditioned space by doing system tune ups with or without upgrading the furnace. Replacing the furnace provides additional energy reduction. The results support the author's belief that residential heating and cooling equipment should be tested and improved as a system rather than a collection of individual components.

  19. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    2 U.S. Commercial Buildings Conditioned Floorspace, Building Type and System Type (Million SF) Total Education Food Sales Food Service Health Care Lodging Mercantile and Service Office Public Buildings Warehouse/Storage Total Source(s): BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1. 3,988 4,771 19,767 5,287 2,822 3,352 12,065 48,064 119 1,482 0 0 102

  20. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this project, Building Science Corporation evaluated the humidity control performance of new high ... addition to HVAC system, and homes without any supplemental dehumidification. ...

  1. City of Bloomington - Green Building Requirements for Municipal...

    Broader source: Energy.gov (indexed) [DOE]

    HVAC systems. The Green Buildings Program encourages certification beyond Silver (to Gold or Platinum) when possible. Furthermore, the ordinance establishes that the city's...

  2. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I | Department of Energy I Building America Webinar: High Performance Space Conditioning Systems, Part I The webinar on Oct. 23, 2014, focused on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar will be: * Andrew Poerschke, IBACOS, presenting Simplified Space Conditioning in Low-load Homes. The presentation will focus on what is "simple" when it comes to space conditioning?

  3. HVAC, Water Heating, and Appliances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » HVAC, Water Heating, and Appliances HVAC, Water Heating, and Appliances About the Portfolio The HVAC/Water Heating/Appliance subprogram develops cost effective, energy efficient technologies with national labs and industry partners. Technical analysis has shown that heat pumps have the technical potential to save up to 50% of the energy used by conventional HVAC technologies in residential buildings. Our focus is on the introduction of new heat pumping technologies, heat

  4. Research & Development Roadmap: Emerging HVAC Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy HVAC Technologies Research & Development Roadmap: Emerging HVAC Technologies The Research and Development (R&D) Roadmap for Emerging Heating, Ventilation, and Air-Conditioning (HVAC) Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO's energy savings goals. For HVAC, BTO targets 12% and 24% primary energy savings by 2020 and 2030, respectively. The recommended initiatives in the report

  5. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Update to Include Evaluation of Impact of Including a Humidifier Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-02-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of a centrally ducted integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006a). The present report is an update to that document which summarizes results of an analysis of the impact of adding a humidifier to the HVAC system to maintain minimum levels of space relative humidity (RH) in winter. The space RH in winter has direct impact on occupant comfort and on control of dust mites, many types of disease bacteria, and 'dry air' electric shocks. Chapter 8 in ASHRAE's 2005 Handbook of Fundamentals (HOF) suggests a 30% lower limit on RH for indoor temperatures in the range of {approx}68-69F based on comfort (ASHRAE 2005). Table 3 in chapter 9 of the same reference suggests a 30-55% RH range for winter as established by a Canadian study of exposure limits for residential indoor environments (EHD 1987). Harriman, et al (2001) note that for RH levels of 35% or higher, electrostatic shocks are minimized and that dust mites cannot live at RH levels below 40%. They also indicate that many disease bacteria life spans are minimized when space RH is held within a 30-60% range. From the foregoing it is reasonable to assume that a winter space RH range of 30-40% would be an acceptable compromise between comfort considerations and limitation of growth rates for dust mites and many bacteria. In addition it reports some corrections made to the simulation models used in order to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006) and in this report.

  6. Building America Whole-House Solutions for Existing Homes: Inverted Attic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulkhead for HVAC Ductwork | Department of Energy Inverted Attic Bulkhead for HVAC Ductwork Building America Whole-House Solutions for Existing Homes: Inverted Attic Bulkhead for HVAC Ductwork This occupied test home received a modified truss system to accommodate ductwork within an inverted insulated bulkhead along the attic floor, which saves energy by placing heating, ventilating, and air-conditioning (HVAC) ductwork within the home's thermal boundary. PDF icon Inverted Attic Bulkhead for

  7. BTO Workshop on Advanced HVAC Research Effort

    Broader source: Energy.gov [DOE]

    The Building Technologies Office (BTO) is exploring the launch of a major HVAC research effort in the area of low global warming potential and non-vapor compression technologies. To support this...

  8. HVAC component data modeling using industry foundation classes

    SciTech Connect (OSTI)

    Bazjanac, Vladimir; Forester, James; Haves, Philip; Sucic, Darko; Xu, Peng

    2002-07-01

    The Industry Foundation Classes (IFC) object data model of buildings is being developed by the International Alliance for Interoperability (IAI). The aim is to support data sharing and exchange in the building and construction industry across the life-cycle of a building. This paper describes a number of aspects of a major extension of the HVAC part of the IFC data model. First is the introduction of a more generic approach for handling HVAC components. This includes type information, which corresponds to catalog data, occurrence information, which defines item-specific attributes such as location and connectivity, and performance history information, which documents the actual performance of the component instance over time. Other IFC model enhancements include an extension of the connectivity model used to specify how components forming a system can be traversed and the introduction of time-based data streams. This paper includes examples of models of particular types of HVAC components, such as boilers and actuators, with all attributes included in the definitions. The paper concludes by describing the on-going process of model testing, implementation and integration into the complete IFC model and how the model can be used by software developers to support interoperability between HVAC-oriented design and analysis tools.

  9. Research & Development Opportunities for Joining Technologies in HVAC&R

    Broader source: Energy.gov [DOE]

    This report identifies and characterizes R&D opportunities with HVAC&R joining technologies for the Building Technologies Office (BTO) to pursue.

  10. Indirect Benefits (Increased Roof Life and HVAC Savings) from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San Jos Convention Center Indirect Benefits (Increased Roof Life and HVAC Savings) from a ...

  11. EECBG Success Story: HVAC Upgrade Saving Money, Protecting History...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Upgrade Saving Money, Protecting History EECBG Success Story: HVAC Upgrade Saving Money, Protecting History November 2, 2010 - 5:37pm Addthis A new heating and cooling system...

  12. An evaluation of three commercially available technologies forreal-time measurement of rates of outdoor airflow into HVAC systems

    SciTech Connect (OSTI)

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2004-10-28

    During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurements technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of three commercially available measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The three commercially available measurement technologies should provide reasonably, e.g., 20%, accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

  13. An evaluation of technologies for real-time measurement of rates of outdoor airflow into HVAC systems

    SciTech Connect (OSTI)

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2004-09-01

    During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurement technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of four commercially available measurement technologies and one prototype based on a new design are also summarized. The test system and protocol were judged practical and very useful. The series of tests identified three commercially available measurement technologies that should provide reasonably accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. The errors in OA flow rates measured with the fourth commercially available measurement technology were 20% to 30% with horizontal probes but much larger with vertical probes. The new prototype measurement technology was the only one that appears suitable for measuring OA flow rates over their full range from 20% OA to 100% OA without using two separate OA dampers. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

  14. Building Energy Modeling (BEM) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Design: architecture, HVAC system selection & sizing * Operations: HVAC fault diagnosis, dynamic control & demand response * Market: code development & compliance, ratings, ...

  15. IFC HVAC interface to EnergyPlus - A case of expanded interoperability for energy simulation

    SciTech Connect (OSTI)

    Bazjanac, Vladimir; Maile, Tobias

    2004-03-29

    Tedious manual input of data that define a building, its systems and its expected pattern of use and operating schedules for building energy performance simulation has in the past diverted time and resources from productive simulation runs. In addition to its previously released IFCtoIDF utility that semiautomates the import of building geometry, the new IFC HVAC interface to EnergyPlus (released at the end of 2003) makes it possible to import and export most of the data that define HVAC equipment and systems in a building directly from and to other IFC compatible software tools. This reduces the manual input of other data needed for successful simulation with EnergyPlus to a minimum. The main purpose of this new interface is to enable import of HVAC equipment and systems definitions, generated by other IFC compatible software tools (such as HVAC systems design tools) and data bases, into EnergyPlus, and to write such definitions contained in EnergyPlus input files to the original IFC files from which building geometry was extracted for the particular EnergyPlus input. In addition, this interface sets an example for developers of other software tools how to import and/or export data other than building geometry from and/or into EnergyPlus. This paper describes the necessary simplifications and shortcuts incorporated in this interface, its operating environment, interface architecture, and the basic conditions and methodology for its use with EnergyPlus.

  16. Non-Vapor Compression HVAC Technologies Report

    Broader source: Energy.gov [DOE]

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. The Building Technologies Office is evaluating low-global warming potential (GWP) alternatives to vapor-compression technologies.

  17. Better Buildings Neighborhood Program Business Models Guide:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models ...

  18. Building America Webinar: High Performance Space Conditioning Systems, Part II

    Broader source: Energy.gov [DOE]

    The webinar on Nov. 18, 2014, continued the series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits.

  19. HVAC upgrade saving money, protecting history | Department of Energy

    Energy Savers [EERE]

    HVAC Right-Sizing Part 1: Calculating Loads HVAC Right-Sizing Part 1: Calculating Loads This webinar, presented by IBACOS (a Building America Research Team) will highlight the key criteria required to create accurate heating and cooling load calculations, following the guidelines of the Air Conditioning Contractors of America (ACCA) Manual J version 8 PDF icon webinar_hvac_calculatingloads_20110428.pdf More Documents & Publications 2014-08-28 Issuance: Energy Conservation Standards for

  20. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-12-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In addition it provides some additional detail for an alternative winter water heating/space heating (WH/SH) control strategy briefly described in the original report and corrects some minor errors.

  1. Pre-Commercial Demonstration of Cost-Effective Advanced HVAC Controls- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Hayden Reeve, United Technologies Research Center Optimal control coordination of heating, ventilation, and air conditioning (HVAC) equipment can reduce energy by more than 20% over current building automation systems (BASs) but is not widely deployed due to challenges with complexity, scalability, and deployment.

  2. Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems

    SciTech Connect (OSTI)

    Dumidu Wijayasekara; Milos Manic

    2013-08-01

    Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount of information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.

  3. Building America System Research

    SciTech Connect (OSTI)

    2013-04-01

    Residential Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  4. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    3 Thermal Distribution Design Load and Electricity Intensities, by Building Activity Education 0.5 1.3 Food Sales 1.1 6.4 Food Service 1.5 6.4 Health Care 1.5 5.6 Lodging 0.5 1.9 Mercantile and Service 0.9 2.7 Office 1.3 3.3 Public Assembly 1.2 3.0 Warehouse 0.4 1.8 All Buildings 1.0 2.8 Source(s): Design Load Intensity End Use Intensity (W/SF) (kWh/SF) BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment,

  5. Model Predictive Control of HVAC Systems: Implementation and Testing at the University of California, Merced

    SciTech Connect (OSTI)

    Haves, Phillip; Hencey, Brandon; Borrell, Francesco; Elliot, John; Ma, Yudong; Coffey, Brian; Bengea, Sorin; Wetter, Michael

    2010-06-29

    A Model Predictive Control algorithm was developed for the UC Merced campus chilled water plant. Model predictive control (MPC) is an advanced control technology that has proven successful in the chemical process industry and other industries. The main goal of the research was to demonstrate the practical and commercial viability of MPC for optimization of building energy systems. The control algorithms were developed and implemented in MATLAB, allowing for rapid development, performance, and robustness assessment. The UC Merced chilled water plant includes three water-cooled chillers and a two million gallon chilled water storage tank. The tank is charged during the night to minimize on-peak electricity consumption and take advantage of the lower ambient wet bulb temperature. The control algorithms determined the optimal chilled water plant operation including chilled water supply (CHWS) temperature set-point, condenser water supply (CWS) temperature set-point and the charging start and stop times to minimize a cost function that includes energy consumption and peak electrical demand over a 3-day prediction horizon. A detailed model of the chilled water plant and simplified models of the buildings served by the plant were developed using the equation-based modeling language Modelica. Steady state models of the chillers, cooling towers and pumps were developed, based on manufacturers performance data, and calibrated using measured data collected and archived by the control system. A detailed dynamic model of the chilled water storage tank was also developed and calibrated. Simple, semi-empirical models were developed to predict the temperature and flow rate of the chilled water returning to the plant from the buildings. These models were then combined and simplified for use in a model predictive control algorithm that determines the optimal chiller start and stop times and set-points for the condenser water temperature and the chilled water supply temperature. The report describes the development and testing of the algorithm and evaluates the resulting performance, concluding with a discussion of next steps in further research. The experimental results show a small improvement in COP over the baseline policy but it is difficult to draw any strong conclusions about the energy savings potential for MPC with this system only four days of suitable experimental data were obtained once correct operation of the MPC system had been achieved. These data show an improvement in COP of 3.1% {+-} 2.2% relative to a baseline established immediately prior to the period when the MPC was run in its final form. This baseline includes control policy improvements that the plant operators learned by observing the earlier implementations of MPC, including increasing the temperature of the water supplied to the chiller condensers from the cooling towers. The process of data collection and model development, necessary for any MPC project, resulted in the team uncovering various problems with the chilled water system. Although it is difficult to quantify the energy savings resulting from these problems being remedied, they were likely on the same order as the energy savings from the MPC itself. Although the types of problems uncovered and the level of energy savings may differ significantly from other projects, some of the benefits of detecting and diagnosing problems are expected from the use of MPC for any chilled water plant. The degree of chiller loading was found to be a key factor for efficiency. It is more efficient to operate the chillers at or near full load. In order to maximize the chiller load, one would maximize the temperature difference across chillers and the chilled water flow rate through the chillers. Thus, the CHWS set-point and the chilled water flow-rate can be used to limit the chiller loading to prevent chiller surging. Since the flow rate has an upper bound and the CHWS set point has a lower bound, the chiller loading is constrained and often determined by the chilled water return temperature (CHWR). The CHWR temperature

  6. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    SciTech Connect (OSTI)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  7. Energy Renovations: Volume 14: HVAC - A Guide for Contractors to Share with Homeowners

    SciTech Connect (OSTI)

    Gilbride, Theresa L.; Baechler, Michael C.; Hefty, Marye G.; Hand, James R.; Love, Pat M.

    2011-08-29

    This report was prepared by PNNL for DOE's Building America program and is intended as a guide that energy performance contractors can share with homeowners to describe various energy-efficient options for heating, cooling, and ventilating existing homes. The report provides descriptions of many common and not-so-common HVAC systems, including their advantages and disadvantages, efficiency ranges and characteristics of high-performance models, typical costs, and climate considerations. The report also provides decision trees and tables of useful information for homeowners who are making decisions about adding, replacing, or upgrading existing HVAC equipment in their homes. Information regarding home energy performance assessments (audits) and combustion safety issues when replacing HVAC equipment are also provided.

  8. Methods for Automated and Continuous Commissioning of Building Systems

    SciTech Connect (OSTI)

    Larry Luskay; Michael Brambley; Srinivas Katipamula

    2003-04-30

    Avoidance of poorly installed HVAC systems is best accomplished at the close of construction by having a building and its systems put ''through their paces'' with a well conducted commissioning process. This research project focused on developing key components to enable the development of tools that will automatically detect and correct equipment operating problems, thus providing continuous and automatic commissioning of the HVAC systems throughout the life of a facility. A study of pervasive operating problems reveled the following would most benefit from an automated and continuous commissioning process: (1) faulty economizer operation; (2) malfunctioning sensors; (3) malfunctioning valves and dampers, and (4) access to project design data. Methodologies for detecting system operation faults in these areas were developed and validated in ''bare-bones'' forms within standard software such as spreadsheets, databases, statistical or mathematical packages. Demonstrations included flow diagrams and simplified mock-up applications. Techniques to manage data were demonstrated by illustrating how test forms could be populated with original design information and the recommended sequence of operation for equipment systems. Proposed tools would use measured data, design data, and equipment operating parameters to diagnosis system problems. Steps for future research are suggested to help more toward practical application of automated commissioning and its high potential to improve equipment availability, increase occupant comfort, and extend the life of system equipment.

  9. Two Alabama Elementary Schools Get Cool with New HVAC Units

    Broader source: Energy.gov [DOE]

    Addison Elementary School and Double Springs Elementary School in northwestern Alabama were warm. Some classrooms just didn’t cool fast enough. The buildings, which were built almost 20 years ago, were in need of new HVAC units.

  10. ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes

    Broader source: Energy.gov [DOE]

    Building low-load homes creates a new set of challenges for HVAC designers and installers. Right-sizing equipment, managing ventilation, and controlling interior moisture levels are critical if you...

  11. ZERH Webinar: Low Load HVAC and Zero Energy Ready Homes | Department...

    Office of Environmental Management (EM)

    long-term structure durability. In this webinar you will learn key HVAC design techniques and critical pitfalls to avoid when building highly energy efficient homes....

  12. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    SciTech Connect (OSTI)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  13. Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

    Broader source: Energy.gov [DOE]

    Discusses progress on thermal comfort modeling and detailed design, fabrication, and component/system-level testing of TE architecture

  14. Building America Webinar: High Performance Space Conditioning Systems, Part II

    Broader source: Energy.gov [DOE]

    The webinar will continue our series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar...

  15. Building America Webinar: High Performance Space Conditioning Systems, Part I

    Office of Energy Efficiency and Renewable Energy (EERE)

    The webinar will focus on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar will be:

  16. Fabrication of A Quantum Well Based System for Truck HVAC | Department of

    Broader source: Energy.gov (indexed) [DOE]

    1 of 3 PPG developed and commercialized the Intercept® Spacer System that revolutionized the manufacture of double-pane insulated glazing units (IGUs) 25 years ago. Over 125 PPG-licensed Intercept® Spacer System lines are in operation in the US. Currently in use in more than 600 million residential windows, the Intercept® Spacer System is the top-selling product of its kind in North America. Image: PPGGLASS.COM 2 of 3 In 2011, PPG was the first to commission and install GED's Automated

  17. System Configuration Management Implementation Procedure for the Canister Storage Building (CSB)

    SciTech Connect (OSTI)

    GARRISON, R.C.

    2000-11-28

    This document provides configuration management for the Distributed Control System (DCS), the Gaseous Effluent Monitoring System (GEMS-100) System, the Heating Ventilation and Air Conditioning (HVAC) Programmable Logic Controller (PLC), the Canister Receiving Crane (CRC) CRN-001 PLC, and both North and South vestibule door interlock system PLCs at the Canister Storage Building (CSB). This procedure identifies and defines software configuration items in the CSB control and monitoring systems, and defines configuration control throughout the system life cycle. Components of this control include: configuration status accounting; physical protection and control; and verification of the completeness and correctness of these items.

  18. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    4 Thermal Distribution Equipment Design Load and Electricity Intensities, by System Type Central VAV Central CAV Packaged CAV Central VAV Central CAV Packaged CAV Condenser Fan 0.3 0.2 Cooling Tower Fan 0.2 0.1 0.2 0.0 Condenser Water Pump 0.2 0.3 0.3 0.0 Chilled Water Pump 0.2 0.1 0.2 0.0 Supply & Return Fans 0.7 0.5 0.6 1.2 1.9 1.9 Chiller/Compressor 1.9 1.8 3.3 1.7 2.3 4.0 Source(s): BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:

  19. Energy Department Issues Green Building Certification System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification System ...

  20. Chapter 5: Lighting, HVAC, and Plumbing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Lighting, HVAC, and Plumbing Chapter 5: Lighting, HVAC, and Plumbing Chapter 5 of the LANL Sustainable Design Guide with guidelines for developing sustainable, healthy, energy-efficient buildings on the Los Alamos National Laboratory campus. PDF icon sustainable_guide_ch5.pdf More Documents & Publications IES version 2012 IES <Virtual Environment> version 6.3 IES version 2013

  1. HVAC R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D HVAC R&D Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN FY16 DOE Funding: $2,688,000 Project Term: Ongoing Funding Type: Direct Lab Funding PROJECT OBJECTIVE Heating, ventilation, and air conditioning (HVAC) is the largest energy end use in both residential and commercial buildings, at 38% and 31% respectively. ORNL's research and development efforts aim to create next-generation, cost-effective, energy-efficient technologies that will enable energy savings

  2. HVAC Performance Maps - 2014 BTO Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Performance Maps - 2014 BTO Peer Review HVAC Performance Maps - 2014 BTO Peer Review Presenter: Dane Christensen, National Renewable Energy Laboratory Through laboratory evaluation, this project will develop detailed data sets, termed "performance maps," of certain types of heat pumps. In fiscal year 2014, the National Renewable Energy Laboratory (NREL) will develop performance maps of residential variable speed heat pumps. The U.S. Department of Energy's Building America program

  3. Sustainable Building Rating Systems Summary

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Rauch, Emily M.

    2006-07-01

    The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.

  4. Green Building Certification Systems Requirement for New Federal Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Major Renovations of Federal Buildings Final Rule | Department of Energy Final Rule Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Document details the Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings' Final Rule for 10 CFR Parts 433, 435 and 436. File greenblgcert.docx More Documents & Publications EA-1991: Final Environmental

  5. Green Building Certification Systems Requirement for New Federal Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Major Renovations of Federal Buildings OIRA Comparison Document | Department of Energy OIRA Comparison Document Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Document details the Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings' OIRA Comparison Document for 10 CFR Parts 433, 435 and 436. File greenblgcert_compare2014.docx

  6. Integrated Building Management System (IBMS)

    SciTech Connect (OSTI)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  7. HVAC Equipment Design Options for Near-Zero-Energy Homes (NZEH) -A Stage 2 Scoping Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2005-11-01

    Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. This report describes results of a scoping assessment of HVAC system options for NZEH homes. ORNL has completed a preliminary adaptation, for consideration by The U.S. Department of Energy, Energy Efficiency and Renewable Energy Office, Building Technologies (BT) Program, of Cooper's (2001) stage and gate planning process to the HVAC and Water Heating element of BT's multi-year plan, as illustrated in Figure 1. In order to adapt to R&D the Cooper process, which is focused on product development, and to keep the technology development process consistent with an appropriate role for the federal government, the number and content of the stages and gates needed to be modified. The potential federal role in technology development involves 6 stages and 7 gates, but depending on the nature and status of the concept, some or all of the responsibilities can flow to the private sector for product development beginning as early as Gate 3. In the proposed new technology development stage and gate sequence, the Stage 2 'Scoping Assessment' provides the deliverable leading into the Gate 3 'Scoping Assessment Screen'. This report is an example of a Stage 2 deliverable written to document the screening of options against the Gate 3 criteria and to support DOE decision making and option prioritization. The objective of this scoping assessment was to perform a transparent evaluation of the HVAC system options for NZEH based on the applying the Gate 3 criteria uniformly to all options.

  8. ancient building system | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  9. Zone Level Occupant-Responsive Building Energy Systems at the GSA

    SciTech Connect (OSTI)

    Robinson, Alastair

    2014-03-01

    The General Services Administration (GSA) partnered with the U.S. Department of Energy (DOE) to develop and implement building energy system retrofits, aiming to reduce energy consumption of at least two building systems by a total of 30 percent or more, as part of DOEs Commercial Building Partnership (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program, working with the GSA and a team of consultants. This case study reports expected energy savings from appropriate energy efficient design and operations modifications to lighting and heating, ventilating and air conditioning (HVAC) systems at the selected study sites. These retrofits comprised installation of new lighting systems with dimming capability and occupancy-sensor control at the individual light fixture level, and utilized lighting system occupancy sensor signals to continually readjust zone-level ventilation airflow according to the number of people present, down to minimum rates when vacant.

  10. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building...

  11. Building America Update - October 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2012 Building America Update - October 2012 Here you can link to the October 2012 edition of the Building America Update, which features articles on: Industry publications highlighting Building America research on HVAC systems DOE Challenge Home webinars New publications PDF icon building_america_update_oct2012.pdf More Documents & Publications Building America Update - January 2013 Building America Update - September 2013 Building America Update - June 2013

  12. Chapter 4, Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 4 - 1 Chapter 4 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application

  13. EECBG Success Story: HVAC Upgrade Saving Money, Protecting History

    Broader source: Energy.gov [DOE]

    With financial support from a $250,000 PA Conservation Works! grant – funded through the federal Energy Efficiency and Conservation Block Grant program and the Recovery Act – CCHS purchased a new Desert-Aire HVAC system. Learn more.

  14. Basement Insulation Systems - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basement Insulation Systems - Building America Top Innovation Basement Insulation Systems - Building America Top Innovation This photo shows a framed basement wall with insulation ...

  15. Building America Webinar: Ductless Hydronic Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team...

  16. Invensys Building System | Open Energy Information

    Open Energy Info (EERE)

    Zip: 61132 Product: Invensys was a supplier of integrated systems for building automation, and is now merged with TAC. References: Invensys Building System1 This article is...

  17. Building Energy Modeling (BEM) Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tool Operation: HVAC fault diagnosis, dynamic control & demand response * ... control & fault-detectiondiagnosis CBEI: Consortium for Commercial Building ...

  18. CBEI: Pre-commercial demonstration of cost-effective advanced HVAC controls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and diagnostics for medium-sized buildings - 2015 Peer Review | Department of Energy Pre-commercial demonstration of cost-effective advanced HVAC controls and diagnostics for medium-sized buildings - 2015 Peer Review CBEI: Pre-commercial demonstration of cost-effective advanced HVAC controls and diagnostics for medium-sized buildings - 2015 Peer Review Presenter: Draguna Vrabie, United Technologies Research Center View the Presentation PDF icon CBEI: Pre-commercial demonstration of

  19. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Tyler, Texas PROJECT INFORMATION Project Name: Ventilation Effectiveness Location: Tyler, TX Partners: University of Texas, TxAIRE, uttyler.edu/txaire/houses/ Building Science Corporation, buildingscience.com Building Component: Heating, ventilating, and air conditioning (HVAC), whole-building dilution ventilation Application: New and retrofit; single-family and multifamily Year Tested: 2012 Climate Zones: All PERFORMANCE

  20. Control strategy optimization of HVAC plants

    SciTech Connect (OSTI)

    Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio; Pirozzi, Salvatore; Ubertini, Stefano

    2015-03-10

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.

  1. ORNL: HVAC Lab Research - 2015 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL: HVAC Lab Research - 2015 Peer Review ORNL: HVAC Lab Research - 2015 Peer Review Presenter: Jeffrey Munk, ORNL View the Presentation PDF icon ORNL: HVAC Lab Research - 2015 ...

  2. Building America Systems Engineering Approach

    SciTech Connect (OSTI)

    2011-12-15

    The Building America Research Teams use a systems engineering approach to achieve higher quality and energy savings in homes. Using these techniques, the energy consumption of new houses can be reduced by 40% or more with little or no impact on the cost of ownership.

  3. Energy Department Issues Green Building Certification System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green...

  4. HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    HVAC Design Strategy for a Hot-Humid Production Builder Houston, Texas PROJECT INFORMATION Construction: New Home Type: Single-family, production builder Builder: David Weekley Homes - Houston www.davidweekleyhomes.com/ new-homes/tx/houston Size: 1,757 ft 2 to 4,169 ft 2 Price Range: about $260,000 to $450,000 Date Completed: 2013 Climate Zone: Hot-humid PERFORMANCE DATA HERS index: Builder standard practice = 66; case study 1,757-ft 2 house = 54 Projected annual energy cost savings: $375

  5. Study of lubricant circulation in HVAC systems. Volume 1: Description of technical effort and results; Final technical report, March 1995--April 1996

    SciTech Connect (OSTI)

    Biancardi, F.R.; Michels, H.H.; Sienel, T.H.; Pandy, D.R.

    1996-10-01

    The purpose of this program was to conduct experimental and analytical efforts to determine lubricant circulation characteristics of new HFC/POE pairs and HFC/mineral oil pairs in a representative central residential HVAC system and to compare their behavior with the traditional HCFC-22/mineral oil (refrigerant/lubricant) pair. A dynamic test facility was designed and built to conduct the experimental efforts. This facility provided a unique capability to visually and physically measure oil circulation rates, on-line, in operating systems. A unique on-line ultraviolet-based measurement device was used to obtain detailed data on the rate and level of lubricant oil circulated within the operating heat pump system. The experimental and analytical data developed during the program are presented as a function of vapor velocity, refrigerant/lubricant viscosity, system features and equipment. Both visual observations and instrumentation were used to understand ``worst case`` oil circulation situations. This report is presented in two volumes. Volume 1 contains a complete description of the program scope, objective, test results summary, conclusions, description of test facility and recommendations for future effort. Volume 2 contains all of the program test data essentially as taken from the laboratory dynamic test facility during the sequence of runs.

  6. HVAC, Water Heating, and Appliance Subprogram Overview — 2016 BTO Peer Review

    Broader source: Energy.gov [DOE]

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Emerging Technologies: HVAC, Water Heating, and Appliance subprogram. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  7. What are the Best HVAC Solutions for Low-Load, High Performance Homes?"

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 26, 2012, and addressed the question What are the best HVAC solutions for low-load, high performance homes?"

  8. Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

    2014-12-24

    Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated “dumb” nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated ‘smart grid’. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced to understand their implications before they can be successfully implemented in the power system.

  9. Building America System Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Research Building America System Research Residential Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review PDF icon resbldgs01_werling_040213.pdf More Documents & Publications Solar Decathlon Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Whole Building Performance-Based Procurement Training

  10. A Guide to Building Commissioning

    SciTech Connect (OSTI)

    Baechler, Michael C.

    2011-09-01

    Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

  11. Systems and methods for controlling energy use during a demand limiting period

    DOE Patents [OSTI]

    Wenzel, Michael J.; Drees, Kirk H.

    2016-04-26

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  12. Pedernales Electric Cooperative- HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Pedernales Electric Cooperative offers equipment rebates to its members who install energy efficient HVAC equipment. Eligible equipment includes:

  13. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  14. Opportunities for Building America Research to Address Energy Upgrade

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Challenges: HVAC, Envelope and IAQ (301) | Department of Energy Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ (301) Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ (301) Better Buildings Residential Network Peer Exchange Call Series: Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ

  15. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

    SciTech Connect (OSTI)

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-10-11

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions.

  16. Workshop 2: Advanced HVAC&R Research Effort | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Advanced HVAC&R Research Effort Workshop 2: Advanced HVAC&R Research Effort The Building Technologies Office (BTO) is exploring the launch of a major HVAC&R research effort in the area of low global warming potential and non-vapor compression technologies. To support this endeavor, BTO convened two workshops to exchange ideas on the technical focus and overall structure and approach for the effort. The second workshop was held at the American Society of Heating, Refrigerating, and

  17. HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Heater and Appliance R&D - 2014 BTO Peer Review HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's HVAC, Water Heater and Appliance R&D activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. View the Presentation PDF icon HVAC, Water Heater and

  18. Building International Emergency Management Systems | National...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home ... International Emergency Management Systems Building ... response management system DC Survey 2013 NNSA ...

  19. Update on maintenance and service costs of commercial building ground-source heat pump systems

    SciTech Connect (OSTI)

    Cane, D.; Garnet, J.M.

    2000-07-01

    An earlier paper showed that commercial ground-source heat pump systems have significantly lower service and maintenance costs than alternative HVAC systems. This paper expands on those results by adding 13 more buildings to the original 25 sites and by comparing the results to the latest ASHRAE survey of HVAC maintenance costs. Data from the 38 sites are presented here including total (scheduled and unscheduled) maintenance costs in cents per square foot per year for base cost, in-house, and contractor-provided maintenance. Because some of the new sites had maintenance costs that were much higher than the industry norm, the resulting data are not normally distributed. Analysis (O'Hara Hines 1998) indicated that a log-normal distribution is a better fit; thus, the data are analyzed and presented here as log-normal. The log-mean annual total maintenance costs for the most recent year of the survey ranged from 6.07 cents per square foot to 8.37 cents per square foot for base cost and contractor-provided maintenance, respectively.

  20. A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-­based DR controller (dubbed the Central Load-­Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-­cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-­tune the strategies accordingly.

  1. Green Building Certification Systems Requirement for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Rule Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Document details the Green Building ...

  2. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Applications | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace047_maranville_2012_o.pdf More Documents & Publications Thermoelectric HVAC for Light-Duty Vehicle Applications Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

  3. Building America 1995-2012 Top Innovations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America 1995-2012 Top Innovations Building America 1995-2012 Top Innovations This page provides a listing of and links to legacy Building America Top Innovations developed from 1995-2012. Advanced Technologies and Practices Building Science Solutions Thermal Enclosure: Basement Insulation Systems Advanced Framing Systems and Packages Unvented, Conditioned Crawlspaces Unvented, Conditioned Attics High-R Walls Optimized Comfort Systems: Integration of HVAC System Design with Simplified Duct

  4. HVAC Right-Sizing Part 1: Calculating Loads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Right-Sizing Part 1: Calculating Loads HVAC Right-Sizing Part 1: Calculating Loads This webinar, presented by IBACOS (a Building America Research Team) will highlight the key criteria required to create accurate heating and cooling load calculations, following the guidelines of the Air Conditioning Contractors of America (ACCA) Manual J version 8 PDF icon webinar_hvac_calculatingloads_20110428.pdf More Documents & Publications 2014-08-28 Issuance: Energy Conservation Standards for Packaged

  5. Building America Webinar: Ductless Hydronic Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility study of ductless hydronic distribution systems in new homes and deep retrofits. File webinar_arbi_20111108.wmv More Documents & Publications Building America Webinar: National Residential Efficiency Measures Database Unveiled

  6. Strategy Guideline: HVAC Equipment Sizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: HVAC Equipment Sizing Arlan Burdick IBACOS, Inc. February 2012 This report received minimal editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  7. Building Management System Integrators | Open Energy Information

    Open Energy Info (EERE)

    Place: Berkshire, England, United Kingdom Zip: SL1 5AU Product: Service and maintenance provider. References: Building Management System Integrators1 This article is a...

  8. Building America Systems Integration Research Annual Report:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building America Systems Integration Research Annual Report: ... fee to U.S. Department of Energy and its contractors, in ... the houses, and a utility usage database that captures ...

  9. Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  10. Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  11. Building Controls and Lighting Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation to State Energy Advisory Board (STEAB) February 22, 2011 Francis Rubinstein Lead, Lighting Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory fmrubinstein@lbl.gov Lawrence Berkeley National Laboratory U.S. Building End Use Energy Consumption Buildings consume 40% of Building
sector
has:
 total U.S. energy Largest
Energy
Use!
 * 71% of electricity *54% of natural gas No Single End Use Dominates Fastest
growth
rate!
 Lawrence

  12. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect (OSTI)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  13. Columbia Water & Light- Residential HVAC Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  14. HVAC Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: As of January 1, 2016, rebates for unitary air conditioning and split systems and integrated dual enthalpy economizer controls are no longer available.

  15. Opportunities for Building America Research to Address Energy...

    Energy Savers [EERE]

    Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ (301) Opportunities for Building America Research to Address...

  16. 5 Reasons to Download the New Building America Solutions App...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ducts, insulation, HVAC and over 150 specific measures for constructing high-performance, energy-efficient buildings. 4. With the Building America Solutions app, registered users...

  17. BuildingOS by Lucid | Open Energy Information

    Open Energy Info (EERE)

    Lucid Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Buildings, - ENERGY STAR, - HVAC, - LEED, Buildings - Commercial, Energy Efficiency, - Central Plant,...

  18. HVAC, Water Heating, and Appliance Subprogram Overview - 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance Subprogram Overview - 2016 BTO Peer Review HVAC, Water Heating, and Appliance ... Office's Emerging Technologies: HVAC, Water Heating, and Appliance subprogram. ...

  19. 2014-04-28 Issuance: Certification of Commercial HVAC, Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and ...

  20. HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review...

    Energy Savers [EERE]

    HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review Presenter: Antonio M. Bouza, U.S. Department ...

  1. HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer...

    Energy Savers [EERE]

    HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy View the Presentation PDF icon HVAC, Water Heating, and ...

  2. Green Building Certification Systems Requirement for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OIRA Comparison Document Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Document ...

  3. Characterizing Indoor Airflow and Pollutant Transport using Simulation Modeling for Prototypical Buildings. I. Office Buildings

    SciTech Connect (OSTI)

    Sohn, M.D.; Daisey, J.M.; Feustel, H.E.

    1999-06-01

    This paper describes the first efforts at developing a set of prototypical buildings defined to capture the key features affecting airflow and pollutant transport in buildings. These buildings will be used to model airflow and pollutant transport for emergency response scenarios when limited site-specific information is available and immediate decisions must be made, and to better understand key features of buildings controlling occupant exposures to indoor pollutant sources. This paper presents an example of this approach for a prototypical intermediate-sized, open style, commercial building. Interzonal transport due to a short-term source release, e.g., accidental chemical spill, in the bottom and the upper floors is predicted and corresponding HVAC system operation effects and potential responses are considered. Three-hour average exposure estimates are used to compare effects of source location and HVAC operation.

  4. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  5. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, Russell; Ludwig, Peter; Maurer, Tessa

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  6. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  7. Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San José Convention Center

    Broader source: Energy.gov [DOE]

    The City of San José is considering the installation of a solar photovoltaic (PV) system on the roof of the San José Convention Center. The installation would be on a lower section of the roof covering approximately 21,000 ft2. To assist city staff in making a decision on the PV installation, the Department of Energy Tiger Team has investigated potential indirect benefits of installing a solar PV system on the Convention Center roof. The indirect benefits include potential increase in roof life, as well as potential reduced heating and cooling load in the building due to roof shading from the PV system.

  8. NREL: Technology Deployment - Building Energy Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and

  9. Building America Solution Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. ...

  10. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  11. Small- and Medium-Size Building Automation and Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Michael ...

  12. Quality Management System Guidelines - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Management System Guidelines - Building America Top Innovation Quality Management System Guidelines - Building America Top Innovation Effec guid-quality-mgnt.png The ...

  13. Advanced Framing Systems and Packages - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Framing Systems and Packages - Building America Top Innovation Advanced Framing Systems and Packages - Building America Top Innovation This photo shows advanced framing ...

  14. Building Codes and Regulations for Solar Water Heating Systems...

    Office of Environmental Management (EM)

    Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit:...

  15. Small- and Medium-Size Building Automation and Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Emerging ...

  16. Chapter 4: The Building Architectural Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: The Building Architectural Design Chapter 4: The Building Architectural Design Chapter 4 of the LANL Sustainable Design Guide featuring schematic design, designing using computer simulations, design of high performance featurea and systems, daylighting, passive and active solar systems, and accommodating recycling activities. PDF icon sustainable_guide_ch4.pdf More Documents & Publications LANL Sustainable Design Guide - Appendices Chapter 5: Lighting, HVAC, and Plumbing National Best

  17. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  18. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  19. Parametric System Curves: Correlations Between Fan Pressure Rise and Flow for Large Commercial Buildings

    SciTech Connect (OSTI)

    Sherman, Max; Wray, Craig

    2010-05-19

    A substantial fraction of HVAC energy use in large commercial buildings is due to fan operation. Fan energy use depends in part on the relationship between system pressure drop and flow through the fan, which is commonly called a "system curve." As a step toward enabling better selections of air-handling system components and analyses of common energy efficiency measures such as duct static pressure reset and duct leakage sealing, this paper shows that a simple four-parameter physical model can be used to define system curves. Our model depends on the square of the fan flow, as is commonly considered. It also includes terms that account for linear-like flow resistances such as filters and coils, and for supply duct leakage when damper positions are fixed or are changed independently of static pressure or fan flow. Only two parameters are needed for systems with variable-position supply dampers (e.g., VAV box dampers modulating to control flow). For these systems, reducing or eliminating supply duct leakage does not change the system curve. The parametric system curve may be most useful when applied to field data. Non-linear techniques could be used to fit the curve to fan pressure rise and flow measurements over a range of operating conditions. During design, when measurements are unavailable, one could use duct design calculation tools instead to determine the coefficients.

  20. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

  1. Building International Emergency Management Systems | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Building International Emergency Management Systems NNSA helps nations develop the core elements of an emergency response program. Based on preliminary discussions with counterparts, NNSA develops emergency management programs with partner nations to exchange views and enhance development of effective emergency management systems. Generally, NNSA will assist foreign governments and international organizations with integration of emergency-program core elements,

  2. Towards SustainabilityGreen Building, Sustainability Objectives, and Building America Whole House Systems Research

    SciTech Connect (OSTI)

    none,

    2008-02-01

    This paper discusses Building America whole-house systems research within the broad effort to reduce or eliminate the environmental impact of building and provides specific recommendations for future Building America research based on Building Science Corporations experience with several recent projects involving green home building programs.

  3. HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review |

    Energy Savers [EERE]

    market entry & acceptance of technologies & products Competitive & shared R&D funding focused on tech. performance by researchers in lab / field facilities Technology pathway & research reports Improve performance & cost of heat pump & water heating technologies Researchers equipped with validated solutions to develop or improve components & optimize tech. systems at reduced cost High-efficiency HVAC, water heating & appliance technologies & products are

  4. HVAC, Water Heating and Appliances Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market entry & acceptance of technologies & products Competitive & shared R&D funding focused on tech. performance by researchers in lab / field facilities Technology pathway & research reports Improve performance & cost of heat pump & water heating technologies Researchers equipped with validated solutions to develop or improve components & optimize tech. systems at reduced cost High-efficiency HVAC, water heating & appliance technologies & products are

  5. Development of High-Efficiency Low-Lift Vapor Compression System - Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-03-31

    PNNL, with cofunding from the Bonneville Power Administration (BPA) and Building Technologies Program, conducted a research and development activity targeted at addressing the energy efficiency goals targeted in the BPA roadmap. PNNL investigated an integrated heating, ventilation and air conditioning (HVAC) system option referred to as the low-lift cooling system that potentially offers an increase in HVAC energy performance relative to ASHRAE Standard 90.1-2004.

  6. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire

  7. An Evaluation of the HVAC Load Potential for Providing Load Balancing Service

    SciTech Connect (OSTI)

    Lu, Ning

    2012-09-30

    This paper investigates the potential of providing aggregated intra-hour load balancing services using heating, ventilating, and air-conditioning (HVAC) systems. A direct-load control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain consumer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals were used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVACs needed to provide a {+-}1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and the outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meet the performance requirements and can become a major source of revenue for load-serving entities where the smart grid infrastructure enables direct load control over the HAVC loads.

  8. LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy High Performance Active Perimeter Building Systems - 2015 Peer Review LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review Presenter: Eleanor Lee, LBNL View the Presentation PDF icon LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review More Documents & Publications FLEXLAB Connected Buildings Interoperability Vision Webinar 2015 DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS

  9. EMBODY(Environmental Modules Build System Software)

    Energy Science and Technology Software Center (OSTI)

    2009-02-09

    Embody (Environment Modules Build) is a software build tool with integrated support for the environment-modules package. The tool eases and automates the task of building and installing software packages from source or binary distributions, as well as the management of associated modulefiles. An administrator or software pool maintainer has to write a brief script for the installation process. These steps are usually described for manual execution, in a package's README or INSTALL file. It wouldmore » be up to the site administrator to work out a procedure to capture the steps taken. This tool: streamlines and codifies the installation tasks in a common framework; it provides a self-documenting and unified way for maintaining package installations; uses bash shell variables and functions for portability; keeps log files of the proceedings. It is similar in intent and function to other existing tools, such as RPM, but has several novel features tailored for High Performance Computing (HPC) software deployments. The design goal is simplicity and decoupling from RPM's dependencies and its database, which enables coexistence of several builds. Useful on HPC systems, new builds can be deployed centrally to shared file systems and without affecting running jobs.« less

  10. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  11. Buildings Energy Data Book: 7.2 Federal Tax Incentives

    Buildings Energy Data Book [EERE]

    2 Tax Incentive of the American Recovery and Reinvestment Act of 2009 Envelope Improvements to Existing Homes (1) --Increases existing tax credit to 30% of costs up to $1,500 to upgrade building envelope to be compliant with codes for new construction. Upgrades to building shell, HVAC system, and windows and doors may qualify. Improvements must be installed between January 1, 2008 and December 31, 2010. Renewable Energy Production Tax Credits --Tax credit to 30% of costs for installation of

  12. Building America Whole-House Solutions for New Homes: Evluating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania | Department of Energy Evluating Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania Building America Whole-House Solutions for New Homes: Evluating Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate HVAC distribution systems during heating, cooling, and midseason conditions.

  13. Unvented, Conditioned Attics - Building America Top Innovation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Attics - Building America Top Innovation Unvented, Conditioned Attics - Building America Top Innovation This photo shows an attic that is conditioned (insulated) and showing ductwork. The preference for a large segment of the U.S. housing industry has been to locate HVAC systems in unconditioned attics, but this is highly inefficient. The additional heat loss and gain of ducts in unconditioned, vented attics increases energy use for heating and cooling by 10%. Additionally, duct

  14. Energy Management Systems Package for Small Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Building America System Research Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Buildings Performance Database - 2013 BTO Peer

  15. enVerid Systems Inc. - Commercial Building Technology Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Mars Mineral NREL NETL Target MarketAudience: Commercial real estate and ... climates) - Total HVAC - Heating and Hot Water * Indoor Environmental Quality - Space ...

  16. EERE Success Story-The Navy Saves Energy in its Buildings With EERE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expertise | Department of Energy The Navy Saves Energy in its Buildings With EERE Expertise EERE Success Story-The Navy Saves Energy in its Buildings With EERE Expertise May 7, 2013 - 12:00am Addthis Thanks to a Naval Undersea Warfare Center (NUWC) energy savings performance contract (ESPC) partnership, the NUWC installed geothermal heat pumps, high-efficiency HVAC and building systems; improved energy management controls; and repaired two significant underground water leaks. Since the

  17. Building Informatics Environment

    Energy Science and Technology Software Center (OSTI)

    2008-06-02

    The Building Informatics Environment is a modeling environment based on the Modelica language. The environment allows users to create a computer model of a building and its energy systems with various time scales and physical resolutions. The environment can be used for rapid development of, e.g., demand controls algorithms, new HVAC system solutions and new operational strategies (controls, fault detection and diagnostics). Models for building energy and control systems are made available in the environment.more » The models can be used as provided, or they can be changed and/or linked with each other in order to model the effects that a particular user is interested in.« less

  18. Building America Top Innovations 2014 Profile: California Energy...

    Energy Savers [EERE]

    Building America research on HVAC air filter sizing prompted a change in the California ... California Energy Standards Recognize the Importance of Filter Selection (top left) ...

  19. Idaho Power - New Building Efficiency Program | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    for lighting controls, HVAC equipment and controls, building shell measures, and energy controlventilation equipment. Incentives are designed to average about half the...

  20. Better Buildings Neighborhood Program Peer Exchange Call: Structuring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Welcome to Energy Upgrade California(tm) Better Buildings Program Pilots: HVAC Contractor ... have access to an online resource library filled with customizable marketing ...

  1. Ball State building massive geothermal system

    Broader source: Energy.gov [DOE]

    Ball State University is building America’s largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also “expand how America will define the use of geothermal technology on a district-wide scale,” and provide health benefits such as reducing asthma rates for Indiana residents, says Philip Sachtleben, Ball State’s associate vice president of governmental relations. The system will cool and heat nearly 50 buildings on Ball State’s Muncie, Ind., campus, replace four coal-burning boilers and span more than 600 acres. The switch to geothermal will save the university $2.2 million in fuel costs and cut its carbon footprint in half.

  2. HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Appliances Overview - 2015 BTO Peer Review HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy View the Presentation PDF icon HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review More Documents & Publications HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review HVAC, Water Heating, and Appliance Subprogram Overview - 2016 BTO Peer Review Research & Development Roadmap:

  3. Chapter 5 - Increasing Efficiency of Buildings Systems and Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5 - Increasing Efficiency of Buildings Systems and Technologies Chapter 5 - Increasing Efficiency of Buildings Systems and Technologies Chapter 5 - Increasing Efficiency of Buildings Systems and Technologies The buildings sector accounts for about 76%* of electricity use and 40% of all U.S. primary energy use and associated greenhouse gas (GHG) emissions, making it essential to reduce energy consumption in buildings in order to meet national energy and environmental

  4. Energy Department Issues Green Building Certification System Final Rule to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Increased Energy Measurement and Efficient Building Design | Department of Energy Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design October 10, 2014 - 9:37am Addthis Supporting the Obama Administration's goal to reduce carbon emissions and protect the environment, the Energy

  5. Acoustic Building Infiltration Measurement System/Sonic Leak Quantifier |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Acoustic Building Infiltration Measurement System/Sonic Leak Quantifier Acoustic Building Infiltration Measurement System/Sonic Leak Quantifier Building infiltration, the uncontrolled leakage of air in and out of a building envelope, accounts for a significant portion of the heating and cooling energy for buildings and is estimated to account for nearly 4% of all energy use in the United States. Infiltration can be measured on residential and small commercial

  6. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY STAR and Green Building Rating Systems ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems October 13, 2015 2:00PM to 3:00PM EDT Online Hosted by the U.S....

  7. Building America Top Innovations 2014 Profile: California Energy Standards Recognize the Importance of Filter Selection

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America research on HVAC air filter sizing that prompted a change in the California “Title 24” Energy Code requiring filter manufacturers, HVAC designers, and HERS raters to make changes that will encourage the use of higher MERV filters without degrading HVAC performance.

  8. Building Codes and Regulations for Solar Water Heating Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every

  9. Ductless Hydronic Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Systems Ductless Hydronic Distribution Systems This presentation is from a Building America webinar conducted on November 8, 2011, by the Alliance for Residential Building Innovation (ARBI) about ductless hydronic distribution systems. PDF icon arbi_hydronic_webinar.pdf More Documents & Publications Ductless Hydronic Distribution Issue #2: What Emerging Innovations are the Key to Future Homes? Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for

  10. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    SciTech Connect (OSTI)

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; Hoffmann, Sabine; Thanachareonkit, Anothai; Li, Zhengrong; Ding, Yong

    2015-05-29

    As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.

  11. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; Hoffmann, Sabine; Thanachareonkit, Anothai; Li, Zhengrong; Ding, Yong

    2015-05-29

    As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products,more » and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less

  12. Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report

    SciTech Connect (OSTI)

    1980-09-01

    A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

  13. Building Energy Information Systems: User Case Studies

    SciTech Connect (OSTI)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

    2010-03-22

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  14. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the ...

  15. Chapter 5: Increasing Efficiency of Building Systems and Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Increasing Efficiency of Building Systems and Technologies September 2015 Quadrennial Technology Review 5 Increasing Efficiency of Building Systems and Technologies Issues and RDD&D Opportunities The buildings sector accounts for about 76% of electricity use and 40% of all U. S. primary energy use and associated greenhouse gas (GHG) emissions, making it essential to reduce energy consumption in buildings in order to meet national energy and environmental challenges (Chapter 1) and to

  16. DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort

    Broader source: Energy.gov [DOE]

    The Building Technologies Office (BTO) recently convened two workshops to discuss the potential launch of a major research effort for advanced HVAC&R technologies. DOEs goal is to develop next-generation heating and cooling technologies that leapfrog the existing vapor compression solutions and result in dramatically improved efficiency while utilizing near-zero global warming potential (GWP) refrigerants or non-vapor compression approaches.

  17. A View on Future Building System Modeling and Simulation

    SciTech Connect (OSTI)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  18. Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis

    SciTech Connect (OSTI)

    Camejo, P.J.

    1989-12-01

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

  19. Building America Webinar: Ductless Hydronic Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility study of ductless hydronic distribution ...

  20. Acoustic Building Infiltration Measurement System (ABIMS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ralph T Muehleisen, rmuehleisen@anl.gov Argonne National Laboratory Acoustic Building ...field tests Team Members * Argonne: Ralph T Muehleisen, Eric Tatara * IIT: Ganesh Raman, ...

  1. Active Integrated Perimeter Building Systems | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... With the momentum toward Internet of Things (IoT) connectivity, demand in the commercial buildings sector for open solutions is accelerating. Leading architects and engineers are ...

  2. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  3. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California...

    Energy Savers [EERE]

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION ... bathrooms constructed in Roseville, California, for one year as an occupied test home. ...

  4. Columbia Water & Light- HVAC and Lighting Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  5. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE Hydrogen and Fuel ...

  6. Energy Savings Modelling of Re-tuning Energy Conservation Measures in Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BASs capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energys building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the re-tuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

  7. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is allowing Commercial Buildings (ISO 50003 - Buildings and Building Complexes) ... SEP program, including associated standards, protocols, and application may be used ...

  8. Building America Technologies Solutions Case Study: Ventilation System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effectiveness and Tested Indoor Air Quality Impacts | Department of Energy Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts In this study, the Building America team Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of

  9. Building America Webinar: Central Multifamily Water Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Central Multifamily Water Heating Systems Building America Webinar: Central Multifamily Water Heating Systems The webinar was presented on January 21, 2015, and focused on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution. Presenters and specific topics for this webinar included: Elizabeth Weitzel from the Building America team, Alliance for Residential Building Innovation, presenting

  10. R&D Opportunity Assessment: Joining Technologies in HVAC&R -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on Joining Technologies in HVAC&R R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on ...

  11. Building Codes and Regulations for Solar Water Heating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision...

  12. LBNL: High Performance Active Perimeter Building Systems - 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review Presenter: Eleanor Lee, LBNL View the Presentation PDF icon LBNL: High Performance Active Perimeter ...

  13. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will ...

  14. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Controls for Multifamily Domestic Hot Water Building America Webinar: Central Multifamily Water Heating Systems - Energy-Efficient Controls for Multifamily ...

  15. Building America Case Study: Indirect Solar Water Heating Systems...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Greenfield, Massachusetts ... Building Component: Solar water heating Application: Single-family Years Tested: 2010-2013 ...

  16. Integration of Real-Time Data Into Building Automation Systems

    SciTech Connect (OSTI)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  17. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  18. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The webinar on Nov. 18, 2014, continued the series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and ...

  19. Building Energy Modeling 0017-1505

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC for new configurations + standard system templates * Built-in lighting & ... licensing * Serves as basis for codes & beyond-code programs * And for a large ...

  20. Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  1. Enhanced Cloud-based Control System for Small Commercial Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Enhanced Cloud-based Control System for Small Commercial Buildings Enhanced Cloud-based Control System for Small Commercial Buildings Lead Performer: Pacific Northwest National Laboratory - Richland, WA Partner: NorthWrite Inc. - Portland, OR DOE Total Funding: $300,000 Project Term: June 1, 2016 - November 30, 2017 Funding Type: Small Business Vouchers Pilot PROJECT OBJECTIVE NorthWrite Inc. delivers services to owners of small commercial buildings, using a cloud-based

  2. Quality Management System Guidelines - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quality Management System Guidelines - Building America Top Innovation Quality Management System Guidelines - Building America Top Innovation Effec guid-quality-mgnt.png The whole-building approach of constructing high performance homes requires a high degree of coordination and interdependencies between designers, builders, and trade partners to achieve energy efficiency goals, meet customer expectations, minimize risks for the builder, and avoid costly mistakes.

  3. Energy Savings Through Improved Mechanical Systems and Building Envelope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies (DE-FOA-0000621) | Department of Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) March 7, 2012 - 12:00pm Addthis This funding opportunity is closed. The focus of this Funding Opportunity Announcement (FOA) is to develop specifically-identified technologies for buildings that are cost effective and can have a tremendous

  4. Advanced Framing Systems and Packages - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Framing Systems and Packages - Building America Top Innovation Advanced Framing Systems and Packages - Building America Top Innovation This photo shows advanced framing technique above a window. Building America field studies involving thousands of homes have documented significant material, labor, and energy savings when production builders implement advanced framing techniques. Advanced framing can reduce the number of studs in the walls by up to one-third,

  5. Building America Systems Integration Research Annual Report. FY 2012

    SciTech Connect (OSTI)

    Gestwick, Michael

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  6. Building America Systems Integration Research Annual Report: FY 2012

    SciTech Connect (OSTI)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  7. Ideas that Work!. Retuning the Building Automation System

    SciTech Connect (OSTI)

    Parker, Steven

    2015-03-01

    A building automation system (BAS) can save considerable energy by effectively and efficiently operating building energy systems (fans, pumps, chillers boilers, etc.), but only when the BAS is properly set up and operated. Tuning, or retuning, the BAS is a cost effective process worthy of your time and attention.

  8. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR, this webinar will help attendees how to use EPA tools and resources to help meet requirements for green building rating systems, such as the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED), the Green Globes system, and others.

  9. Designing Forced-Air HVAC Systems

    SciTech Connect (OSTI)

    2010-08-31

    This guide explains proper calculation of heating and cooling design loads for homes.used to calculated for the home using the protocols set forth in the latest edition of the Air Conditioning Contractors of America’s (ACCA) Manual J (currently the 8th edition), ASHRAE 2009 Handbook of Fundamentals, or an equivalent computation procedure.

  10. Advanced HVAC Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Right: CFD model of cubicle. Left: Radiant cubicle at Malaviya National Institute of Technology (MNIT) Jaipur. Right: CFD model of cubicle. Left: Environmental chamber to evaluate ...

  11. UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY

    SciTech Connect (OSTI)

    John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

    2013-07-01

    It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the buildings effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

  12. Systems and methods for analyzing building operations sensor data

    DOE Patents [OSTI]

    Mezic, Igor; Eisenhower, Bryan A.

    2015-05-26

    Systems and methods are disclosed for analyzing building sensor information and decomposing the information therein to a more manageable and more useful form. Certain embodiments integrate energy-based and spectral-based analysis methods with parameter sampling and uncertainty/sensitivity analysis to achieve a more comprehensive perspective of building behavior. The results of this analysis may be presented to a user via a plurality of visualizations and/or used to automatically adjust certain building operations. In certain embodiments, advanced spectral techniques, including Koopman-based operations, are employed to discern features from the collected building sensor data.

  13. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Air Distribution Retrofit Strategies for Affordable Housing | Department of Energy Air Distribution Retrofit Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable Housing Jordan Dentz, Advanced Residential Integrated Energy Solutions (ARIES), and Francis Conlin, High Performance Building Solutions, Inc., presenting Air Distribution Retrofit Strategies for Affordable Housing.

  14. Building America Technology Solutions Case Study: Ventilation System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effectiveness and Tested Indoor Air Quality Impacts | Department of Energy Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of Texas at Tyler. The only difference was that House 1 had a vented

  15. Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet)

    SciTech Connect (OSTI)

    ARBI

    2014-09-01

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  16. USDOE energy standard compliance test on two-story office building

    SciTech Connect (OSTI)

    Bailey, S.A.

    1993-11-01

    There exists some skepticism in the design community regarding the ability to design an aesthetically pleasing building that meets the interim energy conservation standard for new commercial buildings initiated by the US Department of Energy. In response to this, a study was undertaken to demonstrate that compliance with energy standards does not mean giving up the architectural intent of a building. An unusual and architecturally pleasing building design was chosen for this study. This two-story office building has a large, central atrium, made almost entirely of glass. It is the building`s focal point, lending an inviting atmosphere to the interior spaces but also poses a considerable challenge to the HVAC system to keep the building comfortable. The building was simulated and easily complied with the Standard, based on an annual energy cost comparison. Alterations to the original design affected neither the interior floor plan nor exterior elevations.

  17. Chapter 5: Increasing Efficiency of Building Systems and Technologies | Building Technologies Office Potential Energy Savings Analysis Supplemental Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Increasing Efficiency of Building Systems and Technologies Supplemental Information Building Energy Technology Roadmaps Building Technologies Office Potential Energy Savings Analysis ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Building Technologies Office Potential Energy Savings Analysis Chapter 5: Supplemental Information Introduction The analysis undertaken to support Chapter 5 compares the potential energy savings from research,

  18. Building a Smarter Distribution System in Pennsylvania

    Energy Savers [EERE]

    a Better Transmission Tower Building a Better Transmission Tower May 20, 2011 - 9:41am Addthis A helicopter hoists platforms for linemen during the construction of this single-circuit 500-kilovolt tower – one of hundreds on the McNary-John Day line saving BPA big bucks. | Photo courtesy of Bonneville Power Administration A helicopter hoists platforms for linemen during the construction of this single-circuit 500-kilovolt tower - one of hundreds on the McNary-John Day line saving BPA big

  19. Energy Signal Tool for Decision Support in Building Energy Systems...

    Office of Scientific and Technical Information (OSTI)

    Signal Tool for Decision Support in Building Energy Systems Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I. 32 ENERGY CONSERVATION, CONSUMPTION, AND...

  20. Building America … ORNL R&D: HVAC Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... VSHP model showed ability to maintain comfort as good as or better than the baseline ... this mode of operation in equipment models * Peak power management is a major factor ...

  1. High Performance Home Cost Performance Trade-Offs: Production Builders- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance again measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.

  2. System and method for pre-cooling of buildings

    DOE Patents [OSTI]

    Springer, David A.; Rainer, Leo I.

    2011-08-09

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  3. HPXML: A Standardized Home Performance Data Sharing System - Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Top Innovation | Department of Energy HPXML: A Standardized Home Performance Data Sharing System - Building America Top Innovation HPXML: A Standardized Home Performance Data Sharing System - Building America Top Innovation hpxml.png In the world of home energy analysis, a variety of software tools are available for compiling and evaluating home energy audit data. This means home performance companies need to be fluent in several reporting platforms that span multiple utility

  4. Integrated Energy Systems (IES) for Buildings: A Market Assessment,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2002 | Department of Energy (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) for Buildings: A Market Assessment, September 2002 Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. This study

  5. Distributed Generation System Characteristics and Costs in the Buildings Sector

    Gasoline and Diesel Fuel Update (EIA)

    Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  6. Acoustic Building Infiltration Measurement System (ABIMS) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Acoustic Building Infiltration Measurement System (ABIMS) Acoustic Building Infiltration Measurement System (ABIMS) Addthis 1 of 4 ABIMS team member performs a microphone calibration. Image: Argonne National Laboratory 2 of 4 ABIMS team member fits an insert into the test chamber to simulate a façade leak. Image: Argonne National Laboratory 3 of 4 ABIMS team member runs the acoustic measurement from the labview interface. Image: Argonne National Laboratory 4 of 4 ABIMS team members

  7. Basement Insulation Systems - Building America Top Innovation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Basement Insulation Systems - Building America Top Innovation Basement Insulation Systems - Building America Top Innovation This photo shows a framed basement wall with insulation in between the studs. Efficient and durable construction practices for basements are critical because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. For this Top Innovation award,

  8. Building America Webinar: Central Multifamily Water Heating Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Controls for Multifamily Domestic Hot Water | Department of Energy Energy-Efficient Controls for Multifamily Domestic Hot Water Building America Webinar: Central Multifamily Water Heating Systems - Energy-Efficient Controls for Multifamily Domestic Hot Water This presentation will be delivered at the U.S. Department of Energy Building America webinar on January 21, 2015, by Jordan Dentz and Eric Ansanelli of the Levy Partnership. Central domestic hot water (CDHW) systems are

  9. Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers

    SciTech Connect (OSTI)

    Hong, Tianzhen; Sartor, Dale; Mathew, Paul; Yazdanian, Mehry

    2008-08-13

    This paper compares HVAC simulations between EnergyPlus and DOE-2.2 for data centers. The HVAC systems studied in the paper are packaged direct expansion air-cooled single zone systems with and without air economizer. Four climate zones are chosen for the study - San Francisco, Miami, Chicago, and Phoenix. EnergyPlus version 2.1 and DOE-2.2 version 45 are used in the annual energy simulations. The annual cooling electric consumption calculated by EnergyPlus and DOE-2.2 are reasonablely matched within a range of -0.4percent to 8.6percent. The paper also discusses sources of differences beween EnergyPlus and DOE-2.2 runs including cooling coil algorithm, performance curves, and important energy model inputs.

  10. Strategy Guideline: Transitioning HVAC Companies to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, A.

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  11. Strategy Guideline. Transitioning HVAC Companies to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, Arlan

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  12. BTO Workshop on Advanced HVAC Research Effort | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BTO) is exploring the launch of a major HVAC research effort in the area of low global warming potential and non-vapor compression technologies. To support this endeavor,...

  13. ETs HVAC, WH and Appliance R&D

    Energy Savers [EERE]

    ... CRADAs can act as a catalyst in the process. HVAC, Water Heating and Appliance R&D 7 Integrated Heat Pump (IHP) Technologies Integrated Approach * Energy cascading is the process ...

  14. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  15. HVAC, Water Heating, and Appliance Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC, Water Heating, and Appliance Publications HVAC, Water Heating, and Appliance Publications October 15, 2015 Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners This publication is a final report for Oak Ridge National Laboratory's High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP) Refrigerants project. October 9, 2015 Pump and Fan Technology Characterization and

  16. Nationwide Limited Public Interest Waiver for LED and HVAC Units |

    Energy Savers [EERE]

    Department of Energy Limited Public Interest Waiver for LED and HVAC Units Nationwide Limited Public Interest Waiver for LED and HVAC Units PDF icon eere_nationwide_public_interest_waiver More Documents & Publications Nationwide Nonavailability Waiver: February 11, 2010 (Please note, the waiver for LED traffic signals has been withdrawn effective December 1, 2010) Nationwide Nonavailability Waiver: November 5, 2010 Amended Nationwide Nonavailability Waiver: November 5, 2010

  17. Energy Department Releases Roadmaps on HVAC Technologies, Water Heating,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliances, and Low-GWP Refrigerants | Department of Energy Releases Roadmaps on HVAC Technologies, Water Heating, Appliances, and Low-GWP Refrigerants Energy Department Releases Roadmaps on HVAC Technologies, Water Heating, Appliances, and Low-GWP Refrigerants December 18, 2014 - 4:50pm Addthis The Research & Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants provides recommendations on R&D activities that will help accelerate the transition to low-GWP

  18. Build-

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Cooling Equipment, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Build- ings*","Cooled Build- ings","Cooling Equipment (more than one may apply)" ,,,"Resid- ential- Type Central Air Condi- tioners","Heat Pumps","Indiv- idual Air Condi- tioners","District Chilled Water","Central Chillers","Pack- aged Air Condi- tioning Units","Swamp

  19. Computer Modeling VRF Heat Pumps in Commercial Buildings using EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard

    2013-06-01

    Variable Refrigerant Flow (VRF) heat pumps are increasingly used in commercial buildings in the United States. Monitored energy use of field installations have shown, in some cases, savings exceeding 30% compared to conventional heating, ventilating, and air-conditioning (HVAC) systems. A simulation study was conducted to identify the installation or operational characteristics that lead to energy savings for VRF systems. The study used the Department of Energy EnergyPlus? building simulation software and four reference building models. Computer simulations were performed in eight U.S. climate zones. The baseline reference HVAC system incorporated packaged single-zone direct-expansion cooling with gas heating (PSZ-AC) or variable-air-volume systems (VAV with reheat). An alternate baseline HVAC system using a heat pump (PSZ-HP) was included for some buildings to directly compare gas and electric heating results. These baseline systems were compared to a VRF heat pump model to identify differences in energy use. VRF systems combine multiple indoor units with one or more outdoor unit(s). These systems move refrigerant between the outdoor and indoor units which eliminates the need for duct work in most cases. Since many applications install duct work in unconditioned spaces, this leads to installation differences between VRF systems and conventional HVAC systems. To characterize installation differences, a duct heat gain model was included to identify the energy impacts of installing ducts in unconditioned spaces. The configuration of variable refrigerant flow heat pumps will ultimately eliminate or significantly reduce energy use due to duct heat transfer. Fan energy is also studied to identify savings associated with non-ducted VRF terminal units. VRF systems incorporate a variable-speed compressor which may lead to operational differences compared to single-speed compression systems. To characterize operational differences, the computer model performance curves used to simulate cooling operation are also evaluated. The information in this paper is intended to provide a relative difference in system energy use and compare various installation practices that can impact performance. Comparative results of VRF versus conventional HVAC systems include energy use differences due to duct location, differences in fan energy when ducts are eliminated, and differences associated with electric versus fossil fuel type heating systems.

  20. Application of real time transient temperature (RT{sup 3}) program on nuclear power plant HVAC analysis

    SciTech Connect (OSTI)

    Cai, Y.; Tomlins, V.A.; Haskell, N.L.; Giffels, F.W.

    1996-08-01

    A database oriented technical analysis program (RT) utilizing a lumped parameter model combined with a finite difference method was developed to concurrently simulate transient temperatures in single or multiple room(s)/area(s). Analyses can be seen for postulated design basis events, such as, 10CFR50 Appendix-R, Loss of Coolant Accident concurrent with Loss of Offsite Power (LOCA/LOOP), Station BlackOut (SBO), and normal station operating conditions. The rate of change of the air temperatures is calculated by explicitly solving a series of energy balance equations with heat sources and sinks that have been described. For building elements with heat absorbing capacity, an explicit Forward Time Central Space (FTCS) model of one dimensional transient heat conduction in a plane element is used to describe the element temperature profile. Heat migration among the rooms/areas is considered not only by means of conduction but also by means of natural convection induced by temperature differences through openings between rooms/areas. The program also provides a means to evaluate existing plant HVAC system performance. The performance and temperature control of local coolers/heaters can be also simulated. The program was used to calculate transient temperature profiles for several buildings and rooms housing safety-related electrical components in PWR and BWR nuclear power plants. Results for a turbine building and reactor building in a BWR nuclear power plant are provided here. Specific calculational areas were defined on the basis of elevation, physical barriers and components/systems. Transient temperature profiles were then determined for the bounding design basis events with winter and summer outdoor air temperatures.

  1. Building a Smarter Distribution System in Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PPL is installing a distribution management system (DMS), distribution automation (DA) ... allows PPL to move forward with future automation projects. "Lack of an advanced DMS was ...

  2. Modelica buildings library

    SciTech Connect (OSTI)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.; Pang, Xiufeng

    2013-03-13

    This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations and flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.

  3. Modelica buildings library

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.; Pang, Xiufeng

    2013-03-13

    This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less

  4. Building America Webinar: Central Multifamily Water Heating Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Central Heat Pump Water Heating | Department of Energy Multifamily Central Heat Pump Water Heating Building America Webinar: Central Multifamily Water Heating Systems - Multifamily Central Heat Pump Water Heating This presentation will be delivered by Elizabeth Weitzel, Davis Energy Group, at the U.S. Department of Energy Building America webinar on January 21, 2015.The presentation will focus on the findings of an evaluation effort of a nominal 10.5 ton central HPWH installed at

  5. A Buildings Module for the Stochastic Energy Deployment System

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

    2008-05-15

    The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

  6. Building America Efficient Solutions for Existing Homes: Case Study: Build

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Antonio Green, San Antonio, Texas | Department of Energy Homes: Case Study: Build San Antonio Green, San Antonio, Texas Building America Efficient Solutions for Existing Homes: Case Study: Build San Antonio Green, San Antonio, Texas PNNL, FSEC, and CalcsPlus provided technical assistance to Build San Antonio Green on three deep energy retrofits. For this gut rehab they replaced the old roof with a steeper roof and replaced drywall while adding insulation, new HVAC, sealed ducts, transfer

  7. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  8. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth's weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  9. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth`s weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  10. R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joining Technologies in HVAC&R | Department of Energy R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on Joining Technologies in HVAC&R R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on Joining Technologies in HVAC&R Presenter: William Goetzler, Navigant Consulting On June 14, 2015, the U.S. Department of Energy organized a workshop "Joining Technologies in HVAC&R." The purpose of the meeting was for the

  11. Energy Management Systems Package for Small Commercial Buildings

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  12. Build-

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Cooling Equipment, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Build- ings*","Cooled Build- ings","Cooling Equipment (more than one may apply)" ,,,"Resid- ential- Type Central Air Condi- tioners","Heat Pumps","Indiv- idual Air Condi- tioners","District Chilled Water","Central Chillers","Pack- aged Air Condi- tioning Units","Swamp

  13. Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems

    Broader source: Energy.gov [DOE]

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems in multifamily buildings.

  14. Packaged HVAC Unit Diagnostician version 1.0

    Energy Science and Technology Software Center (OSTI)

    2007-01-09

    The PHD automatically detects and diagnoses faults with respect to four major aspects of packaged heating, ventilating, and air conditioning (HVAC) unit operation: 1) air handling in which return-air and outdoor-air are mixed, then conditioned to appropriate temperature and humidity conditions, 2) vapor-compression refrigerant loop operation, 3) overall unit efficiency and its potential degradation over time, and 4) operation scheduling. When faults are detected, the software provides alarm codes corresponding to the detected problem(s). Thesemore » alarms map into explanations of the faults, possible causes for them, and suggested actions to remedy the faults. For air handling, the software also estimates energy and cost impacts of faults. The software is intended for implementation on a hardware systems that includes sensors, sensor signal processing, micro-processor unit for running this software, and communication to a web server. Results are made available to users via the world wide web using a computer with Web browser and Internet connection for access. The graphical web-based interface must be provided by an application service provider (not part of this software).« less

  15. Deposition of biological aerosols on HVAC heat exchangers

    SciTech Connect (OSTI)

    Siegel, Jeffrey; Walker, Ian

    2001-09-01

    Many biologically active materials are transported as bioaerosols 1-10 {micro}m in diameter. These particles can deposit on cooling and heating coils and lead to serious indoor air quality problems. This paper investigates several of the mechanisms that lead to aerosol deposition on fin and tube heat exchangers. A model has been developed that incorporates the effects of several deposition mechanisms, including impaction, Brownian and turbulent diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The model is applied to a typical range of air velocities that are found in commercial and residential HVAC systems 1 - 6 m/s (200 - 1200 ft/min), particle diameters from 1 - 8 {micro}m, and fin spacings from 3.2 - 7.9 fins/cm (8 - 16 fins/inch or FPI). The results from the model are compared to results from an experimental apparatus that directly measures deposition on a 4.7 fins/cm (12 FPI) coil. The model agrees reasonably well with this measured data and suggests that cooling coils are an important sink for biological aerosols and consequently a potential source of indoor air quality problems.

  16. DOE and Stakeholders Consider Best Approach to Major HVAC&R Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stakeholders Consider Best Approach to Major HVAC&R Research Effort DOE and Stakeholders Consider Best Approach to Major HVAC&R Research Effort January 15, 2016 - 11:27am Addthis ...

  17. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

  18. Critical Question #4: What are the Best Off-the-Shelf HVAC Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Solutions for Low-Load, High-Performance Homes and Apartments? Critical Question 4: What are the Best Off-the-Shelf HVAC Solutions for Low-Load, High-Performance Homes ...

  19. Issue #7: What are the Best HVAC Solutions for Low-Load, High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: What are the Best HVAC Solutions for Low-Load, High Performance Homes? Issue 7: What are the Best HVAC Solutions for Low-Load, High Performance Homes? What components and ...

  20. HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review ...

    Energy Savers [EERE]

    HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy This ...

  1. DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort January 15, 2016 - 11:27am Addthis...

  2. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    SciTech Connect (OSTI)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.

  3. A generalized window energy rating system for typical office buildings

    SciTech Connect (OSTI)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of windows in buildings similar to the typical buildings. (author)

  4. Integrating fuel cell power systems into building physical plants

    SciTech Connect (OSTI)

    Carson, J.

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  5. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Design Options for Locating Ducts within Conditioned Space | Department of Energy II - Design Options for Locating Ducts within Conditioned Space Building America Webinar: High Performance Space Conditioning Systems, Part II - Design Options for Locating Ducts within Conditioned Space William Zoeller, Consortium for Advanced Residential Retrofit (CARB) delivers this presentation, which provides an overview of the technical aspects of buried and encapsulated duct systems as well as the

  6. Energy Signal Tool for Decision Support in Building Energy Systems

    SciTech Connect (OSTI)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

  7. Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Under-Delivering? | Department of Energy 3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? What energy savings are realistically achievable by following quality installation standards for installation, operation, and maintenance of residential HVAC? PDF icon issue3_airflow_charge.pdf PDF icon issue3_hvac_installed.pdf PDF icon issue3_pdi_hvacsys.pdf More Documents &

  8. DOE Convening Report on Certification of Commercial HVAC and CRE Products |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Convening Report on Certification of Commercial HVAC and CRE Products DOE Convening Report on Certification of Commercial HVAC and CRE Products This document is the convening report on the feasibility of a negotiated rulemaking to revise the certification program for commercial HVAC and CRE products published on October 2, 2012. PDF icon convening_report_hvac_cre_1.pdf More Documents & Publications Lochinvar Preliminary Plan Comments Comment On: DOE-HQ-2011-0014-0001

  9. Enhancements to the SHARP Build System and NEK5000 Coupling

    SciTech Connect (OSTI)

    McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay

    2014-10-01

    The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase in overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that was implemented using GNU Autotools, mirroring much of the current SHARP build system, and easing the use of structural mechanics calculations for end-users of the SHARP multiphysics framework. It lets users easily build and use Diablo as a stand-alone simulation, as well as fully couple with the other SHARP physics modules. The top-level SHARP build system was modified to allow Diablo to hook in directly. New dependency handlers were implemented to let SHARP users easily build the framework with these new simulation capabilities. The remainder of this report will describe this work in full, with a detailed discussion of the overall design philosophy of SHARP, the new solution interpolation method introduced, and the Diablo integration work. We will conclude with a discussion of possible future SHARP improvements that will serve to increase solution accuracy and framework capability.

  10. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than

  11. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  12. Characterization of commercial building appliances. Final report

    SciTech Connect (OSTI)

    Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

    1993-08-01

    This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

  13. Compact Thermoelastic Cooling System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact Thermoelastic Cooling System Compact Thermoelastic Cooling System Lead Performer: Maryland Energy and Sensor Technologies, LLC - College Park, MD DOE Total Funding: $614,592 Cost Share: $153,648 Project Term: July 1, 2015- June 30, 2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) -2015, DE-FOA-0001166 Project Objective Thermoelastic cooling (TEC) is recognized as one of the most promising non-vapor-compression HVAC technologies because

  14. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    SciTech Connect (OSTI)

    Zogg, Robert; Goetzler, William; Ahlfeldt, Christopher; Hiraiwa, Hirokazu; Sathe, Amul; Sutherland, Timothy

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  15. FORTRAN M as a language for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1992-01-01

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  16. FORTRAN M as a language for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1992-12-31

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  17. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Compact Buried Ducts | Department of Energy Compact Buried Ducts Building America Webinar: High Performance Space Conditioning Systems, Part II - Compact Buried Ducts Dave Mallay, Partnership for Home Innovation (PHI), presenting Compact Buried Ducts. Dave will discuss buried ducts and design considerations, the compact duct concept, results of field testing and monitoring, and alternative solutions for air sealing and insulating the ducts. PDF icon ba_webinar_mallay_11_18-14.pdf More

  18. Web-based energy information systems for large commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann

    2003-03-29

    Energy Information Systems (EIS), which monitor and organize building energy consumption and related trend data over the Internet, have been evolving over the past decade. This technology helps perform key energy management functions such as organizing energy use data, identifying energy consumption anomalies, managing energy costs, and automating demand response strategies. During recent years numerous developers and vendors of EIS have been deploying these products in a highly competitive market. EIS offer various software applications and services for a variety of purposes. Costs for such system vary greatly depending on the system's capabilities and how they are marketed. Some products are marketed directly to end users while others are made available as part of electric utility programs. EIS can be a useful tool in building commissioning and retro-commissioning. This paper reviews more than a dozen EIS. We have developed an analytical framework to characterize the main features of these products, which are developed for a variety of utility programs and end-use markets. The purpose of this research is to evaluate EIS capabilities and limitations, plus examine longer-term opportunities for utilizing such technology to improve building energy efficiency and load management.

  19. Building America Overview - 2015 BTO Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 BTO Peer Review Building America Overview - 2015 BTO Peer Review Presenter: Eric Werling, U.S. Department of Energy View the Presentation PDF icon Building America Overview - 2015 BTO Peer Review More Documents & Publications Building America Webinar: Building America Technology-to-Market Roadmaps Building America Webinar: Building America: Research for Real-World Results Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ

  20. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  1. Better Buildings Neighborhood Program: BetterBuildings Lowell Final Report

    SciTech Connect (OSTI)

    Heslin, Thomas

    2014-01-31

    The City of Lowell set four goals at the beginning of the Better Buildings Neighborhood Program: 1. Improve the Downtown Historic Park District’s Carbon Footprint 2. Develop a sustainable and replicable model for energy efficiency in historic buildings 3. Create and retain jobs 4. Promote multi‐stakeholder partnerships The City of Lowell, MA was awarded $5 million in May 2010 to conduct energy efficiency retrofits within the downtown National Historical Park (NHP). The City’s target was to complete retrofits in 200,000 square feet of commercial space and create 280 jobs, while adhering to the strict historical preservation regulations that govern the NHP. The development of a model for energy efficiency in historic buildings was successfully accomplished. BetterBuildings Lowell’s success in energy efficiency in historic buildings was due to the simplicity of the program. We relied strongly on the replacement of antiquated HVAC systems and air sealing and a handful of talented energy auditors and contractors. BetterBuildings Lowell was unique for the Better Buildings Neighborhood Program because it was the only program that focused solely on commercial properties. BetterBuildings Lowell did target multi‐family properties, which were reported as commercial, but the majority of the building types and uses were commercial. Property types targeted were restaurants, office buildings, museums, sections of larger buildings, mixed use buildings, and multifamily buildings. This unique fabric of building type and use allows for a deeper understanding to how different properties use energy. Because of the National Historical Park designation of downtown Lowell, being able to implement energy efficiency projects within a highly regulated historical district also provided valuable research and precedent proving energy efficiency projects can be successfully completed in historical districts and historical buildings. Our program was very successful in working with the local Historic Board, which has jurisdiction in the NHP. The Historic Board was cooperative with any exterior renovations as long as they were not changing the existing aesthetics of the property. If we were replacing a rooftop condenser it needed to be placed where the existing rooftop condenser was located. Receiving proper approval from the Historic Board for any external energy conservation measures was known by all the participating contractors. One area of the retrofits that was contentious regarded venting of the new HVAC equipment. Installing external stacks was not allowed so the contractors had to negotiate with the Historic Board regarding the proper way to vent the equipment that met the needs mechanically and aesthetically. Overall BetterBuildings Lowell was successful at implementing energy and cost saving measures into 31 commercial properties located within the NHP. The 31 retrofits had 1,554,768 square feet of commercial and multifamily housing and a total predicted energy savings exceeding 22,869 a year. Overall the City of Lowell achieved its target goals and is satisfied with the accomplishments of the BetterBuildings program. The City will continue to pursue energy efficient programs and projects.

  2. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect (OSTI)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  3. DOE, RTI to Design and Build Gas Cleanup System for IGCC Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis ...

  4. House-as-a-System Business Case - Building America Top Innovations...

    Energy Savers [EERE]

    House-as-a-System Business Case - Building America Top Innovations House-as-a-System Business Case - Building America Top Innovations August 25, 2014 - 10:48am Addthis...

  5. Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices

    SciTech Connect (OSTI)

    Motegi, N.; Piette, M.A.; Watson, D.S.; Kiliccote, S.; Xu, P.

    2007-05-01

    There are 3 appendices listed: (A) DR strategies for HVAC systems; (B) Summary of DR strategies; and (C) Case study of advanced demand response.

  6. Jackson Park Hospital Green Building Medical Center

    SciTech Connect (OSTI)

    William Dorsey; Nelson Vasquez

    2010-03-31

    Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

  7. HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  8. New tools for the analysis and design of building envelopes

    SciTech Connect (OSTI)

    Papamichael, K.; Winkelmann, F.C.; Buhl, W.F.; Chauvet, H.

    1994-08-01

    We describe the integrated development of PowerDOE, a new version of the DOE-2 building energy analysis program, and the Building Design Advisor (BDA), a multimedia-based design tool that assists building designers with the concurrent consideration of multiple design solutions with respect to multiple design criteria. PowerDOE has a windows-based Graphical User Interface (GUI) that makes it easier to use than DOE-2, while retaining DOE-2`s calculation power and accuracy. BDA, with a similar GUI, is designed to link to multiple analytical models and databases. In its first release it is linked to PowerDOE and a Daylighting Analysis Module, as well as to a Case Studies Database and a Schematic Graphic Editor. These allow building designers to set performance goals and address key building envelope parameters from the initial, schematic phases of building design to the detailed specification of building components and systems required by PowerDOE. The consideration of the thermal performance of building envelopes through PowerDOE and BDA is integrated with non-thermal envelope performance aspects, such as daylighting, as well as with the performance of non-envelope building components and systems, such as electric lighting and HVAC. Future versions of BDA will support links to CAD and electronic product catalogs, as well as provide context-dependent design advice to improve performance.

  9. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  10. A Distributed Cooperative Power Allocation Method for Campus Buildings

    SciTech Connect (OSTI)

    Hao, He; Sun, Yannan; Carroll, Thomas E.; Somani, Abhishek

    2015-09-01

    We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designed using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method

  11. House-as-a-System Business Case - Building America Top Innovations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy House-as-a-System Business Case - Building America Top Innovations House-as-a-System Business Case - Building America Top Innovations August 25, 2014 - 10:48am Addthis House-as-a-System Business Case - Building America Top Innovations Top Innovations in this category include profiles of Building America field research projects with production builders who have used a whole-house approach to achieve exceptional energy efficiency, comfort, and durability. These examples

  12. Research and Development Roadmap for Emerging HVAC Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Roadmap for Emerging HVAC Technologies W. Goetzler, M. Guernsey, and J. Young October 2014 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied,

  13. Building America Whole-House Solutions for New Homes: Insight Homes, Seaford, Delaware

    Broader source: Energy.gov [DOE]

    Case study of Insight Homes, who worked with the Building America research partner IBACOS to design HERS-49 homes with high-efficiency HVAC, ducts in insulated crawl spaces, raised heel trusses, dehumidifiers, and central manifold plumbing.

  14. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect (OSTI)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

  15. EPA ENERGY STAR Webcast: ENERGY STAR and Green Building Rating Systems

    Broader source: Energy.gov [DOE]

    During this session, attendees will learn how to use EPA tools and resources to help meet requirements for green building rating systems such as the U.S. Green Building Council’s Leadership in...

  16. Sustainable Building in China -- A Green Leap Forward?

    SciTech Connect (OSTI)

    Diamond, Richard; Ye, Qing; Feng, Wei; Yan, Tao; Mao, Hongwei; Li, Yutong; Guo, Yongcong; Wang, Jialiang

    2013-09-01

    China is constructing new commercial buildings at an enormous rate -- roughly 2 billion square meters per year, with considerable interest and activity in green design and construction. We review the context of commercial building design and construction in China, and look at a specific project as an example of a high performance, sustainable design, the Shenzhen Institute of Building Research (IBR). The IBR building incorporates over 40 sustainable technologies and strategies, including daylighting, natural ventilation, gray-water recycling, solar-energy generation, and highly efficient Heating Ventilation and Air Conditioning (HVAC) systems. We present measured data on the performance of the building, including detailed analysis by energy end use, water use, and occupant comfort and satisfaction. Total building energy consumption in 2011 was 1151 MWh, with an Energy Use Intensity (EUI) of 63 kWh/m2 (20 kBtu/ft2), which is 61% of the mean EUI value of 103 kWh/m2 (33 kBtu/ft2) for similar buildings in the region. We also comment on the unique design process, which incorporated passive strategies throughout the building, and has led to high occupant satisfaction with the natural ventilation, daylighting, and green patio work areas. Lastly we present thoughts on how the design philosophy of the IBR building can be a guide for low-energy design in different climate regions throughout China and elsewhere.

  17. 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refrigeration Equipment; Final Rule | Department of Energy 28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule This document is a pre-publication Federal Register final rule regarding the certification of commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration (CRE) equipment, as issued by

  18. Building America Case Study: Low-Load Space-Conditioning Needs Assessment, Northeast and Mid-Atlantic; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-07-01

    With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment - thus facing penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of multifamily buildings and single-family homes market needs. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services on hundreds of housing projects and has accrued a large pool of data. CARB compiled and analyzed these data to see what the thermal load ranges are in various multifamily apartments and attached single-family home types (duplex and townhouse). In total, design loads from 941 dwellings from SWA's recent multifamily and attached single-family work across the Northeast and Mid-Atlantic were analyzed. Information on the dwelling characteristics, design loads, and the specifications of installed mechanical equipment were analyzed to determine any trends that exist within the dataset. Of the 941 dwellings, CARB found that only 1% had right-sized heating equipment and 6% of the dwellings had right-sized cooling equipment (within 25% or less of design load).

  19. Small- and Medium-Size Building Automation and Control System Needs:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scoping Study | Department of Energy Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech05_brambley_040213.pdf More Documents & Publications Advanced Building Control Solutions PNNL: VOLTTRON Commercialization (CBI/ET Open Call) - 2015 Peer Review U.S. Industrial

  20. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014.

  1. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CoolCab Test and Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation Vehicle Technologies Office Merit Review ...

  2. R&D Opportunity Assessment: Joining Technologies in HVAC&R

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stakeholder Discussion Forum R&D Opportunity Assessment: Joining Technologies in HVAC&R ... Project Summary and Introductions Purpose The DOE aims to: Facilitate R&D on ...

  3. R&D Opportunity Assessment: Joining Technologies in HVAC&R -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC&R More Documents & Publications Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Advanced Rotating Heat Exchangers Working Fluids Low...

  4. ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Load HVAC in Zero Energy Ready Homes (Text Version) ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes (Text Version) Below is the text version of the webinar Low Load HVAC in Zero Energy Ready Homes, presented in January 2016. Watch the presentation. Lindsay Parker: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home technical training webinar series. We're very excited that you can join us today for this session on low-load HVAC for Zero

  5. Chapter 5: Lighting, HVAC, and Plumbing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Linear fluorescent lamps are classified by tube diameter, ... Proper light- ing levels lead to less energy-intensive ... and Plumbing A rainwater harvesting system on the Chesapeake ...

  6. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  7. Integrated envelope and lighting technologies for commercial buildings

    SciTech Connect (OSTI)

    Selkowitz, S.; Schuman, J.

    1992-07-01

    Fenestration systems are major contributors to peak cooling loads in commercial buildings and thus to HVAC system costs, peak electric demand, and annual energy use. These loads can be reduced significantly through proper fenestration design and the use of daylighting strategies. However, there are very few documented applications of energy-saving daylighted buildings today, which suggests that significant obstacles to efficient fenestration and lighting design and utilization still exist. This paper reports results of the first phase of a utility-sponsored research, development, and demonstration project to more effectively address the interrelated issues of designing and implementing energy-efficient envelope and lighting systems. We hypothesize that daylighting and overall energy efficiency will not be achieved at a large scale until true building integration has been accomplished to some meaningful degree. Moving beyond the vague concept of ``intelligent` buildings long popular in the design sector, we attempt to integrate component technologies into functional systems in order to optimize the relevant building energy performance and occupant comfort parameters. We describe the first set of integrated envelope and lighting concepts we are developing using available component technologies. Emerging and future technologies will be incorporated in later phases. Because new hardware systems alone will not ensure optimal building performance, we also discuss obstacles to innovation within the design community and proposed strategies to overcome these obstacles.

  8. Integrated envelope and lighting technologies for commercial buildings

    SciTech Connect (OSTI)

    Selkowitz, S.; Schuman, J.

    1992-07-01

    Fenestration systems are major contributors to peak cooling loads in commercial buildings and thus to HVAC system costs, peak electric demand, and annual energy use. These loads can be reduced significantly through proper fenestration design and the use of daylighting strategies. However, there are very few documented applications of energy-saving daylighted buildings today, which suggests that significant obstacles to efficient fenestration and lighting design and utilization still exist. This paper reports results of the first phase of a utility-sponsored research, development, and demonstration project to more effectively address the interrelated issues of designing and implementing energy-efficient envelope and lighting systems. We hypothesize that daylighting and overall energy efficiency will not be achieved at a large scale until true building integration has been accomplished to some meaningful degree. Moving beyond the vague concept of intelligent' buildings long popular in the design sector, we attempt to integrate component technologies into functional systems in order to optimize the relevant building energy performance and occupant comfort parameters. We describe the first set of integrated envelope and lighting concepts we are developing using available component technologies. Emerging and future technologies will be incorporated in later phases. Because new hardware systems alone will not ensure optimal building performance, we also discuss obstacles to innovation within the design community and proposed strategies to overcome these obstacles.

  9. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  10. Building America Case Study: Raised Ceiling Interior Duct System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * September 2014 BUILDING AMERICA CASE STUDY: TECHNOLOGY SOLUTIONS FOR NEW AND EXISTING HOMES Lateral run-outs were then installed in the chase over partition walls. ...

  11. Chapter 5: Increasing Efficiency of Building Systems and Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and new technology advances supported by ongoing RDD&D activities, the energy use intensity (EUI) of the current residential and commercial building stock is compared to a ...

  12. Chapter 5: Increasing Efficiency of Building Systems and Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Building Energy Technology Roadmaps Chapter 5: Supplemental Information The Department of ...

  13. Energy Management Systems Package for Small Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Berkeley National Laboratory JGranderson@lbl.gov 510.486.6792 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Small ...

  14. Building America Case Study: Balancing Hydronic Systems in Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned * Unit temperature in a multifamily hydronic building can vary by as much as 61F, particularly if windows are open or tenants use intermittent supplemen- tal ...

  15. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    SciTech Connect (OSTI)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  16. Building America Top Innovations 2012: Advanced Framing Systems and Packages

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research showing advanced 2x6, 24-inch on-center framing, single top plates, open headers, and 2-stud corners reduced board feet of lumber by more than 1,000 feet, cut energy use by 13%, and cut material and labor costs by more than $1,000 on a typical home.

  17. Procedure for Measuring and Reporting the Performance of Photovoltaic Systems in Buildings

    SciTech Connect (OSTI)

    Pless, S.; Deru, M.; Torcellini, P.; Hayter, S.

    2005-10-01

    This procedure provides a standard method for measuring and characterizing the long-term energy performance of photovoltaic (PV) systems in buildings and the resulting implications to the building's energy use. The performance metrics determined here may be compared against benchmarks for evaluating system performance and verifying that performance targets have been achieved. Uses may include comparison of performance with the design intent; comparison with other PV systems in buildings; economic analysis of PV systems in buildings; and the establishment of long-term performance records that enable maintenance staff to monitor trends in energy performance.

  18. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    2009-09-01

    Factsheet developed to describe the activities of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  19. Greater than the Sum of its Parts; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    NREL's Electricity, Resources, and Building Systems Integration Center brings together a diverse group of experts performing grid integration and optimization R&D activities.

  20. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  1. Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

  2. Building America Technology Solutions for New and Existing Homes: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this case study , Partnership for Advanced Residential Retrofit and Elevate Energy. explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs.

  3. Joint HVAC transmission EMF environmental study

    SciTech Connect (OSTI)

    Stormshak, F.; Thompson, J. )

    1992-05-01

    This document describes the rationale, procedures, and results of a carefully controlled study conducted to establish whether chronic exposure of female (ewe) Suffolk lambs to the environment of a 500-kV 60-Hz transmission line would affect various characteristics of growth, endocrine function, and reproductive development. This experiment used identical housing and management schemes for control and line-exposed ewes, thus minimizing these factors as contributors to between-group experimental error. Further, throughout the 10-month duration of this study, changes in electric and magnetic fields, audible noise, and weather conditions were monitored continuously by a computerized system. Such measurements provided the opportunity to identify any relationship between environmental factors and biological responses. Because of reports in the literature that electric and magnetic fields alter concentrations of melatonin in laboratory animals, the primary objective of this study was to ascertain whether a similar effect occurs in lambs exposed to a 500-kV a-c line in a natural setting. In addition, onset of puberty, changes in body weight, wool growth, and behavior were monitored. To determine whether the environment of a 500-kV line caused stress in the study animals, serum levels of cortisol were measured. The study was conducted at Bonneville Power Administration's Ostrander Substation near Estacada, Oregon.

  4. Building America Top Innovations 2012: Unvented, Conditioned Attics

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research showing an unvented attic insulated along the roof line provides better energy performance than a vented attic when HVAC ducts are located in the attic and there are numerous penetrations through the ceiling deck.

  5. ORNL: HVAC Lab Research - 2015 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2015 BTO Peer Review Space Conditioning Standing Technical Committee Strategic Plan Building America Expert Meeting: Recommended...

  6. Fouling of HVAC fin and tube heat exchangers

    SciTech Connect (OSTI)

    Siegel, Jeffrey; Carey, Van P.

    2001-07-01

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

  7. Integrated Building Energy Systems Design Considering Storage Technologies

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  8. Building America Top Innovations 2012: Basement Insulation Systems

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  9. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  10. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    SciTech Connect (OSTI)

    Wang, Na; Gorrissen, Willy J.

    2013-01-11

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.

  11. Advanced Technologies and Practices - Building America Top Innovations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technologies and Practices - Building America Top Innovations Advanced Technologies and Practices - Building America Top Innovations July 16, 2014 - 4:04pm Addthis Advanced Technologies and Practices - Building America Top Innovations Top Innovations in this category encompass research in specific technologies and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor air

  12. Staged Upgrades as a Strategy for Residential Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Caroline Hazard, SRA International 20 | Building ... * HVAC SAVE (System Adjustment and Verified Efficiency) ... This summer CEW plans to partner with HVAC contractors, ...

  13. Energy Savings Potential and RD&D Opportunities for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) ...

  14. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.

    2010-06-01

    A net-zero energy building (NZEB) is a residential or commercial building with greatly reduced energy needs. In such a building, efficiency gains have been made such that the balance of energy needs can be supplied with renewable energy technologies. Past work has developed a common NZEB definition system, consisting of four well-documented definitions, to improve the understanding of what net-zero energy means. For this paper, we created a classification system for NZEBs based on the renewable sources a building uses.

  15. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes work by Building America researchers who visited 24 manufactured home factories between 1996 and 2003 to investigate moisture problems while improving energy efficiency and identified insufficient air sealing and poor HVAC installation as the biggest culprits. One manufacturer reported zero moisture-related issues in 35,000 homes built after implementing Building America recommendations.

  16. Building America Top Innovations 2012: Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes work by Building America researchers who visited 24 manufactured home factories between 1996 and 2003 to investigate moisture problems while improving energy efficiency and identified insufficient air sealing and poor HVAC installation as the biggest culprits. One manufacturer reported zero moisture-related issues in 35,000 homes built after implementing Building America recommendations.

  17. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    SciTech Connect (OSTI)

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  18. Country Report on Building Energy Codes in Australia

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  19. Country Report on Building Energy Codes in China

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  20. Country Report on Building Energy Codes in the United States

    SciTech Connect (OSTI)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  1. Country Report on Building Energy Codes in Canada

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  2. Country Report on Building Energy Codes in Japan

    SciTech Connect (OSTI)

    Evans, Meredydd; Shui, Bin; Takagi, T.

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

  3. Country Report on Building Energy Codes in Korea

    SciTech Connect (OSTI)

    Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

    2009-04-17

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

  4. Whole Foods Market Retrofits Multiple Building Systems for Big Savings

    SciTech Connect (OSTI)

    2013-03-01

    Whole Foods Market partnered with U.S. the Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in existing stores by at least 30% versus pre-retrofit energy use at its store in Edgewater, New Jersey, as part of DOEs Commercial Building Partnership (CBP) program.

  5. Building America System Research Results. Innovations for High Performance Homes

    SciTech Connect (OSTI)

    none,

    2006-05-01

    This report provides a summary of key lessons learned from the first 10 years of the Building America program and also included a summary of the future challenges that must be met to reach the programs long term performance goals.

  6. DOE ZERH Webinar: Low Load High Efficiency HVAC (Text Version) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Low Load High Efficiency HVAC (Text Version) DOE ZERH Webinar: Low Load High Efficiency HVAC (Text Version) Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014. Watch the presentation. GoToWebinar voice: The broadcast is now starting. All attendees are in listen-only mode. Lindsay Parker: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home Technical Training Webinar Series. We're really

  7. Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; McLarty, D.; Sullivan, R.; Brouwer, J.

    2013-10-01

    This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

  8. Building America Case Study: Selecting Ventilation Systems for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selecting Ventilation Systems for Existing Homes Selecting the Best System When determining the most practical ventilation system for an existing home, planning is crucial. Keep ...

  9. Energy Management Systems: Maximizing Energy Savings

    Broader source: Energy.gov [DOE]

    This webinar covered how to optimize installations of new energy management systems, review EMS strategies following lighting/HVAC retrofit projects, and utilize excess EECBG funding.

  10. Applications of Optimal Building Energy System Selection and Operation

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

  11. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  12. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Broader source: Energy.gov (indexed) [DOE]

    icon vss075lustbader2012o.pdf More Documents & Publications CoolCab Test and Evaluation CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies ...

  13. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CoolCab Test and Evaluation & CoolCalc HVAC Tool Development Presenter and P.I.: Jason A. ... idling * Develop analytical models and test methods to reduce uncertainties and ...

  14. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  15. The technical and economic feasibility of establishing a building system integration laboratory

    SciTech Connect (OSTI)

    Crawley, D.B.; Drost, M.K.; Johnson, B.M.

    1989-09-01

    On December 22, 1987, the US Congress provided funding to the US Department of Energy (DOE) to study the feasibility and conceptual design of a whole building system integration laboratory'' (Title II of Pub. L. 100--202). A whole-building system integration laboratory would be a full-scale experimental facility in which the energy performance interactions of two or more building components, e.g., walls, windows, lighting, could be tested under actual operating conditions. At DOE's request, the Pacific Northwest Laboratory (PNL) conducted the study with the assistance of a technical review and representing other federal agencies and the academic and private sectors, including professional societies, building component manufacturers, and building research organizations. The results of the feasibility study are presented in this report.

  16. International HVAC&R R&D Collaboration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International HVAC&R R&D Collaboration International HVAC&R R&D Collaboration Tony Bouza, chair of the International Organizing Committee for the 11th IEA Heat Pump Conference, delivers the welcoming address in Montreal. (2014) Tony Bouza, chair of the International Organizing Committee for the 11th IEA Heat Pump Conference, delivers the welcoming address in Montreal. (2014) Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- International Energy Agency -

  17. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  18. ASEAM2.1. Simplified Building Energy Analysis

    SciTech Connect (OSTI)

    Firevoid, J.A.; Willman, A.J.

    1987-10-01

    ASEAM2.1 is a modified bin temperature program for calculating the energy consumption of residential and simple commercial buildings. It can be used to evaluate the individual or combined effects of various energy design strategies. Algorithms include heating and cooling load calculations based on a methodology documented by the ASHRAE Technical Committee on Energy Calculation (TC4.7) and HVAC system and plant calculation routines with options to size heating and cooling equipment and air flows. HVAC systems are configured by selecting among the various available system types, control options, heating plants, and cooling plants. ASEAM2.1 primarily employs ASHRAE (WYEC) bin weather data; however, it is capable of alternatively using the DOD (AF88) or Battelle (TRY) bin weather data. The user can also supply as input bin weather data from other sources, if desired. Basic system types included are: a double duct or multizone unit, a terminal reheat unit, a variable air volume (VAV) system, a ceiling bypass VAV system, a variable temperature single zone system, a 2 pipe or 4 pipe fan coil system, a water/air heat pump system, and a packaged terminal air conditioner unit. In addition, ASEAM2.1 contains: baseboard heaters, a furnace system, unitary heater, and a heating and ventilation unit. Available cooling plant types are: direct expansion, centrifugal chiller, absorption chiller, district chilled water, double bundle chiller, cooling tower and reciprocating chiller. Five heating plant types are available: electric resistance, hot water or steam boiler, district steam or hot water from a central plant system, forced hot air furnace, and an air to air heat pump or double bundle chiller. Two life cycle cost programs, FBLCC and NBSLCC, developed by the National Bureau of Standards, are integrated into ASEAM2.1.

  19. Technical Meeting: Data/Communication Standards and Interoperability of Building Appliances, Equipment, and Systems

    Broader source: Energy.gov [DOE]

    On May 1, BTO hosted a technical meeting on Data and Communications Standards and Interoperability of Building Appliances, Equipment and Systems. This page includes the presentation slides and meeting notes.

  20. Building the DOE Systems Biology Knowledgebase (KBase) ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Brettin, Tom [Oak Ridge National Laboratory

    2013-03-22

    Tom Brettin on "Building the DOE Systems Biology Knowledgebase (KBase)" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  1. Building America Expert Meeting: Summary for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment

    Broader source: Energy.gov [DOE]

    The Building Science Consortium held an Expert Meeting on Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment on April 26,l 2010 on the NIST campus in Gaithersburg, Maryland.

  2. Decision process for the retrofit of municipal buildings with solar energy systems: a technical guide

    SciTech Connect (OSTI)

    Licciardello, Michael R.; Wood, Brian; Dozier, Warner; Braly, Mark; Yates, Alan

    1980-11-01

    As a background for solar applications, the following topics are covered: solar systems and components for retrofit installations; cost, performance, and quality considerations; and financing alternatives for local government. The retrofit decision process is discussed as follows: pre-screening of buildings, building data requirements, the energy conservation audit, solar system sizing and economics, comparison of alternatives, and implementation. Sample studies are presented for the West Valley Animal Shelter and the Hollywood Police Station. (MHR)

  3. System Integration of Distributed Power for Complete Building Systems: Phase 2 Report

    SciTech Connect (OSTI)

    Kramer, R.

    2003-12-01

    This report describes NiSource Energy Technologies Inc.'s second year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of combined heat and power systems in end-user environments and a further understanding of electric interconnection and siting issues. The specific objective of work under this subcontract is to identify the system integration and implementation issues of DG and develop and test potential solutions to these issues. In addition, recommendations are made to resolve identified issues that may hinder or slow the integration of integrated energy systems into the national energy picture.

  4. Buildings Energy Data Book: 7.2 Federal Tax Incentives

    Buildings Energy Data Book [EERE]

    3 Tax Incentives of the Emergency Economic Stabilization Act of 2008 (1) New Homes --Extends tax credits for efficient new homes to December 31, 2009. Envelope Improvements to Existing Homes --Reinstates 10% tax credit for building shell, HVAC and windows to include installations during 2009. Commercial Buildings --Extends tax deductions for efficiency upgrades in commercial buildings to December 31, 2013. Note(s): Source(s): 1) Tax incentives detailed are extensions to incentives found in the

  5. Building America Solution Center - 2014 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solution Center - 2014 BTO Peer Review Building America Solution Center - 2014 BTO Peer Review Presenter: Michael Baechler, Pacific Northwest National Laboratory The Building America Solution Center (Solution Center) is a community-driven online resource that provides residential building professionals with access to validated information on high-performance design and construction. Topics include air sealing and insulation; heating, ventilation, and air conditioning (HVAC)

  6. Building Energy Rating and Disclosure Policies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sacramento, California | Department of Energy Treasure Homes, who worked with SMUD, DOE, NREL, and ConSol to build HERS-54 homes with high-efficiency HVAC, ducts buried in attic insulation, SmartVent cooling, and rooftop PV. PDF icon Treasure Homes: Fallen Leaf at Riverbend - Sacramento, CA More Documents & Publications Building America Whole-House Solutions for New Homes: Grupe, Rocklin, California Vol. 9: Building America Best Practices Series - Builders Challenge Guide to 40%

  7. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    SciTech Connect (OSTI)

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  8. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    SciTech Connect (OSTI)

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end, we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.

  9. Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings

    SciTech Connect (OSTI)

    Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

    2006-08-01

    The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

  10. Apparatus for mounting photovoltaic power generating systems on buildings

    DOE Patents [OSTI]

    Russell, Miles C.

    2009-08-18

    Rectangular photovoltaic (PV) modules are mounted on a building roof by mounting stands that are distributed in rows and columns. Each stand comprises a base plate and first and second different height brackets attached to opposite ends of the base plate. Each first and second bracket comprises two module-support members. One end of each module is pivotally attached to and supported by a first module-support member of a first bracket and a second module-support member of another first bracket. At its other end each module rests on but is connected by flexible tethers to module-support members of two different second brackets. The tethers are sized to allow the modules to pivot up away from the module-support members on which they rest to a substantially horizontal position in response to wind uplift forces.

  11. System Integration of Distributed Power for Complete Building Systems: Phase 1 Report

    SciTech Connect (OSTI)

    Kramer, R.

    2003-12-01

    This report describes NiSource Energy Technologies Inc.'s base year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of CHP systems in end-user environments and a further understanding of electric interconnection and siting issues. Important results from the first year were a survey of the state of the art of interconnection issues associated with distributed generation, a survey of the local zoning requirements for the NiSource service territory, and the acquisition of data about the operation, reliability, interconnection, and performance of CHP systems and components of two test sites.

  12. City of Portland- Streamlined Building Permits for Residential Solar Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The City of Portland's Bureau of Development Services (BDS) developed a streamlined permitting process for residential solar energy system installations. The City of Portland has staff at the...

  13. Integrated Energy Systems (IES) for Buildings: A Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Energy Systems (IES) combine on-site power or distributed generation ... functions using thermal energy normally wasted in the production of electricitypower. ...

  14. Building America Webinar: High Performance Space Conditioning Systems, Part I: Heating and Cooling with Mini-Splits in the Northeast

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America webinar, High Performance Space Conditioning Systems, Part I, conducted on October 23, 2014, by Kohta Ueno of Building Science Corporation.

  15. Sustainable systems rating program: Marketing ``Green`` Building in Austin, Texas

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    Four major resource issues for home construction were identified: water, energy, materials, and waste. A systems flow model was then developed that tracked the resource issues through interactive matrices in the areas of sourcing, processing, using, and disposing or recycling. This model served as the basis for a rating system used in an educational and marketing tool called the Eco-Home Guide.

  16. Sustainable systems rating program: Marketing Green'' Building in Austin, Texas

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    Four major resource issues for home construction were identified: water, energy, materials, and waste. A systems flow model was then developed that tracked the resource issues through interactive matrices in the areas of sourcing, processing, using, and disposing or recycling. This model served as the basis for a rating system used in an educational and marketing tool called the Eco-Home Guide.

  17. NREL's Energy Systems Integration Facility Garners LEED® Platinum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power to run the data center facility (IT equipment, lighting, HVAC, uninterruptible power supply systems, etc.) to the total power drawn by all IT equipment. "ESIF is a ...

  18. Quality Management Systems for Zero Energy Ready Home Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Framing and mechanicals, and HVAC distribution systems. Next slide: As an example, here you see a drawing -- a correlation drawing -- showing your ductwork and the framing members. ...

  19. Advanced Interactive Facades - Critical Elements for Future GreenBuildings?

    SciTech Connect (OSTI)

    Selkowitz, Stephen; Aschehoug, Oyvind; Lee, Eleanor S.

    2003-11-01

    Building designers and owners have always been fascinated with the extensive use of glass in building envelopes. Today the highly glazed facade has almost become an iconic element for a 'green building' that provides daylighting and a visual connection with the natural environment. Even before the current interest in green buildings there was no shortage of highly glazed building designs. But many of these buildings either rejected sunlight, and some associated daylight and view with highly reflective glazings or used highly transmissive glass and encountered serious internal comfort problems that could only be overcome with large HVAC systems, resulting in significant energy, cost and environmental penalties. From the 1960's to the 1990's innovation in glazing made heat absorbing glass, reflective glass and double glazing commonplace, with an associated set of aesthetic features. In the last decade there has been a subtle shift from trying to optimize an ideal, static design solution using these glazings to making the facade responsive, interactive and even intelligent. More sophisticated design approaches and technologies have emerged using new high-performance glazing, improved shading and solar control systems, greater use of automated controls, and integration with other building systems. One relatively new architectural development is the double glass facade that offers a cavity that can provide improved acoustics, better solar control and enhanced ventilation. Taken to its ultimate development, an interactive facade should respond intelligently and reliably to the changing outdoor conditions and internal performance needs. It should exploit available natural energies for lighting, heating and ventilation, should be able to provide large energy savings compared to conventional technologies, and at the same time maintain optimal indoor visual and thermal comfort conditions. As photovoltaic costs decrease in the future, these onsite power systems will be integrated within the glass skin and these facades will become local, non-polluting energy suppliers to the building. The potential for facilitating sustainable building operations in the future by exploiting these concepts is therefore great. There is growing interest in highly glazed building facades, driven by a variety of architectural, aesthetic, business and environmental rationales. The environmental rationale appears plausible only if conventional glazing systems are replaced by a new generation of high performance, interactive, intelligent facade systems, that meet the comfort and performance needs of occupants while satisfying owner economic needs and broader societal environmental concerns. The challenge is that new technology, better systems integration using more capable design tools, and smarter building operation are all necessary to meet these goals. The opportunity is to create a new class of buildings that are both environmentally responsible at a regional or global level while providing the amenities and working environments that owners and occupants seek.

  20. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect (OSTI)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing.

  1. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  2. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  3. Expert System for Building TRU Waste Payloads - 13554

    SciTech Connect (OSTI)

    Bruemmer, Heather; Slater, Bryant

    2013-07-01

    The process for grouping TRU waste drums into payloads for shipment to the Waste Isolation Pilot Plant (WIPP) for disposal is a very complex process. Transportation and regulatory requirements must be met, along with striving for the goals of shipment efficiency: maximize the number of waste drums in a shipment and minimize the use of empty drums which take up precious underground storage space. The restrictions on payloads range from weight restrictions, to limitations on flammable gas in the headspace, to minimum TRU alpha activity concentration requirements. The Overpack and Payload Assistant Tool (OPAT) has been developed as a mixed-initiative intelligent system within the WIPP Waste Data System (WDS) to guide the construction of multiple acceptable payloads. OPAT saves the user time while at the same time maximizes the efficiency of shipments for the given drum population. The tool provides the user with the flexibility to tune critical factors that guide OPAT's operation based on real-time feedback concerning the results of the execution. This feedback complements the user's external knowledge of the drum population (such as location of drums, known challenges, internal shipment goals). This work demonstrates how software can be utilized to complement the unique domain knowledge of the users. The mixed-initiative approach combines the insight and intuition of the human expert with the proficiency of automated computational algorithms. The result is the ability to thoroughly and efficiently explore the search space of possible solutions and derive the best waste management decision. (authors)

  4. Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-04-01

    This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

  5. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    5.5 : Thermal Distribution Systems 5.5.1 Market Share of Major HVAC Equipment Manufacturers ($2009 Million) Total Market Size Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123 DOWNLOAD TABLE AS PDF XLS Related Tables: PDFXLS 5.5.6 1999 Energy Efficient Motors, Replacements and Sales, by Horsepower Class Sources: EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators BTS/A.D. Little,

  6. DOE and Stakeholders Consider Best Approach to Major HVAC&R Research Effort

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy and Stakeholders Consider Best Approach to Major HVAC&R Research Effort DOE and Stakeholders Consider Best Approach to Major HVAC&R Research Effort January 15, 2016 - 11:27am Addthis The planned research effort would support the U.S. hydrofluorocarbon (HFC) phasedown proposal, which targets an 85% reduction by 2035 compared to a 2014-2016 average baseline. Image credit: Navigant Consulting. The planned research effort would support the U.S. hydrofluorocarbon

  7. Furnace Blower Performance Improvements - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Furnace Blower Performance Improvements - Building America Top Innovation Furnace Blower Performance Improvements - Building America Top Innovation This photo shows a circular-shaped blower fan for furnaces and air conditioners. As homeowners switch on their forced-air furnaces in preparation for cold weather, they may be unaware of how furnace blowers can impact HVAC efficiency. In fact, studies show that the most common blowers have efficiencies of only 10%-15%.

  8. Building America Webinar: High Performance Space Conditioning Systems, Part I: Simplified Space Conditioning in Low Load Homes

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America webinar, High Performance Space Conditioning Systems, Part I, on October 23, 2014.

  9. Contributing to Net Zero Building: High Energy Efficient EIFS Wall Systems

    SciTech Connect (OSTI)

    Carbary, Lawrence D.; Perkins, Laura L.; Serino, Roland; Preston, Bill; Kosny, Jan

    2014-01-29

    The team led by Dow Corning collaborated to increase the thermal performance of exterior insulation and finishing systems (EIFS) to reach R-40 performance meeting the needs for high efficiency insulated walls. Additionally, the project helped remove barriers to using EIFS on retrofit commercial buildings desiring high insulated walls. The three wall systems developed within the scope of this project provide the thermal performance of R-24 to R-40 by incorporating vacuum insulation panels (VIPs) into an expanded polystyrene (EPS) encapsulated vacuum insulated sandwich element (VISE). The VISE was incorporated into an EIFS as pre-engineered insulation boards. The VISE is installed using typical EIFS details and network of trained installers. These three wall systems were tested and engineered to be fully code compliant as an EIFS and meet all of the International Building Code structural, durability and fire test requirements for a code compliant exterior wall cladding system. This system is being commercialized under the trade name Dryvit® Outsulation® HE system. Full details, specifications, and application guidelines have been developed for the system. The system has been modeled both thermally and hygrothermally to predict condensation potential. Based on weather models for Baltimore, MD; Boston, MA; Miami, FL; Minneapolis, MN; Phoenix, AZ; and Seattle, WA; condensation and water build up in the wall system is not a concern. Finally, the team conducted a field trial of the system on a building at the former Brunswick Naval Air Station which is being redeveloped by the Midcoast Regional Redevelopment Authority (Brunswick, Maine). The field trial provided a retrofit R-30 wall onto a wood frame construction, slab on grade, 1800 ft2 building, that was monitored over the course of a year. Simultaneous with the façade retrofit, the building’s windows were upgraded at no charge to this program. The retrofit building used 49% less natural gas during the winter of 2012 compared to previous winters. This project achieved its goal of developing a system that is constructible, offers protection to the VIPs, and meets all performance targets established for the project.

  10. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  11. Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC

    Buildings Energy Data Book [EERE]

    2 Efficiency Standards for Residential Furnaces AFUE (%) (2) Furnaces (excluding classes noted below) 78 Mobile Home Furnaces 75 Small Furnaces with input rate < 45,000 Btu/hr (1) - Weatherized (outdoor) 78 - Non-Weatherized (indoor) 78 AFUE (%) (2) Non-Weatherized Gas Furnaces 80 Weatherized Gas Furnaces 81 Mobile Home Oil-Fired Furnaces 75 Mobile home Gas Furnaces 80 Non-Weatherized Oil-Fired Furnaces 82 Weatherized Oil-Fired Furnaces 78 Note(s): 1) Excludes those intended solely for

  12. Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC

    Buildings Energy Data Book [EERE]

    3 Efficiency Standards for Residential Boilers Effective for products manufactured before September 1, 2012 AFUE(%) (1) Boilers (excluding gas steam) Gas Steam Boilers Effective for products manufactured on or after September 1, 2012 (2) AFUE (%) (1) No Constant Burning Pilot Automatic Means for Adjusting Water Temperature Gas Steam No Constant Burning Pilot Oil Hot Water Automatic Means for Adjusting Water Temperature Oil Steam None Electric Hot water Automatic Means for Adjusting Water

  13. Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial HVAC

    Buildings Energy Data Book [EERE]

    1 Efficiency Standards for Commercial Warm Air Furnaces Effective for products manufactured on or after January 1, 1994 Thermal Efficiency (1) Gas-fired, with capacity ≥ 225,000 Btu/hr Not less than 80% Oil-fired, with capacity ≥ 225,000 Btu/hr Not less than 81% Note(s): Source(s): 1) Measured at the maximum rated capacity. Title 10, Code of Federal Regulations, Part 431 - Energy Efficiency Program for Certain Commercial and Industrial Equipment, Subpart D - Commercial Warm Air Furna

  14. Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial HVAC

    Buildings Energy Data Book [EERE]

    2 Efficiency Standards for Commercial Packaged Boilers Effective for products manufactured between January 1, 1994 and March 1, 2012 Combustion Efficiency (1) Gas-fired, with capacity ≥ 300,000 Btu/hr Not less than 80% Oil-fired, with capacity ≥ 300,000 Btu/hr Not less than 83% Effective for products manufactured on or after March 2, 2012 Size (Btu/hr) Efficiency Level (1) Gas-fired, hot water ≥300,000 and ≤2,500,000 80% thermal efficiency Gas-fired, hot water >2,500,000 82%

  15. Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial HVAC

    Buildings Energy Data Book [EERE]

    3 Efficiency Standards for Commercial Air Conditioners and Heat Pumps (1) Type Cooling Capacity (Btu/hr) Category (2) Efficiency Level Small commercial package air conditioning <65,000 AC SEER = 13.0 and heating equipment (air-cooled, HP SEER = 13.0 three-phase) Single package vertical air conditioners and <65,000 AC EER = 9.0 single package vertical heat pumps, HP EER = 9.0, COP = 3.0 single-phase and three phase Single package vertical air conditioners and ≥65,000 and <135,000 AC

  16. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    SciTech Connect (OSTI)

    Sun, Kaiyu; Yan , Da; Hong , Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  17. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Boiler Control Replacement for Hydronically Heated Multifamily Buildings Cambridge, Massachusetts PROJECT INFORMATION Project Name: Cambridge Alliance for Spanish Tenants Apartments Location: Cambridge, MA Partners: Homeowners Rehab, Inc., homeownersrehab.org Advanced Residential Integrated Solutions Collaborative, levypartnership.com Building Component: HVAC Application: Retrofit, multifamily Year Tested: 2010-2013 Applicable Climate Zone(s): Mixed-Humid and Cold PERFORMANCE DATA Cost of energy

  18. Adsorption Refrigeration System

    SciTech Connect (OSTI)

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  19. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less

  20. Building New Battery Systems on the Computer - Joint Center for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Research October 22, 2015, Accomplishments Building New Battery Systems on the Computer JCESR is applying techno-economic models to project the performance and cost of a wide array of promising new battery systems before they are prototyped. The results from techno-economic modeling establish performance "floors" for discovery science teams looking for new anodes, cathodes, and electrolytes for a beyond lithium-ion battery, identifying those with the potential to meet

  1. INTEGRATED SCIENCE BUILDING

    SciTech Connect (OSTI)

    CONKLIN, SHANE

    2013-09-30

    Shell space fit out included faculty office advising space, student study space, staff restroom and lobby cafe. Electrical, HVAC and fire alarm installations and upgrades to existing systems were required to support the newly configured spaces. These installations and upgrades included audio/visual equipment, additional electrical outlets and connections to emergency generators. The project provided increased chilled water capacity with the addition of an electric centrifugal chiller. Upgrades associated with chiller included upgrade of exhaust ventilation fan, electrical conductor and breaker upgrades, piping and upgrades to air handling equipment.

  2. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    SciTech Connect (OSTI)

    Hong , Tianzhen; Yang, Le; Hill, David; Feng , Wei

    2014-01-25

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

  3. Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS

    SciTech Connect (OSTI)

    David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

    2008-05-31

    ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

  4. Application of the Software as a Service Model to the Control of Complex Building Systems

    SciTech Connect (OSTI)

    Stadler, Michael; Donadee, Jon; Marnay, Chris; Lai, Judy; Mendes, Goncalo; Appen, Jan von; Mé gel, Oliver; Bhattacharya, Prajesh; DeForest, Nicholas; Lai, Judy

    2011-03-18

    In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building. The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analyzed.

  5. Application of the Software as a Service Model to the Control of Complex Building Systems

    SciTech Connect (OSTI)

    Stadler, Michael; Donadee, Jonathan; Marnay, Chris; Mendes, Goncalo; Appen, Jan von; Megel, Oliver; Bhattacharya, Prajesh; DeForest, Nicholas; Lai, Judy

    2011-03-17

    In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building. The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analysed.

  6. Technical Support Document: 50% Energy Savings for Small Office Buildings

    SciTech Connect (OSTI)

    Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing

    2010-04-30

    The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

  7. Commercial Building Loads Providing Ancillary Services in PJM

    SciTech Connect (OSTI)

    MacDonald, Jason; Kiliccote, Sila; Boch, Jim; Chen, Jonathan; Nawy, Robert

    2014-06-27

    The adoption of low carbon energy technologies such as variable renewable energy and electric vehicles, coupled with the efficacy of energy efficiency to reduce traditional base load has increased the uncertainty inherent in the net load shape. Handling this variability with slower, traditional resources leads to inefficient system dispatch, and in some cases may compromise reliability. Grid operators are looking to future energy technologies, such as automated demand response (DR), to provide capacity-based reliability services as the need for these services increase. While DR resources are expected to have the flexibility characteristics operators are looking for, demonstrations are necessary to build confidence in their capabilities. Additionally, building owners are uncertain of the monetary value and operational burden of providing these services. To address this, the present study demonstrates the ability of demand response resources providing two ancillary services in the PJM territory, synchronous reserve and regulation, using an OpenADR 2.0b signaling architecture. The loads under control include HVAC and lighting at a big box retail store and variable frequency fan loads. The study examines performance characteristics of the resource: the speed of response, communications latencies in the architecture, and accuracy of response. It also examines the frequency and duration of events and the value in the marketplace which can be used to examine if the opportunity is sufficient to entice building owners to participate.

  8. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect (OSTI)

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  9. Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

  10. Building America Whole-House Solutions for New Homes: Treasure Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sacramento, California | Department of Energy Treasure Homes, Sacramento, California Building America Whole-House Solutions for New Homes: Treasure Homes, Sacramento, California Case study of Treasure Homes, who worked with SMUD, DOE, NREL, and ConSol to build HERS-54 homes with high-efficiency HVAC, ducts buried in attic insulation, SmartVent cooling, and rooftop PV. PDF icon Treasure Homes: Fallen Leaf at Riverbend - Sacramento, CA More Documents & Publications Building America

  11. Energy Savings Potential and RD&D Opportunities for Commercial Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliances | Department of Energy Appliances Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration

  12. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  13. Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  14. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    SciTech Connect (OSTI)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  15. Preliminary Findings from an Analysis of Building Energy Information System Technologies

    SciTech Connect (OSTI)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish; Price, Philip

    2009-06-01

    Energy information systems comprise software, data acquisition hardware, and communication systems that are intended to provide energy information to building energy and facilities managers, financial managers, and utilities. This technology has been commercially available for over a decade, however recent advances in Internet and other information technology, and analytical features have expanded the number of product options that are available. For example, features such as green house gas tracking, configurable energy analyses and enhanced interoperability are becoming increasingly common. Energy information systems are used in a variety of commercial buildings operations and environments, and can be characterized in a number of ways. Basic elements of these systems include web-based energy monitoring, web-based energy management linked to controls, demand response, and enterprise energy management applications. However the sheer number and variety of available systems complicate the selection of products to match the needs of a given user. In response, a framework was developed to define the capabilities of different types of energy information systems, and was applied to characterize approximately 30 technologies. Measurement is a critical component in managing energy consumption and energy information must be shared at all organizational levels to maintain persistent, efficient operations. Energy information systems are important to understand because they offer the analytical support to process measured data into information, and they provide the informational link between the primary actors who impact building energy efficiency - operators, facilities and energy managers, owners and corporate decision makers. In this paper, preliminary findings are presented, with a focus on overall trends and the general state of the technology. Key conclusions include the need to further pursue standardization and usability, x-y plotting as an under-supported feature, and a general convergence of visualization and display capabilities.

  16. Energy savings estimates and cost benefit calculations for high...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; CALIFORNIA; CLIMATES; COMMERCIAL BUILDINGS; HVAC SYSTEMS; ...

  17. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect (OSTI)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  18. Building America Whole-House Solutions for New Homes: S & A Homes, Pittsburgh, Pennsylvania

    Broader source: Energy.gov [DOE]

    Case study of S&A Homes who worked with Building America research partner IBACOS to design urban infill HERS-51 homes with compact duct layout in conditioned space, foam insulated precast concrete foundations, high-efficiency HVAC, and tankless water heaters.

  19. Existing Whole-House Solutions Case Study: Build San Antonio Green, San Antonio, Texas

    SciTech Connect (OSTI)

    none,

    2013-06-01

    PNNL, FSEC, and CalcsPlus provided technical assistance to Build San Antonio Green on three deep energy retrofits. For this gut rehab they replaced the old roof with a steeper roof and replaced drywall while adding insulation, new HVAC, sealed ducts, transfer grilles, outside air run-time ventilation, new lighting and water heater.

  20. Opt-E-Plus Software for Commercial Building Optimization; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laborato Innovation for Our Energy Future Horizontal Format-A Horizontal Format-A Reversed Providing Options to Meet Design Goals Opt-E-Plus was developed by NREL to help determine cost- effective, energy-efficient building strategies quickly, taking into account the many factors involved in the