Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

Burn, G. (comp.)

1990-07-01T23:59:59.000Z

2

Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigationofBuilding Technologies

3

IEA Task 27 BUILDING ENVELOPE COMPONENTS  

E-Print Network [OSTI]

IEA Task 27 BUILDING ENVELOPE COMPONENTS Performance, durability and sustainability of advanced windows and solar components for building envelopes Energy Performance Assessment Methodology Starting................................................................................................................................................. 3 2 Concepts of Energy Performance Assessment of Building Envelopes

4

Window and Envelope Technologies Overview - 2014 BTO Peer Review...  

Energy Savers [EERE]

Research and Development Roadmap: Windows and Building Envelope Research & Development Roadmap: Emerging Water Heating Technologies Research & Development Roadmap: Emerging HVAC...

5

STATE OF CALIFORNIA BUILDING ENVELOPE SEALING  

E-Print Network [OSTI]

STATE OF CALIFORNIA BUILDING ENVELOPE SEALING CEC-CF-6R-ENV-20-HERS(Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-20-HERS Building Envelope Sealing (Page 1 of 4) Site, and lineset. Supply and return plenums #12;STATE OF CALIFORNIA BUILDING ENVELOPE SEALING CEC-CF-6R-ENV-20-HERS

6

Building envelope thermal anomaly analysis  

SciTech Connect (OSTI)

A detailed study has been made of building energy thermal anomalies (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the potential for retrofit or initial design modifications. In terms of presently available analytical techniques, a one-dimensional equivalent of the bridge and its affected area can be created from a steady-state computer simulation. This equivalent, combined with a degree day model, yields good estimates of the bridge behavior in buildings employing heating only. With heating and cooling, the equivalent must be used with an hour-by-hour simulation. A classification scheme based on the one-dimensional equivalent is proposed which should make it possible to create a catalog of basic bridge types that can be used to estimate their effects without requiring a complete hour-by-hour simulation of each building. The classification relates both energy loss and moisture condensation potential to the bridge configuration and the building envelope. The potential for moisture condensation on interior surfaces near a BETA was found to be as significant as the energy loss and this factor needds to be considered in assessing the complete detrimental effects of a bridge. With such a catalog, building designers and analysts would be able to determine and estimate the advantages or disadvantages of modifying the building envelope to reduce the impact of a thermal bridge. 18 refs., 31 figs., 17 tabs.

Melton, B.S.; Mulroney, P.; Scott, T.; Childs, K.W.

1987-12-01T23:59:59.000Z

7

Windows and Building Envelope Research and Development Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

Windows and Building Envelope Research and Development Roadmap Windows and Building Envelope Research and Development Roadmap Cover of windows and envelope report, depicting a...

8

STATE OF CALIFORNIA BUILDING ENVELOPE SEALING  

E-Print Network [OSTI]

STATE OF CALIFORNIA BUILDING ENVELOPE SEALING CEC- CF-4R-ENV-20 (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-20 Building Envelope Sealing.819 x (CFM50H / Conditioned Floor Area in ft2 ) per Residential ACM Manual Equation R3-16 Building

9

THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY  

E-Print Network [OSTI]

dynamic test methods for envelope thermal performance whichtransieu~ thermal behavior of building envelopes, and theof dynamic thermal performance, of layered envelope construe

Carroll, William L.

2011-01-01T23:59:59.000Z

10

Research and Development Roadmap: Windows and Building Envelope...  

Energy Savers [EERE]

Envelope Technologies Overview - 2014 BTO Peer Review Research & Development Roadmap: Emerging HVAC Technologies Research & Development Roadmap: Emerging Water Heating Technologies...

11

Ozone Reductions Using Residential Building Envelopes  

SciTech Connect (OSTI)

Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

Walker, Iain S.; Sherman, Max; Nazaroff, William W.

2009-02-01T23:59:59.000Z

12

Building Envelope Requirements Overview Page 3-1 3 Building Envelope Requirements  

E-Print Network [OSTI]

orientation restrictions (e.g., Shaded Areas: East-Facing). North-Facing "North-facing is oriented to within envelope is responsible for the most significant loads that affect heating and cooling energy use through building envelope components ­ including walls, roofs, floors, slabs, windows and doors. Solar

13

Apply: Commercial Building Technology Demonstrations (DE-FOA...  

Office of Environmental Management (EM)

Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Commercial Building...

14

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-01-01T23:59:59.000Z

15

Hotbox Test R-value Database and the Building Envelopes Program (BEP)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Building Envelopes Program at Oak Ridge National Laboratory (ORNL) is a program within the Buildings Technology Center (BTC), the premier U.S. research facility devoted to developing technologies that improve the energy efficiency and environmental compatibility of residential and commercial buildings. Our program is divided into two parts: building envelope research, which focuses on the structural elements that enclose a building (walls, roofs and foundations), and materials research, which concentrates on the materials within the envelope systems (such as insulation). The building envelope provides the thermal barrier between the indoor and outdoor environment, and its elements are the key determinants of a building's energy requirements that result from the climate where it is located. [copied from http://www.ornl.gov/sci/roofs+walls/

16

3457, Page, 1 Coupled CFD/Building Envelope Model  

E-Print Network [OSTI]

Performance Buildings Conference at Purdue, 2012 (Accepted) #12;3457, Page, 2 a standard model for a single3457, Page, 1 Coupled CFD/Building Envelope Model for the Purdue Living Lab Donghun KIM (kim1077 features. In the present case we develop a procedure for coupling a building envelope model to a CFD

Gugercin, Serkan

17

Building envelope membrane as flexible formwork for concrete panels  

E-Print Network [OSTI]

This thesis investigates the use of a building envelope membrane as fabric-like formwork for exterior cladding systems in buildings. The exterior wall system (i.e., fagade) has evolved to meet the demands of the built ...

Sprague, Chelsea Lynn

2014-01-01T23:59:59.000Z

18

Field Testing of Nano-PCM Enhanced Building Envelope Components  

SciTech Connect (OSTI)

The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of the walls containing the nano-PCM wallboards were performed to determine their actual impact on wall-generated heating and cooling loads. The models were first validated using field data, and then used to perform annual simulations using Typical Meteorological Year (TMY) weather data. This article presents the measured performance and numerical analysis to evaluate the energy-saving potential of the nano-PCM-enhanced building components.

Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

2013-08-01T23:59:59.000Z

19

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

20

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Building Envelope Overview Page 3-1 2008 Nonresidential Compliance Manual August 2009  

E-Print Network [OSTI]

Building Envelope ­ Overview Page 3-1 2008 Nonresidential Compliance Manual August 2009 3 Building Envelope This chapter describes the requirements for the design of the building envelope for nonresidential buildings. Loads from the building envelope, especially windows, skylights, and roofs are among the most

22

Solar Correction Factors of Building Envelope in Tebei  

E-Print Network [OSTI]

Tebei has very rich solar energy in China and needs heating in winter,but the present energy building design code has no solar correction factor for the overall heat transfer coefficient of building envelope for Tebei. Based on the typical year...

Wang, D.; Tang, M.

2006-01-01T23:59:59.000Z

23

Optimization of thermal comfort in building through envelope design  

E-Print Network [OSTI]

1 Optimization of thermal comfort in building through envelope design Milorad Bojia , Alexandre. The building is modeled in EnergyPlus software and HookeJeves optimization methodology. The investigated house optimizations are performed such as the optimization of the thickness of the concrete block layer, of the wood

Paris-Sud XI, Université de

24

APPLICATION OF IT AND INTERNATIONAL STANDARDS TO IMPROVE BUILDING ENVELOPE PERFORMANCE  

E-Print Network [OSTI]

APPLICATION OF IT AND INTERNATIONAL STANDARDS TO IMPROVE BUILDING ENVELOPE PERFORMANCE Hua Sheng He with IT and international standards, such as IFC, can ensure that the building envelope satisfies energy requirements1 , Amin Hammad2 , and Paul Fazio1 1 Building Envelope Performance Laboratory; Centre for Building

Hammad, Amin

25

Building Technologies Office Window and Envelope Technologies...  

Energy Savers [EERE]

R&D investments helped stimulate net savings of more than 8 billion by 2000 (10.7 billion in current dollars) Source: American Energy Innovation Council Case Studies on...

26

Building Envelope Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding Energy Use

27

Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified Modeling for  

E-Print Network [OSTI]

LBL-31305 Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified in the envelopes of residential buildings is the primary mechanism to pro- vide ventilation to those buildings and exposure to be made and demonstrates how changes in the envelope or ventilation system would affect it

28

Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint  

SciTech Connect (OSTI)

Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

2010-08-01T23:59:59.000Z

29

Experimental Method to Determine the Energy Envelope Performance of Buildings  

E-Print Network [OSTI]

; ? Solar supply; ? Ventilation and airflow losses ? Distributions losses The method is based on the following equation which translates the energy balance of a building's envelope: g1847g3029g3048g3036g3039g3031g3036g3041g3034 g1499 g4666g1846 g3036g...3041g3046 g3036g3031g3032 g3398 g1846 g3042g3048g3047g3046g3036g3031g3032 g4667 g3404 g3533 g1843 g3046g3048g3043g3043g3039g3052 g3398 g3533 g1843g3039g3042g3046g3046g3032g3046 With Ubuilding : thermal performance envelope Qsupply : energy supply...

Berger, J.; Tasca-Guernouti, S. T.; Humbert, M.

2010-01-01T23:59:59.000Z

30

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

31

Thermal insulation standards for residential building envelopes in Iran  

SciTech Connect (OSTI)

This project develops thermal-insulation standards for residential-building envelopes in Iran which would later serve as the groundwork for development of thermal-insulation regulations in the country. The energy performance of the opaque components of present common construction systems was studied. The results clearly indicate the need for improvement of the energy performance of building components through the application of thermal insulation. The initial cost of insulating the building varied from 2.0-3.5% of the total construction cost, depending on the climate location, form and size of the building. Discounted pay-back period ranged from two to four years. Component performance standards were developed with prescriptive recommendations to meet with the level of technical skills of the parties involved in the implementation and control of standards. The macro-economic assessment of insulation standards proves annual savings of billions of Rials on the national level and also the creation of more jobs in construction-related industries.

Eslami, H.M.

1987-01-01T23:59:59.000Z

32

Regionalism and the design of low-rise building envelope systems  

E-Print Network [OSTI]

This investigation proposes the use of a three-pronged approach to evaluating building envelopes for low-rise affordable housing in urban contexts: construction cost estimating, building performance modeling, and cradle ...

Tapia, Jason W. (Jason Wilfredo)

2010-01-01T23:59:59.000Z

33

Impact of Columns and Beams on the Thermal Resistance of the Building Envelope  

E-Print Network [OSTI]

of the buildings envelope. Multi-dimensional heat transfer method was implemented to assess the magnitude of this effect and then to incorporate this in a whole building energy simulation program to assess the impact on the overall thermal performance...

Omar, E.

2002-01-01T23:59:59.000Z

34

Information Technology Tools for Multifamily Building Programs...  

Energy Savers [EERE]

Information Technology Tools for Multifamily Building Programs Information Technology Tools for Multifamily Building Programs Better Buildings Neighborhood Program Multifamily ...

35

Building Technologies Office: 179D DOE Calculator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or 0.60ft for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify...

36

Thermal Performance of Building Envelope in Very Hot Dry Desert Region in Egypt (Toshky)  

E-Print Network [OSTI]

Thermal Performance of Building Envelope in Very Hot Dry Desert Region in Egypt (Toshky Region) S.S. Sheble* M. H. Khalil M. A. Helal Prof. M. El- Demirdash3 Asso. Prof. Building Physics Institute (HBRC) Asso. Prof. Building Physics... Institute (HBRC) Prof. & head of Building Physics Institute (HBRC) Prof. & Chairman of HBRC Housing & Building National Research Center (HBRC) Cairo, Egypt * Author ABSTRACT Toshky region is a desert region located in the south east...

Khalil, M. H.; Sheble, S. S.; Helal, M. A.; El-Demirdash, M.

2010-01-01T23:59:59.000Z

37

Building America Webinar: Building America Technology-to-Market...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America Webinar: Building America Technology-to-Market Roadmaps Building America Webinar: Building America Technology-to-Market Roadmaps April 7, 2015 3:00PM to 4:30PM EDT...

38

Energy Savings Through Improved Mechanical Systems and Building...  

Office of Environmental Management (EM)

Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

39

Building Technology MSc Programme  

E-Print Network [OSTI]

of this programme is on the design of innovative and sustainable building components and their integration

Langendoen, Koen

40

HEAT RECOVERY IN BUILDING ENVELOPES Max H. Sherman and Iain S. Walker  

E-Print Network [OSTI]

1 LBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H. Sherman and Iain S. Walker Energy formula may produce an unreasonably high contribution because of heat recovery within the building physical model has been developed and used to predict the infiltration heat recovery based on the Peclet

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Webinar: Introduction to Pre-engineered Metal Building Envelope Commissioning  

Office of Energy Efficiency and Renewable Energy (EERE)

The metal building industry produces more than 50% of all new low-rise nonresidential construction in the United States. These buildings serve many different end uses, including commercial,...

42

Building Technologies Research and  

E-Print Network [OSTI]

Impact of Buildings Centers of Excellence · 40% of total primary energy consumption · 74% of electricity consumption · 56% of natural gas consumption (including gas-generated electricity used in buildings) · 39 the nation accounts for its energy consumption, making the energy savings potential even greater. National

Oak Ridge National Laboratory

43

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads  

SciTech Connect (OSTI)

This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

Karagiozis, A.N.

2007-05-15T23:59:59.000Z

44

Building Technologies Program: Building America Publications  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout » Building Technologies

45

The Thermal Test and Analysis of Envelope in Existing Buildings  

E-Print Network [OSTI]

). The thickness of polystyrene slab is in Tab .3. ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 The temperature and the heat flux distributing of wall are shown in Fig.2 and Fig.3. Tab. 2... The temperature distributing of wall ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 Fig3. The heat flux distributing of wall 5 CONCLUSIONS Through the thermal testing, calculation...

Liu, X.; Li, X.; Sun, J.; Wang, Z.

2006-01-01T23:59:59.000Z

46

Inclusion of Building Envelope Thermal Lag Effects in Linear Regression Models of Daily Basis Building Energy Use Data  

E-Print Network [OSTI]

Inclusion?of?Building?Envelope?Thermal?Lag? Effects?in?Linear?Regression?Models?of?Daily? Basis?Building?Energy?Use?Data The?12th International?Conference?for?Enhanced?Building?Operations October?22nd?26th,?2012 Manchester,?UK Hiroko...?for?simple?energy?performance?analysis ? 24?hour?cycle?variations?are?averaged?out?in?daily?data. ? The?dominant?driving?terms?of?most?buildings?follow?a?24?h?cycle.?(Rabl,?1992)? solar?irradiance,?OA?temperature,?ventilation,?occupancy?level,?lights?and?equipment?loads,? delayed?loads?due?to?thermal...

Masuda, H.; Claridge, D. E.

2012-01-01T23:59:59.000Z

47

Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates  

SciTech Connect (OSTI)

Traditional thermal designs of building envelope assemblies are based on static energy flows, yet building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles and their dynamic operation can decrease thermal efficiency. Design work supporting the development of low-energy houses showed that conventional insulations may not always be the most cost effective solution to improvement envelope thermal performance. PCM-enhanced building envelopes that simultaneously reduce the total cooling loads and shift the peak-hour loads are the focus of this report.

Kosny, J.; Shukla, N.; Fallahi, A.

2013-01-01T23:59:59.000Z

48

Determining Adaptability Performance of Artificial Neural Network-Based Thermal Control Logics for Envelope Conditions in Residential Buildings  

E-Print Network [OSTI]

This study examines the performance and adaptability of Artificial Neural Network (ANN)-based thermal control strategies for diverse thermal properties of building envelope conditions applied to residential buildings. The thermal performance using...

Moon, Jin Woo; Chang, Jae D.; Kim, Sooyoung

2013-07-18T23:59:59.000Z

49

An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates  

E-Print Network [OSTI]

type, and HV AC and DHW system type were determined from the housing survey data by the National Association of Home Builders (NAHB 2003) and the U.S. Census Bureau (USCB 2002). The characteristics of the building envelope, efficiency of HV AC... of Improved Fenestration for Code-Compliant Residential Buildings in Hot and Humid Climates. M.S. Thesis. College Station, TX: Texas A&M University. NAHB. 2003. The Builders Practices Survey Reports. National Association of Home Builders. Upper Marlboro...

Malhotra, M.; Haberl, J.

50

Building America Webinar: Building America Technology-to-Market...  

Broader source: Energy.gov (indexed) [DOE]

introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building America's research, development, and demonstration activities over...

51

Building Technologies Office Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015

52

DYNAMIC THERMALLY-DISCONNECTED BUILDING ENVELOPES A NEW PARADIGM FOR WALLS AND ROOFS IN LOW ENERGY BUILDINGS  

SciTech Connect (OSTI)

This paper describes numerical and experimental analysis of a novel design concept. Traditionally the thermal design of building envelope assemblies is based on a static energy flow. However, building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles used in the design of roofs and walls and their dynamic operation results in relatively low thermal efficiency. Design work in support of the development of zero energy houses showed that conventional insulations may not be the most cost effective energy solution. Testing conducted on several strategies to thermally-disconnect wall and roof components showed 70% to 90% reductions in peak hour loads as compared to conventional building practice.

Miller, William A [ORNL] [ORNL; Kosny, Jan [ORNL] [ORNL; Zaltash, Abdolreza [ORNL] [ORNL

2010-01-01T23:59:59.000Z

53

Integrated Hygrothermal Performance of Building Envelopes and Systems in Hot and Humid Climates  

E-Print Network [OSTI]

Technology Center VTT Building Technology, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Espoo, Finland Building Technology Center, Oak Ridge, Tennessee, US Oak Ridge, Tennessee, US ABSTRACT In hot and humid climates the interior... retarders reduce risk of moisture damage, Proceedings of the 4th Symposium, Building Physics in the Nordic Countries, Espoo, Finland, Sept. 9-10, pp.447-454. Karagiozis, A. and Hadjisophocleous G. "Wind- Driven Rain on High-Rise Buildings", Thermal...

Karagiozis, A. N.; Desjarlais, A.; Salonvaara, M.

2000-01-01T23:59:59.000Z

54

Identification of Market Requirements of Smart Buildings Technologies for High Rise Office Buildings  

E-Print Network [OSTI]

practices of utilizing hi-tech smart building technologies in office buildings, required additional features of smart building technologies for office buildings, challenges for integrating smart building technologies for office buildings, major benefits...

Reffat, R. M.

2010-01-01T23:59:59.000Z

55

Building Technologies Experimental Capabilities and Apparatus...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental Capabilities and Apparatus Directory October 01, 2014 ORNL Building Technologies Research and Integration Center (BTRIC) provides unique experimental capabilities...

56

Advanced Technologies and Practices - Building America Top Innovations...  

Energy Savers [EERE]

and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor air quality and safety...

57

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Technology Solutions for New and Existing Homes: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts Building America Technology...

58

Building Technologies Program - 1995 Annual Report  

E-Print Network [OSTI]

Design Tool for Small Commercial Buildings A DOE-funded industry/laboratory collaboration between the Passive Solardesign guidance for the optimal utiliza- tion of passive solar technologies in small commercial buildings.

Selkowitz, S.E.

2010-01-01T23:59:59.000Z

59

Energy Impacts of Nonlinear Behavior of PCM When Applied into Building Envelope: Preprint  

SciTech Connect (OSTI)

Previous research on phase change materials (PCM) for building applications has been done for several decades resulting in plenty of literature on PCM properties, temperature, and peak reduction potential. Thus, PCMs are a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have PCM modeling features, and even fewer have been validated. Additionally, there is no previous research that indicates the level of accuracy when simulating PCM from a building energy simulation perspective. This study analyzes the effects a nonlinear enthalpy profile has on thermal performance and expected energy benefits for PCM-enhanced insulation.

Tabares-Velasco, P. C.

2012-08-01T23:59:59.000Z

60

Building Technologies Research and Integration Center | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Integration Center October 02, 2014 Today, through the Building Technologies Research and Integration Center (BTRIC) and associated Centers of Excellence, ORNL applies...

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Buildings Technologies Deployment | Clean energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use...

62

Building America Case Study: Predicting Envelope Leakage in Attached Dwellings (Fact Sheet)  

SciTech Connect (OSTI)

'The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deters program participants, and dissuades them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.' This statement found in a 2012 report by Heschong Mahone Group emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing, the more appropriate test for assessing energy savings opportunities, could easily be six times that and that's only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

Not Available

2014-12-01T23:59:59.000Z

63

Building America Webinar: Building America Technology-to-Market Roadmaps  

Broader source: Energy.gov [DOE]

This webinar introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building Americas research, development, and demonstration activities over the coming years and result in an integrated Building America Research-to-Market Plan in 2015. This webinar is intended to be an informative session to assist stakeholders in providing review and comment to the Request for Information that will be issued regarding these Roadmaps.

64

Building technologies program. 1995 annual report  

SciTech Connect (OSTI)

The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

Selkowitz, S.E.

1996-05-01T23:59:59.000Z

65

Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998  

E-Print Network [OSTI]

;1 Proceedings of the Thermal Performance of the Exterior Envelopes of Buildings VII, December 7-11, 1998LBNL-41443 IS-390 Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998 The research reported

66

Evaluation of energy savings related to building envelope retrofit techniques and ventilation strategies for low energy cooling in  

E-Print Network [OSTI]

Evaluation of energy savings related to building envelope retrofit techniques and ventilation strategies for low energy cooling in offices and commercial sector Laurent Grignon-Mass, Dominique Marchio-use Efficiency Research Group Abstract The energy savings achievable in the end-use space cooling depend

Paris-Sud XI, Universit de

67

Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance  

E-Print Network [OSTI]

and P. Price, 2009. Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

2011-01-01T23:59:59.000Z

68

Building an Information Technology Security Awareness  

E-Print Network [OSTI]

Building an Information Technology Security Awareness and Training Program Mark Wilson and Joan Hash C O M P U T E R S E C U R I T Y NIST Special Publication 800-50 Computer Security Division

69

[Technology transfer of building materials by ECOMAT  

SciTech Connect (OSTI)

This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

NONE

1996-01-01T23:59:59.000Z

70

Apply: Building Energy Efficiency Frontiers and Incubator Technologies...  

Energy Savers [EERE]

Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

71

Mesa Verde's New Museum Showcases Sustainable Building Technologies...  

Energy Savers [EERE]

Mesa Verde's New Museum Showcases Sustainable Building Technologies Mesa Verde's New Museum Showcases Sustainable Building Technologies April 18, 2013 - 11:42am Addthis Mesa Verde...

72

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Building America Technology Solutions for New and Existing Homes: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes Building America Technology Solutions...

73

Buildings Technologies | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services »"Building

74

Building Technologies Program Planning Summary  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigationofBuilding

75

Building Technologies | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudget byTechnologySecurity

76

Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998  

E-Print Network [OSTI]

LBNL-41694 BS-384 Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998 This work was supported

77

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

1.2 quads. Future window technologies offer energy savingsImpact of Window Technologies for Commercial BuildingsEnvironmental Energy Technologies Division October 2009 This

Hong, Tianzhen

2014-01-01T23:59:59.000Z

78

Proceedings of Thermal VII, Thermal Performance of the Exterior Envelopes of Buildings,  

E-Print Network [OSTI]

LBNL-42871 BS-400 Proceedings of Thermal VII, Thermal Performance of the Exterior Envelopes locations. The user describes the physical, thermal and optical properties of the windows in each

79

Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities for Fusion Nuclear Technology Development  

SciTech Connect (OSTI)

The paper shows that timely development of fusion nuclear technology (FNT) components, e.g. blanket, for DEMO requires the construction and operation of a fusion facility parallel to ITER. This facility, called VNS, will be dedicated to testing, developing and qualifying FNT components and material combinations. Without VNS, i.e. with ITER alone, the confidence level in achieving DEMO operating goals has been quantified and is unacceptably low (< 1 %). An attractive design envelope for VNS exists. Tokamak VNS designs with driven plasma (Q ~ 1-3), steady state plasma operation and normal copper toroidal field coils lead to small sized devices with moderate cost.

Abdou, M [University of California, Los Angeles] [University of California, Los Angeles; Peng, Yueng Kay Martin [ORNL] [ORNL

1995-01-01T23:59:59.000Z

80

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Steam System Balancing and Tuning for...

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet) Building America Technology Solutions for New and Existing Homes:...

82

Request for Information: High Impact Commercial Building Technology...  

Energy Savers [EERE]

U.S. Department of Energy's (DOE) Building Technologies Office (BTO) is developing a pipeline of high impact, cost-effective, energy saving and underutilized commercial building...

83

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building...

84

Building design guidelines for solar energy technologies  

SciTech Connect (OSTI)

There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

Givoni, B.

1989-01-01T23:59:59.000Z

85

Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program  

SciTech Connect (OSTI)

The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energys Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTPs Emerging Technologies subprogram from 2005-2011.

Weakley, Steven A.

2012-04-15T23:59:59.000Z

86

Building America Technology-to-Market Roadmaps - Request for...  

Energy Savers [EERE]

Building America Technology-to-Market Roadmaps - Request for Information Building America Technology-to-Market Roadmaps - Request for Information April 3, 2015 - 4:22pm Addthis The...

87

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower JumpBuilding Technologies

88

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Technology Solutions for New and Existing Homes: Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes:...

89

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

America Technology Solutions for New and Existing Homes: Foundation Heat Exchanger, Oak Ridge, Tennessee Building America Technology Solutions for New and Existing Homes:...

90

BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES  

E-Print Network [OSTI]

LBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey ............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSs

91

Green Building Features Northwest Center for Engineering, Science and Technology  

E-Print Network [OSTI]

Green Building Features Northwest Center for Engineering, Science and Technology RESOURCE for commercial buildings developed by the U.S. Green Building Council (USGBC) to provide a national consensus in what constitutes a "green" building and to provide market incentives to build green. PSU has received

Bertini, Robert L.

92

Online map of buildings using radiant technologies  

E-Print Network [OSTI]

of radiant slab cooling using building simulation and fieldmeasurements. Energy and Buildings, 41, 3, 320-330.2013) Net-Zero Energy Buildings - Worldwide. Available at:

Karmann, Caroline; Schiavon, Stefano; Bauman, Fred

2014-01-01T23:59:59.000Z

93

Comparison of Building Energy Efficiency and Life Span for Different Envelopes  

E-Print Network [OSTI]

from 500C to 800C annually in cold and humid climates. The investigation results indicates that the external heat preservation wall mode is better compared with the internal heat preservation wall mode, and the former can effectively extend building...

Li, Z.; Li, D.; Li, L.; Zhang, G.; Liu, J.

2006-01-01T23:59:59.000Z

94

The Framework of an Optimization Model for the Thermal Design of Building Envelopes  

E-Print Network [OSTI]

Careful long term decisions in the design and operation of buildings can significantly improve the thermal performance and thus reduce the consumption of energy. The availability and ease of use of today's computers can be a sigruficant benefit...

Al-Homoud, M. S.; Degelman, L. O.; Boyer, L. L.

1994-01-01T23:59:59.000Z

95

Dynamic interrelationship between technology and architecture in tall buildings  

E-Print Network [OSTI]

The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in the late 19th century to the present. Through the historical research, a filtering ...

Moon, Kyoung-Sun

2005-01-01T23:59:59.000Z

96

Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint  

SciTech Connect (OSTI)

Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

2012-08-01T23:59:59.000Z

97

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In...

98

1 September 2012 Siemens Building Technologies Copyright Siemens  

E-Print Network [OSTI]

! Mobility and Logistics ! Low and Medium Voltage ! Smart Grid ! Building Technologies ! OSRAM* Industry ! Clinical Products ! Diagnostics ! Customer Solutions Infrastructure & Cities Divisionen ! Rail Systems

Fischlin, Andreas

99

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Applications, Ithaca, New York (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications,...

100

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Existing Homes:Hydronic Systems Designing for Setback Operations Building America Technology Solutions for New and Existing Homes:Hydronic Systems Designing for Setback Operations...

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Applications (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet) In this...

102

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Capillary Break Beneath a Slab: Polyethylene Sheeting over Aggregate, Southwestern Pennsylvania (Fact Sheet) Building America Technology Solutions for New and Existing Homes:...

103

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Excavationless: Exterior-Side Foundation Insulation for Existing Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Excavationless: Exterior-Side...

104

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

Cold Climate Foundation Wall Hygrothermal Research Facility (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Cold Climate Foundation Wall Hygrothermal...

105

PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant  

E-Print Network [OSTI]

PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant Program PON-13-503 http ............................................................................................................................5 PIER NATURAL GAS RESEARCH PROGRAM

106

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water...

107

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

New and Existing Homes: Cladding Attachment Over Mineral Fiber Insulation Board - Ontario, Canada Building America Technology Solutions for New and Existing Homes: Cladding...

108

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Combustion Safety Using Appliances for Indoor Air (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Combustion Safety Using Appliances for Indoor Air...

109

Building America Technology Solutions for New and Existing Homes...  

Office of Environmental Management (EM)

Existing Homes: Raised Ceiling Interior Duct System, New Smyrna, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Raised Ceiling Interior Duct...

110

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Moisture Durability of Vapor Permeable...

111

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Stand-off Furring in Deep Energy Retrofits Building America Technology Solutions for New and Existing Homes: Stand-off Furring in Deep Energy Retrofits This research project,...

112

Building America Technology Solutions for New and Existing Homes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes: Field Testing of Compartmentalization Methods for Multifamily Construction Building America Technology Solutions for New and Existing Homes: Field Testing of...

113

Building America Technology Solutions for New and Existing Homes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Duct in Conditioned Space in...

114

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Performance of...

115

Online map of buildings using radiant technologies  

E-Print Network [OSTI]

data in science, technology and innovation. TechnologicalTopic D1: Smart and mobile technologies ONLINE MAP OFBUILDINGS USING RADIANT TECHNOLOGIES Caroline KARMANN 1,* ,

Karmann, Caroline; Schiavon, Stefano; Bauman, Fred

2014-01-01T23:59:59.000Z

116

Agent Technology to Improve Building Energy Efficiency and Occupant Comfort  

E-Print Network [OSTI]

, can further reduce energy consumption of buildings. This paper reviews Multi-Agent Intelligent Internet-mediated control strategies and combines the most useful insights into a new technology called Forgiving Agent Comfort Technology (FACT...

Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

2006-01-01T23:59:59.000Z

117

Building the machine in the woods : reconciling technology and architecture  

E-Print Network [OSTI]

Given the fact that, to some degree, all buildings are technological phenomena; first, how do we select the appropriate technologies for a given set of requirements; and, more importantly, how do we find architectural and ...

Magie, Robert M

1991-01-01T23:59:59.000Z

118

Advances in Understanding Durability of the Building Envelope | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvancesAdvances

119

Research and Application of RCF Technology in Public Building  

E-Print Network [OSTI]

, China, September 14-17, 2014 Research and Application of RCF Technology in Public Buildings 7. REFERENCES ASHRAE, 2013, 2013 Handbook-Fundamental, Thermal Comfort, American Society of Heating, refrigeration and Air-Conditioning Engineers, Inc...Radiant Ceiling plus Fresh Air Research and Application of RCF Technology in Public Buildings ???????????? AirStar Air Conditioning Technology Group (HK) Ltd ?????????? AirStar Environment Technology Group Ltd ?????????????? YanTong Zhu...

Yan, J.; Pan, D.

2014-01-01T23:59:59.000Z

120

Solar Energy Windows and Smart IR Switchable Building Technologies  

SciTech Connect (OSTI)

The three building envelope functions with the largest impact on the energy usage are illumination, energy flux and energy production. In general, these three functions are addressed separately in the building design. A step change toward a zero-energy building can be achieved with a glazing system that combines these three functions and their control into a single unit. In particular, significant value could be realized if illumination into the building is dynamically controlled such that it occurs during periods of low load on the grid (e.g., morning) to augment illumination supplied by interior lights and then to have that same light diverted to PV energy production and the thermal energy rejected during periods of high load on the grid. The objective of this project is to investigate the feasibility of a glazing unit design that integrates these three key functions (illumination and energy flux control, and power production) into a single module.

McCarny, James; Kornish, Brian

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

GRADUATE STUDIES IN BUILDING TECHNOLOGY AN INTERDISCIPLINARY PROGRAM INCLUDING  

E-Print Network [OSTI]

-growing economies in other parts of the world, there is a growing demand for practical, sustainable building designs as the broader architectural design and construction processes. Likely careers of graduates are in the building1 GRADUATE STUDIES IN BUILDING TECHNOLOGY AN INTERDISCIPLINARY PROGRAM INCLUDING DEPARTMENT

Reif, Rafael

122

A study of building technology in the Natal building industry, South Africa  

E-Print Network [OSTI]

opportunity for technological improvement, (2) identify reasons for the slow technological progress in the building industry, and (3) establish directions for continuing this research focus. Descriptive statistics were used to report the findings of the study...

Pather, Rubintheran

1989-01-01T23:59:59.000Z

123

Solar Energy and Residential Building Integration Technology and Application  

E-Print Network [OSTI]

Building energy saving needs solar energy, but the promotion of solar energy has to be integrated with the constructions. Through analyzing the energy-saving significance of solar energy, and the status and features of it, this paper has discussed the solar energy and building integration technology and application in the residential building, and explored a new way and thinking for the close combination of the solar technology and residence.

Ding Ma; Yi-bing Xue

124

Building Technologies Program - 1995 Annual Report  

E-Print Network [OSTI]

demand- side management and marketing efforts. Features of the PowerDOE interface include on-line help, 3-D building

Selkowitz, S.E.

2010-01-01T23:59:59.000Z

125

System-Level Monitoring and Diagnosis of Building HVAC System  

E-Print Network [OSTI]

Y. Shu, Building envelope regulations on thermal comfort inof the building envelope on indoor thermal behavior, serveof the building envelope on indoor thermal behavior. This is

Wu, Siyu

2013-01-01T23:59:59.000Z

126

Revisit of Energy Use and Technologies of High Performance Buildings  

SciTech Connect (OSTI)

Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

Li , Cheng; Hong , Tianzhen

2014-03-30T23:59:59.000Z

127

Buildings Technologies Deployment | Clean energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services »"Building theBuildingBuilding

128

Building Technologies Program - 1995 Annual Report  

E-Print Network [OSTI]

hghting quality and energy-efficient design, and (2) to con-allows for more energy-efficient design but avoids costlycoun- tries to design energy-efficient buildings, to analyze

Selkowitz, S.E.

2010-01-01T23:59:59.000Z

129

Building Technologies Program - 1995 Annual Report  

E-Print Network [OSTI]

Integrated Design," Pro- ceedings of 15th Passive Solardesign guidance for the optimal utiliza- tion of passive solarDesign Tool for Small Commercial Buildings A DOE-funded industry/laboratory collaboration between the Passive Solar

Selkowitz, S.E.

2010-01-01T23:59:59.000Z

130

Green Energy Technology in Public Buildings  

Broader source: Energy.gov [DOE]

Enacted in June 2007, [http://www.leg.state.or.us/07reg/measpdf/hb2600.dir/hb2620.en.pdf House Bill 2620] introduced a unique requirement for installing solar energy systems on public buildings. In...

131

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant...

132

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

and Insulation Strategies on 1-12 Story Homes in Cold Climates, Minneapolis, MN Building America Technology Solutions for New and Existing Homes: Cost Analysis of Roof-Only...

133

Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is  

E-Print Network [OSTI]

2/21/2011 Building Technologies Research and Integration Center Reducing the energy consumption: systems (supermarket refrigeration, ground-source, CHP, multi-zone HVAC, wireless and other communications of the nation's buildings is essential for achieving a sustainable clean energy future and will be an enormous

Oak Ridge National Laboratory

134

Building Technologies Office | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6Clean Energy |-FormerofBuilding RemovalBuilding

135

A planning framework for transferring building energy technologies: Executive Summary  

SciTech Connect (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-08-01T23:59:59.000Z

136

A planning framework for transferring building energy technologies  

SciTech Connect (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-07-01T23:59:59.000Z

137

Simulation as a Tool to Develop Guidelines of Envelope Design of a Typical Office Building in Egypt  

E-Print Network [OSTI]

This paper describes the use of building performance simulation software in order to develop guidelines for designing energy-efficient office building. In Egypt energy codes for all building types are being under development. On the other hand...

Samaan, M.M.; Ahmed, A.N.; Farag, O.M.A.; El-Sayed Khalil, M.

2011-01-01T23:59:59.000Z

138

Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,  

E-Print Network [OSTI]

, ventilating, and air-conditioning (HVAC) accounts for 17% of the nation's primary energy consumption. However and North America. Scaling envelope improve- ments in the market is now feasible without fear of unintended

Oak Ridge National Laboratory

139

Building Technologies Office | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShotAppealsBudgetEnergyBuilding

140

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmericaS Feb 10,Building

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Building Energy Efficiency Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudget byTechnology

142

Advanced building skins : translucent thermal storage elements  

E-Print Network [OSTI]

Advances in the material sciences continue to provide designers with a wealth of new materials that challenge preconceived notions of the building envelope and its performance. These new technologies can be used to create ...

Kienzl, Nico, 1971-

1999-01-01T23:59:59.000Z

143

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Energy performance of LEED for new construction buildings:New Buildings Institute.New Buildings Institute. 2013. Buildings database, http://

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

144

Office of Building Technologies evaluation and planning report  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Building Technologies (OBT) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE`s statutory responsibilities in the buildings area. The planning and direction of these activities require the development and maintenance of database and modeling capability, as well as the conduct of analyses. This report summarizes the results of evaluation and planning activities undertaken on behalf of OBT during the past several years. It provides historical data on energy consumption patterns, prices, and building characteristics used in OBT`s planning processes, and summaries of selected recent OBT analysis activities.

Pierce, B.

1994-06-01T23:59:59.000Z

145

Windows and Building Envelope Research and Development: Roadmap for Emerging Technologies  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy WindR&D Roadmap For

146

Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling  

SciTech Connect (OSTI)

The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

Hadley, SW

2004-10-11T23:59:59.000Z

147

Russias R&D for Low Energy Buildings: Insights for Cooperation with Russia  

SciTech Connect (OSTI)

Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

Schaaf, Rebecca E.; Evans, Meredydd

2010-05-01T23:59:59.000Z

148

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

in Buildings & Community Systems, Demand-Side Management,Demand-Side Management Implementing Agreement (www.ieadsm.org) ECBCS Energy Conservation in BuildingsBuilding Technologies Program, Department of Energy, Washington, DC. Demand Side Management

Evans, Meredydd

2008-01-01T23:59:59.000Z

149

Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

1995-12-01T23:59:59.000Z

150

Building Technologies Office Program Peer Review | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout » Building Technologies Office

151

Text-Alternative Version of Building America Webinar: Technology-to-Market Roadmaps  

Broader source: Energy.gov [DOE]

This is the text-alternative version of the Building America Webinar: Technology-to-Market Roadmaps.

152

Development of the vitrification compositional envelope to support complex-wide application of MAWS technology  

SciTech Connect (OSTI)

This report presents the results from a study of the application of the Minimum Additive Waste Stabilization (MAWS) approach using vitrification as a treatment technology to a variety of waste streams across the DOE complex. This work has involved both experimental vitrification work using actual mixed wastes and surrogate waste streams from several DOE sites (Hanford, Idaho, and Oak Ridge) as well as the development of a computer-based, integrated glass property-composition database. The long-term objective is that this data base will assist glass formulation studies with single waste streams or combinations of waste streams subject to a variety of user-imposed constraints including waste stream usage priorities, process related constraints (e.g., melt viscosity, electrical conductivity, etc.), and waste form performance related constraints (e.g., TCLP and PCT leaching results). 79 refs., 143 figs., 65 tabs.

Mazer, J.J. [ed.] [Argonne National Lab., IL (United States)] [ed.; Argonne National Lab., IL (United States); Muller, I.S.; Gan, H.; Buechele, A.C.; Lai, S.T.; Pegg, I.L. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.] [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; [GTS Duratek, Inc., Columbia, MD (United States)

1996-09-01T23:59:59.000Z

153

Building America Technology Solutions for New and Existing Homes...  

Office of Environmental Management (EM)

which will provide factory homebuilders with high performance, cost-effective alternative envelope designs that will meet stringent energy code requirements. Stud Walls...

154

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

E-Print Network [OSTI]

and a core zone. The envelope thermal properties meet ASHRAEis the thermal zone and the building envelope model that was

Wetter, Michael

2012-01-01T23:59:59.000Z

155

Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuildingInteroperability

156

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network [OSTI]

L ABORATORY Integrated Building Energy Systems Design7301 Integrated building energy systems design considering

Stadler, Michael

2009-01-01T23:59:59.000Z

157

Best Practices: Policies for Building Efficiency and Emerging Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about appliance standards, building energy codes, ENERGY STAR program and tax incentives for building efficiency.

158

Dynamic building enclosures : the design of an innovative constructive system which permits mechanically-driven, computer-controlled shape transformations to the building envelope  

E-Print Network [OSTI]

Dynamic Building Enclosures is a system of prefabricated, lightweight, kit-of-parts wall and/or roof elements. This system has the unique capability of dynamically altering, or mutating its shape in reaction to changing ...

Nelson, Eric (Eric Freeman), 1964-

1998-01-01T23:59:59.000Z

159

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

Energy, 2007 Buildings Energy Data Book, September 2007.levels (2006 Buildings Energy Data Book). Figure 1 - Shareto the 2007 Buildings Energy Data Book, among all types of

Hong, Tianzhen

2014-01-01T23:59:59.000Z

160

Advanced Integrated Systems Technology Development  

E-Print Network [OSTI]

the influence of envelope thermal insulation, thermal mass,the influences of envelope thermal insulation, thermal mass,thermal mass, shading, and insulation into an efficient building envelope,

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

average commercial buildings site energy usage of 91 kBtu/commercial buildings, even though the average Energy Usage

Hong, Tianzhen

2014-01-01T23:59:59.000Z

162

New Medical Education Building Features State-of-the-Art Labs, Library, Classroom Technology  

E-Print Network [OSTI]

The UCF College of Medicines new state-of-the-art medical education building at Lake Nona features) silver certification based on United States Green Building Council standards for sustainable buildingsNew Medical Education Building Features State-of-the-Art Labs, Library, Classroom Technology

Wu, Shin-Tson

163

Building a Scalable GeoSpatial DBMS: Technology, Implementation, and Evaluation  

E-Print Network [OSTI]

Building a Scalable Geo­Spatial DBMS: Technology, Implementation, and Evaluation Jignesh Patel, Jie describe new techniques for building a parallel geo­ spatial DBMS, discuss our implementation

Tufte, Kristin

164

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

E-Print Network [OSTI]

Building Environment and Thermal Envelope Council (BETEC)of Thermal Performance of the Exterior Envelopes ofof the Thermal Performance of the Exterior Envelopes of

Price, P.N.

2011-01-01T23:59:59.000Z

165

Integrated Building Energy Systems Design Considering Storage Technologies  

SciTech Connect (OSTI)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

2009-04-07T23:59:59.000Z

166

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

Systems, at two Chicago area multifamily buildings with existing OTR control. Advanced Boiler Load Monitoring Controllers More Documents & Publications Building America...

167

Simulation Technology Laboratory Building 970 hazards assessment document  

SciTech Connect (OSTI)

The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

Wood, C.L.; Starr, M.D.

1994-11-01T23:59:59.000Z

168

The Role of Venture Capital in Building Technology Companies in the Ottawa Region  

E-Print Network [OSTI]

The Role of Venture Capital in Building Technology Companies in the Ottawa Region John Callahan in building technology companies in the Ottawa region. We find four distinct periods of venture capital are relatively distinct in terms of the investors present in the market, the companies seeking capital

Callahan, John

169

Optimal Technology Selection and Operation of Microgrids in Commercial Buildings  

E-Print Network [OSTI]

L ABORATORY Optimal Technology Selection and Operation ofEnvironmental Energy Technologies Division 15 January 2007for Electric Reliability Technology Solutions with funding

Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

2008-01-01T23:59:59.000Z

170

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Revisit of Energy Use and Technologies of High PerformanceEnvironmental Energy Technologies Division May 2014 ThisRevisit of Energy Use and Technologies of High Performance

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

171

Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT)- 2015 Funding Opportunity Announcement  

Broader source: Energy.gov [DOE]

Deadline for Concept Papers: November 10, 2014, 5:00 PM ET This Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) 2015 FOA contributes to advancement in two core technological areas: non-vapor compression HVAC technologies and advanced vapor compression HVAC technologies.

172

Building Envelopes | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmerica »of

173

Northwestern University Information Technology Building Infrastructure Requirements for Communication Facilities  

E-Print Network [OSTI]

the building IDF, the house cables (HSE) which are also known as the riser cables, the local house cables is required for any building. NUITTelecom & Network Services will consult with the FM Project Manager

Shahriar, Selim

174

2013 Building Technologies Office Program Peer Review Report...  

Broader source: Energy.gov (indexed) [DOE]

(SOM) used EnergyPlus to design a new 380,000 square foot federal office building in West Virginia. The building has an advanced ventilated double facade and uses low-energy...

175

Building Technologies Program: Tax Deduction Qualified Software- VisualDOE version 4.1 build 0002  

Broader source: Energy.gov [DOE]

Provides required documentation that VisualDOE version 4.1 build 0002 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

176

Building Technologies Program: Tax Deduction Qualified Software ? Green Building Studio Web Service version 3.1  

Broader source: Energy.gov [DOE]

Provides required documentation that Green Building Studio Web Service version 3.1 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

177

Building Technologies Program: Tax Deduction Qualified Software- Green Building Studio Web Service version 3.0  

Broader source: Energy.gov [DOE]

Provides required documentation that Green Building Studio Web Service version 3.0 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

178

Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends  

Broader source: Energy.gov [DOE]

Learn more about the DOE's Buildings of the Future Project. Buildings will no longer be passive objects that consume resources, but rather active participants engaged in the energy system and our community.

179

Technology Mapping of the Renewable Energy, Buildings and Transport...  

Open Energy Info (EERE)

of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects AgencyCompany Organization: International Centre for Trade and...

180

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network [OSTI]

available. The cooling plant is an ice harvester designedused for ice making or for building cooling. During iceyears. The cooling plant is a Mueller ice harvester system

Bauman, F.S.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated Solutions Collaborative, to determine the most cost-effective...

182

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

compared with high-R approaches using exterior insulating sheathing. In this project, Building Science Corporation monitored moisture conditions in double-stud walls from 2011...

183

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

STAR requirements, and a high performance heating and cooling system. Ground Source Heat Pump Research, TaC Studios Residence More Documents & Publications Building America...

184

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

assess the performance of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of...

185

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. In this case study , Partnership...

186

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

investigated issues to better understand the mechanics behind the addition of insulation to the exterior of buildings to increase the thermal resistance of wood-framed walls...

187

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

NorthernSTAR Building America Partnership team studied the effectiveness of the External Thermal Moisture Management System (ETMMS) as a solution for improving airtightness in a...

188

Buildings R&D Breakthroughs: Technologies and Products Supported...  

Broader source: Energy.gov (indexed) [DOE]

rdbreakthroughs.pdf More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to...

189

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

190

Sizing Thermally Activated Building Systems (TABS): A Brief Literature Review and Model Evaluation  

E-Print Network [OSTI]

m 2 /W Thermal resistance of the building envelope, K-m 2 /Wtemperature, envelope, slab and tubing thermal resistance,

Basu, Chandrayee; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

191

ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

Plan for Building Thermal Envelope Systems and Insulatingwith the recently developed Thermal Envelopes and Insulatinga new device A the Envelope Thermal Testing Unit (ETTU),~ .

Sonderegger, R. C.

2011-01-01T23:59:59.000Z

192

Advanced Envelope Research for Factory Built Housing, Phase 3 -- Whole-House Prototyping  

SciTech Connect (OSTI)

The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.

Levy, E.; Mullens, M.; Rath, P.

2014-04-01T23:59:59.000Z

193

Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings  

SciTech Connect (OSTI)

This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

Jiang, Wei; Gowri, Krishnan; Lane, Michael D.; Thornton, Brian A.; Rosenberg, Michael I.; Liu, Bing

2009-09-28T23:59:59.000Z

194

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network [OSTI]

During building cooling the chillers supply 42 P water towith 42P supply air always reduced cooling and totalpart-load) cooling with cold air supply. In most California

Bauman, F.S.

2008-01-01T23:59:59.000Z

195

THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND  

E-Print Network [OSTI]

LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

196

Proposal for Master Thesis: "Historic trajectories for building related energy technologies  

E-Print Network [OSTI]

efficiency and renewable energy technologies is required. To support this development we need to understand for future energy efficient building and districts (e.g. intelligent faades, renewable energy hubs within the Swiss Competence Centre for Energy Research (SCCER) on Future Energy Efficient Buildings

197

Autonomous Correction of Sensor Data Applied to Building Technologies Using Filtering Methods  

E-Print Network [OSTI]

and commercial buildings consume 41% of primary energy (72% electricity) used in the U.S. · Retrofitting inefficient buildings with new and innovative technologies that help to curb energy consumption will reduce filters. · Specifically, temperature, humidity, energy usage, pressure, and airflow sensor data is used

Wang, Xiaorui "Ray"

198

Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Heating technologies fo r energy efficiency Vol.III-3-4 Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building Guohui Feng Guangyu Cao Li Gang Ph.D. Ph... achieve above 95%. Since not heating up indoor air, it is specially suited for heating of factory buildings where the conditions of heat preservation and sealing are poor and their gates are opened frequently. The off-on of radiation heating system...

Feng, G.; Cao, G.; Gang, L.

2006-01-01T23:59:59.000Z

199

Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping  

SciTech Connect (OSTI)

The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

Levy, E.; Kessler, B.; Mullens, M.; Rath, P.

2014-01-01T23:59:59.000Z

200

4.462 / 4.441 Building Technologies II: Building Structural Systems I, Spring 2003  

E-Print Network [OSTI]

This course serves as an introduction to the history, theory, and construction of basic structural systems with an introduction to energy issues in buildings. Emphasis is placed on developing an understanding of basic ...

Ochsendorf, John Allen

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network [OSTI]

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

202

System design and dynamic signature identification for intelligent energy management in residential buildings.  

E-Print Network [OSTI]

climates, Journal of Thermal Envelope and Building Science ,the eectiveness of the envelope's thermal insulation on theBuilding 3.1.1 Thermal properties The envelope of a building

Jang, Jaehwi

2008-01-01T23:59:59.000Z

203

Cutting-Edge Building Technologies Offer Big Energy Savings Potential...  

Energy Savers [EERE]

vacuum insulation materials. This combines low thermal emissivity (or low-e) coated plastic films to boost the energy efficiency of current window retrofit technologies by as...

204

Networks in Buildings: Which Path Environmental Energy Technologies Division  

E-Print Network [OSTI]

modest use in consumer electronics, security, and large building control systems. The next 20 years markets. Key future networks are lighting, climate control, and security/presence. This paper reviews some, product, or process disclosed, or represents that its use would not infringe privately owned rights

205

Building America Best Practices Series, Volume 10: Retrofit Techniques and Technologies: Air Sealing  

SciTech Connect (OSTI)

This report was prepared by PNNL for the U.S. Department of Energy Building America Program. The report provides information to home owners who want to make their existing homes more energy efficient by sealing leaks in the building envelope (ceiling, walls, and floors) that let in drafts and let conditioned air escape. The report provides descriptions of 19 key areas of the home where air sealing can improve home performance and energy efficiency. The report includes suggestions on how to find a qualified weatherization or home performance contractor, what to expect in a home energy audit, opportune times for performing air sealing, and what safety and health concerns to be aware of. The report describes some basic building science concepts and topics related to air sealing including ventilation, diagnostic tools, and code requirements. The report will be available for free download from the DOE Building America website. It is a suitable consumer education tool for home performance and weatherization contractors to share with customers to describe the process and value of home energy retrofits.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

2010-04-12T23:59:59.000Z

206

Buildings sector demand-side efficiency technology summaries  

SciTech Connect (OSTI)

This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

Koomey, J.G.; Johnson, F.X.; Schuman, J. [and others

1994-03-01T23:59:59.000Z

207

Technology Enablers for Next-Generation Economic Building Monitoring Systems  

E-Print Network [OSTI]

is essential to achieve a lower cost for building energy monitoring and analysis. The next-generation system discussed in this paper is a complete redesign. It will be Internet-enabled and secure; take advantage of current advances in smarter sensors, use... may only include sensors, and data collection and control subsystems. In order for these subsystems to interoperate, they must be networked with standard communication protocols. The Internet provides an open communication protocol, Transmission...

Sweeney, J., Jr.; Culp, C.

2001-01-01T23:59:59.000Z

208

Building Technologies FY'14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding Energy

209

Building Technologies Office 2015 Program Peer Review | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015 Program

210

Building Technologies Office Load Control Strategies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015

211

Building Technologies Program Planning Summary | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy

212

Building technological capability within satellite programs in developing countries  

E-Print Network [OSTI]

Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are ...

Wood, Danielle Renee

2012-01-01T23:59:59.000Z

213

The Value of Advanced Technologies in the U.S. Buildings Sector in Climate Change Mitigation  

SciTech Connect (OSTI)

There is a wide body of research focused on the potential of advanced technologies to reduce energy consumption in buildings. How such improvements relate to global climate change, however, is less clear, due to the complexity of the climate change issue, and the implications for the energy system as a whole that need to be considered. This study uses MiniCAM, an integrated assessment model, to examine the contributions of several suites of advanced buildings technologies in meeting national carbon emissions reduction targets, as part of a global policy to mitigate climate change by stabilizing atmospheric CO2 concentrations at 450 ppmv. Focal technology areas include building shells, heat pumps for HVAC and water heating applications, solid-state lighting, and miscellaneous electric equipment. We find that advanced heat pumps and energy-efficient miscellaneous electric equipment show the greatest potential to reduce aggregate building sector future energy consumption and policy costs, but that all focal areas are important for reducing energy consumption. Because of assumed availability of low-cost, emissions-reduced electricity generation technologies in these scenarios, heat pumps are especially important for facilitating fuel-switching towards electricity. Buildings sector energy consumption is reduced by 28% and policy costs are reduced by 17% in a scenario with advanced technologies in all focal areas.

Kyle, G. Page; Clarke, Leon E.; Smith, Steven J.

2008-05-01T23:59:59.000Z

214

Pennsylvania: Window Technology First of Its Kind for Commercial Buildings  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdf MoreEnergyEnergyPendingCommercial Buildings ||

215

Building Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015 Program5

216

Building Technologies Office Overview - 2013 Peer Review | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015Energy

217

Building Technologies Program - Funding Profile by Subprogram | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigationofBuilding Technologiesof

218

Realizing Building End-Use Efficiency with Ermerging Technologies |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department of Energy Realizing Building End-Use

219

Building Technologies Research and Integration Center | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmericaS Feb 10,BuildingResearch

220

Building America Technology Solutions for New and Existing Homes:  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next > Sun Mon TueBuilding

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building America Technology Solutions for New and Existing Homes: Cladding  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next > Sun Mon TueBuildingAttachment Over

222

Building America Technology Solutions for New and Existing Homes: Field  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next > Sun Mon TueBuildingAttachment

223

Building Science and Technology Solutions for National Problems  

SciTech Connect (OSTI)

The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.

Bishop, Alan R. [Los Alamos National Laboratory

2012-06-05T23:59:59.000Z

224

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network [OSTI]

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facilitys electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

225

Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation  

SciTech Connect (OSTI)

During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

NONE

1994-09-01T23:59:59.000Z

226

Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies  

SciTech Connect (OSTI)

This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BTs Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the long-term.

Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

2009-08-31T23:59:59.000Z

227

Pollution prevention opportunity assessment for building 878, manufacturing science and technology, organization 14100.  

SciTech Connect (OSTI)

This report describes the methodology, analysis and conclusions of a preliminary assessment carried out for activities and operations at Sandia National Laboratories Building 878, Manufacturing Science and Technology, Organization 14100. The goal of this assessment is to evaluate processes being carried out within the building to determine ways to reduce waste generation and resource use. The ultimate purpose of this assessment is to analyze and prioritize processes within Building 878 for more in-depth assessments and to identify projects that can be implemented immediately.

Klossner, Kristin Ann

2004-05-01T23:59:59.000Z

228

Envelope design implications of ASHRAE Standard 90. 1P: a case study view  

SciTech Connect (OSTI)

ASHRAE recently issued a public review draft of Standard 90.1P, Energy Efficient Design of New Non-Residential Buildings and High-Rise Residential Buildings. The revisions proposed in Standard 90.1P are substantially different in structure and content from the existing Standard, especially those sections dealing with building envelope. In this paper, the envelope requirements of Standard 90.1P and their impacts on envelope design features are demonstrated. Several example buildings and locations are used to convey the underlying concepts and nature of the envelope criteria and the implications of those concepts for a variety of envelope attributes.

Crawley, D.B.; Briggs, R.S.

1985-11-01T23:59:59.000Z

229

Building Technologies Innovations Program (DE-FOA-0000823) | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies »FY'14

230

Building Technologies Office Overview - 2014 Peer Review | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies6 BUDGET

231

Building Technologies Office: DOE Zero Energy Ready Home Partner Locator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies6 BUDGETAbout

232

Advanced Envelope Research for Factory Built Housing, Phase 3...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting...

233

Building America Technology Solutions for New and Existing Homes:  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,BrentFeedbackPerformance of a HeatTechnology

234

Building Technologies Office 2014 Program Peer Review | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies »FY'14Office

235

Building Technologies Office FY 2016 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies6 BUDGET AT-A-GLANCE

236

Worldwide Status of Energy Standards for Buildings - Appendices  

E-Print Network [OSTI]

Other: Thermal properties of envelope; air-tightness; energyof Overall Thermal Transfer Value to Building Envelope Hongenvelope provisions: Roof Wall system Fenestration system Infiltration Other: Thermal

Janda, K.B.

2008-01-01T23:59:59.000Z

237

Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies  

SciTech Connect (OSTI)

This project developed an inventory of the Office of Building Technologies (OBT) from a survey administered in 1988 to program managers and principal investigators from OBT. Information provided on these surveys was evaluated to identify equipment and practices that are near-term opportunities for technology commercialization and to determine whether they needed some form of assistance from OBT to be successful in the marketplace. The near-term commercial potential of OBT technologies was assessed by using a technology selection screening methodology. The screening first identified those technologies that were ready to be commercialized in the next two years. The second screen identified the technologies that had a simple payback period of less than five years, and the third identified those that met a current need in the marketplace. Twenty-six OBT technologies met all the criteria. These commercially promising technologies were further screened to determine which would succeed on their own and which would require further commercialization support. Additional commercialization support was recommended for OBT technologies where serious barriers to adoption existed or where no private sector interest in a technology could be identified. Twenty-three technologies were identified as requiring commercialization support from OBT. These are categorized by each division within OBT and are shown in Table S.1. The methodology used could easily be adapted to screen other DOE-developed technologies to determine commercialization potential and to allocate resources accordingly. It provides a systematic way to analyze numerous technologies and a defensible and documented procedure for comparing them. 4 refs., 7 figs., 10 tabs.

Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

1991-03-01T23:59:59.000Z

238

Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies  

E-Print Network [OSTI]

in energy consumption when the compressor is operating and when the refrigerator doors are opened. · Data inefficient buildings with new and innovative technologies that help to curb energy consumption will reduce, humidity, pressure, and liquid flow data. · Refrigerator energy is harder to predict due to large spikes

Wang, Xiaorui "Ray"

239

Better Buildings Alliance  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

240

Using existing technologies, designers and operators of large buildings could slash national energy use across a broad  

E-Print Network [OSTI]

Using existing technologies, designers and operators of large buildings could slash national energy use across a broad range of climates. Researchers at the National Renewable Energy Laboratory (NREL of large office buildings and hospitals achieve at least a 50% energy savings using existing technology

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Finding the Next Big Thing(s) in Building Energy Efficiency: HIT Catalyst and the Technology Demo Program  

Broader source: Energy.gov [DOE]

Learn how the Department prioritizes high impact technologies (HITs) to advance energy efficiency. Hear from a Better Buildings program participant who is working with Department staff to test promising technologies in buildings. Learn what they are finding and how you can get involved.

242

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

E-Print Network [OSTI]

Measured Airflows in a Multifamily Building," AirflowPerformance of Building Envelopes, Components, and Systems,APARTMENTS AND COMMERCIAL BUILDINGS Price, P.N. ; Shehabi,

Price, P.N.

2011-01-01T23:59:59.000Z

243

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect (OSTI)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

244

Audit Procedures for Improving Residential Building Energy Efficiency  

E-Print Network [OSTI]

Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

245

ASEAN--USAID Buildings Energy Conservation Project final report. Volume 2, Technology  

SciTech Connect (OSTI)

This volume reports on research in the area of energy conservation technology applied to commercial buildings in the Association of Southeast Asian Nations (ASEAN) region. Unlike Volume I of this series, this volume is a compilation of original technical papers prepared by different authors in the project. In this regard, this volume is much like a technical journal. The papers that follow report on research conducted by both US and ASEAN researchers. The authors representing Indonesia, Malaysia, Philippines, and Thailand, come from a range of positions in the energy arena, including government energy agencies, electric utilities, and universities. As such, they account for a wide range of perspectives on energy problems and the role that technology can play in solving them. This volume is about using energy more intelligently. In some cases, the effort is towards the use of more advanced technologies, such as low-emittance coatings on window glass, thermal energy storage, or cogeneration. In others, the emphasis is towards reclaiming traditional techniques for rendering energy services, but in new contexts such as lighting office buildings with natural light, or cooling buildings of all types with natural ventilation. Used in its broadest sense, the term ``technology`` encompasses all of the topics addressed in this volume. Along with the more customary associations of technology, such as advanced materials and equipment and the analysis of their performance, this volume treats design concepts and techniques, analysis of ``secondary`` impacts from applying technologies (i.e., unintended impacts, or impacts on parties not directly involved in the purchase and use of the technology), and the collection of primary data used for conducting technical analyses.

Levine, M.D.; Busch, J.F. [eds.

1992-06-01T23:59:59.000Z

246

Transferring building energy technologies by linking government and private-sector programs  

SciTech Connect (OSTI)

The US Department of Energy's Office of Building Technologies (OBT) may wish to use existing networks and infrastructures wherever possible to transfer energy-efficiency technologies for buildings. The advantages of relying on already existing networks are numerous. These networks have in place mechanisms for reaching audiences interested in energy-efficiency technologies in buildings. Because staffs in trade and professional organizations and in state and local programs have responsibilities for brokering information for their members or client organizations, they are open to opportunities to improve their performance in information transfer. OBT, as an entity with primarily R D functions, is, by cooperating with other programs, spared the necessity of developing an extensive technology transfer program of its own, thus reinventing the wheel.'' Instead, OBT can minimize its investment in technology transfer by relying extensively on programs and networks already in place. OBT can work carefully with staff in other organizations to support and facilitate their efforts at information transfer and getting energy-efficiency tools and technologies into actual use. Consequently, representatives of some 22 programs and organizations were contacted, and face-to-face conversations held, to explore what the potential might be for transferring technology by linking with OBT. The briefs included in this document were derived from the discussions, the newly published Directory of Energy Efficiency Information Services for the Residential and Commercial Sectors, and other sources provided by respondents. Each brief has been sent to persons contacted for their review and comment one or more times, and each has been revised to reflect the review comments.

Farhar, B.C.

1990-07-01T23:59:59.000Z

247

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

248

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

SciTech Connect (OSTI)

The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

2009-05-26T23:59:59.000Z

249

Technology Prioritization: Transforming the U.S. Building Stock to Embrace Energy Efficiency  

SciTech Connect (OSTI)

The U.S. Buildings sector is responsible for about 40% of the national energy expenditures. This is due in part to wasteful use of resources and limited considerations made for energy efficiency during the design and retrofit phases. Recent studies have indicated the potential for up to 30-50% energy savings in the U.S. buildings sector using currently available technologies. This paper discusses efforts to accelerate the transformation in the U.S. building energy efficiency sector using a new technology prioritization framework. The underlying analysis examines building energy use micro segments using the Energy Information Administration Annual Energy Outlook and other publically available information. The tool includes a stock-and-flow model to track stock vintage and efficiency levels with time. The tool can be used to investigate energy efficiency measures under a variety of scenarios and has a built-in energy accounting framework to prevent double counting of energy savings within any given portfolio. This tool is developed to inform decision making and estimate long term potential energy savings for different market adoption scenarios.

Abdelaziz, Omar [ORNL] [ORNL; Farese, Philip [Advantix Systems] [Advantix Systems; Abramson, Alexis [U.S. Department of Energy, Building Technologies Program] [U.S. Department of Energy, Building Technologies Program; Phelan, Patrick [U.S. Department of Energy, Building Technologies Program] [U.S. Department of Energy, Building Technologies Program

2013-01-01T23:59:59.000Z

250

Economic Energy Savings Potential in Federal Buildings  

SciTech Connect (OSTI)

The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

2000-09-04T23:59:59.000Z

251

TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION TO END-USE FORECASTING WITH COMMEND 4.0  

E-Print Network [OSTI]

LBL-34243 UC - 1600 TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION Technologies, and the Office of Environmental Analysis, Office of Policy, Planning, and Analysis of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. #12;Technology Data Characterizing Lighting

252

Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials  

SciTech Connect (OSTI)

Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products?single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles?and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. This accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley; Quelen, Sarah; Marlot, Lea; Preble, Chelsea; Chen, Sharon; Montalbano, Amadine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

2013-11-18T23:59:59.000Z

253

Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings  

SciTech Connect (OSTI)

Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

2011-07-01T23:59:59.000Z

254

Building Technologies Program: Tax Deduction Qualified Software-EnergyGauge Summit version 3.1 build 2  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyGauge Summit version 3.1 build 2 meets Internal Revenue Code 179D, Notice 2006-52, dated January 31, 2007, for calculating commercial building energy and power cost savings.

255

Cluster building by policy design: a sociotechnical constituency study of information communication technology (ICT) industries in Scotland and Hong Kong  

E-Print Network [OSTI]

This thesis investigates whether and how public policies can help build industrial clusters. The research applies a case study method based on 60 interviews to the emerging information communication technology (ICT) ...

Wong, Alexandra Wai Wah

2009-01-01T23:59:59.000Z

256

Integration of Low Energy Technologies for Optimal Building and Space Conditioning Design  

SciTech Connect (OSTI)

EnergyPlus is the DOE's newest building energy simulation engine. It was developed specifically to support the design of low energy building systems. This project focused on developing new low energy building simulation models for EnergyPlus, verifying and validating new and existing EnergyPlus models and transferring the new technology to the private sector. The project focused primarily on geothermal and radiant technologies, which are related by the fact that both are based on hydronic system design. As a result of this project eight peer reviewed journal and conference papers were added to the archival literature and five technical reports were published as M.S. theses and are available in the archival literature. In addition, several reports, including a trombe wall validation report were written for web publication. Thirteen new or significantly enhanced modules were added to the EnergyPlus source code and forty-two new or significantly enhanced sections were added to the EnergyPlus documentation as a result of this work. A low energy design guide was also developed as a pedagogical tool and is available for web publication. Finally several tools including a hybrid ground source heat pump optimization program and a geothermal heat pump parameter estimation tool were developed for research and design and are available for web publication.

D.E. Fisher

2006-01-07T23:59:59.000Z

257

Technology data characterizing lighting in commercial buildings: Application to end-use forecasting with commend 4.0  

SciTech Connect (OSTI)

End-use forecasting models typically utilize technology tradeoff curves to represent technology options available to consumers. A tradeoff curve, in general terms, is a functional form which relates efficiency to capital cost. Each end-use is modeled by a single tradeoff curve. This type of representation is satisfactory in the analysis of many policy options. On the other hand, for policies addressing individual technology options or groups of technology options, because individual technology options are accessible to the analyst, representation in such reduced form is not satisfactory. To address this and other analysis needs, the Electric Power Research Institute (EPRI) has enhanced its Commercial End-Use Planning System (COMMEND) to allow modeling of specific lighting and space conditioning (HVAC) technology options. This report characterizes the present commercial floorstock in terms of lighting technologies and develops cost-efficiency data for these lighting technologies. This report also characterizes the interactions between the lighting and space conditioning end uses in commercial buildings in the US In general, lighting energy reductions increase the heating and decrease the cooling requirements. The net change in a building`s energy requirements, however, depends on the building characteristics, operating conditions, and the climate. Lighting/HVAC interactions data were generated through computer simulations using the DOE-2 building energy analysis program.

Sezgen, A.O.; Huang, Y.J.; Atkinson, B.A.; Eto, J.H.; Koomey, J.G.

1994-05-01T23:59:59.000Z

258

Impact of 2001 Building Technology, state and community programs on United States employment and wage income  

SciTech Connect (OSTI)

The Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the potential economic impacts of its portfolio of programs on national employment and income. A special purpose version of the IMPLAN input-output model allied In Build is used in this study of all 38 BTS programs included in the FY2001 federal budget. Energy savings, investments, and impacts on U.S. national employment and wage income are reported by program for selected years to the year 2030. Energy savings from these programs have the potential of creating a total of nearly 332,000 jobs and about $5.3 billion in wage income (1995$) by the year 2030. Because the required investments to achieve these savings are capital intensive, the net effect after investment is 304,000 jobs and $5.0 billion.

MJ Scott; DJ Hostick; DB Elliott

2000-03-20T23:59:59.000Z

259

Impact of the FY 2005 Building Technologies Program on United States Employment and Earned Income  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is interested in assessing the potential economic impacts of its portfolio of subprograms on national employment and income. A special purpose version of the IMPLAN input-output model called ImBuild II is used in this study of all 21 Building Technologies Program subprograms in the EERE final FY 2005 budget request to the Office of Management and Budget on February 2, 2004. Energy savings, investments, and impacts on U.S. national employment and earned income are reported by subprogram for selected years to the year 2030. Energy savings and investments from these subprograms have the potential of creating a total of 396,000 jobs and about $5.6 billion in earned income (2003$) by the year 2030.

Scott, Michael J.; Anderson, Dave M.; Belzer, David B.; Cort, Katherine A.; Dirks, James A.; Elliott, Douglas B.; Hostick, Donna J.

2004-08-31T23:59:59.000Z

260

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

and Operation in Zero-Net- Energy Buildings with Demandand Operation in Zero-Net-Energy Buildings with Demandhas launched the Zero-Net- Energy (ZNE) Commercial Building

Stadler, Michael

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

Study in Energy Efficiency in Buildings August Nationalelectric loads in buildings: energy efficiency (for steady-and Energy Efficiency Options Using Commercial Building

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

262

Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies  

E-Print Network [OSTI]

energy building was achieved through an integrated design2. Integrated Design Associates, Inc. (IDeAs) Building, Santhe Integrated Design Associates, Inc. (IDeAs) Building, San

Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

2012-01-01T23:59:59.000Z

263

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

for solar and low energy buildings. Also relevant is HP IAof Existing and Low Energy Buildings Develop methodologiesas a Existing and Low Energy Buildings; ECBCS Annex 40,

Evans, Meredydd

2008-01-01T23:59:59.000Z

264

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

265

Machine to machine (M2M) technology in demand responsive commercial buildings  

E-Print Network [OSTI]

and Demand Response in Commercial Buildings. Highoperate buildings to maximize demand response and minimizeDemand Response Demonstration, 2004 ACEEE Summer Study on Energy Efficiency in Buildings.

Watson, David S.; Piette, Mary Ann; Sezgen, Osman; Motegi, Naoya; ten Hope, Laurie

2004-01-01T23:59:59.000Z

266

Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings  

E-Print Network [OSTI]

DemandResponseforSmallCommercialBuildings. Lawrencesmall?mediumbuildingsrolesindemandresponse efforts. demandresponseforsmall? mediumcommercialbuildings

Page, Janie

2012-01-01T23:59:59.000Z

267

Energy Efficiency Opportunities in Highway Lodging Buildings: Development of 50% Energy Savings Design Technology Packages  

SciTech Connect (OSTI)

This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energys net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50% saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.

Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.; Liu, Bing

2010-06-30T23:59:59.000Z

268

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

SciTech Connect (OSTI)

This report presents results from a program evaluation of the U.S. Department of Energy?s Buildings Technologies Program (BTP) participation in collaborative international technology implementing agreements. The evaluation was conducted by researchers from the Pacific Northwest National Laboratory and the Lawrence Berkeley National Laboratory in the fall of 2007 and winter 2008 and was carried out via interviews with stakeholders in four implementing agreements in which BTP participates, reviews of relevant program reports, websites and other published materials. In addition to these findings, the report includes a variety of supporting materials such that aim to assist BTP managers who currently participate in IEA implementing agreements or who may be considering participation.

Evans, Meredydd; Runci, Paul; Meier, Alan

2008-08-01T23:59:59.000Z

269

Enhancing Residential Building Operation through its Envelope  

E-Print Network [OSTI]

, which support environmental and constructional matters. Also the amounts of energy consumption for these two states are compared and a substantial economy of energy consumption is presented. Eventually, results represent that 32% in heat load and 25...

Vazifeshenas, Y.; Sajjadi, H.

2010-01-01T23:59:59.000Z

270

Building Envelope Stakeholder Workshop | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudget FormulationCamberly Homes

271

Windows and Building Envelope | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy WindR&D Roadmap

272

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

SciTech Connect (OSTI)

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively use

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

273

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

SciTech Connect (OSTI)

The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

2009-08-10T23:59:59.000Z

274

Commercial Building Energy Asset Scoring Tool  

Broader source: Energy.gov [DOE]

This Asset Scoring Tool will guide your data collection, store your building information, and generate Asset Scores and system evaluations for your building envelope and building systems. The Asset...

275

Building technolgies program. 1994 annual report  

SciTech Connect (OSTI)

The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effective solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.

Selkowitz, S.E.

1995-04-01T23:59:59.000Z

276

Jacketed lamp bulb envelope  

DOE Patents [OSTI]

A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Gitsevich, Aleksandr (Gaithersburg, MD); Bass, Gary K. (Mt. Airy, MD); Dolan, James T. (Frederick, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD); Levin, Izrail (Silver Spring, MD); Roy, Robert J. (Frederick, MD); Shanks, Bruce (Gaithersburg, MD); Smith, Malcolm (Alexandria, VA); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD)

2001-01-01T23:59:59.000Z

277

Building.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudgetThison SuccessBalance

278

Technology reviews: Glazing systems  

SciTech Connect (OSTI)

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

279

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

solarandlowenergybuildings SolarheatforindustrialprocessSolarandLowEnergyBuildings SolarHeatforIndustrialProcessSolarandLowEnergyBuildings SolarHeatforIndustrialProcess

Evans, Meredydd

2008-01-01T23:59:59.000Z

280

Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three  

E-Print Network [OSTI]

Building owners and occupants expect more from their buildings today- both better IEQ and less energy consumption. Many facilities strive to design and commission a =smart building' - one that is healthy, environmentally conscious and operating...

Wiser, D.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

MeasuresforGovernmentBuildingRetrofits" DevelopBestPracticeGuidelinesMeasuresforGovernmentBuildingRetrofits" DevelopBestPracticeGuidelinesMeasuresforGovernmentBuildingRetrofits" DevelopBestPracticeGuidelines

Evans, Meredydd

2008-01-01T23:59:59.000Z

282

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

EnergyRenovationofResidentialBuildings ConceptdefinitionandEnergyRenovationofResidentialBuildings 50a ConceptdefinitionandEnergyRenovationofResidentialBuildings 50a Conceptdefinitionand

Evans, Meredydd

2008-01-01T23:59:59.000Z

283

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

284

Building Energy Information Systems: State of the Technology and User Case Studies  

E-Print Network [OSTI]

Diagnostic trends of VAV zone temperatures HVAC 0200 - 4 1trend points. Each day eight person hours are dedicated to building-by-building HVAC

Granderson, Jessica

2010-01-01T23:59:59.000Z

285

Optimal Technology Selection and Operation of Microgrids inCommercial Buildings  

SciTech Connect (OSTI)

The deployment of small (<1-2 MW) clusters of generators,heat and electrical storage, efficiency investments, and combined heatand power (CHP) applications (particularly involving heat activatedcooling) in commercial buildings promises significant benefits but posesmany technical and financial challenges, both in system choice and itsoperation; if successful, such systems may be precursors to widespreadmicrogrid deployment. The presented optimization approach to choosingsuch systems and their operating schedules uses Berkeley Lab'sDistributed Energy Resources Customer Adoption Model [DER-CAM], extendedto incorporate electrical storage options. DER-CAM chooses annual energybill minimizing systems in a fully technology-neutral manner. Anillustrative example for a San Francisco hotel is reported. The chosensystem includes two engines and an absorption chiller, providing anestimated 11 percent cost savings and 10 percent carbon emissionreductions, under idealized circumstances.

Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui,Afzal; Firestone, Ryan; Chandran, Bala

2007-01-15T23:59:59.000Z

286

Impact of the FY 2009 Building Technologies Program on United States Employment and Earned Income  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is interested in assessing the potential economic impacts of its portfolio of subprograms on national employment and income. A special purpose input-output model called ImSET is used in this study of 14 Building Technologies Program subprograms in the EERE final FY 2009 budget request to the Office of Management and Budget in February 2008. Energy savings, investments, and impacts on U.S. national employment and earned income are reported by subprogram for selected years to the year 2025. Energy savings and investments from these subprograms have the potential of creating a total of 258,000 jobs and about $3.7 billion in earned income (2007$) by the year 2025.

Livingston, Olga V.; Scott, Michael J.; Hostick, Donna J.; Dirks, James A.; Cort, Katherine A.

2008-06-17T23:59:59.000Z

287

New building blocks for the ALICE SDD readout and Detector Control System in a commercial 0.25 $\\mu$ m CMOS technology  

E-Print Network [OSTI]

New building blocks for the ALICE SDD readout and Detector Control System in a commercial 0.25 $\\mu$ m CMOS technology

Rivetti, A; Idzik, M; Rotondo, F

2001-01-01T23:59:59.000Z

288

E-Print Network 3.0 - adaptive flight envelope Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a flight envelope protection algorithm... flight controller to an ... Source: Johnson, Eric N. - School of Aerospace Engineering, Georgia Institute of Technology...

289

Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement  

SciTech Connect (OSTI)

The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

NONE

1994-09-01T23:59:59.000Z

290

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

ECBCS)* Clean Coal Sciences* Climate Technology Initiative (Clean Coal Centre* Industrial Energy-Related Technologies

Evans, Meredydd

2008-01-01T23:59:59.000Z

291

Standard 90. 1's ENVSTD: Both a compliance program and an envelope design tool  

SciTech Connect (OSTI)

Since 1982, ASHRAE and the US Department of Energy have worked together to update ANSI/ASHRAE/IES Standard 90A-1980, Energy Conservation in Building Design.'' The new standard, ASHRAE/IES Standard 90.1-1989, Energy-Efficient Design of New Buildings Except Low-Rise Residential Buildings,'' is substantially changed in form and concept from Standard 90A-1980, especially in how it deals with exterior envelopes. In the new standard, designers can use either of two methods -- prescriptive or system performance -- to comply with building envelope requirements. Under the prescriptive method, requirements are listed in tabular form and designers must demonstrate compliance with each individual requirement. In the system performance method, designers generate the requirements for their specific building using a set of equations. The equations establish limits on permissible heating and cooling coil loads based on the local climate and the internal loads in the exterior zones of the building. A personal computer program, ENVSTD (ENVelope STanDard), has been written to simplify compliance with the system performance path of the standard. The program can also be used to evaluate the impact of varying envelope characteristics on building heating and cooling coil loads in specific locations. This paper provides examples of the impacts that the standard's envelope requirements have on envelope design. Use of the ENVSTD program as a design tool to determine the heating and cooling load impacts of various envelope strategies is also demonstrated. 7 refs., 12 figs.

Crawley, D.B.; Boulin, J.J.

1989-12-01T23:59:59.000Z

292

Science and technology of building seals, sealants, glazing, and waterproofing: Seventh volume  

SciTech Connect (OSTI)

This book captures papers from the Charles J. Parise Seventh Symposium on the Science and Technology of Building Seals. Sealants, Glazing, and Waterproofing. The overriding theme behind the papers is durability. This topic is fundamental to all users and specifiers of sealants. The first set of papers in this book addresses the topic of stress and fatigue. Joint designs vary from the square section to exaggerated hour-glass shapes. The joint designs are factors in the longevity of a sealant in the joint. The available work on accelerated weathering tests and how that relates to the damage caused by real weathering is summarized. Acrylic latex sealants can come in many qualities and some can be formulated to have properties that approach and in some cases match some of the chemically curing sealants. The unique sealant applications in roofs and doing the old fashion listing of the performance needed for each application is addressed. Destruction of a joint can be more than a failed sealant. It can be a fine sealant in a joint that is picked clean by birds. Destruction of weather protection offered by sealant, the diagnosis of the cause and solutions, especially in EIFS systems, was discussed in several papers. The esthetic concerns of fluid migration from sealants and sealant staining potential were addressed. Relative to sealant testing, the paper of work done at V.P.I. on adhesion testing is a landmark paper. Papers on finite element analysis are presented. These show where the stress concentration starts and maximizes in various joint designs and provides the basis for better joint design and better joint geometry. There is a concluding series of papers that address the adhesion of waterproofing membranes; firestopping from a latex viewpoint; polysulfide sealants for chemical containment; and a final paper looks at the myriad of places sealants are used in modern buildings and spaceframe structures.

Klosowski, J.M. [ed.

1998-12-31T23:59:59.000Z

293

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

Net- Energy Buildings with Demand Response Michael Stadler,Net-Energy Buildings with Demand Response 1 Michael Stadlerbuilding simulation tools, e.g. , EnergyPlus, require specification of the demand response

Stadler, Michael

2009-01-01T23:59:59.000Z

294

Building Energy Information Systems: State of the Technology and User Case Studies  

E-Print Network [OSTI]

building to outside entities, supporting and aligning with current developments in demand side management,building to outside entities, supporting and aligning with current developments in demand side management

Granderson, Jessica

2010-01-01T23:59:59.000Z

295

ORNL Building Technologies Research & Integration Center (BTRIC) New Laboratory Facilities per  

E-Print Network [OSTI]

-level energy efficiency in residential and commercial buildings, new or retrofit. In addition, thanks (partnering with builders on new construction and retrofits) is not feasible for commercial buildings in the space utilization in commercial buildings, which limits the R&D value that can be gained from holding

Oak Ridge National Laboratory

296

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

a building operations perspective, a demand-side managementdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This report summarizes the integration of DR in demand-side management

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

297

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

298

Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)  

SciTech Connect (OSTI)

Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

2011-09-01T23:59:59.000Z

299

Building America Case Study: Predicting Envelope Leakage in Attached Dwellings (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,Brent NelsonEvaluation of theMeeting

300

Building America Best Practices Series Volume 13: Energy Performance Techniques and Technologies: Preserving Historic Homes  

SciTech Connect (OSTI)

This guide is a resource to help contractors renovate historic houses, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. The guide is available for download from the DOE Building America website www.buildingamerica.gov.

Britt, Michelle L.; Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Makela, Erin KB; Schneider, Elaine C.; Kaufman, Ned

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Better Buildings Alliance Equipment Performance Specifications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies Office's...

302

Performance of Exterior Envelopes of Whole Buildings VIII: Integration of Building Envelopes Proceedings  

E-Print Network [OSTI]

on the properties of fenestration products has also influenced state and national codes (IECC, ASHRAE 90

303

Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas  

E-Print Network [OSTI]

, and provides the technical and economic analysis, which may provide reference of the suitable plans for the energy efficient reconstruction of buildings in cold area. 2. ANALYSIS ON HEATING ENERGY CONSUMPTION 2.1 Building Situation Based... on the existing residential building in Beijing, the paper discusses the reconstruction plan of energy saving. The outside air temperature for heating in Beijing is -9 , and the outside mean temperature is -1.6 during the heating period of 125 days...

Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

2006-01-01T23:59:59.000Z

304

Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings  

SciTech Connect (OSTI)

This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

2009-09-01T23:59:59.000Z

305

Building Energy Information Systems: State of the Technology and User Case Studies  

SciTech Connect (OSTI)

The focus of this study is energy information systems, broadly defined as performance monitoring software, data acquisition hardware, and communication systems used to store, analyze, and display building energy data. At a minimum, an EIS provides hourly whole-building electric data that are web-accessible, with analytical and graphical capabilities. Time series data from meters, sensors, and external data streams are used to perofmr analysis such as baselining, benchmarking, building level anomaly detection, and energy performance tracking.

Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish; Price, Phillip

2009-10-01T23:59:59.000Z

306

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

design, and operation of net-zero energy buildings Develop net importer of information But also missed opportunities: Scandinavian solutions for indoor air quality in zero-energy

Evans, Meredydd

2008-01-01T23:59:59.000Z

307

Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies  

E-Print Network [OSTI]

2009, the goal of net zero energy was reached. Referenceswas to make it a net zero-energy building. We obtained

Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

2012-01-01T23:59:59.000Z

308

New American Home 2010: Las Vegas, Nevada, Building Technologies Program (Brochure)  

SciTech Connect (OSTI)

This brochure details the New American Home 2010, which demonstrates the use of innovative building materials, cutting-edge design, and the latest construction techniques.

Not Available

2009-12-01T23:59:59.000Z

309

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network [OSTI]

to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

Raustad, R.; Basarkar, M.; Vieira, R.

310

Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuried and Encapsulated Ducts

311

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network [OSTI]

implement demand-response programs involving buildingthan the building envelope in demand response effectiveness.demand response, thermal mass, hot climates, office buildings

Xu, Peng

2010-01-01T23:59:59.000Z

312

Minimum cost model energy code envelope requirements  

SciTech Connect (OSTI)

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

313

Technology data characterizing refrigeration in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the United States, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of the refrigeration end use in terms of specific technologies, however, is complicated by several factors. First, the number of configurations of refrigeration cases and systems is quite large. Also, energy use is a complex function of the refrigeration-case properties and the refrigeration-system properties. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. Expanding end-use forecasting models so that they address individual technology options requires characterization of the present floorstock in terms of service requirements, energy technologies used, and cost-efficiency attributes of the energy technologies that consumers may choose for new buildings and retrofits. This report describes the process by which we collected refrigeration technology data. The data were generated for COMMEND 4.0 but are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

314

Academic Buildings Student & Admin.  

E-Print Network [OSTI]

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

315

commercial buildings initiative | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

316

Assessment of Distributed Energy Adoption in Commercial Buildings: Part 1: An Analysis of Policy, Building Loads, Tariff Design, and Technology Development  

E-Print Network [OSTI]

of Policy, Building loads, Tariff Design, and Technologyof Policy, Building loads, Tariff Design, and Technologygiven prevailing utility tariffs, site electrical and

Zhou, Nan; Nishida, Masaru; Gao, Weijun; Marnay, Chris

2005-01-01T23:59:59.000Z

317

Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.41  

Broader source: Energy.gov [DOE]

Provides required documentation that Hourly Analysis Program (HAP) version 4.41 meets Internal Revenue Code 179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

318

Assessment of Solar Energy Conversion Technologies-Application of Thermoelectric Devices in Retrofit an Office Building  

E-Print Network [OSTI]

Thermo electric (TE) devices offer an opportunity to introduce renewable energy into existing and new buildings. TE devices harvest energy from the temperature differential between the hot and cold side of a semiconductor material. In this study...

Azarbayjani, M.; Anderson, J.

319

Wireless Sensor Technology to Optimize the Occupant's Dynamic Demand Pattern Within the Building  

E-Print Network [OSTI]

on Environmental Ergonomics, Boston Zhang H., Arens E., Huizinga C., Han T., 2010, Thermal sensations and comfort models for non-uniform and transient environments, Building and Environment 45(2): 380-410 ...

Zeiler, W.; Boxem, G.; Maaijen, R.

2012-01-01T23:59:59.000Z

320

Building Technologies Program: Tax Deduction Qualified Software- EnergyGauge Summit version 3.14  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyGauge Summit version 3.14 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Technologies Program: Tax Deduction Qualified Software- EnergyGauge Summit version 3.11  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyGauge Summit version 3.11 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

322

Building Technologies Program: Tax Deduction Qualified Software- DOE-21.E version 119  

Broader source: Energy.gov [DOE]

Provides required documentation that DOE-21.E version 119 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

323

Building Technologies Program: Tax Deduction Qualified Software- EnergyGauge Summit version 3.13  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyGauge Summit version 3.13 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

324

Building Technologies Program: Tax Deduction Qualified Software- DOE-21.E-JJH version 130  

Broader source: Energy.gov [DOE]

Provides required documentation that DOE-2.1E-JJH version 130 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

325

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.6  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.6 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

326

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.5  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.5 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

327

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.9  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.9 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

328

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.8  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.8 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

329

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.7  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.7 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

330

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.1.0  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.1.1.0 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

331

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.4  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.4 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

332

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.2  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.1.2 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

333

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.0.0  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.1.0.0 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

334

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 2.0.0.025  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 2.0.0.025 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

335

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 1.3.0.018  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 1.3.0.018 version 130 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

336

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 1.4.0.025  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 1.4.0.025 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

337

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 2.1.0.023  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 2.1.0.023 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

338

Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.50  

Broader source: Energy.gov [DOE]

Provides required documentation that Hourly Analysis Program (HAP) version 4.50 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

339

Building Technologies Program: Tax Deduction Qualified Software- DOE-2.2 version 47d  

Broader source: Energy.gov [DOE]

On this page you'll find information about the DOE-2.2 version 47d qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

340

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 2.2.0.023  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 2.1.0.023 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings  

E-Print Network [OSTI]

Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

Lian, Y.; Hao, Y.

2006-01-01T23:59:59.000Z

342

Proceedings of the SPIE, Vol. 3700, April 6-8, 1999. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building  

E-Print Network [OSTI]

through components of building thermal envelopes. Two thermal chambers maintain steady-state heat flow the barrier between the outdoor weather and conditioned inside space. A building's thermal envelope consists to increase the efficiency of building heating and cooling. Heat flow through the building thermal envelope

343

Building a national technology and innovation infrastructure for an aging society  

E-Print Network [OSTI]

This thesis focuses on the potential of strategic technology innovation and implementation in sustaining an aging society, and examines the need for a comprehensive national technology and innovation infrastructure in the ...

Lau, Jasmin

2006-01-01T23:59:59.000Z

344

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network [OSTI]

and Energy Management in Zero-Net-Energy Buildings Michaeland Energy Management in Zero-Net-Energy Buildings 1 Michaelgoal of achieving zero-net-energy commercial buildings (

Stadler, Michael

2010-01-01T23:59:59.000Z

345

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Williams, Alison

2012-01-01T23:59:59.000Z

346

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Williams, Alison

2013-01-01T23:59:59.000Z

347

Sorbent-Based Gas Phase Air Cleaning for VOCs in Commercial Buildings  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Fisk, William J.

2006-01-01T23:59:59.000Z

348

Accuracy of CO2 sensors in commercial buildings: a pilot study  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

2006-01-01T23:59:59.000Z

349

Building China's Information Technology Industry: Tariff Policy and China's Accession to the WTO  

E-Print Network [OSTI]

Technology Industry: Tariff Policy and China's Accession toand thereby eliminate China's tariffs on semiconductors,make further substantial tariff reductions. A major issue

Borrus, Michael; Cohen, Stephen

1997-01-01T23:59:59.000Z

350

Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings  

E-Print Network [OSTI]

followingparticipants,vendorsandthereviewers: Paulsites,enabledbyeightvendors,participatedinatleasttechnologiesprovidedbyvendorscanreceiveandtranslate

Page, Janie

2012-01-01T23:59:59.000Z

351

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

ThermalEnergyUtilizingThermalEnergyStorageTechnologyPowerGenerationwithThermalEnergyStorage SustainableCoolingwithThermalEnergyStorage Demonstrationprojects/

Evans, Meredydd

2008-01-01T23:59:59.000Z

352

NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems  

SciTech Connect (OSTI)

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-10-01T23:59:59.000Z

353

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

HP HP HP CurrentAnnexes TransportationofThermalEnergyUtilizingThermalEnergyStorageTechnology OptimisedPowerGenerationwithThermalEnergyStorage Sustainable

Evans, Meredydd

2008-01-01T23:59:59.000Z

354

Technical Approach for the Development of DOE Building America Builders Challenge Technology Information Packages (Revised)  

SciTech Connect (OSTI)

The U.S. Department of Energy has issued a challenge to the homebuilding industry to build 220,000 high-performance homes by 2012. To qualify, homes must meet the requirements of a performance path, prescriptive path, or participating in a partner program.

Roberts, D. R.; Anderson, R.

2009-08-01T23:59:59.000Z

355

Autonomous Correction of Sensor Data Applied to Building Technologies Utilizing Statistical Processing Methods  

E-Print Network [OSTI]

Ridge, TN outfitted with a total of 1,218 sensors. The focus of this paper is on three different types.S. ("Intergovernmental Panel," 2007). There is a need for integrated building strategies, according to the U.S. Green concerns relevant to sensors being used to collect a wide variety of variables (e.g., humidity ratio, solar

Wang, Xiaorui "Ray"

356

Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies  

E-Print Network [OSTI]

; (3) refrigerator energy consumption; (4) heat pump liquid pressure; and (5) water flow. These data consumption, making them more energy-efficient is a vital part of the nation's overall energy strategy's total energy consumption [1]. Improving build- ing energy efficiency is one of the most important energy

Wang, Xiaorui "Ray"

357

Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book  

SciTech Connect (OSTI)

Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

1997-10-21T23:59:59.000Z

358

Building America Roadmap to High Performance Homes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office eere.energy.gov To Get to NZE Ready Homes... 1. High Efficiency - Thermal Enclosure ("Envelope") - Low-Load HVAC - Efficient Components 2. High Performance...

359

Building a Global Low-Carbon Technology Pathway | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergyBuildinga Global

360

Buildings-to-Grid Technical Opportunities: From the Information and Communications Technology Perspective  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding the

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings  

E-Print Network [OSTI]

lighting, co-generation stations, and much more. This paper will discuss some of the basic concepts, architectures, and technologies that are being used today to implement a Total Facility Control model....

Bernstein, R.

2010-01-01T23:59:59.000Z

362

Unmasking the Wiesner : a technological transformation : this is not a building  

E-Print Network [OSTI]

Introduction: A Technological Transformation The proposition to be argued is that architecture has the potential to reawaken us to the most basic and satisfying nuances of human experience. In this thesis the query is made ...

Spampanato, Maryellen

1993-01-01T23:59:59.000Z

363

Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2009-04-01T23:59:59.000Z

364

Financing Turnkey Efficiency Solutions for Small Buildings and...  

Energy Savers [EERE]

Financing Turnkey Efficiency Solutions for Small Buildings and Small Portfolios Commercial Buildings Integration Project for the 2013 Building Technologies Office's...

365

System/Building Tech Integration | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SystemBuilding Integration SHARE System Building Technologies Integration The buildings industry encompasses numerous designers, builders, construction materials and components...

366

Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters  

SciTech Connect (OSTI)

In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

Freeman, S.L.

1997-01-01T23:59:59.000Z

367

Assessment of solar technology in the home-building industry. Final report  

SciTech Connect (OSTI)

The NAHB Research Foundation, Inc., conducted a review of existing survey data supplied by home builders. The objective of this effort was to provide data which would serve as a basis for evaluating the completed and/or continuing programs of the Office of Solar Heat Technologies and to identify areas of future program emphasis.

Not Available

1983-06-01T23:59:59.000Z

368

Broken Information Feedback Loops Prevent Good Building Energy PerformanceIntegrated Technological and Sociological Fixes Are Needed  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings, Monterey CAStudy of Energy Efficiency in Buildings. Panel 4 Paper 1130.Summer Study of Energy Efficiency in Buildings. 5:13-5:25.

Arens, Edward; Brown, Karl

2012-01-01T23:59:59.000Z

369

Associations of indoor carbon dioxide concentrations and environmental susceptibilities with mucous membrane and lower respiratory building related symptoms in the BASE study: Analyses of the 100 building datas et  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Erdmann, Christine A.

2010-01-01T23:59:59.000Z

370

STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION  

E-Print Network [OSTI]

STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION CEC-CF-6R-ENV-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope Insulation; Roofing:__________________________________ Brand Name:_______________________________ Thickness (inches):_________________________ Thermal

371

Building Technologies Office FY 2015 Budget At-A-Glance | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies

372

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system  

E-Print Network [OSTI]

of innovative integrated HVAC systems in buildings, infor building envelope and HVAC systems simu- lation - WillIntegrated simulation for HVAC performance prediction: State

Trcka, Marija

2010-01-01T23:59:59.000Z

373

Sacks R. (1998), `Issues in the Development and Implementation of a Building Project Model for an Automated Building System', International Journal of Construction Information Technology, Salford University, Salford  

E-Print Network [OSTI]

designed to support computer-based integration between various construction applications, it is proposed of an Automated, Computer Integrated Building Realization System is to automatically generate all of the information required for the design, planning and execution of a building project. The project model forms

Sacks, Rafael

374

Building Technologies FY'14 Budget At-a-Glance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies »FY'14 Budget

375

Home Energy Ratings and Building Performance  

E-Print Network [OSTI]

climate as they affect the rating score of a proposed or completed structure. The rating is used to determine the most cost effective mechanical systems, building envelope design including window and door types, effect of various roofing materials...

Gardner, J.C.

376

Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)  

SciTech Connect (OSTI)

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

Not Available

2012-03-01T23:59:59.000Z

377

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesBuilding Stock. Golden, Colorado: National Renewable Energy

Feng, Wei

2013-01-01T23:59:59.000Z

378

Vol. 9: Building America Best Practices Series - Builders Challenge...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EEBA Builder's Guides - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Buildings Home About Emerging Technologies...

379

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network [OSTI]

CAM Analysis of Policy, Tariff Design, Building Energy Use,14 3.3 Comparison of Utility Tariffs in Japan and the14 Table 4: Electricity Tariffs at Several Facilities in the

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

380

High-performance commercial building systems  

SciTech Connect (OSTI)

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

Selkowitz, Stephen

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Analysis of Innovative HVAC System Technologies and Their Application for Office Buildings in Hot and Humid Climates  

E-Print Network [OSTI]

The commercial buildings sector in the United States used 18 percent (17.93 Quads) of the U.S. primary energy in 2006. Office buildings are the largest single energy consumption category in the commercial buildings sector of the United States...

Tanskyi, Oleksandr

2012-02-14T23:59:59.000Z

382

Saving energy and improving IAQ through application of advanced air cleaning technologies  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Fisk, W.J

2012-01-01T23:59:59.000Z

383

Envelope amplifier for broadband base-station envelope tracking power amplifier  

E-Print Network [OSTI]

represents total power loss inside the envelope ampli?er.simulator can simulate the power loss by extracting andThere are three main power losses inside the envelope ampli?

Zhu, Qiuyao

2011-01-01T23:59:59.000Z

384

Steam System Balancing and Tuning for Multifamily Residential Buildings: Chicago, Illinois. Building America Case Study: Technology Solutions for New and Existing Homes (Fact Sheet)  

SciTech Connect (OSTI)

Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

Not Available

2013-10-01T23:59:59.000Z

385

DOE Building Technologies Program  

Energy Savers [EERE]

501c3 * DOE will continue to support SEED, and Lawrence Berkeley National Laboratory (LBNL) will provide oversight of the code, while the permanent management plan is established...

386

Building Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigationof EnergyStandards

387

Building Technologies Office Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigationof

388

Integrating Acclimated Kinetic Envelopes into Sustainable Building Design  

E-Print Network [OSTI]

/IESNA Illuminating Engineering Society of North America IRB Institutional Review Board LEED Leadership in Energy and Environmental Design LBNL Lawrence Berkeley National Laboratory LPD lighting power density NREL National Renewable Energy Laboratory....11. Retractable roof of the High Court of Justice and Supreme Court (Foster+Partners, 2012) ................................................................ 33 Figure 2.12. Examples of electrochromic glazing by LBNL (Lee, DiBartolomeo, xiii...

Wang, Jialiang

2014-05-28T23:59:59.000Z

389

Building America Expert Meeting: Advanced Envelope Research for Factory  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,Brent NelsonEvaluationHomes and EnergyfromBuilt

390

Windows and Building Envelope Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy This webinar is

391

#AskEnergySaver: Building Envelopes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf MoreDaily wholesaleDepartmentYou're

392

Research and Development Roadmap: Windows and Building Envelope |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirements Crosswalk|Simulators and

393

Next Generation Building Envelope Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCutWorkers prepareEM

394

Improving Building Envelope and Duct Airtightness of US Dwellings The  

E-Print Network [OSTI]

Diagnostics Database (ResDB) by Lawrence Berkeley National Laboratory. Weatherization Assistance Program (WAP efficiency programs contributed another 10,000 paired measurements. Eighteen states are represented. The levels of improvement varied slightly from state to state, and also between program types. Larger

395

Energy Savings Through Improved Mechanical Systems and Building Envelope  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit| DepartmentNumber:Paducah Site| Department of

396

Windows and Building Envelope Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWind Vision About In support

397

Building America Webinar: Advanced Envelope Research for Factory-Built  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next >research teamhave foundHousing |

398

On the Common Envelope Efficiency  

E-Print Network [OSTI]

In this work, we try to use the apparent luminosity versus displacement (i.e., $L_{\\rm X}$ vs. $R$) correlation of high mass X-ray binaries (HMXBs) to constrain the common envelope (CE) efficiency $\\alpha_{\\rm CE}$, which is a key parameter affecting the evolution of the binary orbit during the CE phase. The major updates that crucial for the CE evolution include a variable $\\lambda$ parameter and a new CE criterion for Hertzsprung gap donor stars, both of which are recently developed. We find that, within the framework of the standard energy formula for CE and core definition at mass $X=10$\\%, a high value of $\\alpha_{\\rm CE}$, i.e., around 0.8-1.0, is more preferable, while $\\alpha_{\\rm CE}alpha_{\\rm CE}$. ...

Zuo, Zhao-Yu

2014-01-01T23:59:59.000Z

399

Energy Impacts of Envelope Tightening and Mechanical  

E-Print Network [OSTI]

1 Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector Energy Commission through Contract 500-08-061. #12;3 ABSTRACT Effective residential envelope air sealing reduces infiltration and associated energy costs for thermal conditioning, yet often creates a need

400

Commercial Building Funding Opportunity Webinar  

Broader source: Energy.gov [DOE]

This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

402

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

403

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

404

Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)  

Broader source: Energy.gov [DOE]

To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

405

Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building Technologiesand Renewable Energy, Office of Building Technology, State,

Ortiz, Anna C.

2010-01-01T23:59:59.000Z

406

Building America Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy ForBryanR BUILDING

407

Y-12 Plant decontamination and decommissioning Technology Logic Diagram for Building 9201-4: Volume 3, Technology evaluation data sheets: Part B, Decontamination; robotics/automation; waste management  

SciTech Connect (OSTI)

This volume consists of the Technology Logic Diagrams (TLDs) for the decontamination, robotics/automation, and waste management areas.

NONE

1994-09-01T23:59:59.000Z

408

Residential commissioning to assess envelope and HVAC system performance  

SciTech Connect (OSTI)

Houses do not perform optimally or even as many codes and forecasts predict. For example, Walker et al. (1998a) found large variations in thermal distribution system efficiency, as much as a factor of two even between side-by-side houses with the same system design and installation crew. This and other studies (e.g., Jump et al. 1996) indicate that duct leakage testing and sealing can readily achieve a 25 to 30% reduction in installed cooling capacity and energy consumption. As another example, consider that the building industry has recognized for at least 20 years the substantial impact that envelope airtightness has on thermal loads, energy use, comfort, and indoor air quality. However, Walker et al. (1998a) found 50% variances in airtightness for houses with the same design and construction crews, within the same subdivision. A substantial reason for these problems is that few houses are now built or retrofitted using formal design procedures, most are field assembled from a large number of components, and there is no consistent process to identify problems or to correct them. Solving the problems requires field performance evaluations of houses using appropriate and agreed upon procedures. Many procedural elements already exist in a fragmented environment; some are ready now to be integrated into a new process called residential commissioning (Wray et al. 2000). For example, California's Title 24 energy code already provides some commissioning elements for evaluating the energy performance of new houses. A house consists of components and systems that need to be commissioned, such as building envelopes, air distribution systems, cooling equipment, heat pumps, combustion appliances, controls, and other electrical appliances. For simplicity and practicality, these components and systems are usually evaluated individually, but we need to bear in mind that many of them interact. Therefore, commissioning must not only identify the energy and non-energy benefits associated with improving the performance of a component, it must also indicate how individual components interact in the complete building system. For this paper, we limit our discussion to diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. The remainder of this paper first describes what residential commissioning is, its characteristic elements, and how one might structure its process. Subsequent sections describe a consolidated set of practical diagnostics that the building industry can use now. Where possible, we also discuss the accuracy and usability of these diagnostics, based on recent laboratory work and field studies. We conclude by describing areas in need of research and development, such as practical field diagnostics for envelope thermal conductance and combustion safety. There are several potential benefits for builders, consumers, code officials, utilities, and energy planners of commissioning houses using a consistent set of validated methods. Builders and/or commissioning agents will be able to optimize system performance and reduce consumer costs associated with building energy use. Consumers will be more likely to get what they paid for and builders can show they delivered what was expected. Code officials will be better able to enforce existing and future energy codes. As energy reduction measures are more effectively incorporated into the housing stock, utilities and energy planners will benefit through greater confidence in predicting demand and greater assurance that demand reductions will actually occur. Performance improvements will also reduce emissions from electricity generating plants and residential combustion equipment. Research to characterize these benefits is underway.

Wray, Craig P.; Sherman, Max H.

2001-08-31T23:59:59.000Z

409

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

410

Get Smart About Energy: Office of Building Technology, State and Community Programs (OBT) EnergySmart Schools Program Folder (Revision)  

SciTech Connect (OSTI)

While improving their energy use in buildings and bus fleets, schools are likely to create better places for teaching and learning with better lighting, temperature control, acoustics, and air quality. Smart districts also realize benefits in student performance.

Not Available

2002-02-01T23:59:59.000Z

411

Building Technologies Program: Tax Deduction Qualified Software- Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1  

Broader source: Energy.gov [DOE]

Provides required documentation that Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

412

Advanced Retro-commissioning Technology: Predictive Energy Optimization (PEO) and Automated Demand Response for Commercial Building HVAC  

Broader source: Energy.gov [DOE]

Lead Performer: BuildingIQ, Inc. Foster City, CaliforniaPartners: Department of General Services Washington, DCDOE Funding: $1,767,138Cost Share: $1,767,138Project Term: October 2014 ...

413

Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)  

Broader source: Energy.gov [DOE]

In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

414

The culture of building to craft--a regional contemporary aesthetic : material resources, technological innovations and the form making process  

E-Print Network [OSTI]

In the non-Western context, there always has been a dilemma between "who we are" and "who we should be" . One could say "between tradition and modernity" . When the alien culture of building was adopted, the ties with the ...

Nanda, Puja, 1971-

1999-01-01T23:59:59.000Z

415

Comparing Computer Run Time of Building Simulation Programs  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building Technologies, U.S.and renewable energy productions. The size of building and

Hong, Tianzhen

2008-01-01T23:59:59.000Z

416

1750 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 10, OCTOBER 2003 A Low-Power Wide Dynamic Range Envelope Detector  

E-Print Network [OSTI]

Range Envelope Detector Serhii M. Zhak, Michael W. Baker, and Rahul Sarpeshkar, Member, IEEE Abstract--We report a 75-dB 2.8- W 100-Hz10-kHz envelope detector in a 1.5- m 2.8-V CMOS technology. The envelope due to thermal noise rectification limits. A novel circuit topology is used to perform 140-nW peak

Sarpeshkar, Rahul

417

Nuclear envelope transmembrane proteins in differentiation systems  

E-Print Network [OSTI]

Historically, our perception of the nuclear envelope has evolved from a simple barrier isolating the genome from the rest of a cell to a complex system that regulates functions including transcription, splicing, DNA ...

Batrakou, Dzmitry G.

2012-11-30T23:59:59.000Z

418

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

and Renewable Energy, Office of Building Technology,and Renewable Energy, Office of Building Technology,and renewable energy improvements to the building. One of

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

419

A Prediction of Energy Savings Resulting from Building Infiltration Control  

E-Print Network [OSTI]

, working to reduce or increase it. This study uses simulation to evaluate the potential energy impact of the interaction when several different strategies for controlling air leakage direction and velocity in building envelope components are implemented...

McWatters, K.; Claridge, D. E.; Liu, M.

1996-01-01T23:59:59.000Z

420

Buildings of the Future Research Project Launch and Virtual Panel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends Buildings of the Future Research Project Launch and Virtual Panel...

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Energy Codes Program Overview - 2014 BTO Peer Review...  

Broader source: Energy.gov (indexed) [DOE]

of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Building Energy Codes Program activities. Through...

422

Transforming Commercial Building Operations - 2013 BTO Peer Review...  

Energy Savers [EERE]

- 2013 BTO Peer Review Transforming Commercial Building Operations - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies Office's...

423

FY 2004 Energy Use and Recommended Energy Conservation Measures - Environmental Technology and National Security Buildings at Pacific Northwest National Laboratory  

SciTech Connect (OSTI)

This report addresses the question of why the ETB on PNNL's campus used about 20% more electricity than the NSB in FY 2004, even though ETB has more energy conservations installed than NSB and the two buildings were built using nearly identical floor plans. It was determined that the difference in electricity use between the two buildings was due to the large number of computers in the basement of ETB. It was further determined that ETB's high electricity consumption rate cannot be remedied until these computers can be relocated to a more suitable facility.

Olson, Norman J.; Hadley, Donald L.; Routh, Richard M.

2005-12-15T23:59:59.000Z

424

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

integrated, and green design 11 Figure 2.1 Environmental control functions performed by the buildingbuilding as a model of high performance, integrated, and green design.Design and Evaluation of integrated envelope and lighting control strategies for commercial buildings.

Konis, Kyle Stas

2012-01-01T23:59:59.000Z

425

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

integrated, and green design 11 Figure 2.1 Environmental control functions performed by the buildingbuilding as a model of high performance, integrated, and green design.Design and Evaluation of integrated envelope and lighting control strategies for commercial buildings.

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

426

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

427

RESEARCH PAPER Composition of the plant nuclear envelope: theme and  

E-Print Network [OSTI]

RESEARCH PAPER Composition of the plant nuclear envelope: theme and variations Iris Meier* Plant plants is only just beginning, fundamental differences from the animal nuclear envelope have already been to known plant regulatory pathways. Plant nuclear envelope composition The inner nuclear envelope A number

Meier, Iris

428

Back from the Brink with Something for Everyone - The Final Executed Memorandum of Agreement for Interpretation of the East Tennessee Technology Park and the K-25 Building - 13370  

SciTech Connect (OSTI)

When the Environmental Management (EM) Program at the Oak Ridge Office of the Department of Energy (DOE) began its major decontamination and decommissioning (D and D) program activities in the mid-1990's, it was understood that the work to demolish the gaseous diffusion process buildings at the K-25 Site, as it was then known, would be challenging. Nothing of that size and breadth had ever been done within the DOE complex and the job brought about a full menu of unique attributes: radiological contamination with enriched materials entrained in certain areas of the system, a facility that was never designed not to operate but had been shut down since 1964, and a loyal following of individuals and organizations who were committed to the physical preservation of at least some portion of the historic Manhattan Project property. DOE was able to solve and resolve the issues related to nuclear materials management, contamination control, and determining the best way to safely and efficiently deconstruct the massive building. However, for a variety of reasons, resolution of the historic preservation questions - what and how much to preserve, how to preserve it, where to preserve it, how to interpret it, how much to spend on preservation, and by and for whom preservation should occur - remained open to debate for over a decade. After a dozen years, countless meetings, phone calls, discussions and other exchanges, and four National Historic Preservation Act (NHPA) [1] Memoranda of Agreement (MOA), a final MOA [2] has been executed. The final executed MOA's measures are robust, creative, substantive, and will be effective. They include a multi-story replica of a portion of the K-25 Building, the dedication of the K-25 Building footprint for preservation purposes, an equipment building to house authentic Manhattan Project and Cold War equipment, a virtual museum, an on-site history center, a grant to preserve a historically-significant Manhattan Project-era hotel in Oak Ridge, and more. The MOA was designed to offer something for everyone. The MOA for the K- 25 Building and interpretation of the East Tennessee Technology Park (ETTP; formerly the K-25 Site) was executed by all of the signatory parties on August 7, 2012 - almost 67 years to-the-day after the 'product' of the K-25 process building became known to more than just a small group of scientists and engineers working on a secret project for the Army Corps of Engineers Manhattan District. (authors)

Cusick, Lesley T. [Restoration Services, Inc. (United States)] [Restoration Services, Inc. (United States)

2013-07-01T23:59:59.000Z

429

Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies Volune II - Survey Results  

SciTech Connect (OSTI)

This report consists of the results from each Equipment and Practice Form completed by the program managers and principal investigators. Information collected from the Equipment and Practice Form include the following: name and description of the technology; energy characteristics; when the technology will be ready for commercialization; estimated payback period; market sectors that would benefit; important commercialization barriers to overcome; energy-related benefits; and non-energy benefits of the technology to customers. Some of these technologies include: heat pumps, heat exchangers, insulation lighting systems; cooling systems, ventilation systems, burners, leak detection systems, retrofit procedure, operating and maintenance procedures, wall systems, windows, sampling equipment, measuring methods and instruments, thermal analysis methods, and computer codes.

Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

1991-03-01T23:59:59.000Z

430

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy, Building Technologies Program, Building America Best Practices

Mendes, Goncalo

2014-01-01T23:59:59.000Z

431

Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings  

SciTech Connect (OSTI)

This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with the characteristics of the prototype buildings. The prototype buildings were simulated in the same climate zones used by the prevailing energy codes and standards to evaluate energy savings. Prescriptive packages of recommendations presented in the guide by climate zone include enhanced envelope technologies, lighting and day lighting technologies and HVAC and SWH technologies. The report also documents the modeling assumptions used in the simulations for both the baseline and advanced buildings. Final efficiency recommendations for each climate zone are included, along with the results of the energy simulations indicating an average energy savings over all buildings and climates of approximately 38%.

Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

2006-11-30T23:59:59.000Z

432

Country Report on Building Energy Codes in India  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

2009-04-07T23:59:59.000Z

433

Country Report on Building Energy Codes in Canada  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

Shui, Bin; Evans, Meredydd

2009-04-06T23:59:59.000Z

434

Country Report on Building Energy Codes in China  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

2009-04-15T23:59:59.000Z

435

Country Report on Building Energy Codes in Australia  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

2009-04-02T23:59:59.000Z

436

Country Report on Building Energy Codes in Japan  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

Evans, Meredydd; Shui, Bin; Takagi, T.

2009-04-15T23:59:59.000Z

437

Country Report on Building Energy Codes in Korea  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

2009-04-17T23:59:59.000Z

438

Country Report on Building Energy Codes in the United States  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

Halverson, Mark A.; Shui, Bin; Evans, Meredydd

2009-04-30T23:59:59.000Z

439

Building America Technology Solutions for New and Existing Homes: Air Leakage and Air Transfer Between Garage and Living Space  

Broader source: Energy.gov [DOE]

In this project, Building Science Corporation worked with production home builder K. Hovnanian to conduct testing at a single-family home in Waldorf, Maryland, constructed in accordance with the 2009 International Residential Code. The team used automated fan pressurization and pressure monitoring techniques to conduct a series of 25 tests to measure the garage and house air leakage and pressure relationships and the garage-to-house air leakage.

440

Commercial Building Codes and Standards  

Broader source: Energy.gov [DOE]

Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building...

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Identification of building applications for a variable-conductance insulation  

SciTech Connect (OSTI)

Recent experiments have confirmed the feasibility of controllable, reversible disabling of a vacuum insulation panel, which may result in the development of energy-efficient building envelope components. These components could extend the managed energy exchange through the building envelope from about 30% (typical with fenestration systems in commercial buildings), to as much as 90% of the gross wall and roof areas. Further investigation will be required to optimized the thermal response and the magnitude of the R-value swing (from a difference between insulating and conducting insulating values of 4 to as high as a factor of 100). The potential for energy reduction by using the variable-conductance insulation in the building envelope is discussed, and other potential building applications are mentioned.

Potter, T.F. [National Renewable Energy Lab., Golden, CO (United States); Tuluca, A. [Winter (Steven) Associates, Inc., New York, NY (United States)

1992-07-01T23:59:59.000Z

442

Building Retrofits for Increased Protection Against Airborne  

E-Print Network [OSTI]

Building Retrofits for Increased Protection Against Airborne Chemical and Biological Releases of Standards and Technology William A. Jeffrey, Director Building Retrofits for Increased Protection Against Dols Heather Davis Priya Lavappa Amy Rushing Building and Fire Research Laboratory Prepared for: U

443

City of Asheville- Building Permit Fee Waiver  

Broader source: Energy.gov [DOE]

The City of Asheville waives fees for building permits and plan reviews for certain renewable energy technologies and green building certifications for homes and mixed-use commercial buildings....

444

Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106  

SciTech Connect (OSTI)

This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

Esch, R.A.

1997-04-14T23:59:59.000Z

445

Building Stones  

E-Print Network [OSTI]

3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

2012-01-01T23:59:59.000Z

446

Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy  

E-Print Network [OSTI]

reductions from energy-efficiency building technologies andreductions from energy-efficiency building technologies andLBNL-49750 Energy Efficiency in Buildings as an Air Quality

Vine, Edward

2002-01-01T23:59:59.000Z

447

Automated rapid thermal imaging systems technology  

E-Print Network [OSTI]

A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy ...

Phan, Long N., 1976-

2012-01-01T23:59:59.000Z

448

Buildings-to-Grid Technical Opportunities: From the Buildings...  

Energy Savers [EERE]

Opportunities: From the Buildings Perspective Technological advances in demand response and energy efficiency have increased the utility of residential and commercial...

449

Analysis and Research on the Thermal Properties of Energy-efficient Building Glass: A Case Study in PVB Laminated Glass  

E-Print Network [OSTI]

, are analyzed. The methods on usage of energy-saving glass are promoted based on the differences of their thermal properties. Meanwhile, a new kind of glass?PVB laminated glass (Fig.1), is introduced. Fl at cl ear gl ass 0. 05mmLOWE coati ng Fl at cl ear g... lass 3 mm( 5 mm) 0. 38mmPVB 3 mm( 5 mm) 0. 38mmPVB Fig. 1 Structure of PVB laminated glass ICEBO2006, Shenzhen, China Envelope Technologies for Building Energy Efficiency, Vol.II-4-5 2. EVALUATION STANDARDS OF SOLAR-OPTICAL PROPERTY The main...

Chen, Z.; Meng, Q.

2006-01-01T23:59:59.000Z

450

Making the Market Right for Environmentally Sound Energy-Efficient Technologies: U.S. Buildings Sector Successes that Might Work in Developing Countries and Eastern Europe  

E-Print Network [OSTI]

Energy Standards for Appliances, Equipment, and Buildings Golden Carrots: Motivating New Products that Beat the Standards Revenue-Neutral "Feebates" for Whole Buildings,

Gadgil, A.J.

2008-01-01T23:59:59.000Z

451

Technology Solutions for New Manufactured Homes, Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServices »Technology

452

The Lovejoy Building  

High Performance Buildings Database

Portland, OR Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

453

States & Emerging Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

operations and maintenance, and occupant impact, so not only trying to quantify building energy or technology energy performance, but also the impacts of that technology on users....

454

Environmental Management Waste Management Facility Proxy Waste Lot Profile 6.999 for Building K-25 West Wing, East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement slab], roofing, structural steel supports, interior walls, and exterior walls) and support system components including the recirculation cooling water (RCW); electrical; communication; fire protection; ventilation; process coolant; process lube oil; utilities such as steam, water and drain lines; (2) Process Piping; (3) Seal Exhaust Headers; (4) Seal Exhaust Traps; (5) Process Valves; (6) Differential Blind Multipliers (DBM)/Partial Blind Multipliers (PBM); and (7) Aftercoolers (also known as Intercell coolers). Converters and compressors while components of the process gas system, are not included in this commingled waste lot. On January 6, 2009, a meeting was held with EPA, TDEC, DOE and the team for the sole purpose of finalizing the objectives, format, and content of WPXL 6.999. The objective of WPXL 6.999 was to provide a crosswalk to the building structure and the PGE components profiles. This was accomplished by providing tables with references to the specific section of the individual profiles for each of the WLs. There are two building profiles and eight PGE profiles. All of the waste identified in the individual profiles will be commingled, shipped, and disposed exclusively under WPXL 6.999. The individual profiles were provided to the EPA and Tennessee Department of Environment and Conservation (TDEC) for information purposes only. This summary WPXL 6.999 will be submitted to EPA, TDEC, and DOE for review and approval. The format agreed upon by the regulators and DOE form the basis for WPXL 6.999. The agreed format is found on pages v and vi of the CONTENTS section of this profile. The disposal of this waste will be executed in accordance with the Action Memorandum for the Decontamination and Decommissioning of the K-25 and K-27 Buildings, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2002), Removal Action Work Plan for the K-25 and K-27 Buildings, Process Equipment Removal and Demolition, K-25/K-27 Project, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008a); Waste Handling Plan for Demolition of the K-25 and K-27 Bui

Rigsby V.P.

2009-02-12T23:59:59.000Z

455

Power functions and envelopes for unit root tests  

E-Print Network [OSTI]

This paper studies power functions and envelopes for covariate augmented unit root tests. The power functions are calculated by integrating the characteristic function, allowing accurate evaluation of the power envelope ...

Juhl, Ted P.; Xiao, Z. J.

2003-04-01T23:59:59.000Z

456

Building a World of Difference  

Broader source: Energy.gov [DOE]

Waste?to?Energy Roadmapping Workshop Building a World of Difference Presentation by Patricia Scanlan, Director of Residuals Treatment Technologies, Black & Veatch

457

200 Area Deactivation Project Facilities Authorization Envelope Document  

SciTech Connect (OSTI)

Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

DODD, E.N.

2000-03-28T23:59:59.000Z

458

Pitfalls in Building and HVAC Audits  

E-Print Network [OSTI]

The purpose of an energy audit is to identify and analyze areas of energy consumption and to propose methods of conservation. In the process of completing an audit the following areas of consumption should be considered: 0 Building Envelope 0 Air...

Gidwani, B. N.

1985-01-01T23:59:59.000Z

459

FORESTRY BUILDING: BUILDING EMERGENCY PLAN  

E-Print Network [OSTI]

FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

460

Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368  

SciTech Connect (OSTI)

The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

Guevara, K.C. [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States)] [DOE Savannah River Operations Office, Aiken, South Carolina 29808 (United States); Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)] [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Window and Envelope Technologies Overview - 2014 BTO Peer Review |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind

462

Volume I of the roadmap marks the completion of the first phase of the NIST Cloud Computing program and initiative to collaboratively build a USG Cloud Computing Technology Roadmap. This milestone is  

E-Print Network [OSTI]

Next Steps Volume I of the roadmap marks the completion of the first phase of the NIST Cloud Computing program and initiative to collaboratively build a USG Cloud Computing Technology Roadmap, and with the program time line presented in November 2010. As described previously, this roadmap document

463

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

464

Technical support document for proposed 1994 revision of the MEC thermal envelope requirements  

SciTech Connect (OSTI)

This report documents the development of the proposed revision of the Council of American Building Officials` (CABO) 1994 supplement to the 1993 Model Energy Code (MEC) building thermal envelope requirements for maximum component U{sub 0}-value. The 1994 amendments to the 1993 MEC were established in last year`s code change cycle and did not change the envelope requirements. The research underlying the proposed MEC revision was conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Building Energy Standards program. The goal of this research was to develop revised guidelines based on an objective methodology that determines the most cost-effective (least total cost) combination of energy conservation measures (ECMs) (insulation levels and window types) for residential buildings. This least-cost set of ECMs was used as a basis for proposing revised MEC maximum U{sub 0}-values (thermal transmittances). ECMs include window types (for example, double-pane vinyl) and insulation levels (for example, R-19) for ceilings, walls, and floors.

Conner, C.C.; Lucas, R.G.

1994-03-01T23:59:59.000Z

465

a-1 m-wing building: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochromics Initiative New materials processing technologies Fenestration Performance, Building Applications, and DesignDesign Tool for Small Commercial Buildings...

466

Quadrennial Technology Review Workshop Portfolios | Department...  

Broader source: Energy.gov (indexed) [DOE]

Review Workshop Portfolios Quadrennial Technology Review Workshop Portfolios Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop...

467

Quadrennial Technology Review Workshops | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Workshops Quadrennial Technology Review Workshops Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop Department of Energy Quadrennial...

468

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

469

Building America Best Practices Series, Volume 7.1- High-Performance Home Technologies: Guide to Determining Climate Regions by County  

Broader source: Energy.gov [DOE]

This report describes the climate zone designations used by the U.S. Department of Energy Building America Program, and is intended to help builders to identify the appropriate climate designation for the counties in which they are building.

470

Renewable Energy Applications for Existing Buildings: Preprint  

SciTech Connect (OSTI)

This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

Hayter, S. J.; Kandt, A.

2011-08-01T23:59:59.000Z

471

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

472

Technical support document for proposed revision of the model energy code thermal envelope requirements  

SciTech Connect (OSTI)

This report documents the development of the proposed revision of the council of American Building Officials' (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U[sub o]-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for group R'' residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

Conner, C.C.; Lucas, R.G.

1993-02-01T23:59:59.000Z

473

Technical support document for proposed revision of the model energy code thermal envelope requirements  

SciTech Connect (OSTI)

This report documents the development of the proposed revision of the council of American Building Officials` (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U{sub o}-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for ``group R`` residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

Conner, C.C.; Lucas, R.G.

1993-02-01T23:59:59.000Z

474

Collecting Occupant Presence Data for Use in Energy Management of Commercial Buildings  

E-Print Network [OSTI]

Visualization in Commercial Buildings: Design, Technology,diversity factors for common university building types. Energy and Buildings 42 (9) (September): 1543-1551. Dhummi,

Rosenblum, Benjamin Tarr

2012-01-01T23:59:59.000Z

475

Hawaii-Okinawa Building Evaluations  

SciTech Connect (OSTI)

NREL conducted energy evaluations at the Itoman City Hall building in Itoman, Okinawa Prefecture, Japan, and the Hawaii State Capitol building in Honolulu, Hawaii. This report summarizes the findings from the evaluations, including the best practices identified at each site and opportunities for improving energy efficiency and renewable energy. The findings from this evaluation are intended to inform energy efficient building design, energy efficiency technology, and management protocols for buildings in subtropical climates.

Metzger, I.; Salasovich, J.

2013-05-01T23:59:59.000Z

476

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

477

Phased Construction Completion Report for Building K-1401 of the Remaining Facilities Demolition Project at the East Tennessee Technology Park Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Phased Construction Completion Report documents the demolition of Bldg. K-1401, Maintenance Building, addressed in the Action Memorandum for the Remaining Facilities Demolition Project at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2003a) as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 non-time-critical removal action. The objectives of the removal action (DOE 2003a) - to eliminate the source of potential contamination, to eliminate the threat of potential future releases, and/or to eliminate the threats to the general public and the environment - were met. The end state of this action is for the slab to remain with all penetrations sealed and grouted or backfilled. The basement and pits remain open. There is residual radiological and polychlorinated biphenyl contamination on the slab and basement. A fixative was applied to the area on the pad contaminated with polychlorinated biphenyls. Interim land-use controls will be maintained until final remediation decisions are made under the Zone 2 Record of Decision (DOE 2005a).

Garland S.

2008-03-01T23:59:59.000Z

478

Lessons-Learned from D and D Activities at the Five Gaseous Diffusion Buildings (K-25, K- 27, K-29, K-31 and K-33) East Tennessee Technology Park, Oak Ridge, TN - 13574  

SciTech Connect (OSTI)

The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good, up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)

Kopotic, James D. [United States Department of Energy, Oak Ridge Office, P.O. Box 2001, Oak Ridge, TN 37831 (United States)] [United States Department of Energy, Oak Ridge Office, P.O. Box 2001, Oak Ridge, TN 37831 (United States); Ferri, Mark S.; Buttram, Claude [URS - CH2M Oak Ridge LLC, East Tennessee Technology Park, P. O. Box 4699, Oak Ridge, TN 37831 (United States)] [URS - CH2M Oak Ridge LLC, East Tennessee Technology Park, P. O. Box 4699, Oak Ridge, TN 37831 (United States)

2013-07-01T23:59:59.000Z

479

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect (OSTI)

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

480

Notice of Intent: Buildings University Innovators and Leaders...  

Broader source: Energy.gov (indexed) [DOE]

behalf of the Building Technologies Office, a Notice of Intent DE-FOA-0001191 concerning Funding Opportunity Announcement (FOA) DE-FOA-0001167 "Buildings University Innovators and...

Note: This page contains sample records for the topic "building envelope technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

System-Level Monitoring and Diagnosis of Building HVAC System.  

E-Print Network [OSTI]

??Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC (more)

Wu, Siyu

2013-01-01T23:59:59.000Z

482

Database Aids Building Owners and Operators in Energy-Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Building Technologies Office is conducting ongoing outreach to public and private organizations to contribute data. Collected data points include building location,...

483

Building Energy Codes Program Overview - 2014 BTO Peer Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Energy Codes Program. Through robust feedback, the BTO...

484

Accelerated Lambda Iteration in Rapidly Expanding Envelopes  

E-Print Network [OSTI]

We discuss the current implementation of the ALI method into our HYDrodynamical RAdiation(HYDRA) code for rapidly expanding, low density envelopes commonly found in core collapse and thermonuclear supernovae, novae and WR stars. Due to the low densities, non-thermal excitation by high energy photons (e.g. by radioactive decays) and the time dependence of the problem, large departures from LTE are common throughout the envelope even at large optical depths. ALI is instrumental for both the coupling of the statistical equations and the hydrodynamical equations with the radiation transport (RT). We employ several concepts to improve the stability, and convergence rate/control including the concept of leading elements, the use of net rates, level locking, reconstruction of global photon redistribution functions, equivalent-2-level approach, and predictive corrector methods. For appropriate conditions, the solution of the time-dependent rate equations can be reduced to the time-independent problem plus an analytic solution of an ODE For the 3-D problem, we solve the radiation transport via the moment equations. To construct the Eddington tensor elements, we use a Monte Carlo scheme to determine the deviation of the solution of the RT equation from the diffusion approximation (ALI of second kind). At the example of a thermonuclear supernova (SN99by),we show an analysis of light light curves, flux and polarization spectra and discuss the limitations of our approach.

P. Hoeflich

2002-07-04T23:59:59.000Z

485

Precision envelope detector and linear rectifier circuitry  

DOE Patents [OSTI]

Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

Davis, Thomas J. (Richland, WA)

1980-01-01T23:59:59.000Z

486

New Technology Demonstration Program  

E-Print Network [OSTI]

of systems. [1] The selected vendors are: OEM/Equipment Vendor Trane Large Building Controls Vendors Johnson Controls Siemens Building Technologies Small Building Controls Vendors With utility deregulation Technologies Teletrol Systems Software Vendors Tridium Electric Eye 3]. In many of the EMCIS products studied

487

Penn State Consortium for Building Energy Innovation  

Broader source: Energy.gov [DOE]

The Penn State Consortium for Building Energy Innovation (formerly the Energy Efficient Buildings Hub) develops, demonstrates, and deploys energy-saving technologies that can achieve 50% energy reduction in small- and medium-sized buildings. Its headquarters serves as a test bed for real-world integration of technology and market solutions.

488

Building Performance Evaluation  

E-Print Network [OSTI]

carbon technologies. ? Lack of proper system commissioning and installation led to the underperformance of systems and construction defects. ? Occupants had a lack of understanding of the building sustainability features. ? ?Unplanned changes... to space usage to meet new needs? led to poor internal environmental conditions. Building Performance Evaluation ? Impact survey The impact of the programme ? Three respondents have already added BPE to their portfolio ? Twenty will do more work...

King, A.; Harris, J.; Mbentin, B.

2012-01-01T23:59:59.000Z

489

Building a Sustainable Future FACILITIES & OPERATIONS  

E-Print Network [OSTI]

Building a Sustainable Future FACILITIES & OPERATIONS #12;A Laboratory on a Mission ...to meet: The Environmental Technology Building and National Security Building house more than 650 staff members. #12;Pacific capacity "The Facilities & Operations organization is dedicated to safely and sustainably building

490

NREL Buildings Research Video  

ScienceCinema (OSTI)

Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus?the first Federal building to be LEED Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

None

2013-05-29T23:59:59.000Z

491

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

is manual demand response where building staff receive acommercial buildings demand response technologies andBuilding Control Strategies and Techniques for Demand Response.

Kiliccote, Sila

2010-01-01T23:59:59.000Z

492

Technologies for Energy Efficient Buildings  

E-Print Network [OSTI]

.4.2.3 Total electrical energy consumption 33 3.4.2.4 Consumer alert messages 33 3.5 Laboratory Testing of Electricity Delivery and Energy Reliability Under Award No. DE-FC26-06NT42847 Hawai`i Distributed Energy of work sponsored by an agency of the United States Government. Neither the United States Government nor

493

Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting.  

SciTech Connect (OSTI)

This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.

Copeland, Robert Guild; Mitchell, Christine Charlotte; Follstaedt, David Martin; Lee, Stephen Roger; Shul, Randy John; Fischer, Arthur Joseph; Chow, Weng Wah Dr.; Myers, Samuel Maxwell, Jr.; Thoma, Steven George; Gee, James Martin; Coltrin, Michael Elliott; Burdick, Brent A.; Salamone, Angelo, L., Jr.; Hadley, G. Ronald; Elliott, Russell D.; Campbell, Jonathan M.; Abrams, Billie Lynn; Wendt, Joel Robert; Pawlowski, Roger Patrick; Simpson, Regina Lynn; Kurtz, Steven Ross; Cole, Phillip James; Fullmer, Kristine Wanta; Seager, Carleton Hoover; Bogart, Katherine Huderle Andersen; Biefeld, Robert Malcolm; Kerley, Thomas M.; Norman, Adam K.; Tallant, David Robert; Woessner, Stephen Matthew; Figiel, Jeffrey James; Moffat, Harry K.; Provencio, Paula Polyak; Emerson, John Allen; Kaplar, Robert James; Wilcoxon, Jess Patrick; Waldrip, Karen Elizabeth; Rohwer, Lauren Elizabeth Shea; Cross, Karen Charlene; Wright, Alan Francis; Gonzales, Rene Marie; Salinger, Andrew Gerhard; Crawford, Mary Hagerott; Garcia, Marie L.; Allen, Mark S.; Southwell, Edwin T. (Perspectives, Sedona, AZ); Bauer, Tom M.; Monson, Mary Ann; Tsao, Jeffrey Yeenien; Creighton, James Randall; Allerman, Andrew Alan; Simmons, Jerry A.; Boyack, Kevin W.; Jones, Eric Daniel; Moran, Michael P.; Pinzon, Marcia J. (Perspectives, Sedona, AZ); Pinson, Ariane O. (Perspectives, Sedona, AZ); Miksovic, Ann E. (Perspectives, Sedona, AZ); Wang, George T.; Ashby, Carol Iris Hill; Missert, Nancy A.; Koleske, Daniel David; Rahal, Nabeel M.

2004-06-01T23:59:59.000Z

494

Technology to Market | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology to Market Technology to Market The SunShot Initiative's Technology to Market subprogram builds on SunShot's record of enabling groundbreaking devices and concepts in...

495

Technology Commercialization Showcase - EERE Commercialization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the country participated. Biomass Program PDF Building Technologies Program PDF Geothermal Energy Program PDF Hydrogen, Fuel Cells and Infrastructure Technologies Program PDF...

496

Re-Building Greensburg  

ScienceCinema (OSTI)

Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Many of the town's government buildings use cutting edge energy-saving technologies, saving the local taxpayers' money. Greensburg has demonstrated to the world that any city can reach its energy efficiency and renewable energy goals today using widely available technologies.

Hewitt, Steven; Wallach, Daniel; Peterson, Stephanie;

2013-05-29T23:59:59.000Z

497

Funding Opportunity Webinar - Building America | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to 4:00PM EST Register for the webinar The Building Technologies Office (BTO)'s Residential Buildings Integration Program has announced the availability of up to 4 million in...

498

Direct modelling of envelope dynamics in resonant inverters  

E-Print Network [OSTI]

Direct modelling of envelope dynamics in resonant inverters Y. Yin, R. Zane, R. Erickson and J. Glaser A direct dynamic modelling approach is proposed for envelope signals in resonant inverters tank and simplify analysis and controller design. Introduction: High-frequency DC-AC inverters

499

NEUTRON STAR ENVELOPES AND THERMAL RADIATION FROM THE MAGNETIC SURFACE  

E-Print Network [OSTI]

NEUTRON STAR ENVELOPES AND THERMAL RADIATION FROM THE MAGNETIC SURFACE in: C. Kouveliotou, J. van.Petersburg, Russia Abstract. The thermal structure of neutron star envelopes is discussed with emphasis on analytic on the opacities and the thermal structure is further reviewed in view of the application to pulsar cooling

500

Envelope of Fracture Density Dragana Todorovic-Marinic*  

E-Print Network [OSTI]

Envelope of Fracture Density Dragana Todorovic-Marinic* Veritas DGC Ltd., Calgary, Alberta, Canada that interpretation of fractures can be improved by using the envelope of the fracture density. It has been shown that open, fluid (or gas) filled fractures can be identified through the use of the AVAZ method (Gray et. al

Santos, Juan