Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Whole Building Energy Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Simulation Energy Simulation Whole Building Energy Simulation October 16, 2013 - 4:39pm Addthis Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations may be pursued. Whole building energy simulation software adequately assesses the interactions between complex building systems and equally complex schedules and utility rates structures for projects in specific locations throughout the world. Energy models incorporate actual building construction, internal load sources, and associated schedules using annual hourly weather data specific to the project location. These models can be used early in the design process when little information is known and updated, continually

2

EnergyPlus: Energy Simulation Software for Buildings - Energy ...  

EnergyPlus is a building energy simulation program for modeling building heating, cooling, lighting, ventilating, and other energy flows. While it is based on the ...

3

Building Technologies Office: EnergyPlus Energy Simulation Software  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Account Sign In EnergyPlus Energy Simulation Software Search Search Help EnergyPlus Energy Simulation Software EERE Building Technologies Office EnergyPlus Energy Simulation...

4

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network (OSTI)

creating a new-generation building energy simulationprogram. Energy and Buildings, 33: 319-331. Haves, P. ,Liu M. 2001. Use of Whole Building Simulation in On- Line

Pang, Xiufeng

2013-01-01T23:59:59.000Z

5

Challenges of Energy Simulation for Sustainable Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenges of Energy Simulation for Sustainable Buildings Speaker(s): Tianzhen Hong Date: September 10, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Philip Haves...

6

Simulation Research for Low Energy Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

90-4133 Seminar HostPoint of Contact: David Lorenzetti Buildings consume 40% of primary energy in the U.S. This seminar introduces our research in simulation tools for...

7

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network (OSTI)

Energy and Buildings, 33: 319-331. Haves, P. , Salsbury,using simulation. Energy and Buildings, 32:5-17. US DOE.a new-generation building energy simulation program.

Pang, Xiufeng

2013-01-01T23:59:59.000Z

8

More Issues of Building Energy Simulation  

E-Print Network (OSTI)

The paper investigates the development of building energy simulation software. It is shown that such applications can be used for energy forecasting, system design and operations, and energy evaluation. Several energy simulation methods are analyzed and compared, and the predominance of the Z-transfer function method is indicated on dynamic calculation of energy consumption of heating and air-conditioning systems. The paper discusses the means to deal with several complex problems, such as thermal bridge, external sunshade, and meteorological data.

Kang, Z.; Zhao, J.

2006-01-01T23:59:59.000Z

9

A software tool to compare measured and simulated building energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Media Contacts A software tool to compare measured and simulated building energy performance data Title A software tool to compare measured and simulated building...

10

Meteorological modeling applications in building energy simulations  

SciTech Connect

Researchers use sophisticated computer models to predict building energy use. These models require extensive input data including building characteristics and dimensions, load schedules, and weather data. The typical source for weather data is the weather station at the nearest airport. Specifically, hourly values of ambient air temperature are necessary. The data obtained from local airports, however, may be significantly different from the actual weather experienced by a nearby residential building. Thus, using local airport data when simulating a residential building may yield inaccurate results. Furthermore, researchers interested in evaluating the potential for heat island mitigation schemes (such as urban tree planting programs) to decrease building air-conditioning energy use need a method for modifying the local airport data accordingly.

Sailor, D.J.; Akbari, H.

1992-08-01T23:59:59.000Z

11

NREL: Buildings Research - SUNREL Energy Simulation Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map SUNREL® is a hourly building energy simulation program that aids in the design of small energy-efficient buildings where the loads are dominated by the dynamic interactions between the building's envelope, its environment, and its occupants. The program is based on fundamental models of physical behavior and includes algorithms specifically for passive technologies, such as Trombe walls, programmable window shading, advanced glazings, and natural ventilation. In addition, a simple graphical interface aids in creating input files. SUNREL is an upgrade of SERI-RES, which was released in the early 1980s by the Solar Energy Research Institute (SERI) that has since been incorporated into the National Renewable Energy Laboratory. The program has been used by

12

Building Energy Simulation Test for Existing Homes (BESTEST-EX...  

NLE Websites -- All DOE Office Websites (Extended Search)

427 August 2010 Building Energy Simulation Test for Existing Homes (BESTEST-EX) Phase 1 Test Procedure: Building Thermal Fabric Cases Ron Judkoff, Ben Polly, and Marcus Bianchi...

13

Methodology for Validating Building Energy Analysis Simulations  

SciTech Connect

The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

2008-04-01T23:59:59.000Z

14

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

E-Print Network (OSTI)

cfd simulations. Energy and Buildings, 37(4):333–344, Aprilsimulation program. Energy and Buildings, 33(4):443–457,analysis integration. Energy and Buildings, 36(8): 737–748,

Wetter, Michael

2012-01-01T23:59:59.000Z

15

Real-time Building Energy Simulation using EnergyPlus and the Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-time Building Energy Simulation using EnergyPlus and the Building Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Title Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Publication Type Conference Proceedings LBNL Report Number LBNL-5390E Year of Publication 2011 Authors Pang, Xiufeng, Prajesh Bhattacharya, Zheng O'Neill, Philip Haves, Michael Wetter, and Trevor Bailey Conference Name Proc. of the 12th IBPSA Conference Pagination p. 2890-2896 Date Published 11/2011 Conference Location Sydney, Australia Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

16

Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint  

SciTech Connect

Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

2010-08-01T23:59:59.000Z

17

Advanced simulations of building energy and control systems with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development Contact Us Department Contacts Media Contacts Advanced simulations of building energy and control systems with an example of chilled water plant modeling Title...

18

Modeling, Simulation and Analysis of Integrated Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts Modeling, Simulation and Analysis of Integrated Building Energy and Control Systems Speaker(s): Michael Wetter Date: August 10, 2009 -...

19

Building Performance Simulation for Sustainable Energy Use in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance Simulation for Sustainable Energy Use in Buildings Speaker(s): Jan Hensen Date: March 18, 2011 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact:...

20

Automated Comparison of Building Energy Simulation Engines (Presentation)  

SciTech Connect

This presentation describes the BEopt comparative test suite, which is a tool that facilitates the automated comparison of building energy simulation engines. It also demonstrates how the test suite is improving the accuracy of building energy simulation programs. Building energy simulation programs inform energy efficient design for new homes and energy efficient upgrades for existing homes. Stakeholders rely on accurate predictions from simulation programs. Previous research indicates that software tends to over-predict energy usage for poorly-insulated leaky homes. NREL is identifying, investigating, and resolving software inaccuracy issues. Comparative software testing is one method of many that NREL uses to identify potential software issues.

Polly, B.; Horowitz, S.; Booten, B.; Kruis, N.; Christensen, C.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Pursuing Energy Efficiency From Building Simulation to Portfolio Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Pursuing Energy Efficiency From Building Simulation to Portfolio Analysis Pursuing Energy Efficiency From Building Simulation to Portfolio Analysis Speaker(s): Paul Mathew Date: January 4, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Stephen Wiel Dr. Mathew's presentation will describe two aspects of energy efficiency and sustainable design, viewed from the perspective of market transformation: 1. Building Simulation: case study on the use of detailed energy simulation for evaluating advanced building systems and building integrated energy systems, using DOE-2 and a CAD-integrated, heat-balance-based energy simulation tool developed by Dr. Mathew at CMU. 2. Energy Portfolio Analysis: a "curve-based" actuarial approach for modeling and valuing large portfolios of energy efficiency projects and tools that were developed at Enron to support this business strategy

22

Building Energy Software Tools Directory: Frame Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Frame Simulator Frame Simulator Frame Simulator logo Frame Simulator makes calculation of the thermal transmittance in windows and building components an extremely easy process. It can be used to: analyze how heat flows through building components and fenestrations estimate surface temperatures and predict condensation problems discover weak points in window frames calculate thermal transmittance Uf and linear conductance Lf2d of any type of window frame as well as the Uw thermal transmittance of entire complex fenestration. Precise simulation of the heat transfer is performed using a two-dimensional numerical method for steady state boundary conditions conforming to ISO 10077-2 (finite elements). Screen Shots Keywords 2D, heat transfer, thermal analysis, thermal transmittance, thermal

23

Developing an integrated building design tool by coupling building energy simulation and computational fluid dynamics programs  

E-Print Network (OSTI)

Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...

Zhai, Zhiqiang, 1971-

2003-01-01T23:59:59.000Z

24

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

SciTech Connect

Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

2011-11-01T23:59:59.000Z

25

Acquisition of building geometry in the simulation of energy performance  

SciTech Connect

Building geometry is essential to any simulation of building performance. This paper examines the importing of building geometry into simulation of energy performance from the users' point of view. It lists performance requirements for graphic user interfaces that input building geometry, and discusses the basic options in moving from two- to three-dimensional definition of geometry and the ways to import that geometry into energy simulation. The obvious answer lies in software interoperability. With the BLIS group of interoperable software one can interactively import building geometry from CAD into EnergyPlus and dramatically reduce the effort otherwise needed for manual input.The resulting savings may greatly increase the value obtained from simulation, the number of projects in which energy performance simulation is used, and expedite decision making in the design process.

Bazjanac, Vladimir

2001-06-28T23:59:59.000Z

26

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.

Not Available

2012-02-01T23:59:59.000Z

27

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.

2012-02-01T23:59:59.000Z

28

Pursuing Energy Efficiency From Building Simulation to Portfolio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pursuing Energy Efficiency From Building Simulation to Portfolio Analysis Speaker(s): Paul Mathew Date: January 4, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

29

Advancement of DOE's EnergyPlus Building Energy Simulation Payment  

SciTech Connect

EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOEâ??s Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Floridaâ??s Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.

Lixing Gu; Don Shirey; Richard Raustad; Bereket Nigusse; Chandan Sharma; Linda Lawrie; Rich Strand; Curt Pedersen; Dan Fisher; Edwin Lee; Mike Witte; Jason Glazer; Chip Barnaby

2011-03-31T23:59:59.000Z

30

REAL-TIME BUILDING ENERGY SIMULATION USING ENERGYPLUS AND THE  

NLE Websites -- All DOE Office Websites (Extended Search)

REAL-TIME BUILDING ENERGY SIMULATION USING ENERGYPLUS AND THE REAL-TIME BUILDING ENERGY SIMULATION USING ENERGYPLUS AND THE BUILDING CONTROLS VIRTUAL TEST BED Xiufeng Pang 1 , Prajesh Bhattacharya 1 , Zheng O'Neill 2 , Philip Haves 1 , Michael Wetter 1 , and Trevor Bailey 2 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA 2 United Technologies Research Center, East Hartford, CT, USA ABSTRACT Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a

31

Infiltration and Natural Ventilation Model for Whole-Building Energy Simulation of Residential Buildings: Preprint  

DOE Green Energy (OSTI)

The infiltration term in the building energy balance equation is one of the least understood and most difficult to model. For many residential buildings, which have an energy performance dominated by the envelope, it can be one of the most important terms. There are numerous airflow models; however, these are not combined with whole-building energy simulation programs that are in common use in North America. This paper describes a simple multizone nodal airflow model integrated with the SUNREL whole-building energy simulation program.

Deru, M.; Burns, P.

2003-03-01T23:59:59.000Z

32

Survey and Analysis of Weather Data for Building Energy Simulations  

Science Conference Proceedings (OSTI)

In recent years, calibrated energy modeling of residential and commercial buildings has gained importance in a retrofit-dominated market. Accurate weather data plays an important role in this calibration process and projected energy savings. It would be ideal to measure weather data at the building location to capture relevant microclimate variation but this is generally considered cost-prohibitive. There are data sources publicly available with high temporal sampling rates but at relatively poor geospatial sampling locations. To overcome this limitation, there are a growing number of service providers that claim to provide real time and historical weather data for 20-35 km2 grid across the globe. Unfortunately, there is limited documentation from 3rd-party sources attesting to the accuracy of this data. This paper compares provided weather characteristics with data collected from a weather station inaccessible to the service providers. Monthly average dry bulb temperature; relative humidity; direct, diffuse and horizontal solar radiation; and wind speed are statistically compared. Moreover, we ascertain the relative contributions of each weather variable and its impact on building loads. Annual simulations are calculated for three different building types, including a closely monitored and automated energy efficient research building. The comparison shows that the difference for an individual variable can be as high as 90%. In addition, annual building energy consumption can vary by 7% while monthly building loads can vary by 40% as a function of the provided location s weather data.

Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL; New, Joshua Ryan [ORNL

2012-01-01T23:59:59.000Z

33

Simulation and Big Data Challenges in Tuning Building Energy Models  

Science Conference Proceedings (OSTI)

EnergyPlus is the flagship building energy simulation software used to model whole building energy consumption for residential and commercial establishments. A typical input to the program often has hundreds, sometimes thousands of parameters which are typically tweaked by a buildings expert to get it right . This process can sometimes take months. Autotune is an ongoing research effort employing machine learning techniques to automate the tuning of the input parameters for an EnergyPlus input description of a building. Even with automation, the computational challenge faced to run the tuning simulation ensemble is daunting and requires the use of supercomputers to make it tractable in time. In this proposal, we describe the scope of the problem, the technical challenges faced and overcome, the machine learning techniques developed and employed, and the software infrastructure developed/in development when taking the EnergyPlus engine, which was primarily designed to run on desktops, and scaling it to run on shared memory supercomputers (Nautilus) and distributed memory supercomputers (Frost and Titan). The parametric simulations produce data in the order of tens to a couple of hundred terabytes.We describe the approaches employed to streamline and reduce bottlenecks in the workflow for this data, which is subsequently being made available for the tuning effort as well as made available publicly for open-science.

Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

2013-01-01T23:59:59.000Z

34

Guidelines for Energy Simulation of Commercial Buildings: Final.  

Science Conference Proceedings (OSTI)

This report distills the experience gained from intensive computer building simulation work for the Energy Edge project. The purpose of this report is twofold: to use that experience to guide conservation program managers in their use of modeling, and to improve the accuracy of design-phase computer models. Though the main emphasis of the report is on new commercial construction, it also addresses modeling as it pertains to retrofit construction. To achieve these purposes, this report will: (1) discuss the value of modeling for energy conservation programs; (2) discuss strengths and weaknesses of computer models; (3) provide specific guidelines for model input; (4) discuss input topics that are unusually large drivers of energy use and model inaccuracy; (5) provide guidelines for developing baseline models; (6) discuss types of energy conservation measures (ECMs) and building operation that are not suitable to modeling and present possible alternatives to modeling for analysis; and (7) provide basic requirements for model documentation. This project was initiated to determine whether commercial buildings can be designed and constructed to use at least 30% less energy than if they were designed and built to meet the current regional model energy code, the Model Conservation Standards (MCS) developed by the Pacific Northwest Electric Power and Conservation Planning Council. Secondary objectives of the project are to determine the incremental energy savings of a wide variety of ECMs and to compare the predictive accuracy of design-phase models with models that are carefully tuned to monitored building data.

Kaplan, Michael; Caner, Phoebe

1992-03-01T23:59:59.000Z

35

EMPIRICAL VALIDATION OF BUILDING ENERGY SIMULATION SOFTWARE: ENERGYPLUS  

SciTech Connect

This paper compares the results from a study conducted at Iowa Energy Center s Energy Resource Station with EnergyPlus simulation results. The building consists of controlled test rooms, dedicated air handling units and air-cooled chillers for the purpose of obtaining quality data suitable for empirical validation studies. Weather data were also collected at the facility and used for the simulation. Empirical validation can be performed on various levels of the program such as zone level, systems level, and plant level. This study is unique in the sense that it integrates the zones, system, and plant into one analysis. For this study, the difference between empirical and EnergyPlus predicted zone cooling loads varied from 1.7% to 10.2%, but the difference for the compressor power was as much as 22.4%. The paper also describes the potential reasons why simulation results might not match field data.

Shrestha, Som S [ORNL; Maxwell, Dr. Gregory [Iowa State University

2011-01-01T23:59:59.000Z

36

Co-simulation of building energy and control systems with the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Program Development Contact Us Department Contacts Media Contacts Co-simulation of building energy and control systems with the Building Controls Virtual Test Bed Title...

37

NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Improves Improves Building Energy Simulation Programs Through Diagnostic Testing Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available for model cali- bration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares soft- ware simulation findings to reference results generated with state-of-the-art

38

NREL Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Develops Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analyti- cal and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results.

39

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

Science Conference Proceedings (OSTI)

This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

Wetter, Michael

2010-08-22T23:59:59.000Z

40

Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation  

SciTech Connect

The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

Bazjanac, Vladimir

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings  

E-Print Network (OSTI)

Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window to wall. The integrated influence result will be different when the building is in different climate zone. This paper studies the variation rule of some aggregative indicators and building energy efficiency rates by simulation and analysis of the same building in different climate zones by eQuest, in order to determine how building energy efficiency works in different climate zones.

Lian, Y.; Hao, Y.

2006-01-01T23:59:59.000Z

42

NREL researchers discover ways to increase accuracy in building energy simulations tools to improve predictions of  

E-Print Network (OSTI)

NREL researchers discover ways to increase accuracy in building energy simulations tools to improve calculate heat transfer through building enclosures to verify the benefit of energy efficiency upgrades) analysis to calculate the energy loss/gain through building walls and visualize different heat transfer

43

EXPANDING THE CAPABILITIES OF DOE'S ENERGYPLUS BUILDING ENERGY SIMULATION PROGRAM  

DOE Green Energy (OSTI)

EnergyPlus{trademark} is a new generation analysis tool that is being developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It will also support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by six updated versions over the ensuing three-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features: (1) A model for energy recovery ventilation equipment that transfers both sensible (temperature) and latent (moisture) energy between building exhaust air and incoming outdoor ventilation air; (2) A model to account for the degradation of cooling coil dehumidification performance at part-load conditions; (3) A model for cooling coils augmented with air-to-air heat exchangers for improved dehumidification; and (4) A heat transfer coefficient calculator and automatic sizing algorithms for the existing EnergyPlus cooling tower model. UCF/FSEC located existing mathematical models for these features and incorporated them into EnergyPlus. The software models were written using Fortran-90 and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (Input Output Reference and Engineering Document) was updated with information describing the new model/feature.

Don B. Shirey, III; Richard A. Raustad

2004-04-01T23:59:59.000Z

44

Evidence-based calibration of a building energy simulation model: Application to an office building in Belgium  

E-Print Network (OSTI)

Energy services play a growing role in the control of energy consumption and the improvement of energy efficiency in non-residential buildings. This work consists in the application of a simulation-based approach dedicated to whole-building energy use analysis for use in the frame of an energy efficiency service process. Focus is given to the calibration of a simplified dynamic hourly building energy simulation model by means of available energy use data and to the integration of the calibration process into the Energy Service Process. The developed simulation tool and the associated calibration method are applied to a real case study building located in Brussels, Belgium. The use of an evidence-based method ensures sticking to reality and avoids bad representation and hazardous adjustment of the parameters. Moreover, it is shown that the use of a sensitivity analysis method is of a great help to orient data collection and parameters adjustment processes.

Bertagnolio, S.; Randaxhe, F.; Lemort, V.

2012-01-01T23:59:59.000Z

45

Building Technologies Office: EnergyPlus Energy Simulation Software  

NLE Websites -- All DOE Office Websites (Extended Search)

files) are sent to your e-mail address as attachments. How it works with EnergyPlus: This tool will provide an EnergyPlus input file that you can then further modify. Or, you can...

46

The MIT Design Advisor : simple and rapid energy simulation of early-stage building designs  

E-Print Network (OSTI)

Simulation tools, when applied early in the design process, can considerably reduce the energy demand of newly constructed buildings. For a simulation tool to assist with design, it must be easy to use, provide feedback ...

Urban, Bryan J. (Bryan James)

2007-01-01T23:59:59.000Z

47

Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Simulation Test Building Energy Simulation Test for Existing Homes (BESTEST-EX) Ron Judkoff Joel Neymark Ben Polly Updated: December 2011 NREL/PR-5500-53701 2 Goals of NREL Analysis Accuracy R&D * Provide industry with the tools and technical information needed to improve the accuracy and consistency of analysis methods * Reduce the risks associated with purchasing, financing, and selling energy efficiency upgrades * Enhance software and input collection methods considering impacts on accuracy, cost, and time of energy assessments 3 BESTEST-EX Goals * Test software predictions of retrofit energy savings in existing homes * Ensure building physics calculations and utility bill calibration procedures perform up to a minimum standard

48

Analysis of the differences in energy simulation results between building information modeling (BIM)-based simulation method and the detailed simulation method  

Science Conference Proceedings (OSTI)

Building Information Modeling (BIM)-based simulation models have been used to automate lengthy building energy modeling processes and it enable fast acquisition of results. Recent improvements of simulation programs have continued to the increase in ...

Seongchan Kim; Jeong-Han Woo

2011-12-01T23:59:59.000Z

49

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network (OSTI)

the Building Controls Virtual Test Bed. Proceedings of 12 thand the Building Controls Test Bed Xiufeng Pang, PrajeshBUILDING CONTROLS VIRTUAL TEST BED Xiufeng Pang 1 , Prajesh

Pang, Xiufeng

2013-01-01T23:59:59.000Z

50

SimModel: A domain data model for whole building energy simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

SimModel: A domain data model for whole building energy simulation SimModel: A domain data model for whole building energy simulation Title SimModel: A domain data model for whole building energy simulation Publication Type Conference Paper LBNL Report Number LBNL-5566E Year of Publication 2011 Authors O'Donnell, James, Richard See, Cody Rose, Tobias Maile, Vladimir Bazjanac, and Philip Haves Conference Name IBPSA Building Simulation 2011 Date Published 10/2011 Abstract Many inadequacies exist within industry-standard data models as used by present-day whole-building energy simulation software. Tools such as EnergyPlus and DOE-2 use custom schema definitions (IDD and BDL respectively) as opposed to standardized schema definitions (defined in XSD, EXPRESS, etc.). Non-standard data modes lead to a requirement for application developers to develop bespoke interfaces. Such tools have proven to be error prone in their implementation - typically resulting in information loss.

51

Modeling and simulation of building energy performance for portfolios of public buildings  

Science Conference Proceedings (OSTI)

In the U.S., commercial and residential buildings and their occupants consume more than 40% of total energy and are responsible for 45% of total greenhouse gas (GHG) emissions. Therefore, saving energy and costs, improving energy efficiency and reducing ...

Young M. Lee; Fei Liu; Lianjun An; Huijing Jiang; Chandra Reddy; Raya Horesh; Paul Nevill; Estepan Meliksetian; Pawan Chowdhary; Nat Mills; Young Tae Chae; Jane Snowdon; Jayant Kalagnanam; Joe Emberson; Al Paskevicous; Elliott Jeyaseelan; Robert Forest; Chris Cuthbert; Tony Cupido; Michael Bobker; Janine Belfast

2011-12-01T23:59:59.000Z

52

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network (OSTI)

This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which then can be available to analyze the energy impact of solar systems installed in commercial buildings. A large prototypical office building (124,000 ft2) was used in simulation modeling. The DOE-2.1e program was used for whole building simulation, F-Chart (Beckman et al., 1977) for solar thermal systems analysis, and PV F-Chart (Klein and Beckman, 1983) for solar PV systems analysis.

Cho, S.; Haberl, J.

2010-08-01T23:59:59.000Z

53

Study of Multifamily Energy Retrofit Using Flexible Multizone Building Simulation Model  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study of Multifamily Study of Multifamily Energy Retrofit using Flexible, Multizone Building Simulation Model Piljae Im, Ph.D. Mini Malhotra, Ph.D. R&D Staff Oak Ridge National Laboratory Presented at Building America Technical Update Meeting April 29-30, 2013 Outline * Multifamily Energy Audit Tool - Background - Needs for MF Audit Tool - Existing MF Tools - Modeling Approach - Development Status * Case Study - Background - Pre/Post Retrofit Building characteristics - Whole Building Energy Analysis * Summary Managed by UT-Battelle for the U.S. Department of Energy Study of Multifamily Energy Retrofit using Flexible, Multizone Building Simulation Model 2 Background * New MF Building Energy Audit Tool sponsored by U.S. DOE * Collaboration of ORNL and LBNL * National web-based

54

Simulating the impact of building occupant peer networks on inter-building energy consumption  

Science Conference Proceedings (OSTI)

We developed an integrated inter-building physical and human network model to predict the energy conservation for an assumed urban residential block. We utilized an Artificial Neural Network to predict hourly energy consumption in both the first physical ...

Xiaoqi Xu; Anna Laura Pisello; John E. Taylor

2011-12-01T23:59:59.000Z

55

Simulation and Analysis of Energy Consumption of Public Building in Chongquig  

E-Print Network (OSTI)

Calculation and analysis of energy consumption must be on the base of simulation of building load. DeST is adopted to calculate dynamic cooling load of the main building in Chongqing city. Then water chilling unit's plant capability is checked and energy consumption of the building is calculated. After energy efficiency potency analyzed, optimum running-program is put out and some suggestions are given.

Chen, G.; Lu, J.; Chen, J.

2006-01-01T23:59:59.000Z

56

Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building  

E-Print Network (OSTI)

In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy simulation program. The study showed that the heat loss from exterior walls, exterior windows and infiltration took three main parts of the total heat loss. Furthermore, the results of on-site measurement are presented with the conclusion that the EnergyPlus program provides sufficient accuracy for this energy simulation application.

Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

2006-01-01T23:59:59.000Z

57

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

test procedure evaluates quality and accuracy of energy test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which soft-

58

Automatic Calibration of a Building Energy Simulation Model Using a Global Optimization Program  

E-Print Network (OSTI)

A simulation model used to analyze the energy performance of an existing building should be calibrated to measured consumption data from the building so the simulation output closely follows the measured time series energy consumption data and shows the same temperature dependence. This paper has used optimization software to show that a simple simulation program which is a coding of the ASHRAE 'Simplified Energy Analysis Procedure' can be automatically calibrated to “measured” data. The “measured data” used in this case study was simulation data to which a small amount of white noise had been added.

Lee, S. U.; Claridge, D.

2002-01-01T23:59:59.000Z

59

NREL Develops Diagnostic Test Cases to Improve Building Energy Simulation Programs (Fact Sheet)  

DOE Green Energy (OSTI)

This technical highlight describes NREL research to develop a set of diagnostic test cases for building energy simulations in order to achieve more accurate energy use and savings predictions. The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analytical and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results. Testing the new cases with EnergyPlus identified issues with the conduction finite difference (CondFD) heat transfer algorithm in versions 5 and 6. NREL researchers resolved these issues for EnergyPlus version 7. The new test cases will help users and developers of EnergyPlus and other building energy tools to identify and fix problems associated with solid conduction heat transfer algorithms of building envelopes and their boundary conditions. In the long term, improvements to software algorithms will result in more accurate energy use and savings predictions. NREL researchers plan to document the set of test cases and make them available for future consideration by validation standards such as ASHRAE Standard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. EnergyPlus users will also have access to the improved CondFD model in version 7 after its next scheduled release.

Not Available

2011-12-01T23:59:59.000Z

60

On-Site Generation Simulation with EnergyPlus for CommercialBuildings  

SciTech Connect

Building energy simulation software (e.g., EnergyPlus) is apowerful tool used widely by designers and researchers. However, currentsoftware is limited in modeling distributed generation (DG), including DGwith heat recovery applied to building end-use, i.e., combined heat andpower (CHP). Concurrently, DG investment and dispatch optimizationsoftware has been developed, yet has not been linked to a building energysimulation program for accurate assessment of DG designs, particularlyunder uncertainty in future end-use loads and equipment availability. CHPis a proven approach to cost effective reductions in primary fuelconsumption and CO2 emissions. Integrating DG system design and controlsinto building energy simulation is an important step towards popular DGacceptance. We propose to extend the existing building energy simulationprogram, EnergyPlus (E+), to enable the simulation of various DG modulesand associated control strategies in order to achieve more accurate andholistic analysis of DG technologies. Extension of EnergyPlus isconveniently facilitated by SPARK, a program capable of modeling buildingequipment and controls as individual modules. These modules can beautomatically integrated with EnergyPlus building models. Candidate DGsystems can be selected from the DG investment optimization program,Distributed Energy Resources Customer Adoption Model (DER-CAM). Thedispatch of the modeled DG system can be determined by a novel dispatchoptimization algorithm, the Energy Manager, that accounts for uncertaintyin future load and DG availability, as well as curtailment options. DGequipment and controls can modeled in SPARK and integrated intoEnergyPlus building models. The way to this holistic approach will bedescribed in this paper.

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network (OSTI)

Figure 9 Lighting electric power comparison between real-for the building total electric power agree well with eachanalysis of the electric power indicated that different

Pang, Xiufeng

2013-01-01T23:59:59.000Z

62

Energy Audit and Simulated Conservation Opportunities for a Renovated Mixed-Use Academic Building  

E-Print Network (OSTI)

This paper describes an energy audit performed in a 97,760 ft2 (9082 m2) academic building at the University of Texas at San Antonio (UTSA). The paper describes the building survey and a simulation of the building’s energy use using eQUEST software calibrated with monthly and hourly utility data. Conclusions of the survey identified problems with the building envelope, indoor air quality, and HVAC controls which were promptly addressed. Nine long-term energy conservation opportunities (ECOs) were identified and evaluated. Five ECOs related to lights, envelope, and HVAC were recommended with a total implementation cost of $165k. It is shown that a savings of 23.7% in overall energy usage can be achieved with a payback of less than 8 years. In addition to energy and economic savings, building performance and occupant comfort are expected to improve.

Bejrowski, M.; Manteufel, R.; Arnold, N.; Rashed-Ali, H.

2008-12-01T23:59:59.000Z

63

Energy conservation measures in an institutional building by dynamic simulation using designbuilder  

Science Conference Proceedings (OSTI)

In this study, various energy conservation measures (ECMs) on heating, ventilating and air conditioning (HVAC) and lighting systems for a 4-storied building in subtropical (hot and humid climate) Central Queensland, Australia are evaluated using the ... Keywords: designbuilder, energy conservation measures, energy efficient lighting and day light control, energy simulation, hot-humid climate, variable air volume system

M. M. Rahman; M. G. Rasul; M. M. K. Khan

2008-02-01T23:59:59.000Z

64

International Energy Agency building energy simulation test (BESTEST) and diagnostic method  

DOE Green Energy (OSTI)

This is a report on the Building Energy Simulation Test (BESTEST) project conducted by the Model Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 12 Subtask B, and the Energy Conservation in Buildings and Community Systems (BCS) Programme, Annex 21 Subtask C. Recognizing that the needs for model evaluation were similar in both IEA programmes, the combined Experts Group was approved by the Executive Committees in 1990. This is the first joint group organized by the respective IEA Executive Committees, and it has resulted in significant cost savings for all participating countries. The objective of this subtask has been to develop practical implementation procedures and data for an overall IEA validation methodology which has been under development by NREL since 1981, with refinements contributed by the United Kingdom. The methodology consists of a combination of empirical validation, analytical verification, and comparative analysis techniques. This report documents a comparative testing and diagnostic procedure for thermal models related to the architectural fabric of the building. Other projects (reported elsewhere) conducted by this group include work on empirical validation, analytical verification, and comparative test cases for commercial buildings. In the BESTEST project, a method was developed for systematically testing whole-building energy simulation programs and diagnosing the sources of predictive disagreement. Field trials of the method were conducted with a number of {open_quotes}reference{close_quotes} programs selected by the participants to represent the best state-of-the-art detailed simulation capability available in the United States and Europe. These included BLAST, DOE2, ESP, SERIRES, S3PAS, TASE, and TRNSYS.

Judkoff, R.; Neymark, J.

1995-02-01T23:59:59.000Z

65

Simulation-assisted evaluation of potential energy savings: Application to an administrative building in France  

E-Print Network (OSTI)

The case study presented here falls within a project of feasibility studies to improve the energy efficiency, the carbon footprint and the environmental impacts of several administrative buildings in France. The first part of the paper briefly presents the data obtained during a classical audit and inspection procedure: the description of the building in term of design, the HVAC system characteristics, the occupancy and operating profiles and the control strategy applied. The second part of the paper gives the first results obtained using an evidence-based calibrated building energy simulation model to analyze the actual building global consumption but also analyze the local consumptions (heat pumps, air handling units, terminal units, lightings, pumps,...). The last part of the paper then demonstrates the possibilities given by the building energy simulation model to evaluate potential energy saving scenarios through different examples. The advantages and drawbacks of the applied methods and tools are also discussed.

Randaxhe, F.; Bertagnolio, S.; Lemort, V.

2012-01-01T23:59:59.000Z

66

NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available for model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.

2012-01-01T23:59:59.000Z

67

NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

DOE Green Energy (OSTI)

This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available for model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.

Not Available

2012-01-01T23:59:59.000Z

68

Simulering av energieffektiviserande ĺtgärder för smĺ- och flerbostadshus; Simulation of energy efficiently measures for residential buildings.  

E-Print Network (OSTI)

?? The purpose of this project was to evaluate how energy efficiently some of JM’s residential buildings can become in standard production. What kind of… (more)

Jakobsson, Niklas

2007-01-01T23:59:59.000Z

69

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network (OSTI)

simulation, e.g. solar radiation, wind speed and directionand direct normal and diffuse solar radiation. For real-timedirection, direct normal solar radiation and diffuse solar

Pang, Xiufeng

2013-01-01T23:59:59.000Z

70

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

building energy analysis using EnergyPlus. The benchmarkenergy savings benefits of integrated control using the medium office building benchmark

Hong, T.

2011-01-01T23:59:59.000Z

71

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

Canada: International Building Perfor- mance SimulationExternal coupling between building energy simulation andexternal coupling of building energy and air ow modeling

Trcka, Marija

2010-01-01T23:59:59.000Z

72

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

tech. selection Net energy consumption Service tech. cost &equip. selection Net energy consumption Service tech. cost &tech. selection Net energy consumption Service tech. cost &

Stadler, Michael

2011-01-01T23:59:59.000Z

73

Building Technologies Office: House Simulation Protocols Report  

NLE Websites -- All DOE Office Websites (Extended Search)

House Simulation House Simulation Protocols Report to someone by E-mail Share Building Technologies Office: House Simulation Protocols Report on Facebook Tweet about Building Technologies Office: House Simulation Protocols Report on Twitter Bookmark Building Technologies Office: House Simulation Protocols Report on Google Bookmark Building Technologies Office: House Simulation Protocols Report on Delicious Rank Building Technologies Office: House Simulation Protocols Report on Digg Find More places to share Building Technologies Office: House Simulation Protocols Report on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

74

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

off- site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%

Stadler, Michael

2011-01-01T23:59:59.000Z

75

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

SciTech Connect

The purpose of this study is to use existing simulation tools to quantify the energy savings benefits of integrated control in office buildings. An EnergyPlus medium office benchmark simulation model (V1.0_3.0) developed by the Department of Energy (DOE) was used as a baseline model for this study. The baseline model was modified to examine the energy savings benefits of three possible control strategies compared to a benchmark case across 16 DOE climate zones. Two controllable subsystems were examined: (1) dimming of electric lighting, and (2) controllable window transmission. Simulation cases were run in EnergyPlus V3.0.0 for building window-to-wall ratios (WWR) of 33percent and 66percent. All three strategies employed electric lighting dimming resulting in lighting energy savings in building perimeter zones ranging from 64percent to 84percent. Integrated control of electric lighting and window transmission resulted in heating, ventilation, and air conditioning (HVAC) energy savings ranging from ?1percent to 40percent. Control of electric lighting and window transmission with HVAC integration (seasonal schedule of window transmission control) resulted in HVAC energy savings ranging from 3percent to 43percent. HVAC energy savings decreased moving from warm climates to cold climates and increased when moving from humid, to dry, to marine climates.

Hong, T.; Shen, E.

2009-11-01T23:59:59.000Z

76

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

Control System. Energy and Buildings 33(2001): 477-487.control system. Energy and Buildings Lee ES, Yazdanian M ,Daylight Controls. Energy and Buildings 33(2001): 793-803.

Hong, T.

2011-01-01T23:59:59.000Z

77

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

78

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

USA, and published in the Conference Proceedings Structure of SBEAM Floor-space forecast to 2050 Gross demandUSA, and published in the Conference Proceedings Structure of SBEAM Floor-space forecast to 2050 Gross demandUSA, and published in the Conference Proceedings Relative Importance Total off- site energy demand (

Stadler, Michael

2011-01-01T23:59:59.000Z

79

Building Energy Software Tools Directory: Green Energy Compass  

NLE Websites -- All DOE Office Websites (Extended Search)

Whole Building Analysis Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, &...

80

The Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology Preprint Ron Judkoff, Ben Polly, and Marcus Bianchi National Renewable Energy Laboratory Joel Neymark J. Neymark & Associates To be presented at the Building Simulation 2011 Conference Sydney, Australia November 14-16, 2011 Conference Paper NREL/CP-5500-51655 November 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building Energy Software Tools Directory: Autodesk Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

82

Systematic time-based study for quantifying the uncertainty of uncalibrated models in building energy simulations  

E-Print Network (OSTI)

This thesis documents the usefulness and accuracy of uncalibrated simulations to determine for what end-uses these simulations should be used. The study was divided into three segments 1)comparison of the accuracy of two simulation models, massless and advanced, against measured data 2) comparison of the results from two simulations models, simplistic and massless, to determine the sensitivity of envelope shape and details for two weather conditions 3) identification of the parameters that have a significant impact on the simulation output. Five buildings were selected as the test sample. Four of the buildings were multi story commercial buildings. The fifth was a single-family residential house. For the first segment of the study two simulation models were created for all the buildings; the massless model with emphasis on the envelope using massless construction and typical values for system parameters and the advanced model with the inclusion of thermal mass and extensive as-built details of the systems. For the second part of the research the simplistic model was created having a single floor one-zone with glazing and conditioned areas equivalent to the massless model. The sensitivity analysis was done using the massless model and selected variables from the loads and systems as sensitivity parameters. By following the procedure mentioned, it was found that uncalibrated simulation models do not depict the real operating conditions of a building. For some cases the simulated values are higher than the measured data while for others they are significantly lower. The CV (RMSE) between the measured and simulated values ranges from 30 to 150%. From the comparison of the simplistic and massless model, it was concluded that the outer envelope shape and details have an impact on the heating and cooling energy use irrespective of the weather conditions. For internally load dominated buildings this impact is more on the heating loads than on the cooling loads. The conclusions from the sensitivity analysis were that outside air fraction and the total supply air have the most significant impact on the simulation output while thermal mass has a small impact.

Ahmad, Mushtaq

2003-08-01T23:59:59.000Z

83

An Exploratory Energy Analysis of Electrochromic Windows in Small and Medium Office Buildings - Simulated Results Using EnergyPlus  

SciTech Connect

The Department of Energy’s (DOE) Building Technologies Program (BTP) has had an active research program in supporting the development of electrochromic (EC) windows. Electrochromic glazings used in these windows have the capability of varying the transmittance of light and heat in response to an applied voltage. This dynamic property allows these windows to reduce lighting, cooling, and heating energy in buildings where they are employed. The exploratory analysis described in this report examined three different variants of EC glazings, characterized by the amount of visible light and solar heat gain (as measured by the solar heat gain coefficients [SHGC] in their “clear” or transparent states). For these EC glazings, the dynamic range of the SHGC’s between their “dark” (or tinted) state and the clear state were: (0.22 - 0.70, termed “high” SHGC); (0.16 - 0.39, termed “low” SHGC); and (0.13 - 0.19; termed “very low” SHGC). These glazings are compared to conventional (static) glazing that meets the ASHRAE Standard 90.1-2004 energy standard for five different locations in the U.S. All analysis used the EnergyPlus building energy simulation program for modeling EC windows and alternative control strategies. The simulations were conducted for a small and a medium office building, where engineering specifications were taken from the set of Commercial Building Benchmark building models developed by BTP. On the basis of these simulations, total source-level savings in these buildings were estimated to range between 2 to 7%, depending on the amount of window area and building location.

Belzer, David B.

2010-08-01T23:59:59.000Z

84

Whole-Building Energy Simulation with a Three-Dimensional Ground-Coupled Heat Transfer Model: Preprint  

DOE Green Energy (OSTI)

A three-dimensional, finite-element, heat-transfer computer program was developed to study ground-coupled heat transfer from buildings. It was used in conjunction with the SUNREL whole-building energy simulation program to analyze ground-coupled heat transfer from buildings, and the results were compared with the simple ground-coupled heat transfer models used in whole-building energy simulation programs. The detailed model provides another method of testing and refining the simple models and analyzing complex problems. This work is part of an effort to improve the analysis of the ground-coupled heat transfer in building energy simulation programs. The output from this detailed model and several others will form a set of reference results for use with the BESTEST diagnostic procedure. We anticipate that the results from the work will be incorporated into ANSI/ASHRAE 140-2001, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.

Deru, M.; Judkoff, R.; Neymark, J.

2002-08-01T23:59:59.000Z

85

Most Cited Papers, Journal of Building Performance Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Most Cited Papers, Journal of Building Performance Simulation September 18, 2013 Michael Wetter The Department of Energy-funded scientific paper "Co-simulation of building energy...

86

Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology: Preprint  

SciTech Connect

The test suite represents a set of cases applying the new Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology developed by NREL. (Judkoff et al. 2010a). The NREL team developed the test cases in consultation with the home retrofit industry (BESTEST-EX Working Group 2009), and adjusted the test specifications in accordance with information supplied by a participant with access to large utility bill datasets (Blasnik 2009).

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

2011-11-01T23:59:59.000Z

87

Use of Computer Simulation to Reduce the Energy Consumption in a Tall Office Building in Dubai-UAE  

E-Print Network (OSTI)

Buildings are a major consumer of energy and thus have a significant impact on the environment. The use of artificial lights is a major contributor to the energy usage in a typical office building using electricity to run the lights and also increasing the cooling load due to its heat dissipation. Proper design for the maximization of natural light helps reduce the use of artificial lights and results in reduction in the buildings energy consumption. Computer simulation of the lighting and energy consumption in a typical tall office building in Dubai-UAE is used to optimize the effectiveness of natural lighting penetration and calculate the associated energy savings. Two alternative building designs are proposed and tested. The overall energy savings for the whole building reached 31.4 % for the proposed oval shaped design. This represents a significant reduction in the buildings electricity load and thus its impact on the environment.

Abu-Hijleh, B.; Abu-Dakka, M.

2010-01-01T23:59:59.000Z

88

Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Presentation)  

SciTech Connect

This presentation discusses the goals of NREL Analysis Accuracy R&D; BESTEST-EX goals; what BESTEST-EX is; how it works; 'Building Physics' cases; 'Building Physics' reference results; 'utility bill calibration' cases; limitations and potential future work. Goals of NREL Analysis Accuracy R&D are: (1) Provide industry with the tools and technical information needed to improve the accuracy and consistency of analysis methods; (2) Reduce the risks associated with purchasing, financing, and selling energy efficiency upgrades; and (3) Enhance software and input collection methods considering impacts on accuracy, cost, and time of energy assessments. BESTEST-EX Goals are: (1) Test software predictions of retrofit energy savings in existing homes; (2) Ensure building physics calculations and utility bill calibration procedures perform up to a minimum standard; and (3) Quantify impact of uncertainties in input audit data and occupant behavior. BESTEST-EX is a repeatable procedure that tests how well audit software predictions compare to the current state of the art in building energy simulation. There is no direct truth standard. However, reference software have been subjected to validation testing, including comparisons with empirical data.

Judkoff, R.; Neymark, J.; Polly, B.

2011-12-01T23:59:59.000Z

89

Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Presentation)  

SciTech Connect

This presentation discusses the goals of NREL Analysis Accuracy R&D; BESTEST-EX goals; what BESTEST-EX is; how it works; 'Building Physics' cases; 'Building Physics' reference results; 'utility bill calibration' cases; limitations and potential future work. Goals of NREL Analysis Accuracy R&D are: (1) Provide industry with the tools and technical information needed to improve the accuracy and consistency of analysis methods; (2) Reduce the risks associated with purchasing, financing, and selling energy efficiency upgrades; and (3) Enhance software and input collection methods considering impacts on accuracy, cost, and time of energy assessments. BESTEST-EX Goals are: (1) Test software predictions of retrofit energy savings in existing homes; (2) Ensure building physics calculations and utility bill calibration procedures perform up to a minimum standard; and (3) Quantify impact of uncertainties in input audit data and occupant behavior. BESTEST-EX is a repeatable procedure that tests how well audit software predictions compare to the current state of the art in building energy simulation. There is no direct truth standard. However, reference software have been subjected to validation testing, including comparisons with empirical data.

Judkoff, R.; Neymark, J.; Polly, B.

2011-12-01T23:59:59.000Z

90

IFC BIM-Based Methodology for Semi-Automated Building Energy Performance Simulation  

SciTech Connect

Building energy performance (BEP) simulation is still rarely used in building design, commissioning and operations. The process is too costly and too labor intensive, and it takes too long to deliver results. Its quantitative results are not reproducible due to arbitrary decisions and assumptions made in simulation model definition, and can be trusted only under special circumstances. A methodology to semi-automate BEP simulation preparation and execution makes this process much more effective. It incorporates principles of information science and aims to eliminate inappropriate human intervention that results in subjective and arbitrary decisions. This is achieved by automating every part of the BEP modeling and simulation process that can be automated, by relying on data from original sources, and by making any necessary data transformation rule-based and automated. This paper describes the new methodology and its relationship to IFC-based BIM and software interoperability. It identifies five steps that are critical to its implementation, and shows what part of the methodology can be applied today. The paper concludes with a discussion of application to simulation with EnergyPlus, and describes data transformation rules embedded in the new Geometry Simplification Tool (GST).

Bazjanac, Vladimir

2008-07-01T23:59:59.000Z

91

Simulation-assisted building energy performance improvement using sensible control decisions  

Science Conference Proceedings (OSTI)

The building sector contributes significantly to global energy consumption and emission of greenhouse gases. Thermal insulation along with installation of energy-efficient building systems can reduce energy needs while preserving or improving occupant ... Keywords: adaptive optimization, energy efficiency in buildings, large-scale systems, non-linear systems

M. F. Pichler; A. Dröscher; H. Schranzhofer; G. D. Kontes; G. I. Giannakis; E. B. Kosmatopoulos; D. V. Rovas

2011-11-01T23:59:59.000Z

92

Validation studies of the DOE-2 Building Energy Simulation Program. Final Report  

SciTech Connect

This report documents many of the validation studies (Table 1) of the DOE-2 building energy analysis simulation program that have taken place since 1981. Results for several versions of the program are presented with the most recent study conducted in 1996 on version DOE-2.1E and the most distant study conducted in 1981 on version DOE-1.3. This work is part of an effort related to continued development of DOE-2, particularly in its use as a simulation engine for new specialized versions of the program such as the recently released RESFEN 3.1. RESFEN 3.1 is a program specifically dealing with analyzing the energy performance of windows in residential buildings. The intent in providing the results of these validation studies is to give potential users of the program a high degree of confidence in the calculated results. Validation studies in which calculated simulation data is compared to measured data have been conducted throughout the development of the DOE-2 program. Discrepancies discovered during the course of such work has resulted in improvements in the simulation algorithms. Table 2 provides a listing of additions and modifications that have been made to various versions of the program since version DOE-2.1A. One of the most significant recent changes in the program occurred with version DOE-2.1E. An improved algorithm for calculating the outside surface film coefficient was implemented. In addition, integration of the WINDOW 4 program was accomplished resulting in improved ability in analyzing window energy performance. Validation and verification of a program as sophisticated as DOE-2 must necessarily be limited because of the approximations inherent in the program. For example, the most accurate model of the heat transfer processes in a building would include a three-dimensional analysis. To justify such detailed algorithmic procedures would correspondingly require detailed information describing the building and/or HVAC system and energy plant parameters. Until building simulation programs can get this data directly from CAD programs, such detail would negate the usefulness of the program for the practicing engineers and architects who currently use the program. In addition, the validation studies discussed herein indicate that such detail is really unnecessary. The comparison of calculated and measured quantities have resulted in a satisfactory level of confidence that is sufficient for continued use of the DOE-2 program. However, additional validation is warranted, particularly at the component level, to further improve the program.

Sullivan, R.; Winkelmann, F.

1998-06-01T23:59:59.000Z

93

Building Energy Software Tools Directory: DesignBuilder  

NLE Websites -- All DOE Office Websites (Extended Search)

naturally ventilated buildings, buildings with daylighting control, double facades, advanced solar shading strategies etc. Screen Shots Keywords Building energy simulation,...

94

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

95

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

Volume I: National Lighting Inventory and Energy ConsumptionEnergy Consumption in the US Residential and Commercial Building Stock. Lawrence Berkeley National

Hong, T.

2011-01-01T23:59:59.000Z

96

Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program  

DOE Green Energy (OSTI)

EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper model inputs. An example input data file, suitable for distribution to EnergyPlus users, was created for each new or improved feature to illustrate the input requirements for the model.

Don Shirey

2008-02-28T23:59:59.000Z

97

Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program  

SciTech Connect

EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper model inputs. An example input data file, suitable for distribution to EnergyPlus users, was created for each new or improved feature to illustrate the input requirements for the model.

Don Shirey

2008-02-28T23:59:59.000Z

98

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

99

Building Energy Software Tools Directory: LISA  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

100

Building Energy Software Tools Directory: TAPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building Energy Software Tools Directory: Evergreen LED  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems...

102

NREL Evaluates Thermal Performance of Uninsulated Walls to Improve Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect

NREL researchers discover ways to increase accuracy in building energy simulations tools to improve predictions of potential energy savings in homes. Uninsulated walls are typical in older U.S. homes where the wall cavities were not insulated during construction or where the insulating material has settled. Researchers at the National Renewable Energy Laboratory (NREL) are investigating ways to more accurately calculate heat transfer through building enclosures to verify the benefit of energy efficiency upgrades that reduce energy use in older homes. In this study, scientists used computational fluid dynamics (CFD) analysis to calculate the energy loss/gain through building walls and visualize different heat transfer regimes within the uninsulated cavities. The effects of ambient outdoor temperature, the radiative properties of building materials, insulation levels, and the temperature dependence of conduction through framing members were considered. The research showed that the temperature dependence of conduction through framing members dominated the differences between this study and previous results - an effect not accounted for in existing building energy simulation tools. The study provides correlations for the resistance of the uninsulated assemblies that can be implemented into building simulation tools to increase the accuracy of energy use estimates in older homes, which are currently over-predicted.

2012-03-01T23:59:59.000Z

103

Available Technologies:EnergyPlus: Energy Simulation Software ...  

EnergyPlus is a building energy simulation program for modeling building heating, cooling, lighting, ventilating, and other energy flows

104

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

additional solar heating gains and reduce building coolingto maximize solar heating gains in order to offset buildingbuilding cooling energy due to rejection of additional solar heating

Hong, T.

2011-01-01T23:59:59.000Z

105

Development of an integrated building energy simulation with optimal central plant control.  

E-Print Network (OSTI)

??The purpose of computer-based building energy analysis programs is to assist heating, ventilation, and air conditioning (HVAC) engineers in the design process and to help… (more)

Taylor, Russell Derek

1996-01-01T23:59:59.000Z

106

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

107

Development of 20 IEER Rooftop Units System Modeling and Building Energy Simulations  

Science Conference Proceedings (OSTI)

Based on detailed steady-state system and component modeling, we developed a rooftop unit system design, which is able to achieve IEER (Integrated Energy Efficiency Ratio) higher than 20. We modeled fin-&-tube and micro-channel heat exchangers using segment-to-segment approach, and use AHRI 10-coefficient compressor map to simulate compressor performance. The system modeling is based on a component-based modeling approach, which facilitates flexible simulation of complicated system configurations. Starting with a baseline system having IEER of 16.6, we extensively investigated numerous technical options, i.e. varying compressor sizes, heat exchanger fin densities, fin-&-tube or micro-channel heat exchanger, suction line heat exchanger, desiccant wheel, tandem compressor, variable-speed compressor, and condenser evaporative pre-cooling; and developed an innovative system configuration combining a tandem compression system with a variable-speed compression system. The combined system can achieve high IEER as well as process the outdoor ventilation air over an extensive range. We successfully evaluated the design concept for a 20-ton (70.4 kW) unit as well as a 10-ton (35.2 kW) unit. All the selected components are readily accessible on the market, and we validated the performance predictions against existing Rooftop Unit (RTU) products at the rating condition. This paper illustrates a potentially cost-effective high IEER RTU design. In addtion, we conducted extensive building energy simulations using EnergyPlus to predict seasonal energy saving potentials and peak power reductions using the High IEER RTU in sixteen US cities, in comparison to a RTU with a minimum efficiency.

Shen, Bo [ORNL; Rice, C Keith [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

108

NREL Evaluates the Thermal Performance of Uninsulated Walls to Improve the Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop models of uninsulated wall assemblies that help to improve the accuracy of building energy simulation tools when modeling potential energy savings in older homes. Researchers at the National Renewable Energy Laboratory (NREL) have developed models for evaluating the thermal performance of walls in existing homes that will improve the accuracy of building energy simulation tools when predicting potential energy savings of existing homes. Uninsulated walls are typical in older homes where the wall cavities were not insulated during construction or where the insulating material has settled. Accurate calculation of heat transfer through building enclosures will help determine the benefit of energy efficiency upgrades in order to reduce energy consumption in older American homes. NREL performed detailed computational fluid dynamics (CFD) analysis to quantify the energy loss/gain through the walls and to visualize different airflow regimes within the uninsulated cavities. The effects of ambient outdoor temperature, radiative properties of building materials, and insulation level were investigated. The study showed that multi-dimensional airflows occur in walls with uninsulated cavities and that the thermal resistance is a function of the outdoor temperature - an effect not accounted for in existing building energy simulation tools. The study quantified the difference between CFD prediction and the approach currently used in building energy simulation tools over a wide range of conditions. For example, researchers found that CFD predicted lower heating loads and slightly higher cooling loads. Implementation of CFD results into building energy simulation tools such as DOE2 and EnergyPlus will likely reduce the predicted heating load of homes. Researchers also determined that a small air gap in a partially insulated cavity can lead to a significant reduction in thermal resistance. For instance, a 4-in. tall air gap (Figure 1a) led to a 15% reduction in resistance. Similarly, a 2-ft tall air gap (Figure 1c) led to 54% reduction in thermal resistance. NREL researchers plan to extend this study to include additional wall configurations, and also to evaluate the performance of attic spaces with different insulation levels. NREL's objective is to address each potential issue that leads to inaccuracies in building energy simulation tools to improve the predictions.

Not Available

2012-01-01T23:59:59.000Z

109

NREL Evaluates the Thermal Performance of Uninsulated Walls to Improve the Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop models of uninsulated wall assemblies that help to improve the accuracy of building energy simulation tools when modeling potential energy savings in older homes. Researchers at the National Renewable Energy Laboratory (NREL) have developed models for evaluating the thermal performance of walls in existing homes that will improve the accuracy of building energy simulation tools when predicting potential energy savings of existing homes. Uninsulated walls are typical in older homes where the wall cavities were not insulated during construction or where the insulating material has settled. Accurate calculation of heat transfer through building enclosures will help determine the benefit of energy efficiency upgrades in order to reduce energy consumption in older American homes. NREL performed detailed computational fluid dynamics (CFD) analysis to quantify the energy loss/gain through the walls and to visualize different airflow regimes within the uninsulated cavities. The effects of ambient outdoor temperature, radiative properties of building materials, and insulation level were investigated. The study showed that multi-dimensional airflows occur in walls with uninsulated cavities and that the thermal resistance is a function of the outdoor temperature - an effect not accounted for in existing building energy simulation tools. The study quantified the difference between CFD prediction and the approach currently used in building energy simulation tools over a wide range of conditions. For example, researchers found that CFD predicted lower heating loads and slightly higher cooling loads. Implementation of CFD results into building energy simulation tools such as DOE2 and EnergyPlus will likely reduce the predicted heating load of homes. Researchers also determined that a small air gap in a partially insulated cavity can lead to a significant reduction in thermal resistance. For instance, a 4-in. tall air gap (Figure 1a) led to a 15% reduction in resistance. Similarly, a 2-ft tall air gap (Figure 1c) led to 54% reduction in thermal resistance. NREL researchers plan to extend this study to include additional wall configurations, and also to evaluate the performance of attic spaces with different insulation levels. NREL's objective is to address each potential issue that leads to inaccuracies in building energy simulation tools to improve the predictions.

2012-01-01T23:59:59.000Z

110

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

111

Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume I. Executive summary. [Simulation studies using DYNSIM and SUNSIM codes  

DOE Green Energy (OSTI)

Information is presented on the cost effectiveness of a strategy for reducing energy consumption in buildings by combining energy conservation techniques, such as improved building design and thermal insulation with solar heating and cooling systems. It is concluded, from computer simulation studies used to determine building loads and the interaction of the solar system, that energy conservation is the most cost-effective way to save energy in all buildings at any location, and that solar systems are currently not cost-effective. (LCL)

None

1977-06-01T23:59:59.000Z

112

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

113

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

114

PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring  

DOE Green Energy (OSTI)

This report presents a unified method of hourly simulation of a building and analysis of performance data. The method is called Primary and Secondary Terms Analysis and Renormalization (PSTAR). In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense, hence, the name PSTAR. PSTAR allows extraction of building characteristics from short-term tests on a small number of data channels. These can be used for long-term performance prediction (''ratings''), diagnostics, and control of heating, ventilating, and air conditioning systems (HVAC), comparison of design versus actual performance, etc. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI.

Subbarao, K.

1988-09-01T23:59:59.000Z

115

Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation  

SciTech Connect

This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

Robertson, J.; Polly, B.; Collis, J.

2013-09-01T23:59:59.000Z

116

Evaluating the energy performance of the first generation of LEED-certified commercial buildings  

E-Print Network (OSTI)

Department of Energy, Energy Star Building Rating Program.a simulation of the building's energy performance to qualifythe simulated whole building energy consumption with the

Diamond, Rick

2011-01-01T23:59:59.000Z

117

Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint  

SciTech Connect

Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

2012-08-01T23:59:59.000Z

118

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Netherlands B H Tool Applications Free Recently Updated Building Energy Modelling and Simulation: Self-Learning Modules energy simulation, buildings, courseware, self-learning,...

119

Building Technologies Office: Building Energy Software Tools...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Links This directory provides information on 404 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools...

120

Building Energy Software Tools Directory: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

BLAST, EnergyPlus, Genopt, SPARK, Energy-10, and Building Design Advisor BLDG-SIM - A free e-mail list for all building energy simulation program users to ask questions to...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

122

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

123

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

124

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

125

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

126

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

127

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

128

A framework for simulation-based real-time whole building performance assessment  

E-Print Network (OSTI)

DB. Simulation of Energy Management Systems in EnergyPlus.the same way as Energy Management System (EMS) actuators andin Building Energy Management Systems. Energy and Building

Pang, Xiufeng

2013-01-01T23:59:59.000Z

129

Using Simulation Models for Building Commissioning  

E-Print Network (OSTI)

The International Energy Agency ECBCS Annex 40 “Commissioning of Buildings and HVAC Systems for Improved Energy Performance” task investigating Use of Whole Building Simulation in Commissioning has identified the following applications of whole simulation in the commissioning process: 1) during the design process; 2) in post-construction commissioning of new buildings; 3) design simulation for ongoing commissioning; 4) calibrated simulation for retro commissioning; 5) calibrated simulation for on-going commissioning; and 6) simulation to evaluate new control code. These applications are discussed and examples of each of these applications are provided. The only one of these which has been applied in routine commissioning projects is the use of calibrated simulation for retro commissioning. The other examples have been applied in a research setting, and costs must be lowered for routine application, but there appears to be potential for significant application of simulation in the commissioning process.

Claridge, D. E.

2004-01-01T23:59:59.000Z

130

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

131

Energy Survey and Energy Savings in an Office Building with Aid of Building Software.  

E-Print Network (OSTI)

?? Simulation is one of the best Analytical tools for Building Research .Energy Efficient Buildings are of great concern which is gaining importance steeply in… (more)

Lu, Yinghao

2008-01-01T23:59:59.000Z

132

Midwest Building Energy Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

133

Midwest Building Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

134

Methodology for Residential Building Energy Simulations Implemented in the International Code Compliance Calculator (IC3)  

E-Print Network (OSTI)

Since 2001, Texas has been proactive in initiating clean air and energy efficiency in building policies. The Texas Emissions Reduction Plan legislation (SB 5, 77TH Leg., 2001) mandates statewide adoption of energy codes, creates a 5% annual energy savings goal for public facilities in affected counties through 2007 and provides approximately $150 million in cash incentives for clean diesel emissions grants and energy research. The Texas Legislation extended this annual electric reduction goal in public facilities through 2013. Texas was the first state in the nation to create NOx emissions reduction credits for energy efficiency and renewable energy through the State Implementation Plan under the Federal Clean Air Act. This paper presents the methodology for calculating the energy usage from a proposed residential house and the corresponding 2001 International Energy Conservation Code baseline house. This methodology is applied in the International Code Compliance Calculator, which is a publicly accessible web-based energy code compliance software developed by the Energy Systems Laboratory based on the Texas Building Energy Performance Standards. This calculator evaluates and certifies above-code compliance for homes in Texas. It also calculates NOx, SOx and CO2 emissions reductions from the energy savings of the proposed house for the electric utility associated with the user using the data from the Emissions and Generation Resource Integrated Database provided by U.S. Environmental Protection Agency.

Liu, Z.; Mukhopadhyay, J.; Malhotra, M.; Haberl, J.; Gilman, D.; Montgomery, C.; McKelvey, K.; Culp, C.; Yazdani, B.

2008-12-01T23:59:59.000Z

135

On the Use of Integrated Daylighting and Energy Simulations to Drive the Design of a Large Net-Zero Energy Office Building: Preprint  

SciTech Connect

This paper illustrates the challenges of integrating rigorous daylight and electric lighting simulation data with whole-building energy models, and defends the need for such integration to achieve aggressive energy savings. Through a case study example, we examine the ways daylighting -- and daylighting simulation -- drove the design of a large net-zero energy project. We give a detailed review of the daylighting and electric lighting design process for the National Renewable Energy Laboratory's Research Support Facility (RSF), a 220,000 ft2 net-zero energy project the author worked on as a daylighting consultant. A review of the issues involved in simulating and validating the daylighting performance of the RSF will be detailed, including daylighting simulation, electric lighting control response, and integration of Radiance simulation data into the building energy model. Daylighting was a key strategy in reaching the contractual energy use goals for the RSF project; the building's program, layout, orientation and interior/furniture design were all influenced by the daylighting design, and simulation was critical in ensuring these many design components worked together in an integrated fashion, and would perform as required to meet a very aggressive energy performance goal, as expressed in a target energy use intensity.

Guglielmetti, R.; Pless, S.; Torcellini, P.

2010-08-01T23:59:59.000Z

136

On solar building energy devices  

Science Conference Proceedings (OSTI)

A method for simulation of solar energy devices connected to a building has been proposed. The solutions of one dimensional heat conduction and heat transport equations are obtained both with the new method as well as traditional method used for design ... Keywords: experiments, heat exchange, numerical model, simulation method, solar energy

Himanshu Dehra

2007-05-01T23:59:59.000Z

137

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

138

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

139

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in...

140

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

SciTech Connect

Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

Wetter, Michael

2009-02-12T23:59:59.000Z

142

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

Wall, L.W.

2009-01-01T23:59:59.000Z

143

Building Technologies Program: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Program: ENERGY STAR on Google Bookmark Building Technologies Program: ENERGY STAR on Delicious Rank Building...

144

Building Technologies Office: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Office: ENERGY STAR on Google Bookmark Building Technologies Office: ENERGY STAR on Delicious Rank Building...

145

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

146

Overview of validation procedures for building energy-analysis simulation codes. [SUNCAT 2. 4, DEROB 4, DOE 2. 1, BLAST  

SciTech Connect

SERI is developing a procedure for the validation of Building Energy Analysis Simulation Codes (BEAS). These codes are being used increasingly in the building design process, both directly and as the basis for simplified design tools and guidelines. The importance of the validity of the BEAS in predicting building energy performance is obvious when one considers the money and energy which could be wasted by energy-inefficient designs. However, to date, little or no systematic effort has been made to ensure the validity of the various BEAS. The validation work at SERI consists of three distinct parts: Comparative Study, Analytical Verification, and Empirical Validation. The procedures have been developed for the first two parts, and these procedures have been implemented on a sampling of the major BEAS. Results from this work have shown major problems in two of the BEAS tested. Furthermore, when one building design was run on several of the BEAS, there were large differences in the predicted annual heating loads. The empirical validation procedure will be developed when high quality empirical data become available.

Wortman, D.; O' Doherty, B.; Judkoff, R.

1981-03-01T23:59:59.000Z

147

Building Energy Software Tools Directory: Autodesk Green Building Studio  

NLE Websites -- All DOE Office Websites (Extended Search)

Autodesk Green Building Studio Autodesk Green Building Studio Green Building Studio logo. Seamlessly links architectural building information models (BIM) and certain 3-D CAD building designs with energy, water, and carbon analysis. Autodesk Green Building Studio enables architects to quickly calculate the operational and energy implications of early design decisions. The Autodesk Green Building Studio web service automatically generates geometrically accurate, detailed input files for major energy simulation programs. Green Building Studio uses the DOE-2.2 simulation engine to calculate energy performance and also creates geometrically accurate input files for EnergyPlus. Key to the integrated interoperability exhibited is the gbXML schema, an open XML schema of the International Alliance of

148

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

149

Commercial Reference Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings » Research Projects » Commercial Reference Buildings » Research Projects » Commercial Reference Buildings Commercial Reference Buildings The U.S. Department of Energy (DOE), in conjunction with three of its national laboratories, developed commercial reference buildings, formerly known as commercial building benchmark models. These reference buildings play a critical role in the program's energy modeling software research by providing complete descriptions for whole building energy analysis using EnergyPlus simulation software. There are 16 building types that represent approximately 70% of the commercial buildings in the U.S., according to the report published by the National Renewable Energy Laboratory titled U.S. Department of Energy Commercial Reference Building Models of the National Building Stock. These

150

Buildings Energy Databook  

Buildings Energy Data Book (EERE)

2 BUILDINGS 2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered an evolving document as it will be will be periodically updated and additional data will be incorporated. Users are requested to submit additional data (e.g., more current, widely accepted, and/or better documented data) and suggested changes to the contacts below. Please provide full source references along with all data.

151

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

Science Conference Proceedings (OSTI)

This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

2011-08-01T23:59:59.000Z

152

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

153

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Denmark B I T Tool Applications Free Recently Updated Be06 energy performance, building regulations, house, office, commercial and institutional BSim building simulation, energy,...

154

Building energy modeling programs comparison Research on HVAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in...

155

Building America House Simulation Protocols (Revised)  

Science Conference Proceedings (OSTI)

The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

Hendron, R.; Engebrecht, C.

2010-10-01T23:59:59.000Z

156

Energy utilization analysis of buildings  

DOE Green Energy (OSTI)

The accurate calculation of the energy requirements and heating and cooling equipment sizes for buildings is one of the most important, as well as one of the most difficult, problems facing the engineer. The fundamental principles utilized in the procedures developed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) are explained and brief descriptions of the computer programs using these procedures are given. Such computer programs generally are capable of: simulating the thermal response of a building to all sources of heat gains and losses, accounting for all non-thermal energy requirements in the building or on the sites, translating the building operating schedules into energy demand and consumption, identifying the peak capacity requirements of heating and cooling equipment, and performing an economic analysis that would select the most economical overall owning and operating cost equipment and energy source that minimize the building's life cycle cost.

Lokmanhekim, M.

1978-06-01T23:59:59.000Z

157

Buildings News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings News Buildings News RSS November 6, 2013 Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge National Program to Reduce Energy Use and Save...

158

The current generation of building simulation software is based upon separate building and mechanical system  

E-Print Network (OSTI)

and mechanical systems. Work is underway to develop a new version of the Building Loads Analysis and SystemThe current generation of building simulation software is based upon separate building Thermodynamics (BLAST) [1] energy analysis program which will simulate buildings and mechanical systems

159

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

160

SIMULATED BUILDING ENERGY PERFORMANCE OF SINGLE-FAMILY DETACHED RESIDENCES DESIGNED FOR OFF-GRID, OFF-PIPE OPERATION  

SciTech Connect

This paper presents the analysis of energy performance of single-family detached homes in three U.S. climates, in order to determine energy-efficiency measures for minimizing the loads and sizing requirements of renewable energy systems that are essential for its offgrid, off-pipe (i.e., utility-independent) operation. The analysis used a DOE-2.1e simulation model of a 2000/2001 IECC (International Energy Conservation Code) standard house as a base case in three climate locations: Minneapolis, MN, Atlanta, GA, and Phoenix, AZ. This selection of measures and determination of loads for renewable energy systems were accomplished by analyzing the energy use using DOE-2.1e simulations and heating/cooling load components using the Manual J Average Load Procedure. The analysis showed several aspects of building energy performance during different times of the year in terms of available energy resources that are critical for the sizing, utilization, and cost effectiveness of renewable energy systems.

Malhotra, Mini [ORNL; Haberl, Dr. Jeff S. [Texas A& M University

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Energy Software Tools Directory: Tools by Subjects  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

162

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chile C Tool Applications Free Recently Updated Cepenergy Management Software for Buildings Energy management, energy efficiency, energy evaluation, energy simulation, energy...

163

Building Energy Software Tools Directory: IWEC  

NLE Websites -- All DOE Office Websites (Extended Search)

PC Mac UNIX Internet Tools by Country Related Links IWEC IWEC logo. Contains "typical" weather data in ASCII format files, suitable for use with building energy simulation...

164

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

The Energy Index for Commercial Buildings The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results yield national totals for commercial buildings. For more information on CBECS, visit EIA's website. Location Census Division View Map New England West North Central West South Central Middle Atlantic South Atlantic Mountain East North Central East South Central Pacific

165

Office building performance - Software based energy calculation of office buildings and comparison with measured energy data.  

E-Print Network (OSTI)

??The usage of energy simulation tools is widespread in the construction field. Indeed, it is useful to predict the energy consumption of a new building,… (more)

Druhen, Marie

2013-01-01T23:59:59.000Z

166

Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially...

167

Autotune Building Energy Models  

NLE Websites -- All DOE Office Websites (Extended Search)

service" within the BTO Strategic BEM Portfolio 5 | Building Technologies Office eere.energy.gov Approach Approach: * Multi-objective optimization algorithms to minimize error...

168

Energy Efficiency Standards for Federal Buildings | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Site Map Printable Version Development Adoption Compliance Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards...

169

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

170

Building Energy Software Tools Directory: Building Energy Modelling...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

171

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Simulation Test for Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria Ron Judkoff, Ben Polly, and Marcus Bianchi National Renewable Energy Laboratory Joel Neymark J. Neymark & Associates Mike Kennedy Mike D. Kennedy, Inc. Link to Accompanying Zipped Data Files (3.9 MB) This document is intended for use with the following documents: Building Energy Simulation Test for Existing Homes (BESTEST-EX), NREL/TP-550-47427 Example Procedures for Developing Acceptance-Range Criteria for BESTEST-EX, NREL/TP-550-47502 Technical Report NREL/TP-5500-52414 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy

172

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Eligibility Commercial Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial...

173

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial...

174

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Most Popular Tables PDFXLS 3.1.4 2010 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 1.1.1 U.S. Residential and Commercial Buildings Total Primary Energy Consumption PDFXLS...

175

Communicating Building Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Communicating Building Energy Performance Communicating Building Energy Performance Speaker(s): William Bordass Date: August 26, 2008 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Paul Mathew The heightened interest in building energy performance has exposed problems with reporting and benchmarking. Established conventions may no longer suit current needs, and new complications are emerging as national and corporate reporting (e.g. for carbon accounting and trading) begin to impact on the certification and labelling of building energy performance. If we are to achieve genuinely low-energy and carbon buildings, we need to get much better at reporting and benchmarking our intentions and outcomes, and particularly making performance visible and communicating it to all the people concerned. In design, this could help us to reduce the persistent

176

ENERGY STAR ® Building Manual  

E-Print Network (OSTI)

Businesses are reducing their energy use by 30 percent or more through effective energy management practices that involve assessing energy performance, setting energy savings goals, and regularly evaluating progress. Building-level energy performance benchmarking is an integral part of this effort. It provides the reference points necessary for developing sound energy management practices and strategies and for gauging their effectiveness. Energy use benchmarking is a process that either compares the energy use of a building or group of buildings with other similar structures or looks at how energy use varies from a baseline. It is a critical step in any building upgrade project, because it informs organizations about how and where they use energy and what factors drive their energy use. Benchmarking enables energy managers to determine the key metrics for assessing performance, to establish baselines, and to set goals for energy performance. It also helps them identify building upgrade opportunities that can increase profitability by lowering energy and operating costs, and it facilitates continuous improvement by providing diagnostic measures to evaluate performance over time. Benchmarking energy performance helps energy managers to identify best practices that can

unknown authors

2008-01-01T23:59:59.000Z

177

Building Energy Optimization Software | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Optimization Software Building Energy Optimization Software BEopt 2.1 Now Available! BEopt Version 2.1 is now available and includes major features such as: mini-split heat pumps and room air conditioners (E+); new modeling inputs; component-based air leakage estimate for existing buildings; and more. Read about the new features and visit the BEopt website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable Energy Laboratory (NREL) developed the Building Energy Optimization (BEopt) software tool. This specialized computer program is designed to identify optimally efficient designs for new and existing homes at the lowest possible cost. BEopt produces detailed simulation-based analysis and design optimization

178

Towards A Design Environment For Buildingintegrated Energy Systems: The Integration Of Electrical Power Flow Modelling With Building Simulation  

E-Print Network (OSTI)

.................................................................................................................................... xi Chapter 1 - Buildings Energy and Environment ..................................................................... 1 1.1 Energy Use within Buildings............................................................................................1 1.1.1 Environmental Implications.......................................................................................2 1.1.2 Economic Implications ..............................................................................................3 1.2 The Means of Reducing Energy Consumption..................................................................4 1.2.1 Energy End-Use Reduction........................................................................................4 1.2.2 Reducing High-Grade Energy Usage .........................................................................5 1.2.3 Electrical Energy Displa...

Nicolas James Kelly; Building Simulation; Nicolas James; Kelly B. Eng; M. Sc

1998-01-01T23:59:59.000Z

179

Building Energy Software Tools Directory: BuildingSim  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingSim BuildingSim BuildingSim logo BuildingSim allows users to model a building and analyze the heating and cooling energy costs in any climate. Users can create any building—from a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90 climates around the world to numerically solve the full thermodynamic differential equations every minute of the year, giving the user the actual energy use down to the cent. The simulation algorithm fully accounts for thermostat and HVAC controls, allowing the user to analyze the effects of different thermostat algorithms (programmable thermostats, setback, split-zone, etc.) on the energy costs for a specific building and climate. Screen Shots

180

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

9Market Transformation 9Market Transformation 9.1 ENERGY STAR 9.2 LEED 9.3 Certification Programs 9.4 High Performance Buildings Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter contains data on two market transformation programs that reach across the United States and to other countries: the ENERGY STAR program, jointly administered by the U.S. Environmental Protection Agency and the U.S. Department of Energy, and the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) rating system. It also includes data on three professional certifications and five case studies of high performance buildings. The main points from this chapter are summarized below:

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comparison of Building Energy Modeling Programs: Building Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Building Energy Modeling Programs: Building Loads Title Comparison of Building Energy Modeling Programs: Building Loads Publication Type Report LBNL Report Number...

182

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes Resource Guide: COMMERCIAL BUILDINGS for Architects Prepared by: Building Energy Codes Program (BECP) and the American...

183

Building Energy Modeling Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

184

Building Technologies Office: Energy Modeling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Software Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The plugin makes it easy to create and edit the building geometry in your EnergyPlus input files.

185

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

186

Building Energy Software Tools Directory: Tools by Subject -...  

NLE Websites -- All DOE Office Websites (Extended Search)

SAP, iSBEM, EPCs, Psychrometrics. CYPE-Building Services building services, single model, energy simulation, sizing, HVAC, plumbing, sewage, electricity, solar, analysis of...

187

Building Energy Software Tools Directory: Tools by Subject -...  

NLE Websites -- All DOE Office Websites (Extended Search)

simulation, building energy modeling, ASHRAE Standard 90.1, commercial code compliance, LEED NC 2.2 EA Credit 1, federal commercial building tax deductions, EPACT 2005 qualified...

188

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tool Applications Free Recently Updated CYPE-Building Services building services, single model, energy simulation, sizing, HVAC, plumbing, sewage, electricity, solar, analysis of...

189

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

8.1 Buildings Sector Water Consumption 8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy needed to supply that water. The main points from this chapter are summarized below: In 2005, water use in the buildings sector was estimated at 39.6 billion gallons per day, which is nearly 10% of total water use in the United States. From 1985 to 2005, water use in the residential sector closely tracked population growth, while water use in the commercial sector grew almost twice as fast.

190

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network (OSTI)

and J.L. Edwards. Distributed Energy Resources Customerand Renewable Energy, Distributed Energy Program of the U.S.optimization program, Distributed Energy Resources Customer

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

191

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

192

Buildings Energy Efficiency Policy  

E-Print Network (OSTI)

· Emphasized lighting · Insulation, HVAC, motors, windows also significant · Savings typically 1-10% per al., 2009, ACEEE #12;Building Energy Rating & Disclosure · Two states: California and Washington · Five cities: Austin, DC, NYC, San Francisco, Seattle · Coverage will extend to 60,000 buildings & 4.1B

Oak Ridge National Laboratory

193

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Energy Efficiency > Commercial Buildings Energy Intensities > Table 6a. U.S. Commercial Buildings Energy

194

Building Technologies Office: House Simulation Protocols Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Protocols Report This image shows a cover of a report titled "Building America House Simulation Protocols." The Building America logo is shown in the lower left corner of...

195

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

5.1 Building Materials/Insulation 5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 5 contains market and technology data on building materials and equipment. Sections 5.1 and 5.2 cover the building envelope, including building assemblies, insulation, windows, and roofing. Sections 5.3 through 5.7 cover equipment used in buildings, including space heating, water heating, space cooling, lighting, thermal distribution (ventilation and hydronics), and appliances. Sections 5.8 and 5.9 focus on energy production from on-site power equipment. The main points from this chapter are summarized below:

196

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

Slope Figure 2. DOE climate zones (source: i ^ w n nHficonstant over all climate zones with the exception ofoffice building across 16 climate zones. Although the medium

Hong, T.

2011-01-01T23:59:59.000Z

197

"Building Energy Data Exchange Specification"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification" "Version 2.3" "applicationvnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification...

198

Building Technologies Office: Saving Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving Energy Printable Version Share this resource Send a link to Building Technologies Office: Saving Energy to someone by E-mail Share Building Technologies Office: Saving...

199

Connecticut | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

200

Maryland | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oregon | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

202

Indiana | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

203

California | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

204

On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

522 522 August 2010 On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building Preprint Rob Guglielmetti, Shanti Pless, and Paul Torcellini Presented at SimBuild 2010 New York, New York August 15-19, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

205

Energy and building envelope  

SciTech Connect

This book presents the papers given at a conference on building thermal insulation, energy efficiency, and solar architecture. Topics considered at the conference include thermal comfort, heating loads, the air change rate in residential buildings, core-insulated external walls, passive solar options, cooling loads, daylighting, solar gain, the energy transmittance of glazings, heat storage units in phase change materials, heat transfer through windows, and rock bed heat storage for solar heating systems.

1986-01-01T23:59:59.000Z

206

Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Buildings EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

207

Better Buildings | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over 400 billion. These buildings...

208

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes...

209

Building Energy Software Tools Directory: Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

210

Building Energy Software Tools Directory: TOP Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

211

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable...

212

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200  

DOE Green Energy (OSTI)

This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

Neymark, J.; Judkoff, R.

2002-01-01T23:59:59.000Z

213

Building Energy Software Tools Directory: EnergyPlus  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyPlus EnergyPlus EnergyPlus Logo Next generation building energy simulation program that builds on the most popular features and capabilities of BLAST and DOE-2. EnergyPlus includes innovative simulation capabilities including time steps of less than an hour, modular systems simulation modules that are integrated with a heat balance-based zone simulation, and input and output data structures tailored to facilitate third party interface development. Recent additions include multizone airflow, electric power simulation including fuel cells and other distributed energy systems, and water manager that controls and report water use throughout the building systems, rainfall, groundwater, and zone water use. Keywords energy simulation, load calculation, building performance, simulation,

214

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network (OSTI)

with DG investment options and energy tariffs and rates, toend-use energy loads 3 , electricity and natural gas tariffLBNL Tariff Analysis Project) fixed ($/month) energy ($/kWh)

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

215

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

7.1 National Legislation 7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 7 outlines national climate change legislation, tax incentives, Federal regulations, and State programs that have influenced building energy consumption. Section 7.1 summarizes the past 40 years of national energy legislation beginning with the Clean Air Act of 1970. Section 7.2 describes the energy efficiency-related Federal tax incentives created in the last 5 years. Sections 7.3 through 7.7 describe the energy and water efficiency standards currently or soon to be in effect for residential and commercial HVAC equipment, appliances, lighting, and water-consuming products. Section 7.8 covers building energy codes. Following is a summary of the energy legislation discussed in this chapter:

216

Building Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Equipment Building Technologies Deployment System/Building Integration Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy consumption of the nation's buildings and resulting carbon emissions is essential to achieving a sustainable clean energy future. To address the enormous challenge, Oak Ridge National Laboratory is focused on helping develop new building technologies, whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations in all of these areas.

217

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Massachusetts Program Type Building Energy Code Provider State Board of Building Regulations and Standards ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Massachusetts Board of Building Regulations and Standards has authority

218

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

219

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Australia A B C D L P S Tool Applications Free Recently Updated AWDABPT building temperature simulation, thermal performance Software has been updated. BEAVER energy simulation,...

220

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Free software. DesignBuilder Building energy simulation, visualisation, CO2 emissions, solar shading, natural ventilation, daylighting, comfort studies, CFD, HVAC simulation,...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Energy Software Tools Directory: Tools by Subject -...  

NLE Websites -- All DOE Office Websites (Extended Search)

has been updated. DesignBuilder Building energy simulation, visualisation, CO2 emissions, solar shading, natural ventilation, daylighting, comfort studies, CFD, HVAC simulation,...

222

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

223

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 5b

224

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 5a

225

High Performance Buildings - Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

... Buildings - Alternative/Renewable Energy. High Performance Buildings - Alternative/Renewable Energy Information at NIST. ...

2010-09-23T23:59:59.000Z

226

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 7a

227

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table7c

228

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 7b

229

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Eligibility Low-Income Residential Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization...

230

Building Energy Code (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

modified on September 28, 2012. Rules Regulations Policies Program Place Connecticut Name Building Energy Code Incentive Type Building Energy Code Applicable Sector Commercial,...

231

Building Energy Efficiency Technologies - Energy Innovation Portal  

Building Energy Efficiency Technology Marketing Summaries Here you’ll find marketing summaries of building energy efficiency technologies available for licensing ...

232

Building Energy Software Tools Directory: SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox SIMBAD Building and HVAC Toolbox logo. Performs transient simulations of HVAC plants with short time steps. SIMBAD Building and HVAC Toolbox is the...

233

Standard Definitions of Building Geometry for Energy Evaluation  

SciTech Connect

This document provides definitions and metrics of building geometry for use in building energy evaluation. Building geometry is an important input in the analysis process, yet there are no agreed-upon standard definitions of these terms for use in energy analysis. The metrics can be used for characterizing building geometry, for calculating energy performance metrics, and for conducting energy simulations.

Deru, M.; Torcellini, P.

2005-10-01T23:59:59.000Z

234

Adaptive Construction Modelling Within Whole Building Dynamic Simulation  

E-Print Network (OSTI)

............................ vii List of Symbols .......................... ix Chapter 1: Introduction ....................... 1 1.1 The need for building energy simulation ............... 1 1.2 The evolution of building energy simulation tools ............ 2 1.3 The need for accurate building fabric modelling ............ 4 1.4 Objective and outline of the present work ............... 5 Chapter 2: Review of Heat and Moisture Transport within Building Materials ...... 8 2.1 Building energy simulation ................... 8 2.1.1 Heat conduction .................... 8 2.1.2 Mass diffusion .................... 16 2.2 Adaptive gridding ...................... 18 2.3 Thermophysical properties ................... 23 2.4 Combined heat and moisture transport ................ 27 2.4.1 Moisture transport in porous building materials .......... 29 2.4.2 Differential equations for combined heat and moisture transport ..... 33 Chapter 3: Adaptive Building Fabric Gridding ................ 37 3.1 Math...

Abdullatif Nakhi Degree; Abdullatif E. Nakhi; Wife Masoumah

1995-01-01T23:59:59.000Z

235

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network (OSTI)

and • heat-driven absorption chillers. A key constraint is aor by heat (via absorption chiller) 5 . • Hot water andheat recovery and an absorption chiller. The annual energy

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

236

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network (OSTI)

lighting, daylighting, and heating systems via Simulink (performance of the daylighting control system. Energy andbuildings through daylighting control systems in New York

Hong, T.

2011-01-01T23:59:59.000Z

237

> Web Developer Position at the T.C. Chan Center for Building Simulation and Energy > Needed Immediately: Full Time Web Developer.  

E-Print Network (OSTI)

> > Web Developer Position at the T.C. Chan Center for Building Simulation and Energy Studies. > Needed Immediately: Full Time Web Developer. > > * The web developer should have a BA of professional experience developing web based applications is required. Experience with web design is a must

Plotkin, Joshua B.

238

Build an energy management program | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Advance your energy program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

239

A View on Future Building System Modeling and Simulation  

SciTech Connect

This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

Wetter, Michael

2011-04-01T23:59:59.000Z

240

A View on Future Building System Modeling and Simulation  

SciTech Connect

This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

Wetter, Michael

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Build an energy program | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

information center Build an energy program ENERGY STAR is here to help. Use the Energy Program Assessment Matrix to identify the elements to include in your program. Read...

242

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

243

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Ohio Program Type Building Energy Code Provider Ohio Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Board of Building Standards is the primary state agency that protects

244

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network (OSTI)

and natural gas costs, time of use demand charges,energy ($/kWh) demand ($/kW month) Natural gas fixed ($/demand charge ($/kW month) fixed ($/month) Natural gas

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

245

Nevada Energy Code for Buildings  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

246

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

247

Energy Consumption Analysis and Energy Conservation Evaluation of a Commercial Building in Shanghai  

E-Print Network (OSTI)

The paper presents a model of a commercial building in Shanghai with energy simulation software, and after calibration, the energy consumption of this building is calculated. On the basis of the simulation and calculation, a series of energy saving measures are suggested and their effects are evaluated. The paper verifies the application of computer simulation in building energy analysis and energy saving evaluation.

Chen, C.; Pan, Y.; Huang, Z.; Wu, G.

2006-01-01T23:59:59.000Z

248

PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring: A summary  

DOE Green Energy (OSTI)

This report summarizes a longer report entitled PSTAR - Primary and Secondary Terms Analysis and Renormalization. A Unified Approach to Building Energy Simulations and Short-Term Monitoring. These reports highlight short-term testing for predicting long-term performance of residential buildings. In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense; hence, the name PSTAR. Testing and monitoring the energy performance of buildings has several important applications, among them: extrapolation to long-term performance, refinement of design tools through feedback from comparing design versus actual parameters, building-as-a-calorimeter for heating, ventilating, and air conditioning (HVAC) diagnostics, and predictive load control. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI. 3 figs., 1 tab.

Subbarao, K.

1988-09-01T23:59:59.000Z

249

A detailed loads comparison of three building energy modeling programs:  

NLE Websites -- All DOE Office Websites (Extended Search)

detailed loads comparison of three building energy modeling programs: detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Title A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Publication Type Journal Year of Publication 2013 Authors Zhu, Dandan, Tianzhen Hong, Da Yan, and Chuang Wang Date Published 05/2013 Keywords building energy modeling program, building thermal loads, comparison, dest, DOE-2.1E, energyplus Abstract Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results from different building energy modeling programs (BEMPs). This leads many users and stakeholders

250

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Buildings Hub Energy Efficient Buildings Hub Energy Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and

251

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network (OSTI)

, time of use demand charges, volumetric natural gas costs, DG variable maintenance costs, and fixed.09 0.09 demand ($/kW month) 25.28 0.00 11.69 0.00 Natural gas fixed ($/month) energy ($/kWh) 0, dependent on a particular site's end-use load profiles, electricity and natural gas tariff structure

252

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Alabama Program Type Building Energy Code Provider Alabama Department of Economic and Community Affairs ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Legislation passed in March 2010 authorized the Alabama Energy and

253

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy A B C D E F G H I L M N O P R S T U Z Tool Applications Free Recently Updated AEPS System Planning electrical system, renewable energy system, planning and design software, modeling, simulation, energy usage, system performance, financial analysis, solar, wind, hydro, behavior characteristics, usage profiles, generation load storage calculations, on-grid, off-grid, residential, commercial, system sizing, utility rate plans, rate comparison, utility costs, energy savings Software has been updated. Archelios PRO Photovoltaic simulation, 3D design, economics results BlueSol PV system sizing, PV system simulation, grid-connected PV systems, electrical components, shading, economic analysis. COMFIE energy performance, design, retrofit, residential buildings, commercial buildings, passive solar Software has been updated.

254

Autotune E+ Building Energy Models  

SciTech Connect

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

255

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Compliance Regulations Resource Center About Building Energy Codes U.S. Energy Consumption by Sector (2011) Source: U.S. Energy Information Administration, Annual Energy Review According to the U.S. Energy Information Administration's Electric Power Annual, U.S. residential and commercial buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in significant cost savings in both the private and public sectors of the U.S. economy. Efficient buildings reduce power demand and have less of an environmental impact. The Purpose of Building Energy Codes Energy codes and standards set minimum efficiency requirements for new and renovated buildings, assuring reductions in energy use and emissions over

256

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

In order to allow equivalent comparisons of buildings across the U.S., the Asset Scoring Tool applies a weather adjustment to those energy uses that depend on climate (e.g.,...

257

Building energy benchmarks and rating tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building energy benchmarks and rating tools Building energy benchmarks and rating tools Building energy benchmarks and rating tools Building energy benchmarks and rating tools More...

258

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Egypt Z Tool Applications Free Recently Updated ZEBO design decision support; zero energy building; sensitivity analysis; energy simulation; thermal comfort; hot climate Free...

259

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

solar Free software. Software has been updated. HOT2000 energy performance, design, residential buildings, energy simulation, passive solar Free software. Software has been...

260

Methodology for Modeling Building Energy Performance across the Commercial Sector  

Science Conference Proceedings (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Performance comparison of U.K. low-energy cooling systems by energy simulation  

E-Print Network (OSTI)

Building energy simulation is an important tool for evaluating the energy consumption of a building and can provide guidance in the design of a building and its mechanical systems. EnergyPlus is a new energy simulation ...

Olsen, Erik L. (Erik Lee), 1979-

2002-01-01T23:59:59.000Z

262

HVAC BESTEST: A Procedure for Testing the Ability of Whole-Building Energy Simulation Programs to Model Space Conditioning Equipment: Preprint  

DOE Green Energy (OSTI)

Validation of Building Energy Simulation Programs consists of a combination of empirical validation, analytical verification, and comparative analysis techniques (Judkoff 1988). An analytical verification and comparative diagnostic procedure was developed to test the ability of whole-building simulation programs to model the performance of unitary space-cooling equipment that is typically modeled using manufacturer design data presented as empirically derived performance maps. Field trials of the method were conducted by researchers from nations participating in the International Energy Agency (IEA) Solar Heating and Cooling (SHC) Programme Task 22, using a number of detailed hourly simulation programs from Europe and the United States, including: CA-SIS, CLIM2000, PROMETHEUS, TRNSYS-TUD, and two versions of DOE-2.1E. Analytical solutions were also developed for the test cases.

Neymark, J,; Judkoff, R.; Knabe, G.; Le, H.-T.; Durig, M.; Glass, A.; Zweifel, G.

2001-07-03T23:59:59.000Z

263

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Connecticut Program Type Building Energy Code Provider Connecticut Office of Policy and Management ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/

264

ENERGY STAR for existing buildings | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program...

265

Advancing Building Energy Codes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Advancing Building Energy Codes Advancing Building Energy Codes 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. Energy Codes Ensure Efficiency in Buildings

266

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Buildings Hub Energy Efficient Buildings Hub Energy Efficient Buildings Hub August 1, 2010 - 4:27pm Addthis This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility’s renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Department's Energy Innovation Hubs are helping to advance promising

267

Building Energy Software Tools Directory : Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Expert Back to Tool Screenshot of load profile for Energy Expert Screenshot of calendar for Energy Expert Screenshot for building results in Energy Expert...

268

ENERGY STAR certification for your building | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

certification for your building certification for your building Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Find financing Earn recognition 20-percent recognition ENERGY STAR certification How to apply for ENERGY STAR certification Tips for low-cost verifications Submit a profile of your building

269

Sustainable Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Sustainable Buildings Mission The team evaluates and incorporates the requirements for sustainable buildings as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The team advocates the use of sustainable building practices. Scope The team evaluates how to locate, design, construct, maintain, and operate its buildings and facilities in a resource-efficient, sustainable, and economically viable manner, consistent with its mission. The team provides a process to evaluate sustainable building practices for any new construction, major renovation, and existing capital asset buildings in

270

BUILD UP: Energy Solutions for Better Buildings (Website) | Open Energy  

Open Energy Info (EERE)

BUILD UP: Energy Solutions for Better Buildings (Website) BUILD UP: Energy Solutions for Better Buildings (Website) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BUILD UP: Energy Solutions for Better Buildings (Website) Focus Area: Energy Efficiency Topics: Best Practices Website: www.buildup.eu/home Equivalent URI: cleanenergysolutions.org/content/build-energy-solutions-better-buildin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Building Certification This website serves as a forum for the exchange of best working practices and knowledge and the transfer of tools and resources. The BUILD UP initiative was established by the European Commission to support European

271

Building Energy Conservation in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Conservation in China Building Energy Conservation in China Speaker(s): Zhang Fulin Date: January 29, 2013 - 11:15am Location: 90-3122 Seminar Host/Point of Contact: Haley Gilbert Mr. Zhang Fulin is a Senior Engineer and Director of the Division of Energy Efficiency in Buildings, Department of Energy Efficiency in Buildings and Science &Technology of the Ministry of Housing and Urban-Rural Development (MOHURD) in China. He is tasked with developing China building energy conservation policies and regulations and is responsible for the approval of major China building energy efficiency projects. Mr. Zhang has been working in the field of building energy efficiency for more than two decades. He will speak about current laws and regulations governing building energy efficiency practice in China,

272

Building Energy Software Tools Directory: HOT2000  

NLE Websites -- All DOE Office Websites (Extended Search)

HOT2000 HOT2000 HOT2000 logo. Easy-to-use energy analysis and design software for low-rise residential buildings. Utilizing current heat loss/gain and system performance models, the program aids in the simulation and design of buildings for thermal effectiveness, passive solar heating and the operation and performance of heating and cooling systems. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users Over 1400 worldwide. HOT2000 is used mainly in Canada and the United States with a few users in Japan and Europe. Audience Builders, design evaluators, engineers, architects, building and energy code writers, Policy writers. HOT2000 is also used as the compliance

273

Better Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over $400 billion. These buildings and operations can be made much more efficient using a variety of cost effective efficiency improvements while creating jobs and building a stronger economy. We have similar opportunities in our homes. In February 2011, President Obama, building upon the investments of the American Recovery and Reinvestment Act, announced the Better Buildings Initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years and accelerate private sector investment in energy efficiency. Better Buildings strategies include: Last year, commercial and industrial buildings used roughly 50% of the

274

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Glossary Glossary Acronyms and Initialisms Technology Descriptions Residential Space Heating Residential Space Cooling Residential Water Heating Commercial Space Cooling Commercial Space Heating Commercial Refrigeration Lighting Building Descriptions Commercial Residential Acronyms and Initialisms A B C D E F G H I L M N O P Q R S U V AAMA - American Architectural Manufacturers Association ACEEE - American Council for an Energy Efficient Economy AEO - EIA's Annual Energy Outlook AFEAS - Alternative Fluorocarbons Environmental Acceptability Study AFUE - Annual Fuel Utilization Efficiency AHAM - Association of Home Appliance Manufacturers ARI - Air-Conditioning and Refrigeration Institute ASHRAE - American Society of Heating, Refrigerating and Air-Conditioning Engineers BTS - DOE's Office of Building Technology, State and Community Programs

275

ENERGY STAR Building Upgrade Manual | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Building Upgrade Manual ENERGY STAR Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach

276

Guam - Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam - Building Energy Code Guam - Building Energy Code Guam - Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by the legislature before it is official. This entry and information will be updated accordingly. Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the

277

Author manuscript, published in "12th Conference of International Building Performance Simulation Association, Sydney: Australia (2011)" IMPACT OF THE CLIMATE ON THE DESIGN OF LOW-ENERGY BUILDINGS  

E-Print Network (OSTI)

The work presented in this paper aims to compare two different climates in Australia and Reunion Island and to identify the similarities in terms of bioclimatic design of low energy building. This approach is to perform a real evaluation of the sensation of thermal comfort in the workplace for different climates on the basis of the "bioclimatic chart " developed by Baruch Givoni. This article discusses the comparison of the thermal comfort levels obtained in the same building located in Australia and Reunion Island for different climatic zones. Both countries are influenced by the ocean and the altitude but are located at very different latitudes. Australia is a large area with several types of climate: temperate in south-eastern and south-west, desert or semi-arid in most parts of the territory, and tropical climate in the northern zone of the continent. Reunion has a tropical climate that can be affected by the altitude. Bioclimatic design strategies are different for wet and dry tropical climates, but in terms of targets at low energy, some basic principles can be identical and can be applied around the world. If a building is well designed and well adapted to its local climate, it is possible to apply the same design rules and standards for all buildings and two for these two different climates.

B. Malet-damour; F. Garde; M. David; D. Prasad

2012-01-01T23:59:59.000Z

278

Green buildings and ENERGY STAR | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Green buildings and ENERGY STAR Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

279

ENERGY STAR Building Upgrade Manual | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new...

280

Build an energy program | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Build an energy management program | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

282

California commercial building energy benchmarking  

E-Print Network (OSTI)

benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings.

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

283

Building Energy Software Tools Directory: Autodesk Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

284

Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint  

DOE Green Energy (OSTI)

This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

Booten, C.; Tabares-Velasco, P. C.

2012-08-01T23:59:59.000Z

285

Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint  

SciTech Connect

This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

Booten, C.; Tabares-Velasco, P. C.

2012-08-01T23:59:59.000Z

286

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

287

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

288

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Buildings Hub Efficient Buildings Hub Energy Efficient Buildings Hub August 1, 2010 - 4:27pm Addthis This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility’s renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Department's Energy Innovation Hubs are helping to advance promising

289

Energy Efficiency and Green Building Standards for State Buildings...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

290

Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings.  

E-Print Network (OSTI)

??Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy… (more)

Engblom, Lisa A. (Lisa Allison)

2006-01-01T23:59:59.000Z

291

Rating the energy performance of buildings  

E-Print Network (OSTI)

Journal of Low Energy and Sustainable Buildings, 2004Journal of Low Energy and Sustainable Buildings, Vol. 3, (Journal of Low Energy and Sustainable Buildings, Vol. 2 pp.

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

292

Building Energy Information Systems: User Case Studies  

E-Print Network (OSTI)

Web based enterprise energy and building automation systems.operations. Energy and Buildings, 33(8), 10. Heinemeier,from an analysis of building Energy Information System

Granderson, Jessica

2010-01-01T23:59:59.000Z

293

Revealing myths about people, energy and buildings  

E-Print Network (OSTI)

Myths about People, Energy and Buildings Rick Diamond andmyths about people, energy and buildings are current today?myths about people, energy and buildings? Who tells these

Diamond, R.

2011-01-01T23:59:59.000Z

294

Energy Department Announces Building Energy Efficiency Investments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Efficiency Investments in Twenty-Two States Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States June 27, 2012 - 6:55pm Addthis...

295

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program...

296

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

297

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

298

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

299

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

300

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona Program Type Building Energy Code ''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

302

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program...

303

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

304

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the...

305

Building Energy Software Tools Directory: BEAVER  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAVER BEAVER Logo for BEAVER WINDOWS environment for the ESPII Fortran program which estimates the energy consumption of buildings using the ASHRAE Response Factor Method. BEAVER building energy simulation provides for user friendly input of data, processing and viewing of the results. BEAVER estimates the energy consumption of a building hourly over a given period of time taking into account the site location, the building structure and the type of building services installed to maintain the desired environmental conditions. It enables a designer to investigate alternatives and make energy comparisons quickly and effectively for a very wide range of building configurations and air conditioning systems using actual measured climatic data. A comprehensive range of air handling systems, primary plant and control

306

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

BPS tools (e.g. , ESP-r [http://www.esru.strath.ac.uk],are the coupling between ESP-r and TRNSYS [Hensen 1991;with building energy simulation (ESP-r) [Janak 1999] and the

Trcka, Marija

2010-01-01T23:59:59.000Z

307

Building Energy Software Tools Directory: HVACSIM+  

NLE Websites -- All DOE Office Websites (Extended Search)

HVACSIM+ HVACSIM+ Simulation model of a building HVAC (heating, ventilation, and air-conditioning ) system plus HVAC controls, the building shell, the heating/cooling plant, and energy management and control system (EMCS) algorithms. The main program of HVACSIM+ (HVAC SIMulation PLUS other systems employs a hierarchical, modular approach and advanced equation solving techniques to perform dynamic simulations of building/HVAC/control systems. The modular approach is based upon the methodology used in the TRNSYS program. Keywords HVAC equipment, systems, controls, EMCS, complex systems Validation/Testing N/A Expertise Required High level of computer literacy. Users More than 100. Audience Building technology researchers, graduate schools, consultants. Input Building system component model configuration, simulation setup work file,

308

Co-simulation of innovative integrated HVAC systems in buildings  

SciTech Connect

Integrated performance simulation of buildings HVAC systems can help in reducing energy consumption and increasing occupant comfort. However, no single building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to analyze integrated building systems and to enable rapid prototyping of innovative building and system technologies. One way to alleviate this problem is to use co-simulation, as an integrated approach to simulation. This article elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in the here described co-simulation prototype. The prototype is validated with the results obtained from the traditional simulation approach. It is further used in a proof-of-concept case study to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling time step.

Trcka, Marija; Hensena, Jan L.M.; Wetter, Michael

2010-06-21T23:59:59.000Z

309

Building Technologies Program: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

with ENERGY STAR DOE conducts research, development, and deployment to improve the energy efficiency of existing homes using a whole-building approach, which results in the...

310

Building Energy Code Compliance Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

April 4, 2013 Ian Finlayson Manager of Buildings & Climate Programs Creating A Cleaner Energy Future For the Commonwealth 2 What do we want? Improved energy performance of...

311

Energy Star Building Upgrade Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

program helping businesses and individuals fight global warming through superior energy efficiency. ENERGY STAR Building Upgrade Manual United States Environmental Protection...

312

Commissioning Building Systems for Improved Energy ...  

Science Conference Proceedings (OSTI)

Commissioning Building Systems for Improved Energy Performance Project. Summary: NIST will advance commercial building ...

2012-12-17T23:59:59.000Z

313

Building Energy Software Tools Directory: EnergyGauge Summit Premier  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyGauge Summit Premier EnergyGauge Summit Premier EnergyGauge Summit Premier logo EnergyGauge Summit Premier offers automatic reference building generation allowing considerable time savings for analyzing buildings for code compliance and green building certification. After entering a building, the software can automatically compare the building to ASHRAE Standard 90.1 2001, 2004 or 2007 reference building models, and for the appropriate building types, the ASHRAE Advanced design guidelines. Additional capabilities include the ability to run a whole building simulation as per ASHRAE Standard 90.1 Appendix G guidelines for LEED New Construction 2.2, and for computing Federal Tax Deductions as per EPACT 2005 guidelines from the Internal Revenue Service (IRS) and DOE. The software also offers the

314

Building Technologies Office: Building-Level Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

315

Building Energy Software Tools Directory: RESEM  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEM RESEM RESEM logo. A simulation-based tool developed to allow the DOE Institutional Conservation Program (ICP) staff and participants to reliably determine the energy savings directly attributable to ICP-supported retrofit measures implemented in a building. RESEM (Retrofit Energy Savings Estimation Model) calculates long-term energy savings directly from actual utility data, with corrections for weather and use variations between the pre-retrofit and post-retrofit utility data collection periods. Keywords retrofit, institutional buildings Validation/Testing N/A Expertise Required Moderate level of computer literacy; familiarity with building energy concepts. Users Over 50. Audience Building managers and energy retrofit engineers. Input Minimal required input includes: original year of building construction,

316

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network (OSTI)

CLOTHING INSULATION MODELS ON BUILDING ENERGY USE, HVACClothing Insulation Model; Clothing; Building Energy;clothing insulation models on the building simulation is

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

317

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Heating Program Info State California Program Type Building Energy Code Provider California Energy Commission '''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to take effect on January 1, 2014, and represent significant energy and water savings compared to the current standards. Among many notable provisions, the new standards will

318

Building Technologies Office: Commercial Building Energy Asset Scoring Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoring Tool to someone by E-mail Scoring Tool to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

319

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

320

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Oregon Program Type Building Energy Code Provider Oregon Building Codes Division ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://www.oregon.gov/ENERGY/CONS/Codes/cdpub.shtml The Oregon Energy

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Energy Software Tools Directory: DOE Sponsored Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Sponsored Tools DOE Sponsored Tools The Department of Energy sponsors continued development of a variety of building energy software tools. See the following for more information about software tools now under development: Whole-Building Energy Performance Simulation EnergyPlus A new-generation building energy simulation program from the creators of BLAST and DOE-2. DOE-2 An hourly, whole-building energy analysis program which calculates energy performance and life-cycle cost of operation. The current version is DOE-2.1E. Building Design Advisor Provides building decision-makers with the energy-related information they need beginning in the initial, schematic phases of building design through the detailed specification of building components and systems. SPARK Models complex building envelopes and mechanical systems that are beyond

322

Comparing Computer Run Time of Building Simulation Programs  

SciTech Connect

This paper presents an approach to comparing computer run time of building simulation programs. The computing run time of a simulation program depends on several key factors, including the calculation algorithm and modeling capabilities of the program, the run period, the simulation time step, the complexity of the energy models, the run control settings, and the software and hardware configurations of the computer that is used to make the simulation runs. To demonstrate the approach, simulation runs are performed for several representative DOE-2.1E and EnergyPlus energy models. The computer run time of these energy models are then compared and analyzed.

Hong, Tianzhen; Buhl, Fred; Haves, Philip; Selkowitz, Stephen; Wetter, Michael

2008-07-23T23:59:59.000Z

323

Building Energy Codes News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes News Building Energy Codes News News Category: National Policy DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Posted: Tuesday, August 6, 2013 On August 6, DOE published an RFI on its methodology for assessing code compliance into the Federal Register. Based on feedback received from the individual state compliance pilot studies in 2011-2012, the RFI seeks input on DOE's methodology and fundamental assumptions from the general public. Read the full article... Source: U.S. Department of Energy Building Energy Codes Program Energy 2030 Report Calls for Stricter Energy Building Codes Posted: Tuesday, February 12, 2013 The Alliance Commission on National Energy Efficiency Policy aims to double US energy productivity by 2030, and one of its many ways to achieve that

324

Estimating Building Simulation Parameters via Bayesian Structure Learning  

SciTech Connect

Many key building design policies are made using sophisticated computer simulations such as EnergyPlus (E+), the DOE flagship whole-building energy simulation engine. E+ and other sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine's capabilities. Currently, these problems are addressed by having an engineer manually calibrate simulation parameters to real world data or using algorithmic optimization methods to adjust the building parameters. However, some simulations engines, like E+, are computationally expensive, which makes repeatedly evaluating the simulation engine costly. This work explores addressing this issue by automatically discovering the simulation's internal input and output dependencies from 20 Gigabytes of E+ simulation data, future extensions will use 200 Terabytes of E+ simulation data. The model is validated by inferring building parameters for E+ simulations with ground truth building parameters. Our results indicate that the model accurately represents parameter means with some deviation from the means, but does not support inferring parameter values that exist on the distribution's tail.

Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

2013-01-01T23:59:59.000Z

325

Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

326

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

6.1 Electric Utility Energy Consumption 6.1 Electric Utility Energy Consumption 6.2 Electricity Generation, Transmission, and Distribution 6.3 Natural Gas Production and Distribution 6.4 Electric and Generic Quad Carbon Emissions 6.5 Public Benefit Funds/System Benefit Funds 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 6 focuses on the U.S. energy supply. Sections 6.1 and 6.2 contain data on electric utilities, including generation capacity, primary fuel consumption, transmission and distribution losses, and electricity prices. Section 6.3 addresses the production, consumption, and storage of natural gas and petroleum. Section 6.4 covers emissions from the utility sector. Section 6.5 provides data on how utilities spend public and system benefit funds. The main points from this chapter are summarized below:

327

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. Coal. ... such as principal building activity or energy sources used.

328

Energy Efficiency Standards for State Buildings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Standards for State Buildings Energy Efficiency Standards for State Buildings Savings For Heating & Cooling Home Weatherization Construction Commercial...

329

Showcasing California Better Buildings Challenge Partners' Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Showcasing California Better Buildings Challenge Partners' Energy Saving Solutions Showcasing California Better Buildings Challenge Partners' Energy Saving Solutions August 28,...

330

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving...

331

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New York Program Type Building Energy Code Provider NYS Department of State ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Energy Conservation Construction Code of New York State (ECCCNYS) requires that all government, commercial and residential buildings,

332

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed...

333

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Montana Program Type Building Energy Code Provider Building Codes Bureau ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The energy codes are reviewed on a three-year cycle corresponding to the adoption of new versions of the International Code Conference (ICC) Uniform

334

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

335

Building America House Simulation Protocols (Revised)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

House House Simulation Protocols Robert Hendron and Cheryn Engebrecht National Renewable Energy Laboratory Revised October 2010 Prepared by the National Renewable Energy Laboratory For the U.S. Department of Energy Building Technologies Program ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,

336

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Code Building Energy Code Eligibility Commercial Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling...

337

Building Energy Software Tools Directory: TAS  

NLE Websites -- All DOE Office Websites (Extended Search)

TAS TAS TAS logo Tas is an industry-leading building modelling and simulation tool. Capable of performing fast dynamic thermal simulation for the worldÂ’s largest and most complex buildings, Tas allows designers to accurately predict energy consumption, CO2 emissions, operating costs and occupant comfort. Tas is a complete solution for the thermal simulation of a building and a comprehensive tool for modelling plant and systems using itÂ’s graphical and component based analysis. Tas is a powerful design tool in the optimisation of a buildings environmental, energy and comfort performance. Tas can import gbXML, INP, and IDF files from 3rd party programs. There are also customisable report generation facilities. The Tas suite allows full automation available through visual basic. This

338

Building Energy Software Tools Directory: Solar Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

339

Rating the energy performance of buildings  

E-Print Network (OSTI)

Energy and Sustainable Buildings, 2004 Available at http://Energy and Sustainable Buildings, Vol. 3, (2004), Olofsson,for a commercial office building in Melbourne, Australia,

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

340

Energy Performance Certificate Non-Domestic Building  

U.S. Energy Information Administration (EIA)

66 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Energy Software Tools Directory: Cake Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

342

Building Energy Software Tools Directory: Acoustics Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

343

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by...

344

Building Energy Software Tools Directory : Engineering Toolbox  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

345

Building Energy Software Tools Directory: Engineering Toolbox  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

346

Commercial Building Energy Asset Score Tool Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Score Tool Score Tool Report Commercial Building Energy Asset Score Tool Report Energy Asset Score Report The Energy Asset Score report will be comprised of four sections: Current Asset Score-The source EUI is obtained by performing the whole-building energy simulation using the asset scoring tool; the modeled source EUI is adjusted to account for local climate; the adjusted EUI is compared to a fixed scale to obtain an asset score of 1 to 100. An asset score of 100 represents an ultra-efficient building; a score of 1 represents a very inefficient building in the current commercial building stock. After a building upgrade package is identified, the energy asset scoring tool will calculate the potential energy use after upgrades using standard operating conditions (by use types).

347

Energy Information Handbook: Applications for Energy-Efficient Building Operations  

E-Print Network (OSTI)

and Renewable Energy, Building Technologies Program, of theU.S. Department of Energy Buildings Energy Data Book andchallenges encountered in building energy benchmarking, and

Granderson, Jessica

2013-01-01T23:59:59.000Z

348

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New Hampshire Program Type Building Energy Code Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites. New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. SB 81 was enacted in July 2007, and it upgraded the New

349

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State District of Columbia Program Type Building Energy Code Provider Washington State Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The State Building Code Council revised the [https://fortress.wa.gov/ga/apps/sbcc/Page.aspx?nid=14 Washington State

350

ImBuild: Impact of building energy efficiency programs  

SciTech Connect

As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

Scott, M.J.; Hostick, D.J.; Belzer, D.B.

1998-04-01T23:59:59.000Z

351

Building Energy Code | Open Energy Information  

Open Energy Info (EERE)

Code Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

352

Building Energy Performance Analytics on Cloud as a Service  

Science Conference Proceedings (OSTI)

Reducing energy consumption, improving energy efficiency, and reducing greenhouse gas GHG emissions are among the most important initiatives in today's world. Occupied buildings consume a substantial amount of energy, mounting to about 40% of overall ... Keywords: building energy analytics, cloud, energy performance, energy simulation, visualization

Young M. Lee, Lianjun An, Fei Liu, Raya Horesh, Young Tae Chae, Rui Zhang, Estepan Meliksetian, Pawan Chowdhary, Paul Nevill, Jane L. Snowdon

2013-06-01T23:59:59.000Z

353

Building Energy Software Tools Directory: ISOVER Energi  

NLE Websites -- All DOE Office Websites (Extended Search)

ISOVER Energi ISOVER Energi ISOVER Energi logo Calculates: U-value, for constructions with and without thermal bridges; total heat loss for buildings; and energy demand for buildings. ISOVER Energi compares heat loss to the heat loss frame in the Danish Building Regulations. The energy demand is compared to the energy frame in the Danish Building Regulations. Furthermore ISOVER Energi calculates the profitability of activities e.g. retrofit, renewing of windows, to improve the energy performance of existing buildings. The profitability is compared to the criteria in the Danish Building Regulations. Access to databases with characteristics for common building materials and with linear heat losses for typical solutions for connections. The database facility is planned to be enlarged with databases for windows, boilers,

354

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider Colorado Energy Office ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Colorado is a home rule state so no statewide energy code exists. Voluntary

355

Building Energy Software Tools Directory: Building Energy Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Analyzer Building Energy Analyzer Building Energy Analyzer logo. Provides quick economic analysis for commercial and industrial buildings. Building Energy Analyzer (BEA) estimates annual and monthly loads and costs associated with air-conditioning, heating, on-site power generation, thermal storage, and heat recovery systems for a given building and location. The user can compare the performance of standard and high efficiency electric chillers, variable speed electric chillers, absorption chillers, engine chillers, thermal storage, on-site generators, heat recovery, or desiccant systems. The user can also prepare side-by-side economic comparisons of different energy options and equipment life cycle cost analysis. The BEA is a system screening tool. It is a tool that is

356

Building America Analysis Spreadsheets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America Analysis Spreadsheets America Analysis Spreadsheets Building America Analysis Spreadsheets The Building America Analysis Spreadsheets are companions to the House Simulation Protocols, and can assist with many of the calculations and look-up tables found in the report. The spreadsheets provide the set of standard operating conditions-including hourly and monthly profiles for occupancy, lighting, appliances, and miscellaneous electric loads (MELs)-developed by Building America to objectively compare energy use before and after a retrofit, and against a Benchmark new construction building. Building America analysts may also find the spreadsheets useful for documenting and comparing building characteristics for the Building America projects (pre-retrofit vs. post-retrofit, or new construction test

357

Building Technologies Office: Commercial Building Energy Asset Score Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Tool Report to someone by E-mail Tool Report to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

358

Building Energy Use Benchmarking Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Use Benchmarking Guidance April 15, 2010 EISA SECTION 432 - Benchmarking of Federal Facilities (42 U.S.C. 8253 Subsection (f), Use of Energy and Water Efficiency Measures in Federal Buildings) I. Background A. Authority - Benchmarking Requirements Section 432 of the Energy Independence and Security Act of 2007 (EISA) requires the Secretary of the United States Department of Energy (DOE) to select or develop a building energy use benchmarking system and to issue guidance for use of the system. EISA requires the designated agency energy managers to enter energy use data for each metered building that is (or is a part of) a covered facility into a building energy use benchmarking system, such as the ENERGY STAR Portfolio Manager tool (Portfolio Manager) (see 42 U.S.C. 8253(f)(8)(A), as

359

News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

News News A variety of resources and news from BECP, states, and other news sources are available for anyone interested in learning more about building energy codes. This includes newsletters, articles, links and more. To receive BECP News and other updates from the Building Energy Codes Program via email, join our mailing list. Featured Codes News DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Mayors Urge Cities to Strengthen Energy Code AZ Legislature Preserves Local Control of Building Energy Efficiency Codes Washington State Home Builders Lead the Nation in Energy Code Compliance Mississippi Invests in Future Growth With Adoption of Best-in-Class Energy Efficiency Legislation Energy 2030 Report Calls for Stricter Energy Building Codes

360

Aggregate Building Simulator (ABS) Methodology Development, Application, and User Manual  

SciTech Connect

As the relationship between the national building stock and various global energy issues becomes a greater concern, it has been deemed necessary to develop a system of predicting the energy consumption of large groups of buildings. Ideally this system is to take advantage of the most advanced energy simulation software available, be able to execute runs quickly, and provide concise and useful results at a level of detail that meets the users needs without inundating them with data. The resulting methodology that was developed allows the user to quickly develop and execute energy simulations of many buildings simultaneously, taking advantage of parallel processing to greatly reduce total simulation times. The result of these simulations can then be rapidly condensed and presented in a useful and intuitive manner.

Dirks, James A.; Gorrissen, Willy J.

2011-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

362

Building Energy Software Tools Directory: Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

software that creates a smart model of a building using interval data and hourly weather data and compares daily energy consumption against this norm. The Energy Expert...

363

Rating the energy performance of buildings  

E-Print Network (OSTI)

and present results, Energy and Buildings Vol. 33, pp. 229-for Existing Houses, Energy and Buildings, Vol. 29, pp. 107-Laboratory Building, Energy and Buildings, Vol. 34, pp. 203-

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

364

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Mississippi Program Type Building Energy Code Provider Mississippi Development Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement

365

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State West Virginia Program Type Building Energy Code Provider West Virginia Division of Energy ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. Local jurisdictions must adopt

366

Simulations Predict Savings From More Airtight Buildings  

Science Conference Proceedings (OSTI)

... Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use (NISTIR 7238) is available at http://fire.nist.gov ...

2012-12-13T23:59:59.000Z

367

Buildings News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Commercial Real Estate Executives Launch Alliance to Reduce Energy Consumption of Buildings WASHINGTON, D.C. - Top executives from 19 commercial real estate companies met with...

368

Utah | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

compliance with the energy code requirements. The Division of Facilities Construction Management is responsible for enforcement for all state-owned or -funded buildings....

369

Montana | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

for Commercial Buildings in the State of Montana (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 03262010 Adoption Date 11302009...

370

Building Technologies Office: Hospital Energy Alliance Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings Commercial Buildings Printable Version Share this resource Send a link to Building Technologies Office: Hospital Energy Alliance Videos to someone by E-mail Share Building Technologies Office: Hospital Energy Alliance Videos on Facebook Tweet about Building Technologies Office: Hospital Energy Alliance Videos on Twitter Bookmark Building Technologies Office: Hospital Energy Alliance Videos on Google Bookmark Building Technologies Office: Hospital Energy Alliance Videos on Delicious Rank Building Technologies Office: Hospital Energy Alliance Videos on Digg Find More places to share Building Technologies Office: Hospital Energy Alliance Videos on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Better Buildings Challenge Better Buildings Alliance

371

Modeling window optics for building energy analysis  

SciTech Connect

This report discusses modeling the optics of windows for the purposes of simulating building energy requirements or daylighting availability. The theory for calculating the optical performance of conventional windows is reviewed. The simplifications that might commonly be made in creating computational models are analyzed. Some of the possibilities for more complex windows are analyzed, and the type of model and data that would be necessary to simulate such windows in a building energy analysis program are determined. It is shown that the optical performance of different window types can be simulated with models which require varying amounts of memory or computing time. It is recommended that a building energy analysis program have all models available and use the most efficient for any given window.

Walton, G.N.

1986-07-01T23:59:59.000Z

372

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network (OSTI)

The 2007 Florida Building Code (ICC, 2008) requires building designers and architects to achieve a minimum energy efficiency rating for commercial buildings located throughout Florida. Although the Florida Building Code is strict in the minimum requirements for new construction, several aspects of building construction can be further improved through careful thought and design. This report outlines several energy saving features that can be used to ensure that new buildings meet a new target goal of 85% energy use compared to the 2007 energy code in order to achieve Governor Crist’s executive order to improve the energy code by 15%. To determine if a target goal of 85% building energy use is attainable, a computer simulation study was performed to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency. The impacts of reducing outside air requirements and employing solar water heating were also investigated. The purpose of the energy saving features described in this document is intended to provide a simple, prescriptive method for reducing energy consumption using the methodology outlined in ASHRAE Standard 90.1 (ASHRAE, 2007). There are two difficulties in trying to achieve savings in non-residential structures. First, there is significant energy use caused by internal loads for people and equipment and it is difficult to use the energy code to achieve savings in this area relative to a baseline. Secondly, the ASHRAE methodology uses some of the same features that are proposed for the new building, so it may be difficult to claim savings for some strategies that will produce savings such as improved ventilation controls, reduced window area, or reduced plug loads simply because the methodology applies those features to the comparison reference building. Several measures to improve the building envelope characteristics were simulated. Simply using the selected envelope measures resulted in savings of less than 10% for all building types. However, if such measures are combined with aggressive lighting reductions and improved efficiency HVAC equipment and controls, a target savings of 15% is easily attainable.

Raustad, R.; Basarkar, M.; Vieira, R.

2008-12-01T23:59:59.000Z

373

Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Building Design As a researcher at the Pacific Northwest National Laboratory, Dr. Michael Brambley is working to improve the energy efficiency of our nation’s buildings. In this "10 Questions," learn how he is marrying engineering and computer technology to cut energy waste in commercial buildings. As a researcher at the Pacific Northwest National Laboratory, Dr. Michael Brambley is working to improve the energy efficiency of our nation's buildings. In this "10 Questions," learn how he is marrying engineering and computer technology to cut energy waste in commercial buildings. Commercial buildings have high energy needs and can put great strain on the nation's power grids during peak periods. Developing more efficient

374

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Georgia Program Type Building Energy Code Provider Georgia Environmental Finance Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory"

375

State building energy codes status  

Science Conference Proceedings (OSTI)

This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

NONE

1996-09-01T23:59:59.000Z

376

Energy guides | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

guides guides Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial service and product providers

377

Energy Efficiency and Green Building Standards for State Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

378

Climate change and buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate change and buildings Climate change and buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings Climate change and buildings

379

Building energy modeling programs comparison Research on HVAC systems  

NLE Websites -- All DOE Office Websites (Extended Search)

energy modeling programs comparison Research on HVAC systems energy modeling programs comparison Research on HVAC systems simulation part Title Building energy modeling programs comparison Research on HVAC systems simulation part Publication Type Journal Year of Publication 2013 Authors Zhou, Xin, Da Yan, Tianzhen Hong, and Dandan Zhu Keywords Building energy modeling programs, comparison tests, HVAC system simulation, theory analysis Abstract Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in simulated results when different BEMPs are used to model the same building has caused wide concern. Urgent research is needed to identify the main elements that contribute towards the simulation results. This technical report summarizes methodologies, processes, and the main assumptions of three building energy modeling programs (BEMPs) for HVAC calculations: EnergyPlus, DeST, and DOE-2.1E, and test cases are designed to analyze the calculation process in detail. This will help users to get a better understanding of BEMPs and the research methodology of building simulation. This will also help build a foundation for building energy code development and energy labeling programs.

380

Building Energy Software Tools Directory: Tools by Country - Canada  

NLE Websites -- All DOE Office Websites (Extended Search)

Canada Canada A C D E F H I M P R S V Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. CATALOGUE windows, fenestration, product information, thermal characteristics Free software. DAYSIM annual daylight simulations, electric lighting energy use, lighting controls Free software. Software has been updated. EE4 CBIP whole building performance, building incentives Free software. Software has been updated. EE4 CODE standards and code compliance, whole building energy performance Free software. Software has been updated. Energy Profile Tool benchmarking, energy efficiency screening, end-use energy analysis, building performance analysis, utility programs ENERPASS

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

382

House Simulation Protocols Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » House Simulation Residential Buildings » Building America » House Simulation Protocols Report House Simulation Protocols Report This image shows a cover of a report titled Building America House Simulation Protocols. The Building America logo is shown in the lower left corner of the report cover. Building America's House Simulation Protocols report is designed to assist researchers in tracking the progress of multiyear, whole-building energy reduction against research goals for new and existing homes. These protocols are preloaded into BEopt and use a consistent approach for defining a reference building, so that all projects can be compared to each other. The steps involved in conducting performance analysis include: Defining the appropriate reference building Various climate regions, house sizes, and house ages require slightly

383

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

384

Building Energy Use Benchmarking Guidance | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Use Benchmarking Guidance Use Benchmarking Guidance Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

385

Building Energy Use Benchmarking Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Use Benchmarking Guidance April 15, 2010 EISA SECTION 432 - Benchmarking of Federal Facilities (42 U.S.C. 8253 Subsection (f), Use of Energy and Water Efficiency...

386

2008 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network (OSTI)

energy values energy savings greater during periods of likely peak demand, such as hot summer weekday and service hot water needs of residential buildings. Outdoor lighting, including parking lots and garages

387

Comparison of simplified models of urban climate for improved prediction of building energy use in cities  

E-Print Network (OSTI)

Thermal simulation of buildings is a requisite tool in the design of low-energy buildings, yet, definition of weather boundary conditions during simulation of urban buildings suffers from a lack of data that accounts for ...

Street, Michael A. (Michael Anthony)

2013-01-01T23:59:59.000Z

388

Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings  

E-Print Network (OSTI)

Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy consumption of the buildings in their ...

Engblom, Lisa A. (Lisa Allison)

2006-01-01T23:59:59.000Z

389

Building Energy Codes | Open Energy Information  

Open Energy Info (EERE)

Codes Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Contents 1 Building Energy Code Incentives 2 References Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

390

Building Technologies Office: Video: Home Energy Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Video: Home Energy Score to someone by E-mail Share Building Technologies Office: Video: Home Energy Score on Facebook Tweet about Building Technologies Office: Video: Home Energy...

391

Building Distributed Energy Performance Optimization for China...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization...

392

Building Energy Software Tools Directory: SUNREL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

393

Building Energy Software Tools Directory: RIUSKA  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

394

Building Energy Software Tools Directory: BESTEST  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

395

Building Energy Software Tools Directory: SMILE  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

396

Building Energy Software Tools Directory: TRACE 700  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

397

Building Energy Software Tools Directory: ADELINE  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

398

Building Energy Software Tools Directory: TRNSYS  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

399

Building Energy Software Tools Directory: Cepenergy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

400

Building Energy Software Tools Directory: Recurve  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

402

Model Predictive Control for Energy Efficient Buildings  

E-Print Network (OSTI)

Energy Savings”. In: Energy and Buildings 40.7 (2008), pp.Thermal Dynamics”. In: Energy and Buildings 47 (Apr. 2011),Storage Systems”. In: Energy and Buildings 35.2 (2003), pp.

Ma, Yudong

2012-01-01T23:59:59.000Z

403

Buildings | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Program Better Buildings Challenge Max Tech and Beyond Design Competition Rooftop Solar Challenge Rooftop Unit Challenge for Commercial Air Conditioners Wireless...

404

Building Technologies Office: Improving the Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share this resource Send a link to Building Technologies Office: Improving the Energy Efficiency of Commercial Buildings to someone by E-mail Share Building Technologies Office:...

405

Home and Building Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technologies Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

406

Sustainable Buildings and Infrastructure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure Aviation Management Green Leases Executive Secretariat Energy Reduction at HQ Real Estate...

407

EIA Energy Kids - In Commercial Buildings  

U.S. Energy Information Administration (EIA)

Using & Saving Energy In Commercial Buildings. How do commercial buildings — like offices, hospitals, schools, places of worship, warehouses, hotels, ...

408

Department of Energy Quadrennial Technology Review Building ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building & Industrial Efficiency Workshop Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop Public release of the documents and...

409

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

Kinney, Satkartar; Piette, Mary Ann

2003-07-01T23:59:59.000Z

410

Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Building Design October 16, 2013 - 4:41pm Addthis Planning, Programming & Budgeting Building Design Project Construction Integrating renewable energy within Federal new construction or major renovations is critical at each phase of the design process. This overview covers considerations for renewable energy in the design phases of a construction project, including choosing the design team, the design team charrette, preliminary design, schematic design, design development, and construction documents. Information on this page introduces each of the design phases and provides a link to deeper-level information. Key Actions in Building Design Require specific renewable energy experience and skills for design team. Prioritize energy-related program

411

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

412

Methodology for adapting rigorous simulation programs to supervisory control of building HVAC&R systems: simulation, calibration and optimization.  

E-Print Network (OSTI)

??In this thesis, general and systematic methodologies were developed for simulating, calibrating and optimal control of building energy system. Based on investigation of two popular… (more)

Sun, Jian

2005-01-01T23:59:59.000Z

413

Building Energy Software Tools Directory: ENERPASS  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERPASS ENERPASS Detailed building energy simulation program for residential and smaller commercial buildings. ENERPASS calculates the annual energy use for space heating, cooling, lighting, water heating and fan energy. The calculations are performed on an hourly basis using hourly measured weather data. ENERPASS can model up to seven building zones and provides hourly temperature and humidity predictions for each zone. A wide range of HVAC systems can be modelled including make-up air units, heat recovery ventilators, rooftop units, VAV, four-pipe fan coil, and dual duct. The program uses full screen data entry in an easy-to-use format. A typical building model can be generated in one to two hours. In IEA validation studies ENERPASS results compare favorably with other hourly based computer

414

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

415

Building Energy Software Tools Directory: HBLC  

NLE Websites -- All DOE Office Websites (Extended Search)

creates an input file for and runs the BLAST (Building Loads Analysis and System Thermodynamics) simulation program. After simulating, HBLC retrieves results from the simulation...

416

2005 Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

5 Buildings Energy Data Book 5 Buildings Energy Data Book Prepared for the Offi ce of Energy Effi ciency and Renewable Energy 2005 Buildings Energy Data Book August 2005 Prepared for the Office of Planning, Budget Formulation and Analysis Energy Efficiency and Renewable Energy U.S. Department of Energy by D&R International, Ltd. under contract to Oak Ridge National Laboratory This version is dated: August 2005 D I S C L A I M E R This document was designed for the internal use of the United States Department of Energy. This document will be occasionally updated and, therefore, this copy may not reflect the most current version. This document was prepared as account of work sponsored by an agency of the United States Government.

417

Rating the energy performance of buildings  

SciTech Connect

In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-12-01T23:59:59.000Z

418

Building Energy Software Tools Directory: ISOVER Energi  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory Printable Version Share this resource Home About the Directory Tools by Subject Tools Listed Alphabetically Tools by Platform PC...

419

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

required the Department of Commerce (DOC) to create codes for energy conservation in public buildings and places of employment and to review that code. In conducting the review,...

420

Building Energy Efficiency Success Stories - Energy Innovation ...  

Building Energy Efficiency Success Stories These success stories highlight some of the effective licensing and partnership activity between laboratories and industry ...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Design & Remodeling Program Information Oklahoma Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the...

422

Building Technologies Office: Energy Systems Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Energy Systems Innovations to someone by E-mail Share Building Technologies Office: Energy Systems Innovations on Facebook Tweet about Building Technologies Office: Energy Systems Innovations on Twitter Bookmark Building Technologies Office: Energy Systems Innovations on Google Bookmark Building Technologies Office: Energy Systems Innovations on Delicious Rank Building Technologies Office: Energy Systems Innovations on Digg Find More places to share Building Technologies Office: Energy Systems Innovations on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

423

State Buildings Energy Reduction Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Buildings Energy Reduction Plan State Buildings Energy Reduction Plan Eligibility Institutional State Government Savings For Heating & Cooling Home Weatherization...

424

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Iowa Program Type Building Energy Code Provider Iowa Office of Energy Independence ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://coolice.legis.state.ia.us/Cool-ICE/default.asp?Category=billinfo&... House File 2361] was signed in April 2006. This law rescinded Iowa's minimum energy efficiency standard for residential construction, the "home heating index," and instead requires the state building commissioner to adopt energy conservation requirements based on a nationally recognized

425

Buildings | Open Energy Information  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in...

426

Vermont | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont Last updated on 2013-06-03 Current News The Vermont Commercial Building Energy Standards (CBES) became effective January 3, 2012. The CBES incorporates elements of the 2012 IECC. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information 2011 Vermont Commercial Building Energy Standards (CBES) are based on the 2009 IECC. Commercial Building Energy Standards Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Vermont (BECP Report, Sept. 2009) Approximate Energy Efficiency More energy efficient than 2009 IECC Effective Date 01/03/2012 Adoption Date 10/03/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No

427

Building the case for automated building energy management  

Science Conference Proceedings (OSTI)

Energy consumption in buildings comprises a significant fraction of total worldwide energy consumption and is strongly influenced by occupant behavior. To explore the quantitative effect of particular occupant actions on building energy consumption, ... Keywords: building automation, energy saving behaviors, in-home display

Alan Marchiori; Qi Han; William C. Navidi; Lieko Earle

2012-11-01T23:59:59.000Z

428

Building Energy Software Tools Directory: Design Advisor  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Advisor Design Advisor Web suite of building energy simulators that model energy, comfort, and daylighting performance, and give estimates of the long-term cost of utilities. The simulations restrict flexibility in order to offer users greater ease-of-use and speed. The tool can be quickly mastered by non-technical designers, and runs fast enough to allow them the scope to experiment with many different versions of a design during a single sitting. The immediate feedback that the site provides makes it useful in the conceptual phase of design, when architects cannot afford to invest large amounts of time to rule out any particular idea. The emphasis of the energy model is on the envelope system of the building, and includes simulations of high-technology windows such as double-skin facades.

429

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH  

E-Print Network (OSTI)

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

430

Building Energy Software Tools Directory: Building Performance Compass  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance Compass Building Performance Compass Building Performance Compass logo Building Performance Compass analyzes commercial and multi-family building energy use patterns in a simple, easy-to-use Web-based interface. Using building details and energy data from the buildingÂ’s utility bills, it is unique in its ability to benchmark and compare all buildings, whether residential or commercial. Recent enhancements to Building Performance Compass include new multi-family support, the ability to track non-energy quantities such as water and waste, and features such as its fast-feedback report, which enables reporting energy savings as early as one month after work is completed. Building Performance Compass also provides extensive tracking of building data and usage, as well as the ability to upload and track

431

Energy efficiency buildings program, FY 1980  

SciTech Connect

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

1981-05-01T23:59:59.000Z

432

Strategic Energy Management Through Optimizing the Energy Performance of Buildings  

E-Print Network (OSTI)

1/12/2007 Strategic Energy Management Through Optimizing the Energy Performance of Buildings Oak ambitious federal energy goals and achieve energy independence. The energy engineers, building equipment Buildings and Industrial Energy Efficiency areas has engendered a unique, comprehensive capability

433

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

434

Building Energy Software Tools Directory: STE  

NLE Websites -- All DOE Office Websites (Extended Search)

STE STE Software with two modules, one for the verification of the regulation aimed essentially at residential and small commercial buildings (RCCTE), and another for the verification of the regulation aimed essentially at buildings with HVAC power higher than 25 kW (RSECE). Both modules are single zone. The RCCTE module is based on steady state assumptions, while the method for RSECE is based on a dynamic hourly simulation for a complete year, in line with the methodology adopted by the newly revised EN ISO 13790. Screen Shots Keywords thermal regulations, residential and commercial buildings, energy certification Validation/Testing The hourly simulation module was compared to detailed ESP-r simulations and proven to be quite precise (within 5% for most cases).

435

Building Energy Codes ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ENFORCEMENT TOOLKIT ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES i Building Energy Codes ENFORCEMENT TOOLKIT Prepared by: Building Energy Codes Program The U.S. Department of Energy's Building Energy Codes Program is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90467 LEARNING SERIES OVERVIEW Building Energy Codes ACE

436

Building Energy Codes COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPLIANCE TOOLKIT COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES III Building Energy Codes COMPLIANCE TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90466 LEARNING SERIES OVERVIEW Building Energy Codes

437

Building Energy Codes ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ADOPTION TOOLKIT ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES I Building Energy Codes ADOPTION TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-89963 LEARNING SERIES OVERVIEW Building Energy Codes

438

Department of Energy's Building Technologies Office Releases EnergyPlus V.  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy's Building Technologies Office Releases EnergyPlus V. Department of Energy's Building Technologies Office Releases EnergyPlus V. 8.1 November 2013 November Special Focus: Energy Efficiency, Buildings and the Electric Grid EnergyPlus is the Department of Energy's Building Technologies Office's free, open-source whole-building energy simulation engine. Developed by a diverse team of building physics researchers and mechanical engineers at the National Labs and various consultancies, EnergyPlus is the engine behind a large and growing number of tools for the design of energy-efficient buildings and their HVAC systems, for compliance with energy-efficiency codes and standards, and for building certification and rating through programs like USGBC's LEED and DOE's Commercial Building Energy Asset Score. BTO has released an updated version of EnergyPlus with new features and

439

Building Energy Software Tools Directory: BUS++  

NLE Websites -- All DOE Office Websites (Extended Search)

BUS++ BUS++ New generation platform for building energy, ventilation, noise level and indoor air quality simulations. A network assumption is adopted, and BUS++ allows both steady-state and dynamic simulations on a desired level of accuracy. BUS++ includes modern solution routines and has passed the most commonly used rigorous air flow and heat transfer test cases. However, only a limited number of special applications are completed. Keywords energy performance, ventilation, air flow, indoor air quality, noise level Validation/Testing N/A Expertise Required Special expertise needed for utilizing all potential calculation features. Common knowledge of building components needed for using special applications with graphical user interfaces. Users 20 users in VTT Building Technology and other companies in Finland.

440

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development of discrete event system specification (DEVS) building performance models for building energy design  

Science Conference Proceedings (OSTI)

The discrete event system specification (DEVS) is a formalism for describing simulation models in a modular fashion. In this study, it is exploited by forming submodels that allow different professions involved in the building design process to work ... Keywords: DEVS, energy simulation in building design, modular BPS, stochastic occupant models

Huseyin Burak Gunay; Liam O'Brien; Rhys Goldstein; Simon Breslav; Azam Khan

2013-04-01T23:59:59.000Z

442

Energy conservation opportunities in small commercial buildings  

SciTech Connect

As part of a joint project between Duke Power Co. and Oak Ridge National Laboratory (ORNL), a study was performed to determine the energy savings potential of small commercial buildings, located in the Duke Power service territory. This relatively untouched portion of the commercial sector has the potential for reducing energy consumption by 13% - 25%, which corresponds to a reduction in average annual operating costs of $500 - $1000 per building. A database of over sixty customers was used to target five buildings with unusually high levels of energy consumption and/or peak demand. Conservation measures in these buildings were selected on the basis of cost-effectiveness and relative non-intrusiveness on the occupants. Together, ORNL and Duke Power representatives worked on data analysis, site-audits, and measure recommendations. Duke Power supplied hourly and monthly utility data, customer survey information and participated in site-audits. ORNL analyzed the data, developed targeting indices, performed site-audits and corresponding first-order energy simulations on candidate buildings, and recommended individualized conservation retrofits. For the five buildings examined, retrofits including lighting, controls, and HVAC systems accounted for a total reduction in consumption of 32%, and in peak demand of 22%. In addition, the study emphasizes the importance of continuous attention to the operating conditions of HVAC equipment and controls, in order to ensure long-term sustainability of these energy savings.

Abraham, M.M.; MacDonald, J.M.

1995-08-01T23:59:59.000Z

443

Hawaii | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

at least as energy efficient as the statewide code. State Specific Research Impacts of ASHRAE.1-2007 for Commercial Buildings in the State of Hawaii (BECP Report, Sept. 2009)...

444

Energy Efficiency: Transportation and Buildings  

Science Conference Proceedings (OSTI)

We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings

Michael S. Lubell; Burton Richter

2011-01-01T23:59:59.000Z

445

Building a Universal Nuclear Energy Density Functional  

NLE Websites -- All DOE Office Websites (Extended Search)

Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

446

Mainstreaming Building Energy Efficiency Codes in Developing...  

Open Energy Info (EERE)

Building Energy Efficiency Codes in Developing Countries: Global Experiences and Lessons from Early Adopters Jump to: navigation, search Name Mainstreaming Building Energy...

447

Worldwide Energy Efficiency Action through Capacity Building...  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

448

Energy Department Launches Better Buildings Workforce Guidelines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Better Buildings Workforce Guidelines Project Energy Department Launches Better Buildings Workforce Guidelines Project September 26, 2013 - 2:38pm Addthis The Energy...

449

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Table 7c. U.S. Commercial Buildings Energy Intensity Using Primary Energy 1 by Census Region and Principal Building Activity, 1992-1999 (Million Btu per Worker)

450

Federal Energy Management Program: Sustainable Buildings and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Buildings and Campuses to someone by E-mail Share Federal Energy Management Program: Sustainable Buildings and Campuses on Facebook Tweet about Federal Energy...

451

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Basics to someone by E-mail Share Federal Energy Management Program: Sustainable Building Basics on Facebook Tweet about Federal Energy Management Program:...

452

Federal Energy Management Program: Sustainable Building Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Contacts to someone by E-mail Share Federal Energy Management Program: Sustainable Building Contacts on Facebook Tweet about Federal Energy Management Program:...

453

Building Energy Retrofit Research: Multifamily Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Retrofit Research: Multifamily Sector Title Building Energy Retrofit Research: Multifamily Sector Publication Type Report Year of Publication 1985 Authors Diamond,...

454

Efficient thermal energy distribution in commercial buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient thermal energy distribution in commercial buildings -- Final Report Title Efficient thermal energy distribution in commercial buildings -- Final Report Publication Type...

455

Maximum Building Energy Efficiency Research Laboratory secures...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Network - Maximum Building Energy Efficiency Research Laboratory secures LEED Gold July 01, 2013 The recently completed 14.3m Maximum Building Energy Efficiency...

456

Residential Code Methodology | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Site Map...

457

New Mexico | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

458

Building Energy Information Systems: User Case Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Building Energy Information Systems: User Case Studies Title Building Energy Information...

459

Energy Information Administration (EIA)- Commercial Buildings...  

U.S. Energy Information Administration (EIA) Indexed Site

information for that building such as building size, year constructed, type of energy used, energy-using equipment, and conservation features. The smallest level of...

460

Building Technologies Office: Energy Modeling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software on Twitter Bookmark Building Technologies Office: Energy Modeling Software on Google Bookmark Building Technologies Office: Energy Modeling Software on Delicious Rank...

Note: This page contains sample records for the topic "building energy simulations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

462

Building Technologies Office | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Building Technologies Office Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. About the Building Technologies Office The Energy Department's Building Technologies Office leads a network of research and industry partners to continually develop innovative, cost-effective energy-saving solutions for homes and buildings. Learn more about the Building Technologies Office. How We Help Homes & Buildings Save Energy Value-Driven Applications Advanced energy efficiency technologies like lighting, HVAC, windows, appliances, and commercial equipment. Practical Standards

463

Building Energy Software Tools Directory: DesignBuilder  

NLE Websites -- All DOE Office Websites (Extended Search)

DesignBuilder DesignBuilder DesignBuilder logo User-friendly modelling environment where you can work (and play) with building models. It provides a range of environmental performance data such as: energy consumption, internal comfort data and HVAC component sizes. Output is based on detailed sub-hourly simulation time steps using the EnergyPlus simulation engine. DesignBuilder can be used for simulations of many common HVAC types, naturally ventilated buildings, buildings with daylighting control, double facades, advanced solar shading strategies etc. Screen Shots Keywords Building energy simulation, visualisation, CO2 emissions, solar shading, natural ventilation, daylighting, comfort studies, CFD, HVAC simulation, pre-design, early-stage design, building energy code compliance checking,

464

Commercial Prototype Building Models | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

465

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

China Environmental Energy Technologies Division 2012 ACEEEsuitable building energy technologies in different regionssuitable building energy technologies for different building

Feng, Wei

2013-01-01T23:59:59.000Z

466

90.1 Prototype Building Models Outpatient Healthcare | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Outpatient Healthcare Outpatient Healthcare The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

467

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Michigan Program Type Building Energy Code Provider Michigan Department of Labor and Economic Growth ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code. The state energy code is evaluated for revisions or modifications every three years. The new code requirements are adopted at the beginning of each state building code cycle (which corresponds with the three-year cycle of

468

Energy use in office buildings  

SciTech Connect

This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

None

1980-10-01T23:59:59.000Z

469

Building Energy Software Tools Directory: EnergyGauge USA  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyGauge USA EnergyGauge USA EnergyGauge USA logo. User-friendly residential building energy simulation which allows calculation and rating of energy use of residential buildings around the United States. ENERGYGAUGE USA, takes advantage of current generation personal computers that perform an hourly annual computer simulation in less than half a minute. Includes Manual-J system sizing analysis, and an improvement analysis mode to analyze cost-effectiveness of energy upgrades. ďż˝ ENERGYGAUGE USA uses DOE-2.1E with a number of enhancements which allow superior simulation of duct air leakage and heat transfer (thermal conditions of zones in which ducts are located strongly affects performance) as well as improved calculation of air conditioners, heat pump and furnaces performance. Slab, crawlspace and basement foundation types

470

Addendum to the Building America House Simulation Protocols  

SciTech Connect

As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

2012-12-01T23:59:59.000Z

471

Addendum to the Building America House Simulation Protocols  

SciTech Connect

As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

2012-12-01T23:59:59.000Z

472

Building Envelopes | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Envelope SHARE Building Envelopes MFEL.jpg The building envelope-the materials that separate the indoor and outdoor environments-primarily determines the amount of energy required to heat, cool, and ventilate a building. The envelope also can significantly influence energy needs in areas accessible to sunlight. To cost-effectively improve the energy efficiency, moisture-durability, and environmental sustainability of building envelopes, ORNL is exploring new and emerging materials, components, and systems as well as the fundamentals of heat, air, and moisture transfer. Research is also focused on multifunctional solutions where the envelope serves as a filter that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling, ventilation, and lighting.

473

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners, designers, and owners to focus on energy-use goals from the first planning

474

Building Energy Software Tools Directory: Micropas6  

NLE Websites -- All DOE Office Websites (Extended Search)

Micropas6 Micropas6 Micropas6 logo. Easy to use detailed energy simulation program which performs hourly calculations to estimate annual energy usage for heating, cooling and water heating in residential buildings. In addition to its purpose as a compliance tool for California�s Title 24 Energy Efficiency Standards, Micropas can be used to demonstrate that a home meets Energy Star requirements in California (15% above Title 24). The program includes a load calculation for use in sizing heating and cooling equipment. Micropas6 has been in wide use in California since the early 1980s as a building energy code compliance tool and is growing in use elsewhere under the Model Energy Code. The last survey showed that about 75% of the single-family homes permitted in California used Micropas to determine code

475

EnergyPlus Boosts Building Efficiency with Help from Autodesk | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyPlus Boosts Building Efficiency with Help from Autodesk EnergyPlus Boosts Building Efficiency with Help from Autodesk EnergyPlus Boosts Building Efficiency with Help from Autodesk November 21, 2013 - 1:55pm Addthis Amir Roth Amir Roth Technology Development Manager, Building Technologies Office KEY FACTS Building energy simulation is the calculation of energy used to heat, cool, light, and ventilate a building given