Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Whole Building Energy Simulation  

Broader source: Energy.gov [DOE]

Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

2

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network [OSTI]

creating a new-generation building energy simulationprogram. Energy and Buildings, 33: 319-331. Haves, P. ,Liu M. 2001. Use of Whole Building Simulation in On- Line

Pang, Xiufeng

2013-01-01T23:59:59.000Z

3

Energy Simulation for Buildings: Development and Training  

E-Print Network [OSTI]

.5: Energy Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science`i Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawai`i April 2013Energy Simulation for Buildings: Development and Training This report presents an architectural

4

Uncalibrated Building Energy Simulation Modeling Results  

E-Print Network [OSTI]

for the Level 1 and Level 2 models with measured data for WERC (2004 post-commissioning data). ESL-PA-06-10-01 VOLUME 12, NUMBER 4, OCTOBER 2006 1151 Figure 6. Comparison of simulated daily total energy consumption for the Level 1 and Level 2 models with 1999...,450 m2]), the simulation using 1999 data underestimates the energy use in all categories except the whole building electrical usage. Table 3 identifies the magnitude of these discrepancies for a full year’s consumption. The Level 1 model actually per...

Ahmad, M.; Culp, C.H.

5

Methodology for Validating Building Energy Analysis Simulations  

SciTech Connect (OSTI)

The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

2008-04-01T23:59:59.000Z

6

Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint  

SciTech Connect (OSTI)

Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

2010-08-01T23:59:59.000Z

7

Automated Comparison of Building Energy Simulation Engines (Presentation)  

SciTech Connect (OSTI)

This presentation describes the BEopt comparative test suite, which is a tool that facilitates the automated comparison of building energy simulation engines. It also demonstrates how the test suite is improving the accuracy of building energy simulation programs. Building energy simulation programs inform energy efficient design for new homes and energy efficient upgrades for existing homes. Stakeholders rely on accurate predictions from simulation programs. Previous research indicates that software tends to over-predict energy usage for poorly-insulated leaky homes. NREL is identifying, investigating, and resolving software inaccuracy issues. Comparative software testing is one method of many that NREL uses to identify potential software issues.

Polly, B.; Horowitz, S.; Booten, B.; Kruis, N.; Christensen, C.

2012-08-01T23:59:59.000Z

8

Developing an integrated building design tool by coupling building energy simulation and computational fluid dynamics programs  

E-Print Network [OSTI]

Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...

Zhai, Zhiqiang, 1971-

2003-01-01T23:59:59.000Z

9

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

SciTech Connect (OSTI)

Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

2011-11-01T23:59:59.000Z

10

Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect (OSTI)

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility bill calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.

Not Available

2012-02-01T23:59:59.000Z

11

Advancement of DOE's EnergyPlus Building Energy Simulation Payment  

SciTech Connect (OSTI)

EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOEâ??s Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Floridaâ??s Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.

Lixing Gu; Don Shirey; Richard Raustad; Bereket Nigusse; Chandan Sharma; Linda Lawrie; Rich Strand; Curt Pedersen; Dan Fisher; Edwin Lee; Mike Witte; Jason Glazer; Chip Barnaby

2011-03-31T23:59:59.000Z

12

Simulation Models to Optimize the Energy Consumption of Buildings  

E-Print Network [OSTI]

Page 1 of paper submitted to ICEBO 2008 Berlin SIMULATION MODELS TO OPTIMIZE THE ENERGY CONSUMPTION OF BUILDINGS Sebastian Burhenne Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany Dirk Jacob Fraunhofer...-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT In practice, building operation systems are only adjusted during commissioning. This is done manually and leads to failure-free but often inefficient operation. This work deals...

Burhenne, S.; Jacob, D.

13

Simulation and Big Data Challenges in Tuning Building Energy Models  

SciTech Connect (OSTI)

EnergyPlus is the flagship building energy simulation software used to model whole building energy consumption for residential and commercial establishments. A typical input to the program often has hundreds, sometimes thousands of parameters which are typically tweaked by a buildings expert to get it right . This process can sometimes take months. Autotune is an ongoing research effort employing machine learning techniques to automate the tuning of the input parameters for an EnergyPlus input description of a building. Even with automation, the computational challenge faced to run the tuning simulation ensemble is daunting and requires the use of supercomputers to make it tractable in time. In this proposal, we describe the scope of the problem, the technical challenges faced and overcome, the machine learning techniques developed and employed, and the software infrastructure developed/in development when taking the EnergyPlus engine, which was primarily designed to run on desktops, and scaling it to run on shared memory supercomputers (Nautilus) and distributed memory supercomputers (Frost and Titan). The parametric simulations produce data in the order of tens to a couple of hundred terabytes.We describe the approaches employed to streamline and reduce bottlenecks in the workflow for this data, which is subsequently being made available for the tuning effort as well as made available publicly for open-science.

Sanyal, Jibonananda [ORNL] [ORNL; New, Joshua Ryan [ORNL] [ORNL

2013-01-01T23:59:59.000Z

14

More Issues of Building Energy Simulation  

E-Print Network [OSTI]

and compared, and the predominance of the Z-transfer function method is indicated on dynamic calculation of energy consumption of heating and air-conditioning systems. The paper discusses the means to deal with several complex problems, such as thermal bridge...

Kang, Z.; Zhao, J.

2006-01-01T23:59:59.000Z

15

Interoperability of Computer Aided Design and Energy Performance Simulation to Improve Building Energy Efficiency and Performance  

E-Print Network [OSTI]

The paper describes very significant novel interoperability and data modeling technology for existing building that maps a building information parametric model with an energy simulation model, establishing a seamless link between Computer Aided...

Chaisuparasmikul, P.

2006-01-01T23:59:59.000Z

16

Sensitivity of Building Energy Simulation with Building Occupancy for a University Building  

E-Print Network [OSTI]

of Texas A&M University. The energy model for the building was created using the DOE-2 engine and validated with actual energy consumption data. As constructed building characteristics and occupancy loading data were used in the DOE-2 model. Parametric runs...

Chhajed, Shreyans

2014-08-01T23:59:59.000Z

17

Validation of Simulated Thermal Comfort using a Calibrated Building Energy Simulation (BES) model in the context of Building Performance Evaluation & Optimisation  

E-Print Network [OSTI]

Building Energy Simulation (BES) models play a significant role in the design and optimisation of buildings. Simulation models may be used to compare the cost-effectiveness of Energy- Conservation Measures (ECMs) in the design stage as well...

Coakley, D.; Corry, E. J.; Keane, M. M.

2013-01-01T23:59:59.000Z

18

Survey and Analysis of Weather Data for Building Energy Simulations Mahabir Bhandari, Som Shrestha, Joshua New  

E-Print Network [OSTI]

potential energy savings measures in compliance with building code trade-offs and new legislationPage 1 Survey and Analysis of Weather Data for Building Energy Simulations Mahabir Bhandari, Som, climate, building energy simulation, EnergyPlus ABSTRACT In recent years, calibrated energy modeling

Wang, Xiaorui "Ray"

19

EnergyPlus: Energy Simulation Software for Buildings - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer ProgramEnergy-WaterEmergingPortal Energy

20

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

SciTech Connect (OSTI)

This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

Wetter, Michael

2010-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Performance of Coupled Building Energy and CFD Simulations Zhiqiang (John) Zhai  

E-Print Network [OSTI]

and CFD. This investigation implemented these concepts and developed an integrated building design tool, E, West Lafayette, IN 47907-2088, USA Abstract The integration of building energy simulation (ES of the integrated building simulation over the separated energy simulation and computational

Chen, Qingyan "Yan"

22

Origins of Analysis Methods in Energy Simulation Programs Used for High Performance Commercial Buildings  

E-Print Network [OSTI]

Current designs of high performance buildings utilize hourly building energy simulations of complex, interacting systems. Such simulations need to quantify the benefits of numerous features including: thermal mass, HVAC systems and, in some cases...

Oh, Sukjoon

2013-08-19T23:59:59.000Z

23

COMBINED THERMAL MEASUREMENT AND SIMULATION FOR THE DETAILED ANALYSIS OF FOUR OCCUPIED LOW-ENERGY BUILDINGS  

E-Print Network [OSTI]

COMBINED THERMAL MEASUREMENT AND SIMULATION FOR THE DETAILED ANALYSIS OF FOUR OCCUPIED LOW-ENERGY BUILDINGS U.D.J. Gieseler, F.D. Heidt1 , W. Bier Division of Building Physics and Solar Energy, University energy and temperature measurements of occupied buildings very well. These buildings repre- sent small

Gieseler, Udo D. J.

24

Energy Audit and Simulated Conservation Opportunities for a Renovated Mixed-Use Academic Building  

E-Print Network [OSTI]

This paper describes an energy audit performed in a 97,760 ft2 (9082 m2) academic building at the University of Texas at San Antonio (UTSA). The paper describes the building survey and a simulation of the building’s energy use using eQUEST software...

Bejrowski, M.; Manteufel, R.; Arnold, N.; Rashed-Ali, H.

25

A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE  

E-Print Network [OSTI]

LBNL-6184E A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA of California. #12;A SOFTWARE TOOL TO COMPARE MEASURED AND SIMULATED BUILDING ENERGY PERFORMANCE DATA Tobias and simulated performance data. In context of this method, we developed a software tool that provides graphing

26

Building Technologies Office: EnergyPlus Energy Simulation Software  

Energy Savers [EERE]

modular systems and plant integrated with heat balance-based zone simulation, multizone air flow, thermal comfort, water use, natural ventilation, and photovoltaic systems. Read...

27

The MIT Design Advisor : simple and rapid energy simulation of early-stage building designs  

E-Print Network [OSTI]

Simulation tools, when applied early in the design process, can considerably reduce the energy demand of newly constructed buildings. For a simulation tool to assist with design, it must be easy to use, provide feedback ...

Urban, Bryan J. (Bryan James)

2007-01-01T23:59:59.000Z

28

Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building  

E-Print Network [OSTI]

In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

2006-01-01T23:59:59.000Z

29

Test Procedures for Building Energy Simulation Tools | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysisof Energy OfficeTest Procedures

30

Buildings Performance Database | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Consumers Billions Tools EnergyPlus Whole Building Energy Simulation OpenStudio Energy Simulation Application Suite Buildings Performance Database Building Energy Software Tools...

31

Analyzing Two Federal Building-Integrated Photovoltaic Projects Using ENERGY-10 Simulations: Preprint  

SciTech Connect (OSTI)

A new version of the ENERGY-10 computer program simulates the performance of photovoltaic systems, in addition to presenting a wide range of opportunities to improve energy efficiency in buildings. This paper describes two test cases in which the beta release of ENERGY-10 version 1.4 was used to evaluate energy efficiency and building-integrated photovoltaics (BIPV) for two Federal building projects: an office and laboratory building at the Smithsonian Astrophysical Laboratory in Hilo, Hawaii, and housing for visiting scientists at the Smithsonian Environmental Research Center in Edgewater, Maryland. The paper describes the capabilities of the software, the method in which ENERGY-10 was used to assist in the design, and the results. ENERGY-10 appears to be an effective tool for evaluating BIPV options early in the building design process. By simulating both the building electrical load and simultaneous PV performance for each hour of the year, the ENERGY-10 program facilitates a highly accurate, integrated analysis.

Walker, A.; Balcomb, D.; Weaver, N.; Kiss, G.; Becker-Humphry, M.

2002-03-01T23:59:59.000Z

32

Automatic Calibration of a Building Energy Simulation Model Using a Global Optimization Program  

E-Print Network [OSTI]

AUTOMATIC CALIBRATION OF A BUILDING ENERGY SIMULATION MODEL USING A GLOBAL OPTIMIZATION PROGRAM Seung Uk Lee Research Associate Texas A&M University Energy Systems Laboratory College Station, TX David E. Claridge, Ph.D., P....E. Professor Texas A&M University Energy Systems Laboratory College Station, TX ABSTRACT A simulation model used to analyze the energy performance of an existing building should be calibrated to measured consumption data from...

Lee, S. U.; Claridge, D.

2002-01-01T23:59:59.000Z

33

Evidence-based calibration of a building energy simulation model: Application to an office building in Belgium  

E-Print Network [OSTI]

use analysis for use in the frame of an energy efficiency service process. Focus is given to the calibration of a simplified dynamic hourly building energy simulation model by means of available energy use data and to the integration of the calibration...

Bertagnolio, S.; Randaxhe, F.; Lemort, V.

2012-01-01T23:59:59.000Z

34

Simulated Energy Savings Comparison Between Two Continuous Commissioning® Methods Applied to a Retrofitted Office Building  

E-Print Network [OSTI]

The 8 th International Conference for Enhanced Building Operations (ICEBO 2008) October 20-22, 2008, Berlin, Germany Simulated Energy Savings Comparison Between Two Continuous Commissioning ? Methods Applied to a Retrofitted Office Building... and the cold and hot 1 ESL-IC-08-10-30 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 The 8 th International Conference for Enhanced Building Operations (ICEBO 2008) October 20...

Texas A& M Campus Building CC® Team

35

NREL Develops Diagnostic Test Cases to Improve Building Energy Simulation Programs (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL research to develop a set of diagnostic test cases for building energy simulations in order to achieve more accurate energy use and savings predictions. The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analytical and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results. Testing the new cases with EnergyPlus identified issues with the conduction finite difference (CondFD) heat transfer algorithm in versions 5 and 6. NREL researchers resolved these issues for EnergyPlus version 7. The new test cases will help users and developers of EnergyPlus and other building energy tools to identify and fix problems associated with solid conduction heat transfer algorithms of building envelopes and their boundary conditions. In the long term, improvements to software algorithms will result in more accurate energy use and savings predictions. NREL researchers plan to document the set of test cases and make them available for future consideration by validation standards such as ASHRAE Standard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. EnergyPlus users will also have access to the improved CondFD model in version 7 after its next scheduled release.

Not Available

2011-12-01T23:59:59.000Z

36

On-Site Generation Simulation with EnergyPlus for CommercialBuildings  

SciTech Connect (OSTI)

Building energy simulation software (e.g., EnergyPlus) is apowerful tool used widely by designers and researchers. However, currentsoftware is limited in modeling distributed generation (DG), including DGwith heat recovery applied to building end-use, i.e., combined heat andpower (CHP). Concurrently, DG investment and dispatch optimizationsoftware has been developed, yet has not been linked to a building energysimulation program for accurate assessment of DG designs, particularlyunder uncertainty in future end-use loads and equipment availability. CHPis a proven approach to cost effective reductions in primary fuelconsumption and CO2 emissions. Integrating DG system design and controlsinto building energy simulation is an important step towards popular DGacceptance. We propose to extend the existing building energy simulationprogram, EnergyPlus (E+), to enable the simulation of various DG modulesand associated control strategies in order to achieve more accurate andholistic analysis of DG technologies. Extension of EnergyPlus isconveniently facilitated by SPARK, a program capable of modeling buildingequipment and controls as individual modules. These modules can beautomatically integrated with EnergyPlus building models. Candidate DGsystems can be selected from the DG investment optimization program,Distributed Energy Resources Customer Adoption Model (DER-CAM). Thedispatch of the modeled DG system can be determined by a novel dispatchoptimization algorithm, the Energy Manager, that accounts for uncertaintyin future load and DG availability, as well as curtailment options. DGequipment and controls can modeled in SPARK and integrated intoEnergyPlus building models. The way to this holistic approach will bedescribed in this paper.

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-05-16T23:59:59.000Z

37

EnergyGauge USA: A Residential Building Energy Simulation Design Tool  

E-Print Network [OSTI]

of EnergyGauge USA with significant impact on measures that effect sensible loads. The development of the new correlations is described in Henderson (1998a) and is based on empirical assessment of current generation heating and cooling equipment... moisture capacitance model for the simulation to damp out unrealistic variations in air enthalpy that were observed with the current model. The model, described in Henderson (1998b) assumes that the building has a moisture capacitance that is twenty...

Fairey, P.; Vieira, R. K.; Parker, D. S.; Hanson, B.; Broman, P. A.; Grant, J. B.; Fuehrlein, B.; Gu, L.

2002-01-01T23:59:59.000Z

38

Simulation and Analysis of Energy Consumption of Public Building in Chongquig  

E-Print Network [OSTI]

Calculation and analysis of energy consumption must be on the base of simulation of building load. DeST is adopted to calculate dynamic cooling load of the main building in Chongqing city. Then water chilling unit's plant capability is checked...

Chen, G.; Lu, J.; Chen, J.

2006-01-01T23:59:59.000Z

39

NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available for model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.

Not Available

2012-01-01T23:59:59.000Z

40

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance,  integrated  building design and operation, Integrated  Design  and  Operation  for  Very  Low  Energy  Buildings

Hong, Tianzhen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Performance Simulation  

E-Print Network [OSTI]

a future with  very low energy buildings resulting in very consumption  of  low  energy  buildings,  with  site  EUI design and operation of low energy buildings through better 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

42

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network [OSTI]

Canada: International Building Perfor- mance SimulationExternal coupling between building energy simulation andexternal coupling of building energy and air ow modeling

Trcka, Marija

2010-01-01T23:59:59.000Z

43

Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration  

SciTech Connect (OSTI)

Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

Sun, Kaiyu; Yan , Da; Hong , Tianzhen; Guo, Siyue

2014-02-28T23:59:59.000Z

44

Home energy rating system building energy simulation test (HERS BESTEST). Volume 2, Tier 1 and Tier 2 tests reference results  

SciTech Connect (OSTI)

The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, Subtitle A, Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that Facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. The HERS BESTEST work is divided into two volumes. Volume 1 contains the test case specifications and is a user's manual for anyone wishing to test a computer program. Volume 2 contains the reference results and suggestions for accrediting agencies on how to use and interpret the results.

Judkoff, R.; Neymark, J.

1995-11-01T23:59:59.000Z

45

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network [OSTI]

Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

Stadler, Michael

2011-01-01T23:59:59.000Z

46

An indoorâ??outdoor building energy simulator to study urban modification effects on building energy use â?? Model description and validation  

E-Print Network [OSTI]

Clappier, A new building energy model coupled with an urban a Detailed Building Energy Model with a Physically?Based existing building energy models emerged from the engineering

Yaghoobian, Neda; Kleissl, Jan

2012-01-01T23:59:59.000Z

47

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

SciTech Connect (OSTI)

The purpose of this study is to use existing simulation tools to quantify the energy savings benefits of integrated control in office buildings. An EnergyPlus medium office benchmark simulation model (V1.0_3.0) developed by the Department of Energy (DOE) was used as a baseline model for this study. The baseline model was modified to examine the energy savings benefits of three possible control strategies compared to a benchmark case across 16 DOE climate zones. Two controllable subsystems were examined: (1) dimming of electric lighting, and (2) controllable window transmission. Simulation cases were run in EnergyPlus V3.0.0 for building window-to-wall ratios (WWR) of 33percent and 66percent. All three strategies employed electric lighting dimming resulting in lighting energy savings in building perimeter zones ranging from 64percent to 84percent. Integrated control of electric lighting and window transmission resulted in heating, ventilation, and air conditioning (HVAC) energy savings ranging from ?1percent to 40percent. Control of electric lighting and window transmission with HVAC integration (seasonal schedule of window transmission control) resulted in HVAC energy savings ranging from 3percent to 43percent. HVAC energy savings decreased moving from warm climates to cold climates and increased when moving from humid, to dry, to marine climates.

Hong, T.; Shen, E.

2009-11-01T23:59:59.000Z

48

Building America 2014 House Simulation Protocols | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,Brent Nelson About2014 House Simulation Protocols

49

Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings  

E-Print Network [OSTI]

Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

Lian, Y.; Hao, Y.

2006-01-01T23:59:59.000Z

50

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

E-Print Network [OSTI]

and a core zone. The envelope thermal properties meet ASHRAEis the thermal zone and the building envelope model that was

Wetter, Michael

2012-01-01T23:59:59.000Z

51

Determination of Retrofit Savings Using a Calibrated Building Energy Simulation Model  

E-Print Network [OSTI]

This paper presents the development of a methodology to determine retrofit energy savings in buildings when few measured preretrofit data are available. Calibration of the DOE-2 building energy analysis computer program for a 250,000 ft2 building...

Reddy, S. N.; Hunn, B. D.; Hood, D. B.

1994-01-01T23:59:59.000Z

52

Commercial Building Energy Asset Score | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Refrigerator Standards Save Consumers Billions Tools EnergyPlus Whole Building Energy Simulation OpenStudio Energy Simulation Application Suite Buildings Performance...

53

Origins of Analysis Methods Used to Design High Performance Commercial Buildings: Part I, Whole-Building Energy Simulation  

E-Print Network [OSTI]

loads. In this study, EnergyPlus (Crawley et al. 2001), DOE-2.1e (Winkelmann et al. 1993), eQUEST/DOE2.2 (LBNL and JJH 1998), TRACE (Trane 2013), HAP (Carrier 2013), and TRNSYS (Klein 1976) were studied as whole-building analysis simulation programs... 1987; Ouyang and Haghighat 1991; UIUC and LBNL 2012). The original WFs developed in 1967 and 1971, were also called pre-calculated WFs, which were pre-calculated for specific rooms such as light, medium, and heavy-weight constructions to be used...

Oh, S.; Haberl, J.S.

54

Co-Simulation of Building Energy and Control Systems with the Building  

E-Print Network [OSTI]

, Simulink and the Modelica modeling and simulation environment Dy- mola. The additions also allow executing

55

Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology: Preprint  

SciTech Connect (OSTI)

The test suite represents a set of cases applying the new Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology developed by NREL. (Judkoff et al. 2010a). The NREL team developed the test cases in consultation with the home retrofit industry (BESTEST-EX Working Group 2009), and adjusted the test specifications in accordance with information supplied by a participant with access to large utility bill datasets (Blasnik 2009).

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

2011-11-01T23:59:59.000Z

56

Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the goals of NREL Analysis Accuracy R&D; BESTEST-EX goals; what BESTEST-EX is; how it works; 'Building Physics' cases; 'Building Physics' reference results; 'utility bill calibration' cases; limitations and potential future work. Goals of NREL Analysis Accuracy R&D are: (1) Provide industry with the tools and technical information needed to improve the accuracy and consistency of analysis methods; (2) Reduce the risks associated with purchasing, financing, and selling energy efficiency upgrades; and (3) Enhance software and input collection methods considering impacts on accuracy, cost, and time of energy assessments. BESTEST-EX Goals are: (1) Test software predictions of retrofit energy savings in existing homes; (2) Ensure building physics calculations and utility bill calibration procedures perform up to a minimum standard; and (3) Quantify impact of uncertainties in input audit data and occupant behavior. BESTEST-EX is a repeatable procedure that tests how well audit software predictions compare to the current state of the art in building energy simulation. There is no direct truth standard. However, reference software have been subjected to validation testing, including comparisons with empirical data.

Judkoff, R.; Neymark, J.; Polly, B.

2011-12-01T23:59:59.000Z

57

Home energy rating system building energy simulation test (HERS BESTEST): Volume 1, Tier 1 and Tier 2 tests user's manual  

SciTech Connect (OSTI)

The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, subtitle A,l Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. This set of test cases represents the Tier 1 and Tier 2 Tests for Certification of Rating Tools as described in DOE 10 CFR Part 437 and the HERS Council Guidelines for Uniformity (HERS Council). A third Tier of tests not included in this document is also planned.

Judkoff, R.; Neymark, J.

1995-11-01T23:59:59.000Z

58

Report on High Performance Building's Energy Modeling, Physical Building Information Modeling for Solar Building Design and Simulation  

E-Print Network [OSTI]

This report was created for the National Science Foundation-Physical Building Information Modeling (NSF-PBIM) project. This report describes the analysis of a solar office building using the following software: the legacy tools (DOE 2.1e, the F...

Alcocer, J.; Haberl, J. S.

2012-01-01T23:59:59.000Z

59

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

E-Print Network [OSTI]

are Synchronous Data Flow (SDF) and Finite State Machines (FSM). We use SDF to control the communication of actors thatto simulation programs. In SDF, each actor is ?red when a ?

Wetter, Michael

2012-01-01T23:59:59.000Z

60

Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program  

SciTech Connect (OSTI)

EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper model inputs. An example input data file, suitable for distribution to EnergyPlus users, was created for each new or improved feature to illustrate the input requirements for the model.

Don Shirey

2008-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network [OSTI]

L ABORATORY On-Site Generation Simulation with EnergyPlusemployer. On-Site Generation Simulation with EnergyPlus forin modeling distributed generation (DG), including DG with

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

62

Weather data analysis based on typical weather sequence analysis. Application: energy building simulation  

E-Print Network [OSTI]

In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...

David, Mathieu; Garde, Francois; Boyer, Harry

2014-01-01T23:59:59.000Z

63

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network [OSTI]

Window-Related Energy Consumption in the US Residential andU.S. Lighting Market Characterization Volume I: National Lighting Inventory and Energy ConsumptionBuilding Energy Consumption Survey. EnergyPlus (2008). U.S.

Hong, T.

2011-01-01T23:59:59.000Z

64

Study of Multifamily Energy Retrofit Using Flexible Multizone Building Simulation Model  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

65

About the Buildings Performance Database | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Refrigerator Standards Save Consumers Billions Tools EnergyPlus Whole Building Energy Simulation OpenStudio Energy Simulation Application Suite Buildings Performance...

66

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

67

Development of 20 IEER Rooftop Units System Modeling and Building Energy Simulations  

SciTech Connect (OSTI)

Based on detailed steady-state system and component modeling, we developed a rooftop unit system design, which is able to achieve IEER (Integrated Energy Efficiency Ratio) higher than 20. We modeled fin-&-tube and micro-channel heat exchangers using segment-to-segment approach, and use AHRI 10-coefficient compressor map to simulate compressor performance. The system modeling is based on a component-based modeling approach, which facilitates flexible simulation of complicated system configurations. Starting with a baseline system having IEER of 16.6, we extensively investigated numerous technical options, i.e. varying compressor sizes, heat exchanger fin densities, fin-&-tube or micro-channel heat exchanger, suction line heat exchanger, desiccant wheel, tandem compressor, variable-speed compressor, and condenser evaporative pre-cooling; and developed an innovative system configuration combining a tandem compression system with a variable-speed compression system. The combined system can achieve high IEER as well as process the outdoor ventilation air over an extensive range. We successfully evaluated the design concept for a 20-ton (70.4 kW) unit as well as a 10-ton (35.2 kW) unit. All the selected components are readily accessible on the market, and we validated the performance predictions against existing Rooftop Unit (RTU) products at the rating condition. This paper illustrates a potentially cost-effective high IEER RTU design. In addtion, we conducted extensive building energy simulations using EnergyPlus to predict seasonal energy saving potentials and peak power reductions using the High IEER RTU in sixteen US cities, in comparison to a RTU with a minimum efficiency.

Shen, Bo [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

68

NREL Evaluates the Thermal Performance of Uninsulated Walls to Improve the Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL research to develop models of uninsulated wall assemblies that help to improve the accuracy of building energy simulation tools when modeling potential energy savings in older homes. Researchers at the National Renewable Energy Laboratory (NREL) have developed models for evaluating the thermal performance of walls in existing homes that will improve the accuracy of building energy simulation tools when predicting potential energy savings of existing homes. Uninsulated walls are typical in older homes where the wall cavities were not insulated during construction or where the insulating material has settled. Accurate calculation of heat transfer through building enclosures will help determine the benefit of energy efficiency upgrades in order to reduce energy consumption in older American homes. NREL performed detailed computational fluid dynamics (CFD) analysis to quantify the energy loss/gain through the walls and to visualize different airflow regimes within the uninsulated cavities. The effects of ambient outdoor temperature, radiative properties of building materials, and insulation level were investigated. The study showed that multi-dimensional airflows occur in walls with uninsulated cavities and that the thermal resistance is a function of the outdoor temperature - an effect not accounted for in existing building energy simulation tools. The study quantified the difference between CFD prediction and the approach currently used in building energy simulation tools over a wide range of conditions. For example, researchers found that CFD predicted lower heating loads and slightly higher cooling loads. Implementation of CFD results into building energy simulation tools such as DOE2 and EnergyPlus will likely reduce the predicted heating load of homes. Researchers also determined that a small air gap in a partially insulated cavity can lead to a significant reduction in thermal resistance. For instance, a 4-in. tall air gap (Figure 1a) led to a 15% reduction in resistance. Similarly, a 2-ft tall air gap (Figure 1c) led to 54% reduction in thermal resistance. NREL researchers plan to extend this study to include additional wall configurations, and also to evaluate the performance of attic spaces with different insulation levels. NREL's objective is to address each potential issue that leads to inaccuracies in building energy simulation tools to improve the predictions.

Not Available

2012-01-01T23:59:59.000Z

69

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

70

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

71

PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring  

SciTech Connect (OSTI)

This report presents a unified method of hourly simulation of a building and analysis of performance data. The method is called Primary and Secondary Terms Analysis and Renormalization (PSTAR). In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense, hence, the name PSTAR. PSTAR allows extraction of building characteristics from short-term tests on a small number of data channels. These can be used for long-term performance prediction (''ratings''), diagnostics, and control of heating, ventilating, and air conditioning systems (HVAC), comparison of design versus actual performance, etc. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI.

Subbarao, K.

1988-09-01T23:59:59.000Z

72

Simulation-assisted evaluation of potential energy savings: Application to an administrative building in France  

E-Print Network [OSTI]

The case study presented here falls within a project of feasibility studies to improve the energy efficiency, the carbon footprint and the environmental impacts of several administrative buildings in France. The first part of the paper briefly...

Randaxhe, F.; Bertagnolio, S.; Lemort, V.

2012-01-01T23:59:59.000Z

73

Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation  

SciTech Connect (OSTI)

This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

Robertson, J.; Polly, B.; Collis, J.

2013-09-01T23:59:59.000Z

74

Improved Building Energy Performance Modelling through Comparison of Measured Data with Simulated Results  

E-Print Network [OSTI]

-Institute for Solar Energy Systems Freiburg, Germany Dirk Jacob Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT This work forms part of the ModBen project conducted by Fraunhofer ISE. This paper aims to compare actual... is a complex building. The complexity comes from the architectural design that ESL-IC-08-10-70 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Page 2 of paper submitted...

Bambrook, S.; Jacob, D.

75

Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint  

SciTech Connect (OSTI)

Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

2012-08-01T23:59:59.000Z

76

Project REED (Residential Energy Efficiency Design) is a Web-based building performance simulation tool  

E-Print Network [OSTI]

ABSTRACT Project REED (Residential Energy Efficiency Design) is a Web-based building performance in their particular climate. Reaching The Mass Market: Given this Utility's 4.5 million residential ratepayers residential market. This cost-effective approach can permanently transform the energy con- suming behavior

77

A technical framework to describe occupant behavior for building energy simulations  

SciTech Connect (OSTI)

Green buildings that fail to meet expected design performance criteria indicate that technology alone does not guarantee high performance. Human influences are quite often simplified and ignored in the design, construction, and operation of buildings. Energy-conscious human behavior has been demonstrated to be a significant positive factor for improving the indoor environment while reducing the energy use of buildings. In our study we developed a new technical framework to describe energy-related human behavior in buildings. The energy-related behavior includes accounting for individuals and groups of occupants and their interactions with building energy services systems, appliances and facilities. The technical framework consists of four key components: i. the drivers behind energy-related occupant behavior, which are biological, societal, environmental, physical, and economical in nature ii. the needs of the occupants are based on satisfying criteria that are either physical (e.g. thermal, visual and acoustic comfort) or non-physical (e.g. entertainment, privacy, and social reward) iii. the actions that building occupants perform when their needs are not fulfilled iv. the systems with which an occupant can interact to satisfy their needs The technical framework aims to provide a standardized description of a complete set of human energy-related behaviors in the form of an XML schema. For each type of behavior (e.g., occupants opening/closing windows, switching on/off lights etc.) we identify a set of common behaviors based on a literature review, survey data, and our own field study and analysis. Stochastic models are adopted or developed for each type of behavior to enable the evaluation of the impact of human behavior on energy use in buildings, during either the design or operation phase. We will also demonstrate the use of the technical framework in assessing the impact of occupancy behavior on energy saving technologies. The technical framework presented is part of our human behavior research, a 5-year program under the U.S. - China Clean Energy Research Center for Building Energy Efficiency.

Turner , William; Hong , Tianzhen

2013-12-20T23:59:59.000Z

78

Energy Survey and Energy Savings in an Office Building with Aid of Building Software.  

E-Print Network [OSTI]

?? Simulation is one of the best Analytical tools for Building Research .Energy Efficient Buildings are of great concern which is gaining importance steeply in… (more)

Lu, Yinghao

2008-01-01T23:59:59.000Z

79

Building Energy Code  

Broader source: Energy.gov [DOE]

Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

80

Building Energy Code  

Broader source: Energy.gov [DOE]

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building Energy Standards  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

82

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

83

Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

84

Comparison of Two Statistical Approaches to Detect Abnormal Building Energy Consumption with Simulation Test  

E-Print Network [OSTI]

?or? Emea?Esim Eller?Building ? HVAC?system:?DDVAV ? Baseline?period:?March?August,1997 Simulation?Data?Sets 8 0...?ID Eller 1 Outside?airflow?ratio??increase?of??3.1% 2 Outside?airflow?ratio??decrease?of??3.1% 3 Cold?deck?leaving?temperature??increase?of?4?F 4 Cold?deck?leaving?temperature??decrease?of?4.5?F 5 Hot?deck?leaving?temperature??increase?of?10?F 6 Hot...

Lin, G.; Claridge, D.

2012-01-01T23:59:59.000Z

85

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

3 Commercial and Residential Building Site Energy Usagecommercial and residential prototype buildings discussed in the previous section is simulated in EnergyPlus (DOE, 2011). The energy usage

Feng, Wei

2013-01-01T23:59:59.000Z

86

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

SciTech Connect (OSTI)

Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

Wetter, Michael

2009-02-12T23:59:59.000Z

87

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

88

Building Energy Code  

Broader source: Energy.gov [DOE]

'''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to...

89

Southeast Energy Efficiency Alliance's Building Energy Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

90

Building Performance Simulation  

E-Print Network [OSTI]

usage simulation. PhD Thesis, Eindhoven University of Technology,usage simulation. PhD thesis, Eindhoven University of Technology,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

91

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

SciTech Connect (OSTI)

This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

2011-08-01T23:59:59.000Z

92

BUILDING ENERGY 1987 Edition  

E-Print Network [OSTI]

BUILDING ENERGY EFFICIENCY STANDARDS 1987 Edition 1988 SUPPLEMENT December 1987 Supplement May 1988 at: http://www.energy.ca.gov/title24/ #12;California Energy Commission Charles R. Imbrecht, Chairman, Executive Director Energy Efficiency & Local Aaalatance Dlvlalon Building and Appliance Efficiency Office

93

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network [OSTI]

to achieve further energy consumption reductions. To accomplish this, the F- Chart program was used for the solar thermal system analysis and the PV F-Chart program for the solar photovoltaic (PV) system analysis. Authors show how DOE-2.1e simulation... Time series plots of space heating and service hot water loads from SYSTEMS and PLANT simulation runs Due to the fact that the solar thermal systems analysis program, F-Chart, takes into account the system efficiencies in its loads calculation...

Cho, S.; Haberl, J.

94

Building America House Simulation Protocols (Revised)  

SciTech Connect (OSTI)

The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

Hendron, R.; Engebrecht, C.

2010-10-01T23:59:59.000Z

95

Social Game for Building Energy Efficiency: Utility Learning, Simulation, and Analysis  

E-Print Network [OSTI]

Efficiency: Utility Learning, Simulation, and Analysisthe utility learning problem as well as simulation of the

Konstantakopoulos, Ioannis C; Ratliff, Lillian J; Jin, Ming; Sastry, S. Shankar; Spanos, Costas J

2014-01-01T23:59:59.000Z

96

Uncertainties in Energy Consumption Introduced by Building Operations and  

E-Print Network [OSTI]

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

97

Experimental and Simulation Study on the Performance of Daylighting in an Industrial Building and its Energy Saving Potential  

E-Print Network [OSTI]

electricity consumption in Hong Kong [3]. For industrial buildings, the percentage varies widely depending-34% of the total building electricity consumption in Dongguan, China [4]. To reduce the energy consumption reduce building energy consumption effectively. Studies on this topic have been mostly conducted

Chen, Qingyan "Yan"

98

An indoorâ??outdoor building energy simulator to study urban modification effects on building energy use â?? Model description and validation  

E-Print Network [OSTI]

simulating effects of the waste heat from air?conditioning 8]). Anthropogenic waste heat (e.g. from transportation,temperature and HVAC waste heat from EnergyPlus are passed

Yaghoobian, Neda; Kleissl, Jan

2012-01-01T23:59:59.000Z

99

Guam- Building Energy Code  

Broader source: Energy.gov [DOE]

NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by...

100

http://rcc.its.psu.edu/hpc Computational Simulations in Sustainable Building Design  

E-Print Network [OSTI]

http://rcc.its.psu.edu/hpc Computational Simulations in Sustainable Building Design Dr. Jelena and Nuclear Engineering, Pennsylvania State University Background: Sustainable Building Design Buildings Sustainable building design need to optimize building energy consumption while providing good indoor air

Bjørnstad, Ottar Nordal

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Department Announces Building Energy Efficiency Investments...  

Energy Savers [EERE]

Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States June...

102

Systematic time-based study for quantifying the uncertainty of uncalibrated models in building energy simulations  

E-Print Network [OSTI]

This thesis documents the usefulness and accuracy of uncalibrated simulations to determine for what end-uses these simulations should be used. The study was divided into three segments 1)comparison of the accuracy of two simulation models, massless...

Ahmad, Mushtaq

2005-07-27T23:59:59.000Z

103

Building Performance Simulation  

E-Print Network [OSTI]

Chiller efficiency  Boiler efficiency  Daylighting control the chiller or boiler efficiency inputs to the EnergyPlus both chiller COP and  boiler efficiency are assumed to be 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

104

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

Seven recent energy-efficient U.S. office buildings areSeven recent energy-efficient U.S. office buildings are18, 1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W.

Wall, L.W.

2009-01-01T23:59:59.000Z

105

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

a future with very low energy buildings resulting in very making  for  low  energy  buildings.   This  project  will and operation of low energy buildings.  Several studies, 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

106

Building Energy Efficient Schools  

E-Print Network [OSTI]

for extremely inefficient buildings. To accomplish this, the school administrator must be an active participant in the design process. Energy efficient school design is a team effort involving the architect, engineer, and school administrator. This paper...

McClure, J. D.; Estes, J. M.

1985-01-01T23:59:59.000Z

107

A review of methods to match building energy simulation models to measured data  

E-Print Network [OSTI]

D. Coakley et al. / Renewable and Sustainable Energy Reviewsmodels. D. Coakley et al. / Renewable and Sustainable EnergyManual D. Coakley et al. / Renewable and Sustainable Energy

Coakley, Daniel; Raftery, Paul; Keane, Marcus

2014-01-01T23:59:59.000Z

108

Building Energy Use Benchmarking | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Data Management Building Energy Use Benchmarking Building Energy Use Benchmarking Benchmarking is the practice of comparing the measured performance of a device, process,...

109

Impact assessment of energy conservation strategies in swine barns through benchmarking and building simulation.  

E-Print Network [OSTI]

??Energy input is vital in every swine operation as it directly affects production performance and overall profitability. With the increasing trend in energy prices and… (more)

Navia, Eleonor

2008-01-01T23:59:59.000Z

110

Buildings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout » BuildingBuildings Buildings

111

Simulation of the Post-Retrofit Thermal Energy Use for the University Teaching Center (UTC) Building with the Use of Simplified System Models  

E-Print Network [OSTI]

ESL-TR-91/12-03 ENERGY SYSTEMS LABORATORY TECHNICAL REPORT REPRINTED WITH PERMISSION Simulation of the Post-Retrofit Thermal Energy Use for the University Teaching Center (UTC) Building with the Use of Simplified System Models Srinivas Katipamula, P.... Texas 77843 (409) 845-6402. or (409) 845-3251 INTRODUCTION Several state owned buildings with dual-duct constant volume (DDCV) systems have been retrofitted with energy efficient variable air volume systems (VAV) as part of the Texas LoanSTAR Program...

Katipamula, S.; Claridge, D. E.

1991-01-01T23:59:59.000Z

112

Comparison of Simulation Methods for Evaluating Improved Fenestration Using the DOE-2.1E Building Energy Simulation Program  

E-Print Network [OSTI]

- performance glazing technology pushed researchers at LBNL to develop new and more sophisticated algorithms for fenestration simulation software (Arasteh et al. 1998). Research by Rubin (1982a, 1982b) and later Arasteh et al. (1989) played a key role... performance of fenestration systems under realistic conditions and compared the results with those obtained from the Lawrence Berkeley National Laboratories (LBNL) simulation models (Klems 1989; Klems et al. 1995). DOE-2.1e gives several options...

Mukhopadhyay, J.; Haberl, J. S.

2006-01-01T23:59:59.000Z

113

> Web Developer Position at the T.C. Chan Center for Building Simulation and Energy > Needed Immediately: Full Time Web Developer.  

E-Print Network [OSTI]

> > Web Developer Position at the T.C. Chan Center for Building Simulation and Energy Studies. > Needed Immediately: Full Time Web Developer. > > * The web developer should have a BA of professional experience developing web based applications is required. Experience with web design is a must

Plotkin, Joshua B.

114

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network [OSTI]

Energy-Savings Potential of Electrochromic Windows in the USPerformance Analysis of Electrochromic Windows in New Yorkthe effects of electrochromic windows and daylighting

Hong, T.

2011-01-01T23:59:59.000Z

115

Energy Consumption Analysis and Energy Conservation Evaluation of a Commercial Building in Shanghai  

E-Print Network [OSTI]

The paper presents a model of a commercial building in Shanghai with energy simulation software, and after calibration, the energy consumption of this building is calculated. On the basis of the simulation and calculation, a series of energy saving...

Chen, C.; Pan, Y.; Huang, Z.; Wu, G.

2006-01-01T23:59:59.000Z

116

2008 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network [OSTI]

2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards the adoption of the 2008 Building Energy Efficiency Standards to Jon Leber, PE, (November 13, 1947 - February

117

A View on Future Building System Modeling and Simulation  

SciTech Connect (OSTI)

This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

Wetter, Michael

2011-04-01T23:59:59.000Z

118

Development of a geometric database structure and sketching interface for energy simulation software for buildings  

E-Print Network [OSTI]

without using a large CAD package and generate necessary parameters for direct input into energy calculation software may eliminate the tedium of user input and maximize the efficiency of the design process. The research involves development of a sketch...

Zareen, Hadiba

1996-01-01T23:59:59.000Z

119

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect (OSTI)

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

120

Nevada Energy Code for Buildings  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Conservation in Public Buildings  

Broader source: Energy.gov [DOE]

The Florida Energy Conservation and Sustainable Buildings Act requires the use of energy-efficient equipment and design, and solar energy devices for heating and cooling state buildings where life...

122

PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring: A summary  

SciTech Connect (OSTI)

This report summarizes a longer report entitled PSTAR - Primary and Secondary Terms Analysis and Renormalization. A Unified Approach to Building Energy Simulations and Short-Term Monitoring. These reports highlight short-term testing for predicting long-term performance of residential buildings. In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense; hence, the name PSTAR. Testing and monitoring the energy performance of buildings has several important applications, among them: extrapolation to long-term performance, refinement of design tools through feedback from comparing design versus actual parameters, building-as-a-calorimeter for heating, ventilating, and air conditioning (HVAC) diagnostics, and predictive load control. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI. 3 figs., 1 tab.

Subbarao, K.

1988-09-01T23:59:59.000Z

123

Role of Computer Simulation in Designing an Energy Efficient Building: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergy Innovation PortalRolandsaturatedRole

124

2014 Building America House Simulation Protocols  

SciTech Connect (OSTI)

As BA has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

Wilson, E.; Engebrecht-Metzger, C.; Horowitz, S.; Hendron, R.

2014-03-01T23:59:59.000Z

125

Performance comparison of U.K. low-energy cooling systems by energy simulation  

E-Print Network [OSTI]

Building energy simulation is an important tool for evaluating the energy consumption of a building and can provide guidance in the design of a building and its mechanical systems. EnergyPlus is a new energy simulation ...

Olsen, Erik L. (Erik Lee), 1979-

2002-01-01T23:59:59.000Z

126

Autotune E+ Building Energy Models  

SciTech Connect (OSTI)

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

127

Reducing Energy Demand in Buildings Through State Energy Codes...  

Energy Savers [EERE]

Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

128

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

due to different definitions of energy use and boundary,due to different definitions of energy use and boundary, methodology for building energy data definition, collection,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

129

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

130

PV Integration by Building Energy Management System  

E-Print Network [OSTI]

. However, to validate global control algorithms, a simulator capable of interoperating with energy[kWh]. Econs (k) Total energy consumed by the load [kWh]. E (i, k) Energy consumed by the service i duringPV Integration by Building Energy Management System Rim.Missaoui¹, Ghaith.Warkozek¹, Seddik. Bacha

Boyer, Edmond

131

An indoorâ??outdoor building energy simulator to study urban modification effects on building energy use â?? Model description and validation  

E-Print Network [OSTI]

T.   Williamson, Urban surface energy balance models: model of the international urban energy balance model comparison, The International Urban Energy Balance Models  Comparison 

Yaghoobian, Neda; Kleissl, Jan

2012-01-01T23:59:59.000Z

132

Buildings | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower JumpBuildingChangeprovide

133

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

commercial and residential buildings, appliances and equipment, and the vali- dation of computational tools for estimating energy usage.

Wall, L.W.

2009-01-01T23:59:59.000Z

134

Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint  

SciTech Connect (OSTI)

This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

Booten, C.; Tabares-Velasco, P. C.

2012-08-01T23:59:59.000Z

135

Building Energy Data Exchange Specification Scoping Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building Energy Data Exchange Specification Scoping Report Building Energy Data Exchange Specification Scoping Report The Building Energy Data Exchange Specification (BEDES),...

136

An indoorâ??outdoor building energy simulator to study urban modification effects on building energy use â?? Model description and validation  

E-Print Network [OSTI]

Energy Use – Model Description and Validation Neda Yaghoobian   Mechanical and Aerospace Engineering 

Yaghoobian, Neda; Kleissl, Jan

2012-01-01T23:59:59.000Z

137

Energy 101: Energy Efficient Commercial Buildings  

ScienceCinema (OSTI)

Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

None

2014-06-26T23:59:59.000Z

138

Energy 101: Energy Efficient Commercial Buildings  

SciTech Connect (OSTI)

Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

None

2014-03-14T23:59:59.000Z

139

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1 Building

140

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1 Building6.1

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1 Building6.17.1

142

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1 Building6.17.18.1

143

Building Energy Codes Collaborative Technical Assistance for...  

Energy Savers [EERE]

State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through State Energy Codes...

144

Moving Toward Zero Energy Buildings  

E-Print Network [OSTI]

that are extremely energy efficient and produce enough of their own power that, over the course of a year, they produce as much as they need to operate.? Some may call them zero emissions, eco-buildings, green buildings, solar buildings. I don?t quibble with a... of Directors U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 00 12 02/ 5 86 - 12 11 mark.ginsberg@ee.doe.gov Moving Toward Zero Energy Buildings When I began discussing the idea of Zero Energy Buildings in the mid...

Ginsberg, M.

2008-01-01T23:59:59.000Z

145

Estimating Building Simulation Parameters via Bayesian Structure Learning  

SciTech Connect (OSTI)

Many key building design policies are made using sophisticated computer simulations such as EnergyPlus (E+), the DOE flagship whole-building energy simulation engine. E+ and other sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine's capabilities. Currently, these problems are addressed by having an engineer manually calibrate simulation parameters to real world data or using algorithmic optimization methods to adjust the building parameters. However, some simulations engines, like E+, are computationally expensive, which makes repeatedly evaluating the simulation engine costly. This work explores addressing this issue by automatically discovering the simulation's internal input and output dependencies from 20 Gigabytes of E+ simulation data, future extensions will use 200 Terabytes of E+ simulation data. The model is validated by inferring building parameters for E+ simulations with ground truth building parameters. Our results indicate that the model accurately represents parameter means with some deviation from the means, but does not support inferring parameter values that exist on the distribution's tail.

Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

2013-01-01T23:59:59.000Z

146

Building Energy Monitoring and Analysis  

SciTech Connect (OSTI)

U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

2013-06-01T23:59:59.000Z

147

Energy Department Issues Green Building Certification System...  

Broader source: Energy.gov (indexed) [DOE]

Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification...

148

Rating the energy performance of buildings  

E-Print Network [OSTI]

Energy and Sustainable Buildings, 2004 Available at http://Energy and Sustainable Buildings, Vol. 3, (2004), Olofsson,for a commercial office building in Melbourne, Australia,

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

149

Building Energy Monitoring and Analysis  

SciTech Connect (OSTI)

This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

2013-06-01T23:59:59.000Z

150

New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors  

E-Print Network [OSTI]

New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors Building energy codes are complex. Plans examiners and building inspectors are expected to understand and enforce energy savings. This new, hands-on course strives to provide plans examiners and building inspectors

151

Aggregate Building Simulator (ABS) Methodology Development, Application, and User Manual  

SciTech Connect (OSTI)

As the relationship between the national building stock and various global energy issues becomes a greater concern, it has been deemed necessary to develop a system of predicting the energy consumption of large groups of buildings. Ideally this system is to take advantage of the most advanced energy simulation software available, be able to execute runs quickly, and provide concise and useful results at a level of detail that meets the users needs without inundating them with data. The resulting methodology that was developed allows the user to quickly develop and execute energy simulations of many buildings simultaneously, taking advantage of parallel processing to greatly reduce total simulation times. The result of these simulations can then be rapidly condensed and presented in a useful and intuitive manner.

Dirks, James A.; Gorrissen, Willy J.

2011-11-30T23:59:59.000Z

152

Energy Efficient State Building Initiative  

Broader source: Energy.gov [DOE]

In June 2008, Governor Mitch Daniels issued an executive order establishing an energy efficient state buildings initiative. The order requires the Indiana Department of Administration (DOA) to...

153

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network [OSTI]

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

154

The State Energy Program: Building Energy Efficiency and Renewable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The State Energy Program: Building Energy Efficiency and Renewable Energy Capacity in the States The State Energy Program: Building Energy Efficiency and Renewable Energy Capacity...

155

Comparison of simplified models of urban climate for improved prediction of building energy use in cities  

E-Print Network [OSTI]

Thermal simulation of buildings is a requisite tool in the design of low-energy buildings, yet, definition of weather boundary conditions during simulation of urban buildings suffers from a lack of data that accounts for ...

Street, Michael A. (Michael Anthony)

2013-01-01T23:59:59.000Z

156

Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings  

E-Print Network [OSTI]

Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy consumption of the buildings in their ...

Engblom, Lisa A. (Lisa Allison)

2006-01-01T23:59:59.000Z

157

Comparing Computer Run Time of Building Simulation Programs  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building Technologies, U.S.and renewable energy productions. The size of building and

Hong, Tianzhen

2008-01-01T23:59:59.000Z

158

Model Simulating Real Domestic Hot Water Use - Building America...  

Energy Savers [EERE]

Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

159

Review of Building Energy Saving Techniques  

E-Print Network [OSTI]

The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use...

Zeng, X.; Zhu, D.

2006-01-01T23:59:59.000Z

160

1 | Building America eere.energy.gov DOE's Building America  

E-Print Network [OSTI]

1 | Building America eere.energy.gov DOE's Building America Low-E Storm Window Adoption Program Working Group #12;2 | Building America eere.energy.gov Pacific Northwest National Laboratory · Katie Cort, Larson Manufacturing Company Key Staff #12;3 | Building America eere.energy.gov Problem · Windows account

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Simulation as a Tool to Develop Guidelines of Envelope Design of a Typical Office Building in Egypt  

E-Print Network [OSTI]

This paper describes the use of building performance simulation software in order to develop guidelines for designing energy-efficient office building. In Egypt energy codes for all building types are being under development. On the other hand...

Samaan, M.M.; Ahmed, A.N.; Farag, O.M.A.; El-Sayed Khalil, M.

2011-01-01T23:59:59.000Z

162

Building Energy-Efficient Schools  

E-Print Network [OSTI]

assistance included: · Energy audits of open and operating school facilities. · Consultation on energyBuilding Energy- Efficient Schools in New Orleans Lessons Learned #12;2 #12;3 The devastation energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina

163

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

164

Energy efficiency buildings program, FY 1980  

SciTech Connect (OSTI)

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

Not Available

1981-05-01T23:59:59.000Z

165

USE OF BESTEST PROCEDURE TO IMPROVE A BUILDING THERMAL SIMULATION PROGRAM  

E-Print Network [OSTI]

. KEYWORDS Building energy simulation; validation; BESTEST; inter program comparison DESCRIPTION BESTEST Validation of building energy simulation programs is of major interest to both users and modellers simulation software called CODYRUN (Boyer et al., 1998). Indeed, one of the most interesting aspects

Paris-Sud XI, Université de

166

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network [OSTI]

Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U National Laboratory, USA and Tsinghua University, China Under the U.S.-China Clean Energy Research Center the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation

167

Energy Signal Tool for Decision Support in Building Energy Systems  

SciTech Connect (OSTI)

A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use. As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.

Henze, G. P.; Pavlak, G. S.; Florita, A. R.; Dodier, R. H.; Hirsch, A. I.

2014-12-01T23:59:59.000Z

168

Energy Conservation in State Buildings  

Broader source: Energy.gov [DOE]

Maryland's policy for energy efficiency in state buildings is governed by a series of related policies adopted at different times. One of the earliest policies, adopted in 1985, established Life...

169

Energy Information Administration (EIA)- Commercial Buildings...  

U.S. Energy Information Administration (EIA) Indexed Site

Stock: Results from EIA's 2012 CBECS 2012 building stock results Source: U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey 2012, March...

170

Energy Department Invests $6 Million to Increase Building Energy...  

Energy Savers [EERE]

Energy Department Invests 6 Million to Increase Building Energy Code Compliance Rates Energy Department Invests 6 Million to Increase Building Energy Code Compliance Rates August...

171

Using Simulation Models for Building Commissioning  

E-Print Network [OSTI]

. This building, which houses the Department of Information Technology at Jyvaskyla Polytechnic in Jyvaskyla, Finland, was completed in May 2003 and placed in service in August 2003. The building has been simulated using the programs IDA-ICE (IDA 2002... Isaakson (Sweden), Timo Kalema (Finland), Hannu Keranen (Finland), Jean Lebrun (Belgium), Noriyasu Sagara (Japan), Makato Tsubaki (Japan), and Sheng Wei Wang (Hong Kong). Eighteen others have attended at least one meeting. While this paper has been...

Claridge, D. E.

2004-01-01T23:59:59.000Z

172

Energy use in office buildings  

SciTech Connect (OSTI)

This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

None

1980-10-01T23:59:59.000Z

173

State Building Energy Standards  

Broader source: Energy.gov [DOE]

In June 2007, South Carolina enacted legislation (the Energy Independence and Sustainable Construction Act of 2007) to promote effective energy and environmental standards for construction,...

174

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Energy performance of LEED for new construction buildings:New Buildings Institute.New Buildings Institute. 2013. Buildings database, http://

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

175

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network [OSTI]

Developing an Integrated Building Design Tool by Couplingdesign energy ecient building systems in this complex setting, integrated

Trcka, Marija

2010-01-01T23:59:59.000Z

176

Buildings Performance Database Analysis Tools | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Save Consumers Billions Tools EnergyPlus Whole Building Energy Simulation OpenStudio Energy Simulation Application Suite Buildings Performance Database Building Energy...

177

Addendum to the Building America House Simulation Protocols  

SciTech Connect (OSTI)

As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

2012-12-01T23:59:59.000Z

178

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

E-Print Network [OSTI]

Physical Modeling with Modelica. Kluwer Academic Publisher,Using SPARK as a solver for modelica. In Proc. of SimBuild,Proceedings of the 2nd Modelica conference, pages 55–1 – 55–

Wetter, Michael

2010-01-01T23:59:59.000Z

179

Simulation of the Post-Retrofit Thermal Energy Use for the Perry-Castaneda Library Building with the Use of Simplified System Models  

E-Print Network [OSTI]

. One method of determining the energy savings resulting from energy conserving retrofits relies on the use of a model for the daily whole building consumption, Epre, in the pre-retrofit configuration. Epre is typically a function of primary influencing...

Katipamula, S.; Claridge, D. E.

1991-01-01T23:59:59.000Z

180

SIMULATION-BASED WEATHER NORMALIZATION APPROACH TO STUDY THE IMPACT OF WEATHER ON ENERGY USE OF BUILDINGS IN THE U.S.  

SciTech Connect (OSTI)

Weather normalization is a crucial task in several applications related to building energy conservation such as retrofit measurements and energy rating. This paper documents preliminary results found from an effort to determine a set of weather adjustment coefficients that can be used to smooth out impacts of weather on energy use of buildings in 1020 weather location sites available in the U.S. The U.S. Department of Energy (DOE) commercial reference building models are adopted as hypothetical models with standard operations to deliver consistency in modeling. The correlation between building envelop design, HVAC system design and properties for different building types and the change in heating and cooling energy consumption caused by variations in weather is examined.

Makhmalbaf, Atefe; Srivastava, Viraj; Wang, Na

2013-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

commercial and residential prototype buildings was simulated in EnergyPlus [15]. The commercial and residential energy usage

Mendes, Goncalo

2014-01-01T23:59:59.000Z

182

Building Energy-Efficiency Best Practice Policies and Policy Packages  

E-Print Network [OSTI]

A. B. (1992). Energy-Efficiency Buildings: Institutionalec.europa.eu/energy/efficiency/buildings/buildings_en.htm20). Plan on energy efficiency building to be announced,

Levine, Mark

2014-01-01T23:59:59.000Z

183

DOE Zero Energy Ready Home Webinar: Building Energy Optimization...  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives...

184

Energy efficiency in public buildings through ICT based control and monitoring systems  

E-Print Network [OSTI]

Energy efficiency in public buildings through ICT based control and monitoring systems G, France Keywords: energy efficiency, existing public buildings, control strategies, dynamic simulations a project entitled "Smart Energy Efficient Middleware for Public Spaces" (SEEMPubS). The project addresses

Paris-Sud XI, Université de

185

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

Net- Energy Buildings with Demand Response Michael Stadler,Net-Energy Buildings with Demand Response 1 Michael Stadlerbuilding simulation tools, e.g. , EnergyPlus, require specification of the demand response

Stadler, Michael

2009-01-01T23:59:59.000Z

186

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network [OSTI]

L ABORATORY Integrated Building Energy Systems Design7301 Integrated building energy systems design considering

Stadler, Michael

2009-01-01T23:59:59.000Z

187

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0Year Jan Feb Mar AprEnergy

188

Buildings Energy Databook  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water5833 ENERGY9262

189

GSA Building Energy Strategy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas as aGEAGNEPGREETBuilding Energy

190

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water583393411146

191

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas

192

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural

193

RADON DAUGHTER EXPOSURES IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,vs. VENTILATION IN ENERGY EFFICIENT HOUSES Air change rate(

Nero, A.V.

2010-01-01T23:59:59.000Z

194

N. Mariana Islands- Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

195

A Prediction of Energy Savings Resulting from Building Infiltration Control  

E-Print Network [OSTI]

, working to reduce or increase it. This study uses simulation to evaluate the potential energy impact of the interaction when several different strategies for controlling air leakage direction and velocity in building envelope components are implemented...

McWatters, K.; Claridge, D. E.; Liu, M.

1996-01-01T23:59:59.000Z

196

Buildings | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) JumpNRELEnergyGHGsEnergyJump to:

197

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas VehicleCurrent and

198

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas VehicleCurrent

199

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas VehicleCurrent2.1

200

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas VehicleCurrent2.13.1

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1

202

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1Contact Us Users

203

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1Contact Us

204

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1Contact UsGlossary

205

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1Contact

206

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1ContactExplore

207

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1ContactExplore 5.5

208

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas5.1ContactExplore

209

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S. Residential5The

210

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergyBuildingaMarch

211

Buildings Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents Heal the LandRemarks asFactEnergy AssetTheBuilding theApril 2015

212

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

213

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

Energy, 2007 Buildings Energy Data Book, September 2007.levels (2006 Buildings Energy Data Book). Figure 1 - Shareto the 2007 Buildings Energy Data Book, among all types of

Hong, Tianzhen

2014-01-01T23:59:59.000Z

214

INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

Quality Measurements in Energy Efficient Buildings Craig D.Quality ~leasurements in Energy Efficient Buildings Craig D.Gregory W. Traynor Energy Efficient Buildings Program Energy

Hollowell, C.D.

2011-01-01T23:59:59.000Z

215

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

Learning Control for Thermal Energy Storage Systems”. In:Predictive Control of Thermal Energy Storage in Buildingmaking use of building thermal energy storage, and this work

Ma, Yudong

2012-01-01T23:59:59.000Z

216

Commercial Building Energy Asset Score Features | Department...  

Broader source: Energy.gov (indexed) [DOE]

year built, climate zone, building type, year the energy Asset Score is issued Source energy use intensity and the corresponding score Potential source energy use and score...

217

Energy Department Launches Better Buildings Workforce Guidelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy-related jobs: Energy Auditor, Commissioning Professional, BuildingStationary Engineer, Facility Manager, and Energy Manager. These voluntary workforce guidelines will...

218

Penn State Consortium for Building Energy Innovation  

Broader source: Energy.gov [DOE]

The Penn State Consortium for Building Energy Innovation (formerly the Energy Efficient Buildings Hub) develops, demonstrates, and deploys energy-saving technologies that can achieve 50% energy reduction in small- and medium-sized buildings. Its headquarters serves as a test bed for real-world integration of technology and market solutions.

219

Experimental and Simulation Approaches for Optimizing the Thermal Performance of Building Enclosures Containing Phase Change Materials  

E-Print Network [OSTI]

Experimental and Simulation Approaches for Optimizing the Thermal Performance of Building Enclosures Containing Phase Change Materials By Kyoung Ok Lee M.S., The University of Kansas, Lawrence, Kansas, 2013 M.Eng., Chung-Ang University... those for buildings (EIA, 2013). In the U.S., buildings consume about 40% of total energy used in the country (EIA, 2012) and about 40% of greenhouse gas emissions are attributed to building energy consumption (EIA, 2011). Space cooling and heating...

Lee, Kyoung Ok

2014-05-31T23:59:59.000Z

220

Energy-Efficient Commercial Buildings Tax Deduction  

Broader source: Energy.gov [DOE]

The federal Energy Policy Act of 2005 established a tax deduction for energy-efficient commercial buildings applicable to qualifying systems and buildings placed in service from January 1, 2006,...

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

City of Chicago- Building Energy Code  

Broader source: Energy.gov [DOE]

The Chicago Energy Conservation Code (CECC) requires residential buildings applying for building permits to comply with energy efficient measures which go beyond those required by the [http://www...

222

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network [OSTI]

to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

Raustad, R.; Basarkar, M.; Vieira, R.

223

Better Buildings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » Alternative FuelNewsWashingtonAuditsBetter Buildings Better

224

Commercial Building Energy Asset Score  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe Natural ResourcesCommercial Building Energy

225

Buildings Events | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout » Building

226

NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)  

SciTech Connect (OSTI)

The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.

Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

2012-12-31T23:59:59.000Z

227

Integrating Renewable Energy Systems in Buildings (Presentation)  

SciTech Connect (OSTI)

This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

Hayter, S. J.

2011-08-01T23:59:59.000Z

228

Re-Energize: Building Energy Smart Communities  

Broader source: Energy.gov [DOE]

This is a document posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program.

229

PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network [OSTI]

PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS Title 24, Part 6, and Associated400201200415 DAY #12;2013 Building Energy Efficiency Standards Page 1 NOTICE NOTICE This version of the 2013 Building Energy Efficiency Standards is a marked version; that is, it contains underlined or struck

230

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergyBuildingaMarchMay

231

European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency  

E-Print Network [OSTI]

Gubelstrasse 22 CH-6301 Zug 00 41 41/ 7 24 55 60 wirth.ulrich@siemens.com European Union Energy Performance of Buildings Directive and The impact of Building Automation on Energy Efficiency Buildings account for 40 percent of global energy... building automation and control and technical building management based on the same may provide a demonstrable contribution to EU savings goals of 20 percent by 2020. The goal of European Directive 2002/91/EC on the total energy efficiency of buildings...

Wirth, U.

2008-01-01T23:59:59.000Z

232

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network [OSTI]

operation with energy efficiency in building systems. X X Xoperation with energy efficiency in building systems. 10.3.energy efficiency improvements in healthcare buildings. A

Singer, Brett C.

2010-01-01T23:59:59.000Z

233

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

E-Print Network [OSTI]

For Energy Efficiency of Public Building -- GB 50189.communication on building energy efficiency policy in China.Improving energy efficiency in existing buildings. ASHRAE

Levine, Mark

2014-01-01T23:59:59.000Z

234

Worldwide Status of Energy Standards for Buildings - Appendices  

E-Print Network [OSTI]

Organization: Energy Efficiency Building Code (EEBC-92)to increase energy efficiency in buildings: Infonnationabout energy efficiency for buildings in: Jamaica 22.

Janda, K.B.

2008-01-01T23:59:59.000Z

235

Commercial Building Energy Asset Score Sample Report | Department...  

Broader source: Energy.gov (indexed) [DOE]

Sample Report Commercial Building Energy Asset Score Sample Report Example report showing the results of an energy asset score rating on a building Commercial Building Energy Asset...

236

Energy Efficiency Building Code for Commercial Buildings in Sri Lanka  

SciTech Connect (OSTI)

1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

2000-09-30T23:59:59.000Z

237

Worldwide Energy Efficiency Action through Capacity Building...  

Open Energy Info (EERE)

and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action...

238

Building America Residential Energy Efficiency Technical Update...  

Energy Savers [EERE]

Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

239

For presentation at Building Simulation '99, International Building Performance Simulation Association (IBPSA), September 13-15, 1999, in Kyoto, Japan, and to be published in the Proceedings.  

E-Print Network [OSTI]

.S. Department of Energy under Contract No. DE-AC03-76SF00098. THERM 2.0: A BUILDING COMPONENT MODEL FOR STEADY-dimensional heat transfer simulations require complex methods for describing the model geometry. This added #12;1 THERM 2.0: A BUILDING COMPONENT MODEL FOR STEADY-STATE TWO-DIMENSIONAL HEAT TRANSFER Charlie

240

Building environment modeling and minimum-energy control  

E-Print Network [OSTI]

be expanded to study energy loss due to vapor condensation. The mathematical model of the building environment is simplified so that optimal temperature control can be studied. Simulations of the building environment heating system using feed- back.... Heating System Simulation. . OPTIMAL TEMPERATURE CONTROL. . . A. Def i ni ti ons 8, Model for the Dynamic Programming Algorithm C. The Dynamic Programming Algorithm. . D. Stochastic External Forcing Terms. . E. Optimal Stochastic Heating Control...

Godfrey, James Bradford

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Critical Simulation Based Evaluation of Thermally Activated Building Systems (TABS) Design Models  

E-Print Network [OSTI]

building systems for low energy buildings: System analysismeasurement of six low energy buildings in different partspointed out that low energy buildings may under- perform

Basu, Chandrayee

2012-01-01T23:59:59.000Z

242

Renewable Energy Applications for Existing Buildings: Preprint  

SciTech Connect (OSTI)

This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

Hayter, S. J.; Kandt, A.

2011-08-01T23:59:59.000Z

243

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesBuilding Stock. Golden, Colorado: National Renewable Energy

Feng, Wei

2013-01-01T23:59:59.000Z

244

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings August 12,Standard for Energy Efficiency of Public Buildings. Energyfor Energy Efficiency of Residential Buildings in Hot Summer

Feng, Wei

2013-01-01T23:59:59.000Z

245

Combining building thermal simulation methods and LCA methods  

E-Print Network [OSTI]

amount of energy used for operating the building, combined with an increased use of renewable energy is that the increased requirements to the energy performance of buildings (as expressed in EU Directive 2002/91/EC), may for low-energy buildings, where a relatively large amount of resources is used during construction

Hansen, René Rydhof

246

2014 ASHRAE/IBPSA-USA Building Simulation Conference  

E-Print Network [OSTI]

2014 ASHRAE/IBPSA-USA Building Simulation Conference Atlanta, GA September 10-12, 2014 BUILDING) are created each day [IBM 2012]. Furthermore, the rate is increasing so quickly that 90% of the data

Tennessee, University of

247

Building Momentum | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudget FormulationCamberly HomesBuilding

248

Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables  

Broader source: Energy.gov [DOE]

Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

249

Building America Top Innovations Hall of Fame Profile – Building Energy Optimization Analysis Method (BEopt)  

Office of Energy Efficiency and Renewable Energy (EERE)

This Building America Innovations profile describes the DOE-sponsored BEopt software, which ensures a consistent analysis platform and accurate simulations. Many BEopt algorithms have been adopted by private-sector HERS software tools that have helped improve the energy efficiency of tens-of-thousands of ENERGY STAR-certified homes.

250

PSNC Energy (Gas)- Green Building Rate Discount  

Broader source: Energy.gov [DOE]

This discounted rate is available to commercial customers whose building meets the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification or equivalent. To...

251

INTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE  

E-Print Network [OSTI]

Integrated Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting & Air FlowINTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems

252

Advanced Energy Retrofit Guide Retail Buildings  

SciTech Connect (OSTI)

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

253

Advanced Energy Retrofit Guide Office Buildings  

SciTech Connect (OSTI)

The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-27T23:59:59.000Z

254

Building Energy Codes Program | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudget FormulationCamberly Homes -Building

255

2015 Building Energy Summit | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWindProjectEnergyDepartment of4Building

256

Building Energy Modeling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies » Building Energy

257

Energy Efficiency Evaluation and Planning for Existing Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Areas Sustainable Buildings & Campuses Energy Efficiency Evaluation and Planning for Existing Buildings Energy Efficiency Evaluation and Planning for Existing...

258

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

average commercial buildings site energy usage of 91 kBtu/commercial buildings, even though the average Energy Usage

Hong, Tianzhen

2014-01-01T23:59:59.000Z

259

Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents  

SciTech Connect (OSTI)

Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.

Sanyal, Jibonananda [ORNL] [ORNL; New, Joshua Ryan [ORNL] [ORNL; Edwards, Richard [ORNL] [ORNL; Parker, Lynne Edwards [ORNL] [ORNL

2014-01-01T23:59:59.000Z

260

Achieving Energy Efficiency in Exis0ng Buildings How achieve significant commercial building energy efficiency?  

E-Print Network [OSTI]

· Led BU Energy Audit over past 3 years · University Sustainability CommiAchieving Energy Efficiency in Exis0ng Buildings ·How achieve significant commercial building energy efficiency? Focus on HVAC. ·Our solu0on

Hutyra, Lucy R.

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

On Variations of Space-heating Energy Use in Office Buildings  

SciTech Connect (OSTI)

Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

Lin, Hung-Wen; Hong, Tianzhen

2013-05-01T23:59:59.000Z

262

Energy Efficiency Trends in Residential and Commercial Buildings...  

Energy Savers [EERE]

Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building...

263

Worldwide Status of Energy Standards for Buildings - Appendices  

E-Print Network [OSTI]

for NON-RESIDENTIAL BUILDINGS. This survey has been designedtypes of energy standards for buildings. Please respond asI: GENERAL OVERVIEW OF BUILDING ENERGY STANDARDS Does your

Janda, K.B.

2008-01-01T23:59:59.000Z

264

Building Energy Codes Program Overview - 2014 BTO Peer Review...  

Broader source: Energy.gov (indexed) [DOE]

of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Building Energy Codes Program activities. Through...

265

Energy Management Systems Package for Small Commercial Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Management Systems Package for Small Commercial Buildings Energy Management Systems Package for Small Commercial Buildings Commercial Buildings Integration Project for the...

266

The State Energy Program: Building Energy Efficiency and Renewable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The State Energy Program: Building Energy Efficiency and Renewable Energy Capacity in the States Prepared for Oak Ridge National Laboratory June 30, 2010 Submitted by TecMarket...

267

REDESIGN OF HVAC SYSTEM TO IMPROVE ENERGY EFFICIENCY OF EDUCATIONAL BUILDING.  

E-Print Network [OSTI]

??An energy modeling software was used to analyze the current building configuration and simulations were performed in an attempt to redesign the current HVAC system… (more)

Hagene, Brian Matthew

2012-01-01T23:59:59.000Z

268

Building Simulation Modelers are we big-data ready?  

SciTech Connect (OSTI)

Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical aspects of managing big data, the paper details design of experiments in anticipation of large volumes of data. The cost of re-reading output into an analysis program is elaborated and analysis techniques that perform analysis in-situ with the simulations as they are run are discussed. The paper concludes with an example and elaboration of the tipping point where it becomes more expensive to store the output than re-running a set of simulations.

Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

2014-01-01T23:59:59.000Z

269

Handbook of energy use for building construction  

SciTech Connect (OSTI)

The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

1980-03-01T23:59:59.000Z

270

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

271

Building a Network Simulation Model of the Teragrid Network  

E-Print Network [OSTI]

Building a Network Simulation Model of the Teragrid Network Thomas Hacker Preston Smith* Computer in designing and using an accurate network simulation model of the Teragrid network, and the performance

Jiang, Wen

272

EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings...  

Energy Savers [EERE]

Energy-Saving Homes, Buildings, and Manufacturing EERE FY 2016 Budget Overview -- Energy-Saving Homes, Buildings, and Manufacturing Office of Energy Efficiency and Renewable Energy...

274

Better Buildings Neighborhood Program | Department of Energy  

Energy Savers [EERE]

helped more than 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of homes and buildings. These leading...

275

Buildings Technologies Deployment | Clean energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use...

276

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

HVAC consumes more electricity in September, the daily trendsHVAC Equipment Figure 44 Building 2 typical weekday electricity consumption trendHVAC Equipment Figure 45 Building 2 typical weekend electricity consumption trend

Hong, Tianzhen

2014-01-01T23:59:59.000Z

277

Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings  

SciTech Connect (OSTI)

Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

2012-06-01T23:59:59.000Z

278

Midwest Building Energy Program | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 MasterAcquisiti ----Energy3-SE-1505)Midwest Building

279

Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants  

E-Print Network [OSTI]

of LEED-Certified Commercial Buildings. ” Proceedings,on Energy Efficiency in Buildings, ACEEE, Washington DC,System User Interface for Building Occupants. ” ASHRAE

Lehrer, David; Vasudev, Janani

2011-01-01T23:59:59.000Z

280

Building Energy Efficiency in Rural China  

SciTech Connect (OSTI)

Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries  

E-Print Network [OSTI]

Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

Smith, Jonathan Y. (Jonathan York), 1979-

2004-01-01T23:59:59.000Z

282

NASA Net Zero Energy Buildings Roadmap  

SciTech Connect (OSTI)

In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

2014-10-01T23:59:59.000Z

283

Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications  

SciTech Connect (OSTI)

Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated “dumb” nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated ‘smart grid’. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced to understand their implications before they can be successfully implemented in the power system.

Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

2014-12-24T23:59:59.000Z

284

Energy Efficiency in Buildings- the Utilities View  

E-Print Network [OSTI]

PAGE 1 Energy Efficiency in Buildings - the Utilities View U. K?nig RWE Energy AG The energy to lead ESL-IC-08-10-27 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE... International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 RWE Energy / Energieeffizienz bei Immobilien / U. K?nig / ICEBO '08 SEITE 3 RWE ? One of the five leading Energy Companies in Europe > Nr 1 producer of electricity...

Konig, U.

285

Energy Information Handbook: Applications for Energy-Efficient Building Operations  

SciTech Connect (OSTI)

This handbook will give you the information you need to plan an energy-management strategy that works for your building, making it more energy efficient.

New Buildings Institute; Pacific Northwest National Laboratory; Granderson, Jessica; Piette, Mary Ann; Rosenblum, Ben; Hu, Lily; Harris, Daniel; Mathew, Paul; Price, Phillip; Bell, Geoffrey; Katipamula, Srinivas; Brambley, Michael

2011-10-01T23:59:59.000Z

286

Building energy retrofitting: from energy audit to renovation proposals.  

E-Print Network [OSTI]

?? Abstract The built environment is responsible for 40% of the global energy demand (1). To reduce building energy consumption, regulations are enhancing the appeal… (more)

Clément, Paul Francois

2012-01-01T23:59:59.000Z

287

Flexible Framework for Building Energy Analysis: Preprint  

SciTech Connect (OSTI)

In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

2012-09-01T23:59:59.000Z

288

Nonresidential Building Energy Use Disclosure Program  

E-Print Network [OSTI]

® program online tool for managing building energy use data. (hk) "Prospective buyer" means a person who has)"Data Verification Checklist" means a report generated by Portfolio Manager that summarizes a property's physical· ·/ Nonresidential Building Energy Use Disclosure Program California Code of Regulations Title

289

Energy Efficiency Standards for Public Buildings  

Broader source: Energy.gov [DOE]

In May 2008, Idaho enacted HB 422 (the Energy Efficient State Building Act) to reduce the amount of energy consumed by state facilities. To the extent feasible and practical, all major facility...

290

Energy Efficiency Standards for State Buildings  

Broader source: Energy.gov [DOE]

In April 2009, the legislature passed [http://data.opi.mt.gov/bills/2009/billhtml/SB0049.htm S.B. 49], creating energy efficiency standards for state-owned and state-leased buildings. Energy...

291

Commercial Building Energy Efficiency Education Project  

SciTech Connect (OSTI)

The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

None

2013-01-13T23:59:59.000Z

292

Energy Efficient Retrofits and Green Building Practices  

E-Print Network [OSTI]

. Moreover, the increase in demand is also causing rise in pollution levels. Therefore, the subject of energy efficient retrofits and green building practices is becoming increasingly important. Based on the latest walkthrough energy audit it is proven...

Rahman, M.

2010-01-01T23:59:59.000Z

293

Energy Impacts of Nonlinear Behavior of PCM When Applied into Building Envelope: Preprint  

SciTech Connect (OSTI)

Previous research on phase change materials (PCM) for building applications has been done for several decades resulting in plenty of literature on PCM properties, temperature, and peak reduction potential. Thus, PCMs are a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have PCM modeling features, and even fewer have been validated. Additionally, there is no previous research that indicates the level of accuracy when simulating PCM from a building energy simulation perspective. This study analyzes the effects a nonlinear enthalpy profile has on thermal performance and expected energy benefits for PCM-enhanced insulation.

Tabares-Velasco, P. C.

2012-08-01T23:59:59.000Z

294

Occupant Control of Windows: Accounting for Human Behavior in Building Simulation  

E-Print Network [OSTI]

performance of many low energy buildings. There is a richgrowing interest in low energy building designs are drivingcomfortable and usable low energy buildings. Specifically,

Borgeson, Sam; Brager, Gail

2008-01-01T23:59:59.000Z

295

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

Figure 9 ? Annual electricity consumption comparison of the total annual electricity consumption, Buildings A and B mostly  measure  electricity  consumption,  cooling  loads, 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

296

Building Energy Modeling (BEM) Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Annex 58: validation-grade experiments Targeted research & advanced development * Modelica Buildings Library & IEA Annex 60 * Modelica + Functional Mockup Interface * Will form...

297

Building Information Modeling (BIM)-Based Daylighting Simulation and Analysis  

E-Print Network [OSTI]

that the architect and the engineer have to follow to prepare the simulation input files, and the complexity depends on the tools. Currently, Building Information Modeling (BIM) is widely used in the AECO industries and BIM models are used as a means of exchanging... files, graphical user interfaces for defining model geometry were have been created for simulation tools. In addition, geometry modeling tools (CAD tools) were linked with daylighting simulation tools. Currently Building information Model (BIM...

Kota, S.; Haberl, J.S.; Clayton, M.; Yan, W.

298

Building Load Simulation and Validation of an Office Building  

E-Print Network [OSTI]

of the model for electricity use were calibrated to match the actual electricity use for the average year of the available data for years 1998, 1999, and 2000. The monthly and annual cooling loads of the building were calculated by using the DOE2.1E. The extra...

Alghimlas, F.

2002-01-01T23:59:59.000Z

299

Energy Department Announces $5 Million for Residential Building...  

Office of Environmental Management (EM)

Announces 5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy...

300

BuildingSync File Download | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy audit data, developed using the standard energy data terminology defined in the Building Energy Data Exchange Specification (BEDES). Learn more about BuildingSync or view...

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building Energy-Efficiency Best Practice Policies and Policy Packages  

E-Print Network [OSTI]

the Building Energy Efficiency Market in India - Lessonson the high-energy-performance market, most constructionand Market-based Mechanisms to Improve Building Energy

Levine, Mark

2014-01-01T23:59:59.000Z

302

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

the Community Energy Challenge in Illinois. Washington, DC:Improving Energy Code Compliance in Illinois's Buildings.Improving Energy Code Compliance in Illinois's Buildings.

Williams, Alison

2013-01-01T23:59:59.000Z

303

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

Akbari, H.

2010-01-01T23:59:59.000Z

304

DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training The National Renewable Energy Laboratory...

305

Better Buildings Network View | June 2014 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

June 2014 Better Buildings Network View | June 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network....

306

Better Buildings Network View | March 2014 | Department of Energy  

Energy Savers [EERE]

March 2014 Better Buildings Network View | March 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

307

Energy conservation in commercial and residential buildings  

SciTech Connect (OSTI)

Energy experts have indicated that we can, by exploiting currently available technology, cut energy consumption by 30 to 50% in new buildings and 10 to 30% in existing buildings, with no significant loss in standard of living, comfort, or convenience. This book surveys the many architectural/engineering techniques for combating energy waste in residential and commercial buildings. The experts in these 10 chapters acquaint us with what is being done and with what can be done in the design, construction, and maintenance of buildings in order to foster energy efficiency; they emphasize life-cycle costing as the only sound approach toward energy conservation. A separate abstract was prepared for each chapter; all abstracts will appear in Energy Abstracts for Policy Analysis (EAPA), with 5 appearing in Energy Research Abstracts (ERA).

Chiogioji, M.H.; Oura, E.N.

1982-01-01T23:59:59.000Z

308

Business Case for Energy Efficient Building Retrofit and Renovation...  

Energy Savers [EERE]

More Documents & Publications Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Marketing and Market Transformation Building America...

309

Better Buildings Quarterly Program Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-- SEP Data Dashboard Austin Energy Data Dashboard Better Buildings Neighborhood Program Home Accomplishments History Better Buildings Partners Stories Interviews Videos...

310

Predicted versus monitored performance of energy-efficiency measures in new commercial buildings from energy edge  

SciTech Connect (OSTI)

Energy Edge is a research-oriented demonstration program involving 28 new commercial buildings in the Pacific Northwest. This paper discusses the energy savings and cost-effectiveness of energy-efficiency measures for the first 12 buildings evaluated using simulation models calibrated with measured end-use data. Average energy savings per building from the simulated code baseline building was 19%, less than the 30% target. The most important factor for the lower savings is that many of the installed measures differ from the measures specified in the design predictions. Only one of the first 12 buildings met the project objective of reducing energy use by more than 30% at a cost below the target of 56 mills/kWh (in 1991 dollars). Based on results from the first 12 calibrated simulation models, 29 of the 66 energy-efficiency measures, or 44%, met the levelized cost criterion. Despite the lower energy savings from individual measures, the energy-use intensities of the buildings are lower than other regional comparison data for new buildings. The authors review factors that contribute to the uncertainty regarding measured savings and suggest methods to improve future evaluations.

Piette, M.A.; Nordman, B.; deBuen, O.; Diamond, R.

1993-08-01T23:59:59.000Z

311

On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy's 1000 acres of landJune 2013|On thethe522

312

Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes  

E-Print Network [OSTI]

LITIGATION AGAINST ENERGY CONSERVATION BUILDING CODES I TWO-OF LITIGATION AGAINST ENERGY CONSERVATION BUILDING CODESDIFFERENT PURPOSES OF ENERGY CONSERVATION BUILDING CODES B.

Benenson, P.

2011-01-01T23:59:59.000Z

313

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

and Renewable Energy, Office of Building Technology,and Renewable Energy, Office of Building Technology,and renewable energy improvements to the building. One of

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

314

ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

Quality Measurements in Energy- Efficient Buildings; April,air are built into energy-efficient buildings, 2 Burnersuse to design new energy efficient buildings and to analyze

Sonderegger, R. C.

2011-01-01T23:59:59.000Z

315

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

China demonstration energy- efficient commercial building”,China Demonstration Energy Efficient Office Building insideUS-China demonstration energy-efficient office building Peng

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

316

Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response  

E-Print Network [OSTI]

As  we  develop low?energy buildings, the need for models Building Energy Information and Control Systems for Low-Building  Energy  Information  and  Control  Systems  for  Low­

Piette, Mary Ann

2014-01-01T23:59:59.000Z

317

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

January 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 28 29 30 31 1 2 3 4 5 6 7 8 9 10 Water World: Success Stories and Tools for Water Use Reduction in Your Building Portfolio...

318

State Buildings Energy Reduction Plan  

Broader source: Energy.gov [DOE]

The Governor of Virginia signed Executive Order 82, "Greening of State Government" in June 2009 as part of the greater RENEW VIRGINIA Initiative. This Order builds upon [http://www.lva.virginia.gov...

319

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

December 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 30 1 2 3 4 5 6 BENEFIT Funding Opportunity - Webinar 2 3:00PM to 4:00PM EST Buildings of the Future Research Project Launch...

320

BUI.LDING ENERGY 1987 Edition  

E-Print Network [OSTI]

for Offices, Retail and Wholesale Stores Section Title PaaeDesign Requirements ...·.·.......·... 55Energy Building Energy Efficiency Standards Energy Conservation Standards for New Offices, Retail and Wholesale ...·...··...... - Retail and Wholesale Stores . Ventilation Requirements .... 81 85 106 122 138 154 Energy Conservation

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A COMPARISON BETWEEN CODYRUN AND TRNSYS, SIMULATION MODELS FOR THERMAL BUILDINGS BEHAVIOUR.  

E-Print Network [OSTI]

A COMPARISON BETWEEN CODYRUN AND TRNSYS, SIMULATION MODELS FOR THERMAL BUILDINGS BEHAVIOUR. F of climate. This software #12;has already been used for the validation of prescriptions concerning low energy; E.Mail : lucas@iremia.univ-reunion.fr ABSTRACT: Simulation codes of thermal behaviour could

Paris-Sud XI, Université de

322

Economic Energy Savings Potential in Federal Buildings  

SciTech Connect (OSTI)

The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

2000-09-04T23:59:59.000Z

323

NREL's Building Component Library for Use with Energy Models  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

324

Design for Energy Efficiency in Residential Buildings  

E-Print Network [OSTI]

-saving efficiency was 50%. Tab. 1 Difference of over all heat transfer coefficient limitation of building Exterior wall Exterior window Roof 65% energy-saving residence buildings in Beijing (>5 stories) 0.6 2.8 0.6 South of Sweden 0.17 2.5 0...

Song, M.; Zhang, Y.; Yang, G.

2006-01-01T23:59:59.000Z

325

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings (pp. 5-387 -Summer Study on Energy Efficiency in Buildings. pp. 8-249Summer Study on Energy Efficiency in Buildings. pp. 4-275 -

Williams, Alison

2013-01-01T23:59:59.000Z

326

Gauging Improvements in Urban Building Energy Policy in India  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings, 4:351–366.Summer Study on Energy Efficiency in Buildings, 8:209–224.Summer Study on Energy Efficiency in Buildings, 10-196– 212.

Williams, Christopher

2013-01-01T23:59:59.000Z

327

Buildings Energy Program annual report, FY 1991  

SciTech Connect (OSTI)

The Buildings Energy Program at PNL conducts research and development (R&D) for DOE`s Office of Building Technologies (OBT). The OBT`s mission is to lead a national program supporting private and federal sector efforts to improve the energy efficiency of the nation`s buildings and to increase the use of renewable energy sources. Under an arrangement with DOE, Battelle staff also conduct research and development projects for other federal agencies and private clients. This annual report contains an account of the buildings-related research projects conducted at PNL during fiscal year (FY) 1991. A major focus of PNL`s energy projects is to improve the energy efficiency of commercial and residential buildings. Researchers who are developing solutions to energy-use problems view a building as an energy-using system. From this perspective, a desirable solution is not only one that is cost-effective and responsive to the needs of the occupants, but also one that optimizes the interaction among the energy components and systems that compose the whole.

Secrest, T.J.

1992-05-01T23:59:59.000Z

328

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

Engineers, 5th Energy Audit Symposium and Productivitycontributions. Numerous energy audits have taken placeabout the accuracy of energy audit procedures used to

Wall, L.W.

2009-01-01T23:59:59.000Z

329

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

330

Effects of internal gain assumptions in building energy calculations  

SciTech Connect (OSTI)

The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal-gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multi-family-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results of this study indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

Christensen, C.; Perkins, R.

1981-01-01T23:59:59.000Z

331

Sault Tribe Building Efficiency Energy Audits  

SciTech Connect (OSTI)

The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

Holt, Jeffrey W.

2013-09-26T23:59:59.000Z

332

Building on Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

easy-to-use tools to size and finance rooftop solar panels; and download virtual energy audit software that can cut costs for building owners and help get retrofits started...

333

Energy Efficiency Program for State Government Buildings  

Broader source: Energy.gov [DOE]

In April 2008, Kentucky enacted legislation ([http://www.lrc.ky.gov/record/08rs/hb2.htm HB 2]) to improve the energy performance of all state-owned and state-leased buildings. The legislation...

334

Green Energy Technology in Public Buildings  

Broader source: Energy.gov [DOE]

Enacted in June 2007, [http://www.leg.state.or.us/07reg/measpdf/hb2600.dir/hb2620.en.pdf House Bill 2620] introduced a unique requirement for installing solar energy systems on public buildings. In...

335

BetterBuildings Financing Energy Efficiency Retrofits in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BetterBuildings Financing Energy Efficiency Retrofits in the Commercial Sector - Part 1 BetterBuildings Financing Energy Efficiency Retrofits in the Commercial Sector - Part 1...

336

Energy Performance Certification of Buildings: A Policy Tool...  

Open Energy Info (EERE)

Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Performance Certification of Buildings: A Policy Tool to...

337

Apply: Building Energy Efficiency Frontiers and Incubator Technologies...  

Energy Savers [EERE]

Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

338

Energy Department's New Buildings Solution Center Shares Proven...  

Office of Environmental Management (EM)

Department's New Buildings Solution Center Shares Proven Strategies for Energy Efficiency Programs Energy Department's New Buildings Solution Center Shares Proven Strategies for...

339

Sustainable Energy Resources for Consumers Webinar on Building...  

Energy Savers [EERE]

Sustainable Energy Resources for Consumers Webinar on Building Design & Passive Solar Transcript Sustainable Energy Resources for Consumers Webinar on Building Design & Passive...

340

Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables  

Reports and Publications (EIA)

The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Better Buildings Webinar: Making Utility Energy Efficiency Funds...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy's Better Buildings will host a webinar on innovative collaborations with utilities to bring big energy savings to their building portfolios and help reduce utility...

342

Gauging Improvements in Urban Building Energy Policy in India  

E-Print Network [OSTI]

Urban Building Energy Policy in India Christopher WilliamsUrban Building Energy Policy in India Christopher Williamsefficiency policies and programs in India are in an active

Williams, Christopher

2013-01-01T23:59:59.000Z

343

Commercial Building Energy Asset Score Sample Report | Department...  

Broader source: Energy.gov (indexed) [DOE]

Score Sample Report Commercial Building Energy Asset Score Sample Report Example report showing the results of an energy asset score rating on a building energyassetscoresample...

344

Making Buildings Better: Indie Energy & the Geothermal Breakthrough...  

Broader source: Energy.gov (indexed) [DOE]

Making Buildings Better: Indie Energy & the Geothermal Breakthrough Making Buildings Better: Indie Energy & the Geothermal Breakthrough March 24, 2011 - 4:26pm Addthis April Saylor...

345

Energy Savings Through Improved Mechanical Systems and Building...  

Office of Environmental Management (EM)

Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

346

Building Energy Codes Implementation Overview - 2014 BTO Peer...  

Energy Savers [EERE]

Building Energy Codes Implementation Overview - 2014 BTO Peer Review Building Energy Codes Implementation Overview - 2014 BTO Peer Review Presenter: Jeremiah Williams, U.S....

347

Building Energy Codes Program Overview - 2014 BTO Peer Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Energy Codes Program. Through robust feedback, the BTO...

348

Commercial Building Energy Asset Score: 2013 Pilot Overview ...  

Office of Environmental Management (EM)

Score: 2013 Pilot Overview Commercial Building Energy Asset Score: 2013 Pilot Overview provides an overview of the 2013 pilot for the commercial building energy asset score...

349

Commercial Building Energy Asset Scoring Tool Application Programming...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Building Energy Asset Scoring Tool Application Programming Interface Commercial Building Energy Asset Scoring Tool Application Programming Interface slides from June 14,...

350

An Extensible Sensing and Control Platform for Building Energy...  

Office of Environmental Management (EM)

An Extensible Sensing and Control Platform for Building Energy Management An Extensible Sensing and Control Platform for Building Energy Management Lead Performer: Carnegie Mellon...

351

Scripted Building Energy Modeling and Analysis (Presentation)  

SciTech Connect (OSTI)

Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

Macumber, D.

2012-10-01T23:59:59.000Z

352

Buildings Technologies Deployment | Clean energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services »"Building theBuildingBuilding

353

Online map of buildings using radiant technologies  

E-Print Network [OSTI]

of radiant slab cooling using building simulation and fieldmeasurements. Energy and Buildings, 41, 3, 320-330.2013) Net-Zero Energy Buildings - Worldwide. Available at:

Karmann, Caroline; Schiavon, Stefano; Bauman, Fred

2014-01-01T23:59:59.000Z

354

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network [OSTI]

P. “Real Time Model-based Energy Diagnostics in Buildings. ”Proc. Building Simulation ’11, Sydney, Australia, Novemberhttp://www.eere.energy.gov/buildings/energyplus/. 7. http://

Bailey, Trevor

2013-01-01T23:59:59.000Z

355

DEVELOPMENT OF A FLEXIBLE, MULTIZONE, MULTIFAMILY BUILDING SIMULATION MODEL  

SciTech Connect (OSTI)

Weatherization of multifamily buildings is gaining increased attention in the U.S. Available energy audit tools for multifamily buildings were found to need desirable improvements. On the wish list of field experts for enhanced features was the basic ability to model multizone buildings (i.e., one thermal zone per dwelling unit) with simplified user inputs, which allows a better analysis of decentralized and centralized HVAC and domestic hot water systems of multifamily buildings without having to create detailed building models. To address the desired capabilities, development of an enhanced energy audit tool was begun in 2011. The tool is a strategically structured, flexible, one-zone-per-unit, DOE-2.1e model coupled with a simplified user interface to model small to large multifamily buildings with decentralized or centralized systems and associated energy measures. This paper describes the modeling concept and its implementation.

Malhotra, Mini [ORNL] [ORNL; Im, Piljae [ORNL] [ORNL

2012-01-01T23:59:59.000Z

356

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building

357

Residential Energy Simulation and Scheduling: A Case Study Approach Jagannathan Venkatesh, Baris Aksanli, Tajana Simuni Rosing  

E-Print Network [OSTI]

, green energy, residential energy management, smart scheduling I. INTRODUCTION Building energy nature of home energy consumption [5]. A majority of work has focused on characterizing green energyResidential Energy Simulation and Scheduling: A Case Study Approach Jagannathan Venkatesh, Baris

Simunic, Tajana

358

Simulation Technology Laboratory Building 970 hazards assessment document  

SciTech Connect (OSTI)

The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

Wood, C.L.; Starr, M.D.

1994-11-01T23:59:59.000Z

359

Discovering unexpected information using a building energy visualization tool.  

E-Print Network [OSTI]

platform to manage buildings energy. Smart buildings are already managed by BMS (Building Management SystemDiscovering unexpected information using a building energy visualization tool. Lange B.a, Rodriguez insight about buildings energy consumption. We will focus on the usage of this software to extract

Paris-Sud XI, Université de

360

U.S. Department of Energy Commercial Reference Building Models of the National Building Stock  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Country Report on Building Energy Codes in India  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

2009-04-07T23:59:59.000Z

362

Country Report on Building Energy Codes in Canada  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

Shui, Bin; Evans, Meredydd

2009-04-06T23:59:59.000Z

363

Country Report on Building Energy Codes in China  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

2009-04-15T23:59:59.000Z

364

Country Report on Building Energy Codes in Australia  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

2009-04-02T23:59:59.000Z

365

Country Report on Building Energy Codes in Japan  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

Evans, Meredydd; Shui, Bin; Takagi, T.

2009-04-15T23:59:59.000Z

366

Country Report on Building Energy Codes in Korea  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

2009-04-17T23:59:59.000Z

367

Country Report on Building Energy Codes in the United States  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

Halverson, Mark A.; Shui, Bin; Evans, Meredydd

2009-04-30T23:59:59.000Z

368

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding

369

Simulator Building and Parameter Optimization of an Autonomous Robotic Fish  

E-Print Network [OSTI]

Simulator Building and Parameter Optimization of an Autonomous Robotic Fish Jindong Liu, Huosheng@essex.ac.uk Abstract-- This paper presents a short review on the research of robotic fish. A simulation environment for robotic fish is built and the experiment shows that it is a convenient way to make research on the robotic

Hu, Huosheng

370

Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use  

SciTech Connect (OSTI)

This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. Building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/ Energy Information Administration survey data, Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data.

Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

2012-01-01T23:59:59.000Z

371

Assessment of natural ventilation potentials on free-form architecture design using CFD simulations: a Learning Hub building in Singapore  

E-Print Network [OSTI]

DESIGN USING CF D SIMULATIONS: A LEARNING HUB BUILDING INLearning Hub computational model. In order to build up the simulation

Szu Cheng, CHIEN

2013-01-01T23:59:59.000Z

372

Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota  

SciTech Connect (OSTI)

The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

2005-03-04T23:59:59.000Z

373

Understanding Building Energy Codes and Standards  

SciTech Connect (OSTI)

Energy codes and standards play a vital role by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. The Difference Between Energy Codes, Energy Standards and the Model Energy Code Energy codes--specify how buildings must be constructed or perform, and are written in mandatory, enforceable language. States or local governments adopt and enforce energy codes for their jurisdictions. Energy standards--describe how buildings should be constructed to save energy cost-effectively. They are published by national organizations such as the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). They are not mandatory, but serve as national recommendations, with some variation for regional climate. States and local governments frequently use energy standards as the technical basis for developing their energy codes. Some energy standards are written in mandatory, enforceable language, making it easy for jurisdictions to incorporate the provisions of the energy standards directly into their laws or regulations.

Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

2003-03-01T23:59:59.000Z

374

Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation with Large Eddy Simulation  

E-Print Network [OSTI]

save energy compared to mechanical ventilation systems. In building design the prediction save energy consumed by the heating, ventilating, and air- conditioning systems in a building. In a naturally ventilated building, air is driven in and out due to pressure differences produced by wind

Chen, Qingyan "Yan"

375

Energy consumption of building 39  

E-Print Network [OSTI]

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

376

2014 Building America House Simulation Protocols  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker RegistryDepartment2014 Building America House

377

Technologies for Energy Efficient Buildings  

E-Print Network [OSTI]

.4.2.3 Total electrical energy consumption 33 3.4.2.4 Consumer alert messages 33 3.5 Laboratory Testing of Electricity Delivery and Energy Reliability Under Award No. DE-FC26-06NT42847 Hawai`i Distributed Energy of work sponsored by an agency of the United States Government. Neither the United States Government nor

378

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding the Distribution Grid ofFebruary

379

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding the Distribution Grid ofFebruaryJune

380

NEEP Building Energy Codes Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a PeacefulDrivingItNational CouncilNEEP Building

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Technologies Office | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6Clean Energy |-FormerofBuilding RemovalBuilding

382

Integrating energy expertise into building design  

SciTech Connect (OSTI)

Most commercial buildings designed to today will use more energy to operate, and cost more to design and construct than necessary. Significant energy savings cold be achieved with little or not increase in first cost if energy-efficient design technologies were used. Research into integration of building systems indicates that by considering energy performance early in the design process, energy savings between 30% and 50% of current energy consumption rates are technically and economically feasible. However, most building design teams do not adequately consider the energy impacts of design decisions to achieve these savings. The US Department of Energy has initiated a project, led by Pacific Northwest Laboratory, to develop advanced computer-based technologies that will help designers take advantage of these large potential energy savings. The objective of this work is to develop automated, intelligent, energy design assistance that can be integrated into computer aided design systems of the future. This paper examines the need for this technology by identifying the impediments to energy-efficient design, identifies essential and desirable features of such systems, presents the concept under development in this effort, illustrates how energy expertise might be incorporated into design, and discusses the importance of an integrated approach. 8 refs., 1 fig.

Brambley, M.R.; Stratton, R.C. (Pacific Northwest Lab., Richland, WA (USA)); Bailey, M.L. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (USA). Office of the Deputy Assistant Secretary for Building Technologies)

1990-08-01T23:59:59.000Z

383

Energy Analysis and Energy Conservation Options for the Supreme Court and Attorney General Buildings Final Report, Prepared for the Energy Efficiency Division, Texas Public Utility Commission  

E-Print Network [OSTI]

loads, is solar film on the windows. Both the proposed ASHRAE standards and the California standards appear to reduce energy use. The following Table shows EUIs for the Supreme Court and Attorney General buildings with different options. EUI...'s For The Supreme Court and Attorney General Buildings (KBtu/sf-yr) ABSTRACT The energy use and peak load requirement of the Supreme Court & Attorney General Buildings in Austin, Texas were analyzed using the DOE 2.IB building energy simulation program. An analysis...

Farzad, M.; O'Neal, D. L.

1986-01-01T23:59:59.000Z

384

Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector  

E-Print Network [OSTI]

Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector to Support and continuing development of a model of time varying energy consumption in the US commercial building stock targeting very low future energy consumption in the building stock. Model use has highlighted the scale

385

Capacity Building in Wind Energy for PICs  

E-Print Network [OSTI]

indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga system. · About 30 other islands could have potential for grid connected wind turbines in the 100-1000 k1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva

386

INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS  

E-Print Network [OSTI]

new buildings incorporating energy- efficient designs, Theenergy-efficient residential, studied as possible models design.

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

387

Energy-Aware Meeting Scheduling Algorithms for Smart Buildings  

E-Print Network [OSTI]

The increasing worldwide concern over the energy con- sumption of commercial buildings calls for new approaches; Build- ing energy efficiency 1 Introduction The energy consumption of commercial buildings is of growingEnergy-Aware Meeting Scheduling Algorithms for Smart Buildings Abhinandan Majumdar Computer Systems

Albonesi, David H.

388

DOE Commercial Building Energy Asset Score Web Service (Draft)  

SciTech Connect (OSTI)

Documentation of the DOE Commercial Building Energy Asset Score application programming interface (API).

Elliott, Geoffrey; Wang, Na

2013-09-30T23:59:59.000Z

389

Renewable energy in commercial buildings  

E-Print Network [OSTI]

è la geotermia. Le energie eolica e solare si attestanospecialmente quelle solari ed eolica, si presentano inproduzione dell'energia eolica. L’ANALISI DEL CICLO DI VITA

Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

2008-01-01T23:59:59.000Z

390

ENERGY UTILIZATION ANALYSIS OF BUILDINGS  

E-Print Network [OSTI]

Solar Energy, Cairo, Egypt, June 16 - 22, 1978 RECEIVED LBL7826 LAWRENCE BEPXVlfV LABORATORY JUN 141978 LIBRARY AND DOCUMENTS SECTION TWO-WEEK LOAN

Lokmanhekim, M.

2011-01-01T23:59:59.000Z

391

Buildings Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the DOE Zero Energy Ready Home Program 12:00PM to 1:00PM EDT 21 22 23 24 25 26 27 Alaska Rural Energy Conference 12:00PM to 9:00PM AKDT US DOE Housing Innovation Awards 11:30AM to...

392

Energy Savings in Industrial Buildings  

E-Print Network [OSTI]

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

Zhou, A.; Tutterow, V.; Harris, J.

393

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network [OSTI]

load reduction for a net zero energy building, ACEEE Summergreen building or net zero energy building goals, which

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

394

Building Operator Certification: Improving Commercial Building Energy Efficiency Through Operator Training and Certification  

E-Print Network [OSTI]

Building Operator Certification (BOC) is a competency-based certification for building operators designed to improve the energy efficiency of commercial buildings. Operators earn certification by attending training sessions and completing project...

Putnam, C.; Mulak, A.

2001-01-01T23:59:59.000Z

395

Abstract--Energy efficiency for the buildings is vital for the environment and sustainability. Buildings are responsible for  

E-Print Network [OSTI]

. Index Terms-- Green Buildings, Energy Efficiency, Energy Modeling, Smart Energy, Energy1 Abstract--Energy efficiency for the buildings is vital for the environment and sustainability. Buildings are responsible for significant energy consumption and carbon dioxide emissions in the United

Jain, Raj

396

Frequently Asked Questions About the Buildings Performance Database...  

Broader source: Energy.gov (indexed) [DOE]

Refrigerator Standards Save Consumers Billions Tools EnergyPlus Whole Building Energy Simulation OpenStudio Energy Simulation Application Suite Buildings Performance...

397

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building Performance31

398

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4 Case Study,

399

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4 Case Study,5

400

Building Energy-Efficiency Best Practice Policies and Policy Packages  

E-Print Network [OSTI]

in China. Vienna: Renewable Energy & Energy EfficiencyY. , & Zeng, D. (2011). China Renewable Energy Architecture155 Building-Integrated Renewable Energy

Levine, Mark

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Commercial Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf More DocumentsAt an estimated cost of $38

402

Energy Efficient Industrial Building Design  

E-Print Network [OSTI]

" or precooled air concept of ventilation, with a high temperature hot-water/chilled-water changeover piping system. Extensive energy recovery systems would be provided for production equipment and oil mist control would be by local captive systems, rather...

Holness, G. V. R.

1983-01-01T23:59:59.000Z

403

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

E-Print Network [OSTI]

in the LCA of low energy buildings,” Energy and Buildingsin the LCA of low energy buildings,” Energy and Buildingsof conventional and low-energy buildings: A review article,”

Aden, Nathaniel

2010-01-01T23:59:59.000Z

404

Building Envelopes | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmerica »of

405

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Williams, Alison

2012-01-01T23:59:59.000Z

406

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Williams, Alison

2013-01-01T23:59:59.000Z

407

Recent Developments of the Modelica"Buildings" Library for Building Energy and Control Systems  

SciTech Connect (OSTI)

At the Modelica 2009 conference, we introduced the Buildings library, a freely available Modelica library for building energy and control systems. This paper reports the updates of the library and presents example applications for a range of heating, ventilation and air conditioning (HVAC) systems. Over the past two years, the library has been further developed. The number of HVAC components models has been doubled and various components have been revised to increase numerical robustness.The paper starts with an overview of the library architecture and a description of the main packages. To demonstrate the features of the Buildings library, applications that include multizone airflow simulation as well as supervisory and local loop control of a variable air volume (VAV) system are briefly described. The paper closes with a discussion of the current development.

Wetter, Michael; Zuo, Wangda; Nouidui, Thierry Stephane

2011-04-01T23:59:59.000Z

408

Sustainable Energy Future in China's Building Sector  

E-Print Network [OSTI]

, The Netherlands and Finland (11W/m²). Heating and hot water consumption represent 2/3 of energy demand in buildings in China. The thermal performance and heating system efficiency need to be improved dramatically in order to contain the soaring... Efficiency Standard for New Residential Buildings in 1995, the average energy consumption for heating in China is about 90~100kWh/m²a 3 which is still almost twice of that in Sweden, Denmark, The Netherlands and Finland (40~50KWh/m²a). Furthermore...

Li, J.

2007-01-01T23:59:59.000Z

409

An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings  

E-Print Network [OSTI]

Developing an Integrated Building Design Tool by Couplingdesign energy efficient building systems in this complex setting, integrated

Trcka, Marija

2010-01-01T23:59:59.000Z

410

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network [OSTI]

and Energy Management in Zero-Net-Energy Buildings Michaeland Energy Management in Zero-Net-Energy Buildings 1 Michaelgoal of achieving zero-net-energy commercial buildings (

Stadler, Michael

2010-01-01T23:59:59.000Z

411

Building Simulation Modelers Are we big data ready?  

E-Print Network [OSTI]

in 2030 has yet to be built 4 #12;5 Energy Consumption and Production Commercial Site Energy Consumption ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems.S. ­ 41% of primary energy/carbon 73% of electricity, 34% of gas · Buildings in China ­ 60% of urban

Tennessee, University of

412

Department of Energy Completes Demolition of K-33 Building -...  

Office of Environmental Management (EM)

Completes Demolition of K-33 Building - Largest Completed Demo Project in Oak Ridge History Department of Energy Completes Demolition of K-33 Building - Largest Completed Demo...

413

Energy-Efficient Building Standards for State Facilities  

Broader source: Energy.gov [DOE]

Via Executive Order 27, Maine requires that construction or renovation of state buildings must incorporate "green building" standards that would achieve "significant" energy efficiency and...

414

Commercial Building Energy Asset Score 2013 Pilot | Department...  

Broader source: Energy.gov (indexed) [DOE]

understanding of the following: Time requirements for collecting and entering data How energy use intensity (EUI) estimates of a wide range of buildings and building types vary...

415

Energy and Commerce Departments Announce New Centers for Building...  

Office of Environmental Management (EM)

Commerce Departments Announce New Centers for Building Operations Excellence Energy and Commerce Departments Announce New Centers for Building Operations Excellence June 19, 2012 -...

416

Building America Best Practices Series: Volume 12. EnergyRenovations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Best Practices Series: Volume 12. Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners Building America Best Practices Series: Volume...

417

Energy Department Launches Virtual Hackathon to Build the Next...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Launches Virtual Hackathon to Build the Next Big Solar Software Solutions Energy Department Launches Virtual Hackathon to Build the Next Big Solar Software Solutions February 20,...

418

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

Building thermal loadThe building thermal load predictor. . . . . . . .of Figures 1.1 Classification schematic for building MPC

Ma, Yudong

2012-01-01T23:59:59.000Z

419

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

420

Building Solutions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a villageBucyrus, NorthBuhler, Kansas: EnergyREDD Capacity

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Buildings Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy- Mixed HumidBing Liu, PacificThisView14,

422

Building Energy Modeling (BEM) Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigation |Mark LessansEnergyEnergy

423

Building Technologies | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudget byTechnologySecurity

424

Better Buildings Energy Data Accelerator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergyBeowawe7:forOFFICE 0 |Energy Data

425

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Retrieved from National Renewable Energy Laboratory: http://Golden, Colorado: National Renewable Energy Laboratory.for Energy Efficiency and Renewable Energy, Building

Feng, Wei

2013-01-01T23:59:59.000Z

426

SPEER: Building a Regional Energy Efficiency Partnership  

E-Print Network [OSTI]

SPEER: Building a Regional Energy Efficiency Partnership Clean Air Through Energy Efficiency Conference – San Antonio, TX Doug Lewin December 18, 2013 ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... Dec. 16-18 SPEER • Member-based, non-profit organization • The Newest Regional Energy Efficiency Organization (REEO) • Founded in 2011 • 38 members from wide cross section of E.E. industries ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy...

Lewin, D.

2013-01-01T23:59:59.000Z

427

Green Energy Standards for Public Buildings  

Broader source: Energy.gov [DOE]

In March 2012, West Virginia enacted the Green Buildings Act, which applies to all new construction of public buildings, buildings receiving state grant funds, and buildings receiving state...

428

Energy Audit Results for Residential Building Energy Efficiency  

E-Print Network [OSTI]

Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

429

On Variations of Space-heating Energy Use in Office Buildings  

E-Print Network [OSTI]

simulation results with the building databases forthe large office building in Chicago. Figure 9.simulation results with the building databases for the small

Lin, Hung-Wen

2014-01-01T23:59:59.000Z

430

Building Energy Asset Score | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower Basics BiopowerAprilBuildingOctoberof

431

Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint  

SciTech Connect (OSTI)

Net-zero energy buildings generate as much energy as they consume and are significant in the sustainable future of building design and construction. The role of daylighting (and its simulation) in the design process becomes critical. In this paper we present the process the National Renewable Energy Laboratory embarked on in the procurement, design, and construction of its newest building, the Research Support Facility (RSF) - particularly the roles of daylighting, electric lighting, and simulation. With a rapid construction schedule, the procurement, design, and construction had to be tightly integrated; with low energy use. We outline the process and measures required to manage a building design that could expect to operate at an efficiency previously unheard of for a building of this type, size, and density. Rigorous simulation of the daylighting and the electric lighting control response was a given, but the oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed. The RSF project will be thoroughly evaluated for its performance for one year; preliminary data from the postoccupancy monitoring efforts will also be presented with an eye toward the current efficacy of building energy and lighting simulation.

Guglielmetti , R.; Scheib, J.; Pless, S. D.; Torcellini , P.; Petro, R.

2011-03-01T23:59:59.000Z

432

Origins of Analysis Methods Used to Design High Performance Commercial Buildings: Part III, Lighting and Daylighting Simulation  

E-Print Network [OSTI]

Origins of analysis methods used to design high performance commercial buildings: Part III, Lighting and daylighting simulation Sukjoon Oh Jeff S. Haberl Student Member ASHRAE Fellow ASHRAE This study is the third part of the review... methods used in lighting and daylighting simulation programs are described. In companion papers, the origins of the analysis methods of whole-building energy and solar energy analysis programs are reviewed(Oh and Haberl 2014a, 2014b). Introduction...

Oh, S.; Haberl, J.S.

433

Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings  

SciTech Connect (OSTI)

This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with the characteristics of the prototype buildings. The prototype buildings were simulated in the same climate zones used by the prevailing energy codes and standards to evaluate energy savings. Prescriptive packages of recommendations presented in the guide by climate zone include enhanced envelope technologies, lighting and day lighting technologies and HVAC and SWH technologies. The report also documents the modeling assumptions used in the simulations for both the baseline and advanced buildings. Final efficiency recommendations for each climate zone are included, along with the results of the energy simulations indicating an average energy savings over all buildings and climates of approximately 38%.

Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

2006-11-30T23:59:59.000Z

434

Tools for Assessing Building Energy Use in Industrial Plants  

E-Print Network [OSTI]

This presentation will cover a brief history of building energy measures savings potential for industrial plants and briefly characterize building energy measures and their savings identified over approximately the past 15 years in energy audits...

Martin, M.; MacDonald, M.

2007-01-01T23:59:59.000Z

435

Building Energy Efficiency in China - Status, Trends, Targets, and Solutions  

E-Print Network [OSTI]

It is well accepted that the reduction of building energy consumption is one of the most effective actions fro reducing the emission of CO2 and for protection of energy resources world wide. Understanding and comparing the real building energy...

Xia, J.

2008-01-01T23:59:59.000Z

436

Building Energy Code for the District of Columbia  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

437

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

network for all our smart building solutions. For this weDriven Energy Management for Smart Building Automation” Inused in a variety of smart building scenarios. In terms of

Balaji, Bharathan

2011-01-01T23:59:59.000Z

438

Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)  

SciTech Connect (OSTI)

This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

Not Available

2014-09-01T23:59:59.000Z

439

Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code  

SciTech Connect (OSTI)

India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC’s enactment, only two states and one territory out of 35 Indian states and union territories formally adopted ECBC and six additional states are in the legislative process of approving ECBC. There are several barriers that slow down the process. First, stakeholders, such as architects, developers, and state and local governments, lack awareness of building energy efficiency, and do not have enough capacity and resources to implement ECBC. Second, institution for implementing ECBC is not set up yet; ECBC is not included in local building by-laws or incorporated into the building permit process. Third, there is not a systematic approach to measuring and verifying compliance and energy savings, and thus the market does not have enough confidence in ECBC. Energy codes achieve energy savings only when projects comply with codes, yet only few countries measure compliance consistently and periodic checks often indicate poor compliance in many jurisdictions. China and the U.S. appear to be two countries with comprehensive systems in code enforcement and compliance The United States recently developed methodologies measuring compliance with building energy codes at the state level. China has an annual survey investigating code compliance rate at the design and construction stages in major cities. Like many developing countries, India has only recently begun implementing an energy code and would benefit from international experience on code compliance. In this paper, we examine lessons learned from the U.S. and China on compliance assessment and how India can apply these lessons to develop its own compliance evaluation approach. This paper also provides policy suggestions to national, state, and local governments to improve compliance and speed up ECBC implementation.

Yu, Sha; Evans, Meredydd; Delgado, Alison

2014-03-26T23:59:59.000Z

440

Indoor Conditions Study and Impact on the Energy Consumption for a Large Commercial Building  

E-Print Network [OSTI]

that were studied using dynamic simulations. The article provides interesting insights of the building indoor conditions (summer/winter comfort), humidity, air temperature, mean operative temperature and energy consumption using hourly climate data. A...

Catalina, T.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Better Buildings | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural1222014AdvancedNews

442

2005 Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S. Residential5

443

Research on Commercial Patterns of China Existing Building Energy Retrofit Based on Energy Management Contract  

E-Print Network [OSTI]

Existing building energy retrofit is one of the keys of building energy efficiency in China. According to experience in developed countries, implementation of energy management contract (EMC) is crucial to promote existing building energy retrofit...

Han, Z.; Liu, C.; Sun, J.

2006-01-01T23:59:59.000Z

444

Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey  

SciTech Connect (OSTI)

The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

Davis, J.; Swenson, A.

1998-07-01T23:59:59.000Z

445

Building Technologies Office | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShotAppealsBudgetEnergyBuilding

446

Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager  

Broader source: Energy.gov [DOE]

Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager Webinar.

447

Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009  

Broader source: Energy.gov [DOE]

This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

448

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

much to be learned from low-energy buildings designed beforefor innovative low-energy buildings. The approach grows outcontrols for low-energy building systems is challenging. It

Coffey, Brian

2011-01-01T23:59:59.000Z

449

Using Building Simulation and Optimization to Calculate Lookup Tables for Control  

E-Print Network [OSTI]

much to be learned from low-energy buildings designed beforefor innovative low-energy buildings. The approach grows outcontrols for low-energy building systems is challenging. It

Coffey, Brian

2012-01-01T23:59:59.000Z

450

Using Qualified Energy Conservation Bonds for Public Building...  

Broader source: Energy.gov (indexed) [DOE]

Using Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Using Qualified Energy Conservation Bonds for Public...

451

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

452

Building Energy-Efficiency Best Practice Policies and Policy Packages  

E-Print Network [OSTI]

ABORATORY Building Energy-Efficiency Best Practice Policiesleveraging for energy-efficiency BEE Best Practice Policiesgoverning energy efficiency and discuss best practices for

Levine, Mark

2014-01-01T23:59:59.000Z

453

Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving energy in homes, buildings, and industrial plants.

Not Available

2012-09-01T23:59:59.000Z

454

Commercial Building Energy Asset Rating Tool User's Guide  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Commercial Building Energy Asset Rating Tool is a web-based system that is designed to allow building owners, managers, and operators to more accurately assess the energy performance of their commercial buildings. This document provide a step-by-step instruction on how to use the tool.

Wang, Na; Makhmalbaf, Atefe; Matsumoto, Steven W.

2012-05-01T23:59:59.000Z

455

ARE 3D HEAT TRANSFER FORMULATIONS WITH SHORT TIME STEP AND SUN PATCH EVOLUTION NECESSARY FOR BUILDING SIMULATION?  

E-Print Network [OSTI]

; Savoyat et al., 2011). As a thermal model of a building envelope should take into account rapid A numerical model is developed to accurately simulate the transient thermal behaviour of rooms with sun of current transient thermal models when adapted to low energy buildings, defined as those with particularly

Boyer, Edmond

456

Zero Energy Buildings | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join theZ:\ENROLL\H1.ENRLender

457

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy- Mixed Humid AffordableforColdDepartmentEnergy

458

Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint)  

SciTech Connect (OSTI)

This is one of two companion papers that describe the ENERGY-10 PV design tool computer simulation program. The other paper is titled ''ENERGY-10 Photovoltaics: A New Capability.'' Whereas this paper focuses on the PV aspects of the program, the companion paper focuses on the implementation method. The case study in this paper is a commercial building application, whereas the case study in the companion paper is a residential application with an entirely different building load characteristic. Together they provide a balanced view.

Balcomb, J.D.; Hayter, S.J. (National Renewable Energy Laboratory); Weaver, N.L. (InterWeaver Consulting)

2001-02-27T23:59:59.000Z

459

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

SciTech Connect (OSTI)

Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

2013-06-06T23:59:59.000Z

460

Energy Efficient Buildings Hub | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y.Energy Efficiency

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

AUTOTUNE E+ BUILDING ENERGY MODELS Joshua New, Jibonananda Sanyal, Mahabir Bhandari, and Som Shrestha  

E-Print Network [OSTI]

EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied buildings sector. A central challenge in the domain of energy efficiency is being able to realistically of US Primary Energy Consumption (U.S. Dept. of Energy, 2010) and Production (U.S. EIA, 2009). et al

Wang, Xiaorui "Ray"

462

Recent Developments of the Modelica "Buildings" Library for Building Energy and Control Systems  

E-Print Network [OSTI]

Recent Developments of the Modelica "Buildings" Library for Building Energy and Control Systems 94720, USA Abstract At the Modelica 2009 conference, we introduced the Buildings library, a freely develop an open-source Modelica library for building en- ergy and control systems. The library is freely

463

Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach  

SciTech Connect (OSTI)

This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

2015-01-01T23:59:59.000Z

464

Building Energy Information Systems: User Case Studies  

SciTech Connect (OSTI)

Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

2010-03-22T23:59:59.000Z

465

The Building Energy Report Card is used to compare the actual annual energy consumption of buildings to a  

E-Print Network [OSTI]

's area (Gross Square Feet or GSF). The report card accounts for all forms of energy used in a building.e. kBtu) and is divided by the building's area to proved a unit of energy intensity which is expressedThe Building Energy Report Card is used to compare the actual annual energy consumption

Ciocan-Fontanine, Ionut

466

Building Energy Efficiency Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudget byTechnology

467

Improved Building Energy Consumption with the Help of Modern ICT  

E-Print Network [OSTI]

Kyoto process and the global combat against climate change will require more intensive energy saving efforts especially in all developed countries. Key for the success in building sector is the energy efficiency of the existing building stock...

Pietilainen, J.

2003-01-01T23:59:59.000Z

468

A Methodology to Measure Retrofit Energy Savings in Commercial Buildings  

E-Print Network [OSTI]

. This dissertation develops a methodology to measure retrofit energy savings and the uncertainty of the savings in commercial buildings. The functional forms of empirical models of cooling and heating energy use in commercial buildings are derived from an engineering...

Kissock, John Kelly

2008-01-16T23:59:59.000Z

469

Lab Helps FAA Build Energy-Efficient Control Towers | Department...  

Broader source: Energy.gov (indexed) [DOE]

Lab Helps FAA Build Energy-Efficient Control Towers Lab Helps FAA Build Energy-Efficient Control Towers April 23, 2010 - 10:57am Addthis With help from the Pacific Northwest...

470

Tribal Renewable Energy Foundational Course: Direct Use for Building...  

Broader source: Energy.gov (indexed) [DOE]

Direct Use for Building Heat and Hot Water Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water Watch the U.S. Department of Energy Office of...

471

Small Business Harnessing Solar Energy with Building Materials...  

Broader source: Energy.gov (indexed) [DOE]

Small Business Harnessing Solar Energy with Building Materials Small Business Harnessing Solar Energy with Building Materials April 26, 2010 - 5:15pm Addthis A balcony in New York...

472

Performance Validation and Energy Analysis of HVAC Systems using Simulation  

E-Print Network [OSTI]

that energy savings of between 15% and 40% could be made in commercial buildings by closer monitoring and supervision of energy-usage and related data. An earlier study by Kao and Pierce (1983) showed that sensor1 Performance Validation and Energy Analysis of HVAC Systems using Simulation Tim Salsbury and Rick

Diamond, Richard

473

Scripted Building Energy Modeling and Analysis: Preprint  

SciTech Connect (OSTI)

Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

2012-08-01T23:59:59.000Z

474

Better Buildings Neighborhood Program | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015Commerce |Better BuildingsBetter

475

Better Buildings Partners | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015Commerce |Better BuildingsBetterBetter

476

Better Buildings Residential Network | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015Commerce |BetterResidential Buildings »

477

Better Buildings Showcase Projects | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015Commerce |BetterResidential Buildings

478

Building Science Education | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudget FormulationCamberlyBuilding

479

Building Envelope Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding Energy Use

480

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower JumpBuilding Technologies

Note: This page contains sample records for the topic "building energy simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Buildings and Climate Change | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower JumpBuildingChange

482

CBECS Building Types | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in Chittenden County,47 Geothermal0CBECS Building

483

Worldwide Status of Energy Standards for Buildings - Appendices  

E-Print Network [OSTI]

solar thermal panels (program terminated) Adcfltional sources of information about energy efficiency for buildings in: Portugal A energia

Janda, K.B.

2008-01-01T23:59:59.000Z

484

Workshop Proceedings of the Industrial Building Energy Use  

E-Print Network [OSTI]

pollution-control or other environmental conditioning requirements, and therefore higher inten- sity of energy use for building

Akbari, H.

2008-01-01T23:59:59.000Z

485

Florida Solar Energy Center (Building America Partnership for...  

Open Energy Info (EERE)

for Improved Residential Construction Jump to: navigation, search Name: Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

486

ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980  

SciTech Connect (OSTI)

The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

Authors, Various

1981-05-01T23:59:59.000Z

487

Energy Efficient Buildings Hub | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.Double | DepartmentofContinuesof

488

Buildings Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) JumpNRELEnergyGHGsEnergy

489

Building Energy Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower Jump to:BuffaloNetwork Jump

490

Building Energy Codes | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower Jump to:BuffaloNetwork

491

Use of Building Automation System Trend Data for Inputs Generation in Bottom-Up Simulation Calibration  

E-Print Network [OSTI]

for analysis and use in simulation is very large. This paper explores automating the process of generating inputs from Building Automation System (BAS) trend data for use in building simulation software. A proof-of-concept prototype called the Automatic...

Zibin, N. F.; Zmeureanu, R. G.; Love, J. A.

2013-01-01T23:59:59.000Z

492

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

feedback control. Green buildings are expected to maintainHigh-performance green buildings are expected to maintain

Ma, Yudong

2012-01-01T23:59:59.000Z

493

Building Energy in China: Forward to Low-Carbon Economy  

E-Print Network [OSTI]

Building Energy in China: Forward to Low- Carbon Economy Prof. LONG Weiding Tongji University - 8 th International Conference for Enhanced Building Operations Oct. 20-22, 2008 Berlin, Germany ESL-IC-08-10-06 Proceedings of the Eighth... International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 - Interrlational Status and Trends of Building Energy in China Contents Status and Trends of GHG Mitigation in China On-going Projects for Low-Carbon Building...

Weiding, L.

494

Proposed Energy Provisions of the California Green Building Standards Code  

E-Print Network [OSTI]

Proposed Energy Provisions of the California Green Building Standards Code Part 11 of the California Building Code (also known as CalGreen) Patrick Saxton, P.E. patrick.saxton@energy.ca.gov 916-651-0489 High Performance Buildings and Standards Development Office California Energy Commission September 20

495

Smart Sensing, Estimation, and Prediction for Efficient Building Energy Management  

E-Print Network [OSTI]

Smart Sensing, Estimation, and Prediction for Efficient Building Energy Management Sunil Mamidi energy management software can greatly decrease the energy usage of HVAC systems in many building to improve efficiency. In most buildings, the most advanced examples of this type of system are the motion

Chang, Yu-Han

496

Small Buildings = Big Opportunity for Energy Savings (Fact Sheet)  

SciTech Connect (OSTI)

Small buildings have a big impact on energy use. In the United States, 44.6 million small buildings consume 44% of the overall energy used in buildings, presenting an enormous opportunity to cut costs, energy use, and greenhouse gas emissions.

Not Available

2013-12-01T23:59:59.000Z

497

Better Buildings Challenge | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergy Better Buildings ChallengeTrack

498

Commercial Buildings Consortium | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrieof EnergybyTendrilCommercial BuildingEnergy

499

Buildings Performance Database Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy- Mixed HumidBing Liu, PacificThisView14,A visionBuildings

500

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmericaS Feb 10,Building