Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Communicating Building Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Communicating Building Energy Performance Communicating Building Energy Performance Speaker(s): William Bordass Date: August 26, 2008 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Paul Mathew The heightened interest in building energy performance has exposed problems with reporting and benchmarking. Established conventions may no longer suit current needs, and new complications are emerging as national and corporate reporting (e.g. for carbon accounting and trading) begin to impact on the certification and labelling of building energy performance. If we are to achieve genuinely low-energy and carbon buildings, we need to get much better at reporting and benchmarking our intentions and outcomes, and particularly making performance visible and communicating it to all the people concerned. In design, this could help us to reduce the persistent

2

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Global Superior Energy Performance Partnership to someone by E-mail Share Building Technologies Office: Global Superior Energy Performance Partnership on Facebook Tweet about Building Technologies Office: Global Superior Energy Performance Partnership on Twitter Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Google Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Delicious Rank Building Technologies Office: Global Superior Energy Performance Partnership on Digg Find More places to share Building Technologies Office: Global Superior Energy Performance Partnership on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

3

Building Energy Software Tools Directory: Building Performance Compass  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance Compass Building Performance Compass Building Performance Compass logo Building Performance Compass analyzes commercial and multi-family building energy use patterns in a simple, easy-to-use Web-based interface. Using building details and energy data from the building’s utility bills, it is unique in its ability to benchmark and compare all buildings, whether residential or commercial. Recent enhancements to Building Performance Compass include new multi-family support, the ability to track non-energy quantities such as water and waste, and features such as its fast-feedback report, which enables reporting energy savings as early as one month after work is completed. Building Performance Compass also provides extensive tracking of building data and usage, as well as the ability to upload and track

4

Buildings Performance Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings » Buildings Performance Database Buildings » Buildings Performance Database Buildings Performance Database The Buildings Performance Database (BPD) unlocks the power of building energy performance data. The platform enables users to perform statistical analysis on an anonymous dataset of tens of thousands of commercial and residential buildings from across the country. Users can compare performance trends among similar buildings to identify and prioritize cost-saving energy efficiency improvements and assess the range of likely savings from these improvements. Access BPD Contact Us Key Features The BPD contains actual data on tens of thousands of existing buildings -- not modeled data or anecdotal evidence. The BPD enables statistical analysis without revealing information about individual buildings.

5

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network (OSTI)

Energy performance of LEED for new construction buildings:New Buildings Institute.New Buildings Institute. 2013. Buildings database, http://

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

6

High Performance Buildings Database | Open Energy Information  

Open Energy Info (EERE)

High Performance Buildings Database High Performance Buildings Database Jump to: navigation, search The High Performance Buildings Database (HPBD), developed by the United States Department of Energy and the National Renewable Energy Laboratory, is "a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad."[1] Map of HPBD entries Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"-","intro":"","outro":"","searchlabel":"\u2026

7

Energy Performance Certification of Buildings: A Policy Tool to Improve  

Open Energy Info (EERE)

Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary Name: Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: www.iea.org/papers/pathways/buildings_certification.pdf Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency Screenshot References: nergy Performance Certification of Buildings[1] Logo: Energy Performance Certification of Buildings: A Policy Tool to Improve Energy Efficiency

8

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Performance Partnership Global Superior Energy Performance Partnership Graphic of Global Superior Energy Performance working groups, including energy management led by the United States, power led by Japan, combined heat and power led by Finland, steel led by Japan, cool roofs led by the United states, and cement led by Japan. GSEP, a multi-country effort to create and coordinate nationally accredited energy performance certification programs, comprises a number of working groups. Credit: DOE The U.S. Department of Energy (DOE) supports the Superior Energy Performance (SEP) program, which provides industrial facilities and commercial buildings a framework for achieving continual improvement in energy efficiency while maintaining market competitiveness. SEP aims to provide a transparent, globally accepted system for energy management and continuous energy performance improvement.

9

Rating the energy performance of buildings  

SciTech Connect

In order to succeed in developing a more sustainable society, buildings will need to be continuously improved. This paper discusses how to rate the energy performance of buildings. A brief review of recent approaches to energy rating is presented. It illustrates that there is no single correct or wrong concept, but one needs to be aware of the relative impact of the strategies. Different strategies of setting energy efficiency standards are discussed and the advantages of the minimum life cycle cost are shown. Indicators for building energy rating based on simulations, aggregated statistics and expert knowledge are discussed and illustrated in order to demonstrate strengths and weaknesses of each approach. In addition, the importance of considering the level of amenities offered is presented. Attributes of a rating procedure based on three elements, flexible enough for recognizing different strategies to achieve energy conservation, is proposed.

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-12-01T23:59:59.000Z

10

Energy Performance Certification of Buildings: A Policy Tool...  

Open Energy Info (EERE)

Buildings: A Policy Tool to Improve Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Performance Certification of Buildings: A Policy Tool to...

11

Assessing Plant Performance for Energy Savings | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Plant Performance for Energy Savings Assessing Plant Performance for Energy Savings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

12

Sample ENERGY STAR performance documents | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Existing buildings Existing buildings » Use Portfolio Manager » Verify and document your savings » Sample ENERGY STAR performance documents Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit

13

Building America Best Practices Series, Volume 13 - Energy Performance...  

Energy Savers (EERE)

Series, Volume 13 - Energy Performance Techniques and Technologies: Perserving Historic Homes Building America Best Practices Series, Volume 13 - Energy Performance Techniques and...

14

Building Performance Database | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in the peer group that fall within consistent intervals of energy use intensity (EUI) i.e. the annual energy use per gross square foot of the building. Scatter Plot. The...

15

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New Construction and Major Renovations New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies along with other innovative strategies. Also see Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Performance-Based Design Build Typically, architects, engineers, and project managers consider the potential to build a high-performance building to be limited by the initial cost. A different approach-performance-based design build-makes high performance the priority, from start to finish. Contracts are developed that focus on both limiting construction costs and meeting performance targets. The approach is not a source of funding, but rather a strategy to make the most out of limited, appropriated, funds.

16

Procedure for Measuring and Reporting Commercial Building Energy Performance  

SciTech Connect

This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

2005-10-01T23:59:59.000Z

17

About the Buildings Performance Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » About the Commercial Buildings » Buildings Performance Database » About the Buildings Performance Database About the Buildings Performance Database "Upgrading the energy efficiency of America's buildings is one of the fastest, easiest, and cheapest ways to save money, cut down on harmful pollution, and create good jobs right now." -President Obama Open data has fueled entrepreneurship and transformed fields such as weather, GPS and health. Yet in the energy efficiency market, one of the primary challenges is the lack of empirical data demonstrating the relationship between building characteristics and energy performance. Rigorous performance risk assessments of potential energy efficiency measures could support better decision-making among building owners and

18

Buildings Performance Database Analysis Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Buildings Commercial Buildings » Buildings Performance Database » Buildings Performance Database Analysis Tools Buildings Performance Database Analysis Tools The Buildings Performance Database will offer four analysis tools for exploring building data and forecasting financial and energy savings: a Peer Group Tool, a Retrofit Analysis Tool, a Data Table Tool, and a Financial Forecasting Tool. Available now: Peer Group Tool The Peer Group Tool allows users to peruse the BPD, define peer groups, and analyze their performance. Users can create Peer Groups by filtering the dataset based on parameters such as building type, location, floor area, age, occupancy, and system characteristics such as lighting and HVAC type. The graphs show the energy performance distribution of those

19

Empowering the Market: How Building Energy Performance Rating and  

NLE Websites -- All DOE Office Websites (Extended Search)

Empowering the Market: How Building Energy Performance Rating and Empowering the Market: How Building Energy Performance Rating and Disclosure Policies Encourage U.S. Energy Efficiency Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition

20

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance High-Performance Sustainable Building Design for New Construction and Major Renovations to someone by E-mail Share Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Facebook Tweet about Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Twitter Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Google Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Delicious Rank Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Digg

22

Durham County - High-Performance Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider Durham City and County Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and facilities greater than

23

Building Energy Performance Analysis of an Academic Building Using IFC BIM-Based Methodology  

E-Print Network (OSTI)

This paper discusses the potential to use an Industry Foundation Classes (IFC)/Building Information Modelling (BIM) based method to undertake Building Energy Performance analysis of an academic building. BIM/IFC based methodology provides a...

Aziz, Z.; Arayici, Y.; Shivachev, D.

2012-01-01T23:59:59.000Z

24

EIS-0061: Energy Performance Standards for New Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy Office of Conservation and Solar Energy prepared this statement to assess the environmental and socioeconomic implications of implementing the Energy Performance Standard for new buildings, as mandated by Congress in Section 305 of the Energy Conservation Standards for New Buildings Ac t of 1976.

25

Revisit of Energy Use and Technologies of High Performance Buildings  

SciTech Connect

Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

Li , Cheng; Hong , Tianzhen

2014-03-30T23:59:59.000Z

26

Energy saving performance of green vegetation on LEED certified buildings  

Science Journals Connector (OSTI)

Abstract Sustainable building practices can considerably reduce building's environmental impact in energy consumption. Covering a building envelope with green vegetation, such as green roof and green wall, is considered a sustainable construction practice, as green vegetation has a positive performance in energy savings. It reduces heat flux and solar reflectivity, generates evaporative cooling, increases thermal performance of the building envelope, and blocks the wind effect on the building. This paper analyses the energy performance of green vegetation in a high occupancy LEED Gold standard building in Canada. DesignBuilder software was used to model the energy consumption for heating and cooling, and EnergyPlus software was used to perform the detailed energy simulations. The developed simulation model was validated with the actual energy consumptions of the selected building. Three different scenarios of green vegetation were simulated and the results show that green vegetation could considerably reduce the negative heat transfer through the building faade in summer and winter months. However, the analysis demonstrated that the green vegetation is not cost-effective in winter months or cold climatic regions due to the low energy savings performance. The paper concludes with recommendations to improve the overall energy performance in green buildings.

H. Feng; K. Hewage

2014-01-01T23:59:59.000Z

27

An energy performance index for historic buildings.  

E-Print Network (OSTI)

??This thesis reports studies conducted on historic buildings from the 1880 to 1900 era. These buildings were recently renovated and many more years of service (more)

Campbell, Scott

2012-01-01T23:59:59.000Z

28

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

2 2 Case Study, The Cambria Department of Environmental Protection Office Building, Ebensburg, Pennsylvania (Office) Building Design Floor Area: Floors: 2 Open office space (1) File storage area Two small labratories Conference rooms Break room Storage areas Two mechanical rooms Telecom room Shell Windows Material: Triple Pane, low-e with Aluminum Frames and Wood Frames Triple Pane Triple Pane Aluminum Frames Wood Frames U-Factor 0.24 U-Factor 0.26 Wall/Roof Primary Material R-Value Wall : Insulating Concrete Forms 27.0 Roof: Decking and Insulation 33.0 HVAC Total Capacities(thousand Btu/hr) 12 Ground Source Heat Pumps 644 (2) 12 Auxiliary Electric Resistance Heaters 382 (3) Lighting Power Densities(W/SF) Open Office Area: 0.75 Office Area Task Lighting(4): 0.5 Energy/Power PV System: 18.2 kW grid-tie system (5)

29

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

operation with energy efficiency in building systems. X X Xoperation with energy efficiency in building systems. 10.3.energy efficiency improvements in healthcare buildings. A

Singer, Brett C.

2010-01-01T23:59:59.000Z

30

European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency  

E-Print Network (OSTI)

consumption. The European Union's 2002 Energy Performance of Buildings Directive takes this fact into account and formulates savings goals. A resulting European standard, and uniform certification, applicable throughout Europe, form the foundation since... to standardized utilization of the building?. The energy consumers concerned are heating, water heating, cooling, ventilating and lighting; also included is the auxiliary electric power require to operate these systems. One of the basic requirements of the EPBD...

Wirth, U.

2008-01-01T23:59:59.000Z

31

Building Distributed Energy Performance Optimization for China - a Regional  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-81770 Year of Publication 2012 Authors Feng, Wei, Nan Zhou, Chris Marnay, Michael Stadler, and Judy Lai Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings, August 12-17, 2012 Date Published 08/2012 Conference Location Pacific Grove, California ISBN Number 0-918249-XX-X Notes LBNL - XXXXX Refereed Designation Refereed Attachment Size PDF 5 MB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/52998

32

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

6 6 Case Study, The Solaire, New York, New York (Apartments/Multi-Family) Building Design Floor Area: 357,000 SF Units: 293 Maximum Occupancy: 700 Floors: 27 Site Size: 0.38 Acres Typical Occupancy(1): 578 Black-Water Treatment Facility (2) Shell Windows Material: Double Glazed, Low-e, Thermal Breaks with Insulated Spacers Operable Windows Fixed Windows Visual Transminttance 0.68 0.68 Solar Heat Gain Coefficient 0.35 0.35 U-Factor 0.47 0.41 Wall/Roof Material R-Value Exterior Walls: Insulated brick and concrete block 8.4 Roof: Roof top garden(green roof) 22.7 HVAC Two direct-fired natural gas absorption chillers 4-Pipe fan-coil units in individual aparments Power/Energy(3) PV System(4): 1,300 SF (76 custom panels) of west facing PV rated for 11 kW . These panels are integrated into the building facade.

33

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

4 4 Case Study, The Philip Merrill Environmental Center, Annapolis, Maryland (Office) Building Design Floor Area: 31,000 SF Floors: 2 Footprint: 220 ft. x (1) 2 Floors of open office space Attached pavilion containing: Meeting space Kitchen Staff dining Conference room Shell Windows U-Factor SHGC (2) Type: Double Pane, Low-e, Argon Filled Insulating Glass 0.244 0.41 Wall/Roof Material Effective R-Value Interior Wall plywood, gypsum, SIP foam, and sheathing 28.0 Exterior Wall gypsum and insulated metal framing 9.3 Roof plywood, gypsum, SIP foam, and sheathing 38.0 HVAC 18 ground source heat pumps fin and tube radiators connected to a propane boiler 1 air condtioning unit Lighting Power Densities (W/SF) First Floor: 1.2 Second Floor: 1.6 Conference Room: 1.4 Energy/Power PV System: 4.2 kW thin-film system

34

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

5 5 Case Study, The Thermal Test Facility, National Renewable Energy Laboratory, Golden, Colorado (Office/Laboratory) Building Design Floor Area: 10,000 SF Floors(1): 2 Aspect Ratio: 1.75 Offices Laboratories Conference Room Mechanical Level Shell Windows Material U-factor SHGC(2) Viewing Windows: Double Pane, Grey Tint, Low-e 0.42 0.44 Clerestory Windows: Double Pane, Clear, Low-e 0.45 0.65 Window Area(SF) North 38 South(3) 1,134 East 56 West 56 Wall/Roof Material Effective R-Value North Wall Concrete Slab/Rigid Polystyrene 5.0 South/East/West Steel Studs/Batt Insulation/Concrete 23.0 Roof: Built-up/Polyisocianurate Covering/Steel Supports 23.0 HVAC VAV air handling unit Hot water supply paralell VAV boxes Direct and Indirect evaporative cooling system Single zone roof top unit(4) Hot Water Coil(4)

35

Buildings Performance Database Overview  

Energy.gov (U.S. Department of Energy (DOE))

Buildings Performance Database Overview, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

36

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

1 1 Case Study, The Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio (Education) Building Design Floor Area: Floors: 2 Footprint: 3 Classrooms (1) 1 Conference Room 1 Adminstration Office Auditorium, 100 seats 6 Small Offices Atrium Wastewater Treatment Facility Shell Windows Material: Green Tint Triple Pane Argon Fill Insulating Glass Grey Tint Double Pane Argon Fill Insulating Glass Fenestration(square feet) Window Wall (2) window/wall l Atrium, Triple Pane (3) Building, Double Pane North 1,675 4,372 38% l U-Factor 0.34 U-Factor 0.46 South 2,553 4,498 58% l SHGC 0.26 SHGC 0.46 East 1,084 2,371 46% l West 350 2,512 14% l Overall 6,063 43% l Wall/Roof Main Material R-Value Wall : Face Brink 19 Roof: Steel/Stone Ballast 30 HVAC COP(4) Offices/Classrooms: Individual GSHPs (5) 3.9-4.6

37

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

3 3 Case Study, The Visitor Center at Zion National Park, Utah (Service/Retail/Office) Building Design Vistors Center (1): 8,800 SF Comfort Station (2): 2,756 SF Fee Station: 170 SF Shell Windows Type U-Factor SHGC (3) South/East Glass Double Pane Insulating Glass, Low-e, Aluminum Frames, Thermally Broken 0.44 0.44 North/West Glass Double Pane Insulating Glass, Heat Mirror, Aluminum Frames, Thermally Broken 0.37 0.37 Window/Wall Ratio: 28% Wall/Roof Materials Effective R-Value Trombe Walls: Low-iron Patterned Trombe Wall, CMU (4) 2.3 Vistor Center Walls: Wood Siding, Rigid Insulation Board, Gypsum 16.5 Comfort Station Walls: Wood Siding, Rigid Insulation Board, CMU (4) 6.6 Roof: Wood Shingles; Sheathing; Insulated Roof Panels 30.9 HVAC Heating Cooling Trombe Walls Operable Windows Electric Radiant Ceiling Panels

38

Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD)  

E-Print Network (OSTI)

The European Commission's Action Plan on Energy Efficiency (2000) indicated the need for specific measures in the building sector. In response, the European Commission (EC) published the proposed Directive on the Energy Performance of Buildings...

Magyar, Z.; Leitner, A.

2006-01-01T23:59:59.000Z

39

Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint  

SciTech Connect

NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

Scheib, J.; Pless, S.; Torcellini, P.

2014-08-01T23:59:59.000Z

40

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT  

E-Print Network (OSTI)

performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same...

Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

2012-01-01T23:59:59.000Z

42

Performance assessment of low-energy buildings in central Argentina  

Science Journals Connector (OSTI)

This paper summarizes the results obtained from the energy and thermal performance assessment of residential and non-residential low-energy buildings that were designed to minimize fossil energy use. They are located in the province of La Pampa, central Argentina, in a temperate continental climate that shows extreme hot and cold records during the summer and winter seasons, respectively. The common applied technologies for saving energy were passive solar heating, natural ventilation for cooling and daylighting. The glazing area in the principal functional spaces facing to the North oscillates between 11 and 17% of the building useful areas. All the studied buildings are massive, with the exception of an auditorium that was designed with a lightweight insulated technology. The mean thermal transmittance of the envelope is 0.45W/(m2K). Double glazing and hermetic carpentry were used to reduce thermal losses (U-value=2.8W/(m2K)). The volumetric heat loss coefficient (G-value) oscillates between 0.90 and 1.00W/(m3K). During the design and thermal simulation convective-radiative heat transfer coefficients were estimated through a dimensional equation (h=5.7+3.8ws, wind speed). On internal surfaces, convective-radiative heat transfer coefficients of 8 and 6W/(m2C) (for surfaces with and without solar gain, respectively) were applied. The monitoring process provided information on the energy and thermal behaviour under use and non-use conditions. The measured value of energy consumption was similar to the expected value that was used during the pre-design stage. Building technologies work well during the winter season, allowing 5080% of energy savings. However, overheating is still an unresolved problem during the summer. Interviews with occupants revealed that they need both, information about functional details, and good-practice guidance to manage thermal issues of the building. In most cases, the annual consumption of energy was lower than those established by the Low Energy Housing German Standards and the Minirgie Switzerland Certificate. Despite their relative cost increase during the last years, the use of insulation technology and the application of passive solar devices involved an extra cost of only 3% in our works. Provided the expected depletion of natural gas production in the coming decade, the importance of applying energy-efficiency guidelines will increase very soon in Argentina in order to match the requirements of a new national energy matrix.

C. Filippn; A. Beascochea

2007-01-01T23:59:59.000Z

43

Improving Building Energy System Performance by Continuous Commissioning  

E-Print Network (OSTI)

data. The first buildings to undergo a continuous commissioning process were in the Texas LoanSTAR program [Liu, et al, 1994, Claridge, et al, 1994]. These buildings had been retrofitted with various energy efficiency improvements, and measured hourly...

Turner, W. D.; Liu, M.; Claridge, D. E.; Haberl, J. S.

1996-01-01T23:59:59.000Z

44

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

Integrated design, incorporation of models from other advanced buildingsand building operators. Communication with users through integrated designintegrated design process has great potential to advance cost-effective reductions in energy intensity often while improving building

Singer, Brett C.

2010-01-01T23:59:59.000Z

45

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesBuilding Stock. Golden, Colorado: National Renewable Energy

Feng, Wei

2013-01-01T23:59:59.000Z

46

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Buildings August 12,Standard for Energy Efficiency of Public Buildings. Energyfor Energy Efficiency of Residential Buildings in Hot Summer

Feng, Wei

2013-01-01T23:59:59.000Z

47

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

48

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network (OSTI)

site Energy Use Intensity (EUI) of the 51 buildings variedof the correlation between EUI and climate elucidatedubiquitous phenomenon of EUI scatter throughout all climate

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

49

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network (OSTI)

Revisit of Energy Use and Technologies of High PerformanceEnvironmental Energy Technologies Division May 2014 ThisRevisit of Energy Use and Technologies of High Performance

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

50

Innovative Facility Kicks Off First Experiment to Transform Building Energy Performance  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department is working to improve the energy efficiency, design, construction and operation of high-performance commercial buildings through research at Lawrence Berkeley National Laboratory's new FLEXLAB, Facility for Low Energy Experiments in Buildings.

51

Interoperability of Computer Aided Design and Energy Performance Simulation to Improve Building Energy Efficiency and Performance  

E-Print Network (OSTI)

The paper describes very significant novel interoperability and data modeling technology for existing building that maps a building information parametric model with an energy simulation model, establishing a seamless link between Computer Aided...

Chaisuparasmikul, P.

2006-01-01T23:59:59.000Z

52

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology,and Renewable Energy, Office of Building Technology,and renewable energy improvements to the building. One of

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

53

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

3 Commercial and Residential Building Site Energy Usagecommercial and residential prototype buildings discussed in the previous section is simulated in EnergyPlus (DOE, 2011). The energy usage

Feng, Wei

2013-01-01T23:59:59.000Z

54

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Analysis of Building Energy Costs and CO 2 Emissions WeiAnalysis of Building Energy Costs and CO 2 Emissions Weiwhich minimizes building energy cost or CO 2 emissions, or a

Feng, Wei

2013-01-01T23:59:59.000Z

55

Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings  

Science Journals Connector (OSTI)

Abstract Directive 2002/91/EC of the European Parliament and Council on the Energy Performance of Buildings has led to major developments in energy policies followed by the EU Member States. The national energy performance targets for the built environment are mostly rooted in the Building Regulations that are shaped by this Directive. Article 3 of this Directive requires a methodology to calculate energy performance of buildings under standardised operating conditions. Overwhelming evidence suggests that actual energy performance is often significantly higher than this standardised and theoretical performance. The risk is national energy saving targets may not be achieved in practice. The UK evidence for the education and office sectors is presented in this paper. A measurement and verification plan is proposed to compare actual energy performance of a building with its theoretical performance using calibrated thermal modelling. Consequently, the intended vs. actual energy performance can be established under identical operating conditions. This can help identify the shortcomings of construction process and building procurement. Once energy performance gap is determined with reasonable accuracy and root causes identified, effective measures could be adopted to remedy or offset this gap.

Esfand Burman; Dejan Mumovic; Judit Kimpian

2014-01-01T23:59:59.000Z

56

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings  

E-Print Network (OSTI)

available from authors. DOE EERE. High Performance BuildingsProgram: Building Database. DOE EERE; August Available from:buildings/database/. DOE EERE. State Energy Alternatives:

Selkowitz, Stephen

2008-01-01T23:59:59.000Z

57

Building Technologies Office: Home Performance with ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance with ENERGY STAR® Performance with ENERGY STAR® Homeowners across the United States can find trusted contractors who follow a comprehensive approach, recommended by ENERGY STAR®, to save money on energy bills while improving home comfort. The Home Performance with ENERGY STAR (HPwES) program provides homeowners with resources to identify trusted contractors that can help them understand their home's energy use, as well as identify home improvements that increase energy performance and improve comfort. Participating contractors can recommend and perform energy improvements, such as air sealing, insulation that can fix drafty and uncomfortable rooms, and install high efficiency heating and cooling equipment. These improvements can lower utility bills. Contractors that participate in HPwES are qualified by local sponsors such as utilities, state energy offices, and other organizations to ensure that they can offer high-quality, comprehensive energy assessments (also known as "energy audits") using sophisticated equipment to diagnose a home's energy, health, and safety issues.

58

Data and Analytics to Inform Energy Retrofit of High Performance Buildings  

SciTech Connect

Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

Hong , Tianzhen; Yang, Le; Hill, David; Feng , Wei

2014-01-25T23:59:59.000Z

59

U-Launch Winner Secures $2.4M Investment for Building Energy Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U-Launch Winner Secures $2.4M Investment for Building Energy U-Launch Winner Secures $2.4M Investment for Building Energy Performance Software U-Launch Winner Secures $2.4M Investment for Building Energy Performance Software December 14, 2011 - 3:00pm Addthis This screenshot from cleantech start-up company FirstFuel's building energy efficiency performance software shows users a building's response to all forms of weather, operational schedules, key energy metrics, daily consumption patterns, seasonal analysis, peak loading, and shell integrity. | Photo courtesy of FirstFuel. This screenshot from cleantech start-up company FirstFuel's building energy efficiency performance software shows users a building's response to all forms of weather, operational schedules, key energy metrics, daily consumption patterns, seasonal analysis, peak loading, and shell integrity.

60

Buildings Performance Metrics Terminology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Commercial Building Initiative Page 1 Energy's Commercial Building Initiative Page 1 January 2009 Buildings Performance Metrics Terminology To clarify how the terms are used in the Department of Energy's Performance Metrics Research Project, a list of terms related to performance metrics are defined and include examples and comments. Visit www.commercialbuildings.energy.gov/performance_metrics.html to learn more. Baseline - a standard reference case used as a basis for comparison Examples: a simulation model of an ASHRAE 90.1 compliant building, control building, measurement of energy consumption prior to application of an energy conservation measure Comments: Establishing a clearly defined baseline very important and is often the most difficult task. Defining a repeatable baseline is essential if the work is to be compared to results of other

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Evaluating the energy performance of the first generation of LEED-certified commercial buildings  

E-Print Network (OSTI)

one element of sustainable building design, and we hope thatDesign (LEED) rating system for sustainable commercial buildingsdesign expectations for energy performance is just one step towards moving the existing commercial building market towards a more sustainable

Diamond, Rick

2011-01-01T23:59:59.000Z

62

Energy Performance and Comfort Level in High Rise and Highly Glazed Office Buildings  

E-Print Network (OSTI)

Thermal and visual comfort in buildings play a significant role on occupants' performance but on the other hand achieving energy savings and high comfort levels can be a quite difficult task especially in high rise buildings with highly glazed...

Bayraktar, M.; Perino, M.; Yilmaz, A. Z.

2010-01-01T23:59:59.000Z

63

Origins of Analysis Methods in Energy Simulation Programs Used for High Performance Commercial Buildings  

E-Print Network (OSTI)

Current designs of high performance buildings utilize hourly building energy simulations of complex, interacting systems. Such simulations need to quantify the benefits of numerous features including: thermal mass, HVAC systems and, in some cases...

Oh, Sukjoon

2013-08-19T23:59:59.000Z

64

Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint  

SciTech Connect

This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

Pless, S.; Torcellini, P.; Shelton, D.

2011-05-01T23:59:59.000Z

65

Building America Webinar: High Performance Building Enclosures...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

used to improve energy performance of building envelopes while dealing with issues like ice damming during exterior "overcoat" insulation retrofits? How can deep energy retrofits...

66

U.S. Department of Energy High Performance and Sustainable Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy High Performance and Sustainable Buildings Implementation Plan More Documents & Publications Three Year Rolling Timeline Slide 1 Three-year Rolling Timeline...

67

Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is part of the SEE Action Series and provides information on Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings

68

U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy High Performance and Sustainable Buildings Implementation Plan August 15, 2008 U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan TABLE OF CONTENTS ACRONYMS................................................................................................................................. iii 1 DOE COMMITMENT TO HPSB .......................................................................................... 1 1.1 Federal HPSB Drivers and Commitments ........................................................................... 1 1.2 DOE-Specific HPSB Commitments .................................................................................... 2 2 DOE HPSB DIRECTIVES..................................................................................................... 3

69

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

70

Building Performance Simulation  

E-Print Network (OSTI)

of Three Building Energy Modeling Programs:andD. Zhu. Buildingenergymodelingprogramscomparison:Comparison of building energy modeling programs: HVAC

Hong, Tianzhen

2014-01-01T23:59:59.000Z

71

ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT (EECBG) - BETTER BUILDINGS NEIGHBORHOOD PROGRAM AT GREATER CINCINNATI ENERGY ALLIANCE Project Title: Home Performance with Energy Star and Better Buildings Performance  

SciTech Connect

The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organizations investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training Center, a program that was developed and funded by the Energy Alliance and housed at Cincinnati State Technical and Community College. Nearly 100 residential and commercial contractors currently participate in the Energy Alliances two major programs, which have together served over 2,800 residential and 100 commercial customers. Additionally, the Energy Alliance established loan programs for homeowners, nonprofits and commercial businesses. The GC-HELP program was established to provide up to ten year low interest, unsecured loans to homeowners to cover the energy efficiency products they purchased through the Energy Alliance approved contractor base. To date the Energy Alliance has financed over $1 million in energy efficiency loans for homeowners, without any loans written off. The nonprofit business community is offered five year, fixed-interest rate loans through the Building Communities Loan Fund of $250,000. Additionally, the Energy Alliance has developed GC-PACE, a commercial financing tool that enables buildings owners to finance their energy upgrades through voluntary property assessments deploying low-interest extended-term capital from the bond market. The Energy Alliance and its partners are actively evaluating additional market-based financing solutions.

Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

2013-12-30T23:59:59.000Z

72

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

attention to sustainable building design is reflected bySustainable Hospitals 10.1. Effect of building form and systems designsand sustainable hospital designs. Study building & staff

Singer, Brett C.

2010-01-01T23:59:59.000Z

73

Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study  

SciTech Connect

This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

Wang, Na

2013-03-13T23:59:59.000Z

74

Development of discrete event system specification (DEVS) building performance models for building energy design  

Science Journals Connector (OSTI)

The discrete event system specification (DEVS) is a formalism for describing simulation models in a modular fashion. In this study, it is exploited by forming submodels that allow different professions involved in the building design process to work ... Keywords: DEVS, energy simulation in building design, modular BPS, stochastic occupant models

Huseyin Burak Gunay; Liam O'Brien; Rhys Goldstein; Simon Breslav; Azam Khan

2013-04-01T23:59:59.000Z

75

Webinar: Impacts of Energy Efficiency on the Financial Performance of Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy conducted a review of existing market research on the impact of Energy Efficiency and Green Labels on building financial performance. This webinar will review the results...

76

High Performance Building Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentive Program Incentive Program High Performance Building Incentive Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate Residential loans/loan guarantees: 100,000 Commercial loans/loan guarantees: 2 million Grants: Lesser of 10% of project costs or 500,000 Program Info Start Date April 2009 State Pennsylvania Program Type State Loan Program Rebate Amount Vary by project, but program generally requires matching funds at least equivalent to DCED funding Provider Department of Community and Economic Development

77

Development of whole-building energy performance models as benchmarks for retrofit projects  

Science Journals Connector (OSTI)

This paper presents a systematic development process of whole-building energy models as performance benchmarks for retrofit projects. Statistical regression-based models and computational performance models are being used for retrofit projects in industry ...

Omer Tugrul Karaguzel; Khee Poh Lam

2011-12-01T23:59:59.000Z

78

U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan  

Energy.gov (U.S. Department of Energy (DOE))

Plan outlining DOE's commitment to designing, building, operating, and maintaining high performance and sustainable buildings (HPSB).

79

Monitoring building energy consumption, thermal performance, and indoor air quality in a cold climate region  

Science Journals Connector (OSTI)

Abstract Buildings are major consumers of the world's energy. Optimizing energy consumption of buildings during operation can significantly reduce their impact on the global environment. Monitoring the energy usage and performance is expected to aid in reducing the energy consumption of occupants. In this regard, this paper describes a framework for sensor-based monitoring of energy performance of buildings under occupancy. Different types of sensors are installed at different locations in 12 apartment units in a building in Fort McMurray, Alberta, Canada to assess occupant energy usage, thermal performance of the building envelope, and indoor air quality (IAQ). The relationship between heating energy consumption and the thermal performance of building envelope and occupant comfort level is investigated by analyzing the monitoring data. The results show that the extent of heat loss, occupant comfort level, and appliance usage patterns have significant impacts on heating energy and electricity consumption. This study also identifies the factors influencing the poor IAQ observed in some case-study units. In the long term, it is expected that the extracted information acquired from the monitoring system can be used to support intelligent decisions to save energy, and can be implemented by the building management system to achieve financial, environmental, and health benefits.

Tanzia Sharmin; Mustafa Gl; Xinming Li; Veselin Ganev; Ioanis Nikolaidis; Mohamed Al-Hussein

2014-01-01T23:59:59.000Z

80

Building Performance Simulation  

E-Print Network (OSTI)

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

Energy.gov (U.S. Department of Energy (DOE))

Document provides information about using energy savings performance contracts (ESPCs) to reduce energy consumption and provide energy and cost savings in non-building applications.

82

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

Buildings with Higher Whole Building EUIs Whole Building EUIs energy use intensity (EUI) within the distribution ofbuilding energy use intensity (EUI) as a common basis. For

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

83

Optimizing HVAC Control to Improve Building Comfort and Energy Performance  

E-Print Network (OSTI)

This paper demonstrates the benefits of optimal control in well-designed and operated buildings using a case study. The case study building was built in 2001. The HVAC and control systems have been installed with state-of-the-art equipment which...

Song, L.; Joo, I.; Dong, D.; Liu, M.; Wang, J.; Hansen, K.; Quiroz, L.; Swiatek, A.

2003-01-01T23:59:59.000Z

84

Energy Modeling of a High Performance Building in the U.A.E. for Sustainability Certification  

E-Print Network (OSTI)

voluntary LEED program. BUILDING CONCEPT AND MODELING Modeling The simulation tool used to analyze the energy per- formance of the Sheikh Zayed Desert Learning Centre is TRNSYS version 16.01 (Solar Energy Laboratory, Univ. of Wisconsin-Madison 2004...). TRNSYS is a dynamic simulation platform for simulating systems over time pe- riods from days to years at time-steps of seconds to hours. TRNSYS meets the requirements for LEED certification of energy performance through the whole building simu...

Jones, M.; Ledinger, S.

2010-01-01T23:59:59.000Z

85

Buildings Performance Database - Datasets - OpenEI Datasets  

Open Energy Info (EERE)

Buildings Performance Database Dataset Activity Stream Buildings Performance Database The Buildings Performance Database (BPD) unlocks the power of building energy performance...

86

Evaluating the energy performance of the first generation of LEED-certified commercial buildings  

SciTech Connect

Over three hundred buildings have been certified under the Leadership in Energy and Environmental Design (LEED) rating system for sustainable commercial buildings as of January 2006. This paper explores the modeled and actual energy performance of a sample of 21 of these buildings that certified under LEED between December 2001 and August 2005, including how extensively the design teams pursued LEED energy-efficiency credits, the modeled design and baseline energy performance, and the actual energy use during the first few years of operation. We collected utility billing data from 2003-2005 and compared the billed energy consumption with the modeled energy use. We also calculated Energy Star ratings for the buildings and compared them to peer groups where possible. The mean savings modeled for the sample was 27% compared to their modeled baseline values. For the group of 18 buildings for which we have both modeled and billed energy use, the mean value for actual consumption was 1% lower than modeled energy use, with a wide variation around the mean. The mean Energy Star score was 71 out of a total of 100 points, higher than the average score of 50 but slightly below the Energy Star award threshold of 75 points. The paper discusses the limitations inherent to this type of analysis, such as the small sample size of disparate buildings, the uncertainties in actual floor area, and the discrepancies between metered sections of the buildings. Despite these limitations, the value of the work is that it presents an early view of the actual energy performance for a set of 21 LEED-certified buildings.

Diamond, Rick; Opitz, Mike; Hicks, Tom; Von Neida, Bill; Herrera, Shawn

2006-05-01T23:59:59.000Z

87

Building Energy Use Benchmarking | Department of Energy  

Energy Savers (EERE)

Energy Data Management Building Energy Use Benchmarking Building Energy Use Benchmarking Benchmarking is the practice of comparing the measured performance of a device, process,...

88

Building Technologies Office: Performance Metrics Tiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Metrics Performance Metrics Tiers to someone by E-mail Share Building Technologies Office: Performance Metrics Tiers on Facebook Tweet about Building Technologies Office: Performance Metrics Tiers on Twitter Bookmark Building Technologies Office: Performance Metrics Tiers on Google Bookmark Building Technologies Office: Performance Metrics Tiers on Delicious Rank Building Technologies Office: Performance Metrics Tiers on Digg Find More places to share Building Technologies Office: Performance Metrics Tiers on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

89

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

Singer, Brett C.

2010-01-01T23:59:59.000Z

90

Building Performance Database Analysis Tools  

Energy.gov (U.S. Department of Energy (DOE))

The BPD statistically analyzes the energy performance and physical and operational characteristics of real commercial and residential buildings. The Buildings Performance Database offers two primary methods to analyze building performance data. These are Explore, which allows users to browse a single dataset within the BPD, and Compare, which allowed users to compare multiple datasets within the BPD side-by-side.

91

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network (OSTI)

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

92

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

Efficiency 11-Sept-2009 9. Economic and Organizationaland Organizational Issues 9.1. Strategies to overcome structural challenges to energy efficiencyorganizational scheme to facilitate discussion of challenges to improving energy efficiency

Singer, Brett C.

2010-01-01T23:59:59.000Z

93

BetterBuildings: Home Performance with ENERGY STAR  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy (DOE) Technical Assistance Program (TAP) resource for the Energy Data Management section of the Solution Center addressing the definition of evaluation, measurement, and verification.

94

Building America Best Practices Series, Volume 13 - Energy Performance Techniques and Technologies: Perserving Historic Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Energy Performance Techniques and Technologies: Preserving Historic Homes BUILDING AMERICA BEST PRACTICES SERIES VOLUME 13. PREPARED BY Pacific Northwest National Laboratory & Kaufman Heritage Conservation February 28, 2011 R February 28, 2011 * PNNL-20185 BUILDING AMERICA BEST PRACTICES SERIES Energy Performance Techniques and Technologies: Preserving Historic Homes PREPARED BY Pacific Northwest National Laboratory Michelle Britt, Michael C. Baechler, Theresa Gilbride, Marye Hefty, Erin Makela, and Elaine Schneider and Kaufman Heritage Conservation Ned Kaufman, Ph.D. February 28, 2011 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RLO 1830 PNNL-20185 This report was prepared as an account of work sponsored by an agency of the

95

High Performance Healthcare Buildings: A Roadmap to Improved Energy  

E-Print Network (OSTI)

and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design

96

Building Performance Simulation  

E-Print Network (OSTI)

LEEDNCCertifiedBuildings (courtesyNewBuildingInstitute) Figure3MeasuredEnergyUseIntensitiesofBig?BoxRetailsinUSandCanada(

Hong, Tianzhen

2014-01-01T23:59:59.000Z

97

Whole Building Energy Performance Anomaly Detections at TU/e  

E-Print Network (OSTI)

will also incorporate expert knowledge to couple energy analysis with analysis regarding system maintenance and failure risk. Proposed research will seek to develop an advanced retro-commissioning analysis methodology to assist with the initial assessment...

Hensen, J. L. M.; Bynum, J. D.

2013-01-01T23:59:59.000Z

98

Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings  

SciTech Connect

This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

Matson, Nance E.; Piette, Mary Ann

2005-09-05T23:59:59.000Z

99

High Performance Buildings Database  

DOE Data Explorer (OSTI)

The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

100

Building Performance Simulation  

E-Print Network (OSTI)

low energy buildings, with site EUI of 40 or lowerbuildings in the US (EUI of 90 kBtu/ft). Thisthe bubble represents the EUI. These buildings were

Hong, Tianzhen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Data and Analytics to Inform Energy Retrofit of High Performance Buildings  

E-Print Network (OSTI)

DOE-2: a whole building energy modeling program. http://Modeling and simulation of HVAC faults in EnergyPlus, Building

Hong Ph.D., Tianzhen

2014-01-01T23:59:59.000Z

102

Assessment of Cost-optimal Energy Performance Requirements for the Italian Residential Building Stock  

Science Journals Connector (OSTI)

Abstract Directive 2010/31/EU establishes that Member States must ensure that minimum energy performance requirements for buildings are set with a view to achieve cost-optimal levels. The paper presents a methodology for identifying the cost-optimal levels for the Italian residential building stock, following the Guidelines accompanying the Commission Delegated Regulation No. 244/2012. The methodology is applied to a reference building of the IEE-TABULA project and considering different energy efficiency measures. The energy performance and the global cost calculations are performed according to UNI/TS 11300 and UNI EN 15459, respectively. A new cost optimisation procedure based on a sequential search-optimisation technique considering discrete options is applied.

Vincenzo Corrado; Ilaria Ballarini; Simona Paduos

2014-01-01T23:59:59.000Z

103

How to evaluate performance of net zero energy building A literature research  

Science Journals Connector (OSTI)

Abstract NZEB (Net zero energy building) is regarded as an integrated solution to address problems of energy-saving, environmental protection, and CO2 emission reduction in the building section. NZEB could be even possible with electricity production if enough renewable energy could be used. Moreover, various building-service systems with renewable energy sources have been widely considered for potential applications in NZEB. All of these new features extend the technical boundary of the conventional energy-efficient buildings, attach a more profound implication to the sustainable development of building technology, and therefore pose a challenge to evaluation works on NZEB performance. This paper presents a guided tour on NZEB evaluation through literature-research. An overview about definitions and energy-efficient measures of NZEB is presented so that the research object and technology boundary can be clarified for NZEB evaluation. Then, a summary of widely-used research method, tool and performance indicator in evaluation is provided for the methodology part. This part also includes a discussion on the application of LCA (life cycle assessment) in NZEB evaluation and LCA's role in promoting a well-defined NZEB. Finally, potential progress in NZEB evaluation with possible development trends is highlighted in terms of energy storage, load match and smart grid.

S. Deng; R.Z. Wang; Y.J. Dai

2014-01-01T23:59:59.000Z

104

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

SciTech Connect

This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

Singer, Brett C.; Tschudi, William F.

2009-09-08T23:59:59.000Z

105

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

Energy Star Ratings Using Building Occupancy CharacteristicsDefaults and Whole Building Energy Use Intensity andCalifornia CEUS Office Buildings (n=109) C-6 % of Cal-Arch

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

106

Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)  

SciTech Connect

Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

Not Available

2014-09-01T23:59:59.000Z

107

Building Energy Efficient Schools  

E-Print Network (OSTI)

Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

McClure, J. D.; Estes, J. M.

1985-01-01T23:59:59.000Z

108

Best Practices Guide for High-Performance Indian Office Buildings  

E-Print Network (OSTI)

targets during building modeling (design phase) and both for building modeling (design phase) and performing building energy simulation and modeling

Singh, Reshma

2014-01-01T23:59:59.000Z

109

MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION  

E-Print Network (OSTI)

and energy usage for 133 buildings in the BECA-CN (Buildings Energy-Use Compilation and Analysis - part CN: New Energy-Efficient Commercial

Piette, M.A.

2010-01-01T23:59:59.000Z

110

Building Energy Modeling  

Energy.gov (U.S. Department of Energy (DOE))

Building energy simulationphysics-based calculation of building energy consumptionis a multi-use tool for building energy efficiency.

111

Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three  

E-Print Network (OSTI)

Building owners and occupants expect more from their buildings today- both better IEQ and less energy consumption. Many facilities strive to design and commission a =smart building' - one that is healthy, environmentally conscious and operating...

Wiser, D.

2011-01-01T23:59:59.000Z

112

Data and Analytics to Inform Energy Retrofit of High Performance Buildings  

E-Print Network (OSTI)

commercial building energy audits, second edition, 2011. [industry. Traditional energy audit or analysis methods arethree progressive levels of energy audits: (1) walk-through

Hong Ph.D., Tianzhen

2014-01-01T23:59:59.000Z

113

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE))

Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

114

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

115

Report on High Performance Building's Energy Modeling, Physical Building Information Modeling for Solar Building Design and Simulation  

E-Print Network (OSTI)

This report was created for the National Science Foundation-Physical Building Information Modeling (NSF-PBIM) project. This report describes the analysis of a solar office building using the following software: the legacy tools (DOE 2.1e, the F...

Alcocer, J.; Haberl, J. S.

2012-01-01T23:59:59.000Z

116

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

117

Benchmarking Building Performance & the Australian Building Greenhouse  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Building Performance & the Australian Building Greenhouse Benchmarking Building Performance & the Australian Building Greenhouse Rating Scheme Speaker(s): Paul Bannister Date: August 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Stephen Selkowitz (Two topics): Benchmarking Building Performance: In a variety of voluntary and regulatory initiatives around the globe, including the introduction of the European Building Performance Directive, the question of how to assess the performance of commercial buildings has become a critical issue. There are presently a number of initiatives for the assessment of actual building performance internationally, including in particular US Energy Star Buildings rating tools and the Australian Building Greenhouse Rating scheme. These schemes seek to assess building energy performance on the

118

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

119

Practical Experiences with the Implementation of the Energy Performance Buildings Directive in Central Europe  

E-Print Network (OSTI)

Page 1 of 16 Practical experiences with the implementation of the Energy Performance Buildings Directive in Central Europe A project in behalf of Government of the Federal Republic of Germany Ingo Therburg ARGE Energieausweise...-conditioning systems are carried out in an independent manner by qualified and/or accredited experts, whether operating as sole traders or employed by public or private enterprise bodies INITIAL SITUATION GERMANY Like in other European countries in Germany...

Therburg, I.

120

Buildings Performance Database Recommended Data Fields  

Energy.gov (U.S. Department of Energy (DOE))

Buildings Performance Database Recommended Data Fields, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

9Market Transformation 9Market Transformation 9.1 ENERGY STAR 9.2 LEED 9.3 Certification Programs 9.4 High Performance Buildings Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter contains data on two market transformation programs that reach across the United States and to other countries: the ENERGY STAR program, jointly administered by the U.S. Environmental Protection Agency and the U.S. Department of Energy, and the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) rating system. It also includes data on three professional certifications and five case studies of high performance buildings. The main points from this chapter are summarized below:

122

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

SciTech Connect

The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

2013-08-01T23:59:59.000Z

123

Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design stages  

Science Journals Connector (OSTI)

The architectural design variables which most influence the energy performance of a building are the envelope materials, shape and window areas. As these start to be defined in the early design stages, designers require simple tools to obtain information about the energy performance of the building for the design variations being considered at this phase. The shape factor is one of those tools, but it fails to correlate with energy demand in the presence of important solar gains. This paper presents a new design indicator of energy performance for residential buildings, the Envelope-Related Energy Demand (ERED), which aims to overcome the shortcomings of the shape factor while maintaining a reasonable simplicity of use. The inputs to ERED are areas of envelope elements (floor, walls, roofs and windows), U-values of envelope materials, solar heat gain coefficients (SHGC) of windows and site related parameters, concerning temperature and solar irradiation. ERED was validated against detailed simulation results of 8000 hypothetical residential buildings, varying in envelope shape, window areas and materials. Results show that there is a strong correlation between ERED and simulated energy demand. These results confirm the adequacy of ERED to assist design decisions in early stages of the design process.

Vasco Granadeiro; Joo R. Correia; Vtor M.S. Leal; Jos P. Duarte

2013-01-01T23:59:59.000Z

124

Whole Building Performance-Based Procurement Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole Building Performance-Based Whole Building Performance-Based Procurement Training TDM - Shalon Brown (BTO) Shanti Pless National Renewable Energy Laboratory Shanti.Pless@nrel.gov 303-384-6365 April 4, 2013 2 | Building Technologies Office eere.energy.gov Project Definition Replicating NREL/DOE procurement process successes in reaching 50% building energy savings at typical construction costs, by: - Creating a how-to guide that outlines the entire acquisition process, including: setting a building energy requirement, project

125

About the Building Performance Database  

Energy.gov (U.S. Department of Energy (DOE))

Recent technology, market and policy drivers - smart meters, energy performance disclosure laws, etc. - are resulting in a rapid increase in generation of data about buildings and their energy performance. But this data is still hard to access, and analyze because it is being housed in many decentralized and often proprietary databases. The DOE Building Performance Database (BPD) aims to bridge this gap by compiling and cleansing a large dataset required to assess the likely performance of energy efficiency retrofit measures and services. By making the data available anonymously and in aggregate, the BPD enables the public to gain value from the data while addressing the privacy needs of contributors.

126

Performance of Coupled Building Energy and CFD Simulations Zhiqiang (John) Zhai  

E-Print Network (OSTI)

and CFD. This investigation implemented these concepts and developed an integrated building design tool, E, West Lafayette, IN 47907-2088, USA Abstract The integration of building energy simulation (ES of the integrated building simulation over the separated energy simulation and computational

Chen, Qingyan "Yan"

127

Evaluation on energy and thermal performance for office building envelope in different climate zones of China  

Science Journals Connector (OSTI)

Abstract Effective evaluation on the thermal performance of envelope plays an important role towards the reduction of energy consumption for space cooling and heating. In order to calculate the energy consumption for cooling and heating and assess the whole energy efficiency of envelop designs, a new evaluation index on energy and thermal performance for office building envelop (EETPO) is put forward. Three cities of Shenyang, Wuhan and Guangzhou in China are selected for EETPO analysis, which represent the cold zone, hot summer cold winter zone and hot summer warm winter zone, respectively. The regression equations between EETPO and energy use for cooling/heating are studied in three cities, illustrations indicate that the regression lines fit extremely well and the algorithm is accurate and simple. According to the compulsory indices stipulated by standard (GB50189-2005), the maximum allowable values of EETPO are determined in three cities, the maximum \\{EETPOc\\} in cooling period is 1.750W/m3K in Wuhan and 1.733W/m3K in Guangzhou, the maximum \\{EETPOh\\} in heating period is 0.200W/m3K in Shenyang and 0.414W/m3K in Wuhan. This index and energy use calculation method can help designers to evaluate the whole energy and thermal performance of the proposed envelopes and analyze energy saving effects for different energy conservation measures.

Jinghua Yu; Liwei Tian; Xinhua Xu; Jinbo Wang

2015-01-01T23:59:59.000Z

128

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings  

E-Print Network (OSTI)

even further. These net zero energy buildings (ZEB) followperformance goals for net zero energy buildings. There are abuilding site: a net zero energy building is characterized

Selkowitz, Stephen

2008-01-01T23:59:59.000Z

129

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Buildings. Washington,Summer Study on Energy Efficiency in Buildings. Washington,Summer Study on Energy Efficiency in Buildings. Washington,

Selkowitz, Stephen

2008-01-01T23:59:59.000Z

130

Energy 101: Energy Efficient Commercial Buildings  

ScienceCinema (OSTI)

Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

None

2014-06-26T23:59:59.000Z

131

Energy 101: Energy Efficient Commercial Buildings  

SciTech Connect

Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

None

2014-03-14T23:59:59.000Z

132

Build an energy management program | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Advance your energy program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

133

Building America Roadmap to High Performance Homes | Department...  

Office of Environmental Management (EM)

Building America Roadmap to High Performance Homes Building America Roadmap to High Performance Homes This presentation was delivered at the U.S. Department of Energy Building...

134

Performance investigation of two geothermal district heating systems for building applications: Energy analysis  

Science Journals Connector (OSTI)

The energetic performance of Balcova geothermal district heating system (BGDHS) and Salihli geothermal district heating system (SGDHS) installed in Turkey is investigated for building applications in this study. The essential components (e.g., pumps, heat exchangers) of these geothermal district heating systems are also included in the modeling. The present model is employed for system analysis and energetic performance evaluation of the geothermal district heating systems. Energy flow diagrams are drawn to exhibit the input and output energies and losses to the surroundings by using the 2003 and 2004 heating season actual data. In addition, energy efficiencies are studied for comparison purposes, and are found to be 39.36% for BGDHS and 59.31% for SGDHS, respectively.

Leyla Ozgener; Arif Hepbasli; Ibrahim Dincer

2006-01-01T23:59:59.000Z

135

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

136

Evaluating the energy performance of the first generation of LEED-certified commercial buildings  

E-Print Network (OSTI)

modeled energy use intensity (EUI), which is the energy usefor the modeled whole-building EUI is 111 kBtu/ft2 -yr. Theis excluded). The mean EUI based on the energy bills is 124

Diamond, Rick

2011-01-01T23:59:59.000Z

137

A Market-Specific Methodology for a Commercial Building Energy Performance Index  

Science Journals Connector (OSTI)

The scaling of energy efficiency initiatives in the commercial building sector ... methodologies that do not adequately model patterns of energy consumption, nor provide accurate measures of relative energy perfo...

Constantine E. Kontokosta

2014-08-01T23:59:59.000Z

138

ESPC 2.0: How New Twists on Energy Savings Performance Contracting are Improving Energy Efficiency in U.S. Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Join Better Buildings Challenge Partners and Allies to learn how Energy Savings Performance Contracting (ESPC) is moving beyond the traditional education and hospital sector markets.

139

MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION  

E-Print Network (OSTI)

enabling us to correct for the energy consumption of thesehigh energy consumption; current monitoring will enable usU.S. Department of Energy, Nonrcsidential Building6 Encrgy Consumption

Piette, M.A.

2010-01-01T23:59:59.000Z

140

Continuous Commissioning Based on the European Energy Performance of Buildings Directive and Intelligent Monitoring  

E-Print Network (OSTI)

H, Stuttgart/Kornwestheim Germany Christian Neumann Operating agent Building EQ Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT The Save Project BuildingEQ ?Tools and methods for linking EPBD and continuous commissioning... behaviour of the building available at this state. ESL-IC-08-10-08 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Page 2 of paper submitted to ICEBO 2008 Berlin Figure 1...

Schmidt, F.; Neumann, C.

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

Whole building electricity consumption for the first eightbuildings. Measured electricity consumption Figure 3 showsthe measured total electricity consumption of the building

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

142

High-Performance Building Requirements for State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

143

Building America Residential Buildings Energy Efficiency Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

144

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers (EERE)

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

145

Sustainable Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Sustainable Buildings Mission The team evaluates and incorporates the requirements for sustainable buildings as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The team advocates the use of sustainable building practices. Scope The team evaluates how to locate, design, construct, maintain, and operate its buildings and facilities in a resource-efficient, sustainable, and economically viable manner, consistent with its mission. The team provides a process to evaluate sustainable building practices for any new construction, major renovation, and existing capital asset buildings in

146

Building America Best Practices Series Volume 13: Energy Performance Techniques and Technologies: Preserving Historic Homes  

SciTech Connect

This guide is a resource to help contractors renovate historic houses, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. The guide is available for download from the DOE Building America website www.buildingamerica.gov.

Britt, Michelle L.; Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Makela, Erin KB; Schneider, Elaine C.; Kaufman, Ned

2011-03-01T23:59:59.000Z

147

Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building  

NLE Websites -- All DOE Office Websites (Extended Search)

4E 4E Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building J.H. Dudley, D. Black, M. Apte, M.A. Piette Lawrence Berkeley National Laboratory P. Berkeley University of California, Berkeley May 2010 Presented at the 2010 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August 15-20, 2010, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

148

Buildings without energy bills  

Science Journals Connector (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

149

Optical performance of vertical heliostat fields integrated in building faades for concentrating solar energy uses  

Science Journals Connector (OSTI)

Abstract One way for integrating concentrating solar energy systems based on central receiver technology in metropolitan areas consists of using building faades as frame for installing a heliostat reflector field that reflects radiation coming from the sun towards a common area where receiver is located. This work analyzes the optical performance of vertical solar field concept. It provides the effect of several geometric parameters such as receiver height, separation between heliostat edges, and different building typologies on the hourly and annual optical efficiency along the year including the contribution of different optical efficiency factors such as shadowing, blocking, cosine, and spillage. The optical efficiency of a vertical heliostat field was found to be mainly controlled by shadowing, cosine and spillage factors. The field reaches the maximum overall optical efficiency during spring and winter at noon time and the minimum ones during the summer season mainly due to shadowing factor. Results obtained for best configurations are comparable to those ones reached by traditional horizontal field arrangements, what supports the feasibility of the vertical heliostats field concept as a CSP building integrated facility.

Aurelio Gonzlez-Pardo; Sara Cesar Chapa; Jos Gonzalez-Aguilar; Manuel Romero

2013-01-01T23:59:59.000Z

150

Moving Toward Zero Energy Buildings  

E-Print Network (OSTI)

, appliances, etc) and systems integration to optimize the performance of the building. Then we need the best renewable energy technologies that can be incorporated into buildings: solar, small wind, and geothermal heat pumps (some day hydrogen storage..., appliances, etc) and systems integration to optimize the performance of the building. Then we need the best renewable energy technologies that can be incorporated into buildings: solar, small wind, and geothermal heat pumps (some day hydrogen storage...

Ginsberg, M.

2008-01-01T23:59:59.000Z

151

Commercial Building Energy Asset Score | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refrigerator Standards Save Consumers Billions Tools EnergyPlus Whole Building Energy Simulation OpenStudio Energy Simulation Application Suite Buildings Performance...

152

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

153

Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance  

E-Print Network (OSTI)

and P. Price, 2009. Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

2011-01-01T23:59:59.000Z

154

Energy performance of direct expansion air handling unit in office buildings  

Science Journals Connector (OSTI)

Abstract Buildings and their occupants generate a large amount of carbon emissions. In Korea, buildings contribute to about 30% of the total greenhouse gases emissions, and the proportion has been rapidly increasing to the level of the developed counties (i.e., more than 40% of the total emissions. A direct expansion air handling unit, of which a refrigerant is directly delivered to the heating and cooling, has a potential to save cooling and heating energy use, compared to water-based central air conditioning systems. The aim of this study is to compare heating and cooling energy uses of an identical office building but with different air conditioning systems, i.e. direct expansion and water-based air conditioning systems. Dynamic building energy simulations that reflect the actual use of a monitored building and its air handling unit operation have been conducted in this study. Simulation results show good agreement with the actual energy consumption obtained from the field measurements of the building. Our study quantifies the amount of cooling and heating energy uses saved by a direct expansion air handing unit and reveals reasons for this savings, i.e. higher energy efficiency of the unit and reduction in pump and fan energy demands.

Geun Young Yun; Jongdae Choi; Jeong Tai Kim

2014-01-01T23:59:59.000Z

155

Data and Analytics to Inform Energy Retrofit of High Performance Buildings  

E-Print Network (OSTI)

the energy use intensity (EUI) of the CalSTRS Building inGenerally, the total electricity EUI during this time periodbuilding, annual breakdowns of EUI are shown in Figure 3,

Hong Ph.D., Tianzhen

2014-01-01T23:59:59.000Z

156

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

heating is provided by district heating. The building isis heated from a district heating system that provides hotconverts the heat from district heating system to the hot

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

157

Improved Building Energy Performance Modelling through Comparison of Measured Data with Simulated Results  

E-Print Network (OSTI)

-Institute for Solar Energy Systems Freiburg, Germany Dirk Jacob Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT This work forms part of the ModBen project conducted by Fraunhofer ISE. This paper aims to compare actual... is a complex building. The complexity comes from the architectural design that ESL-IC-08-10-70 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Page 2 of paper submitted...

Bambrook, S.; Jacob, D.

158

High Performance and Sustainable Buildings Guidance | Department...  

Energy Savers (EERE)

High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance More Documents &...

159

Energy efficiency buildings program, FY 1980  

SciTech Connect

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

Not Available

1981-05-01T23:59:59.000Z

160

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Broken Information Feedback Loops Prevent Good Building Energy PerformanceIntegrated Technological and Sociological Fixes Are Needed  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Buildings, Monterey CAStudy of Energy Efficiency in Buildings. Panel 4 Paper 1130.Summer Study of Energy Efficiency in Buildings. 5:13-5:25.

Arens, Edward; Brown, Karl

2012-01-01T23:59:59.000Z

162

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

163

Using an Energy Performance Based Design-Build Process to Procure...  

NLE Websites -- All DOE Office Websites (Extended Search)

The specific energy performance requirements, such as the absolute energy use intensity (EUI) objective of 25 kBtuft 2 site energy consumption and net-zero energy balance,...

164

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

165

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

166

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

167

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

168

Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation  

E-Print Network (OSTI)

data base and building modeling that will enable comparativeApplying Information Modeling to Buildings, in A. Dikba?

Bazjanac, Vladimir

2008-01-01T23:59:59.000Z

169

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

170

Midwest Building Energy Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

171

Midwest Building Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

172

Building Performance Simulation  

E-Print Network (OSTI)

Y (2008). DeSTAn integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeSTAn integrated building simulation toolkit,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

173

High Performance Building Standards in State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Oklahoma Program Type Energy Standards for Public Buildings Provider Oklahoma Department of Central Services In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification program for state construction and renovation projects. The standard, which

174

Whole Building Energy Simulation  

Energy.gov (U.S. Department of Energy (DOE))

Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

175

Energy 101: Energy Efficient Commercial Buildings  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratorya model for high-performance office building design.

176

Building Energy Software Tools Directory: ISOVER Energi  

NLE Websites -- All DOE Office Websites (Extended Search)

ISOVER Energi ISOVER Energi ISOVER Energi logo Calculates: U-value, for constructions with and without thermal bridges; total heat loss for buildings; and energy demand for buildings. ISOVER Energi compares heat loss to the heat loss frame in the Danish Building Regulations. The energy demand is compared to the energy frame in the Danish Building Regulations. Furthermore ISOVER Energi calculates the profitability of activities e.g. retrofit, renewing of windows, to improve the energy performance of existing buildings. The profitability is compared to the criteria in the Danish Building Regulations. Access to databases with characteristics for common building materials and with linear heat losses for typical solutions for connections. The database facility is planned to be enlarged with databases for windows, boilers,

177

Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings  

SciTech Connect

It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the major professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.

Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica; Haves, Philip; Mathew, Paul; Harris, Jeff

2008-06-16T23:59:59.000Z

178

Annual measured performance of building-integrated solar energy systems in demonstration low-energy solar house  

Science Journals Connector (OSTI)

This paper presents the details of the output and efficiency of the annual performance of building-integrated solar energy systems for a solar water heating system and solar photovoltaic (PV) modules of a demonstration near-zero-energy solar house that was constructed on the campus of the Korea Institute of Energy Research. The thermal systems installed in the house were a solar water heating system with building-integrated solar collectors for water heating and for part of the space heating and a ground-coupled heat pump for space cooling and part of the space heating. Solar PV modules were installed on the roof of the house. The performance of these systems was monitored for more than 1 yr. The annual efficiencies of the building's integrated solar collectors and solar PV were 22.8% and 10.9% respectively. The total annual solar fraction of the solar heating system was 69.7% with an annual solar heat production of 248?kW h/m2. This paper also focuses on the efficiency of the house's solar storage based upon intentionally varied drainage of hot water from the storage tank. It was found that the thermal loss from the solar storage tank has a strong functional relationship with the thermal demand of the solar storage tank per unit volume. For example when the hot water consumption was reduced by half during September the thermal loss increased to more than 70% which would otherwise have been around 30%.

2014-01-01T23:59:59.000Z

179

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

on ice storage power and cooling load was not available.Ice storage system power consumption 2 Stored cooling 3 Peakpower density 0.38 W/ft 2 (4.1 W/m 2 ) The building is equipped with a cooling

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

180

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

as well as an ice thermal energy storage (TES) system in thefrom the ice thermal energy storage system. More data on the

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

183

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

184

NREL Evaluates the Thermal Performance of Uninsulated Walls to Improve the Accuracy of Building Energy Simulation Tools (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop models of uninsulated wall assemblies that help to improve the accuracy of building energy simulation tools when modeling potential energy savings in older homes. Researchers at the National Renewable Energy Laboratory (NREL) have developed models for evaluating the thermal performance of walls in existing homes that will improve the accuracy of building energy simulation tools when predicting potential energy savings of existing homes. Uninsulated walls are typical in older homes where the wall cavities were not insulated during construction or where the insulating material has settled. Accurate calculation of heat transfer through building enclosures will help determine the benefit of energy efficiency upgrades in order to reduce energy consumption in older American homes. NREL performed detailed computational fluid dynamics (CFD) analysis to quantify the energy loss/gain through the walls and to visualize different airflow regimes within the uninsulated cavities. The effects of ambient outdoor temperature, radiative properties of building materials, and insulation level were investigated. The study showed that multi-dimensional airflows occur in walls with uninsulated cavities and that the thermal resistance is a function of the outdoor temperature - an effect not accounted for in existing building energy simulation tools. The study quantified the difference between CFD prediction and the approach currently used in building energy simulation tools over a wide range of conditions. For example, researchers found that CFD predicted lower heating loads and slightly higher cooling loads. Implementation of CFD results into building energy simulation tools such as DOE2 and EnergyPlus will likely reduce the predicted heating load of homes. Researchers also determined that a small air gap in a partially insulated cavity can lead to a significant reduction in thermal resistance. For instance, a 4-in. tall air gap (Figure 1a) led to a 15% reduction in resistance. Similarly, a 2-ft tall air gap (Figure 1c) led to 54% reduction in thermal resistance. NREL researchers plan to extend this study to include additional wall configurations, and also to evaluate the performance of attic spaces with different insulation levels. NREL's objective is to address each potential issue that leads to inaccuracies in building energy simulation tools to improve the predictions.

Not Available

2012-01-01T23:59:59.000Z

185

Approach for the Improvement of Energy Performance of a Stock of Buildings  

E-Print Network (OSTI)

. - The tools must be accessible via the Intranet of the ministry in order to be easily and widely accessible. DEVELOPMENT OF TOOLS ADAPTED TO END-USER To analyze and improve the performance of the ministry of equipment stock of buildings we have.... - The tools must be accessible via the Intranet of the ministry in order to be easily and widely accessible. DEVELOPMENT OF TOOLS ADAPTED TO END-USER To analyze and improve the performance of the ministry of equipment stock of buildings we have...

Vaezi-Nejad, H.; Bouillon, J.; Crozier, L.; Guyot, G.

2003-01-01T23:59:59.000Z

186

Energy guides | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

guides guides Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial service and product providers

187

Synergization of air handling units for high energy efficiency in office buildings: Implementation methodology and performance evaluation  

Science Journals Connector (OSTI)

An integrating air-handling unit (IAHU) control theory has been proposed to improve the energy efficiency in office buildings by utilizing the regional and operation differences among multiple AHUs. Unlike the conventional AHU operation, where the units are controlled as independent systems without interaction, IAHU coordinates the \\{AHUs\\} based on the dynamic outside air conditions and system operation modes to achieve synergized energy performance and maintain the indoor air quality. The synergization strategy allows the outside air intake and the airflows to be orderly re-allocated among the \\{AHUs\\} when conditions are appropriate. This paper presents the implementation methodology and performance evaluation of IAHU in an open-plan office building with multiple AHUs. The allocation of airflows among the \\{AHUs\\} is described first to illustrate how IAHU deals with multiple \\{AHUs\\} in a building. The supervisory level control algorithm is then detailed and easy-to-follow flowcharts are provided based on the decision-making schema. A two-step hourly evaluation method and the energy simulation model are introduced. An office building with multiple \\{AHUs\\} is selected to assess the performance of IAHU. The study concludes that the innovative IAHU with the easy-to-implement strategy can be readily implemented to achieve high energy efficiency in open space office buildings.

Yuebin Yu; Mingsheng Liu; Haorong Li; Daihong Yu; Vivian Loftness

2012-01-01T23:59:59.000Z

188

Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program  

SciTech Connect

The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

Langner, R.; Hendron, B.; Bonnema, E.

2014-08-01T23:59:59.000Z

189

Data and Analytics to Inform Energy Retrofit of High Performance Buildings  

E-Print Network (OSTI)

commissioning new and existing commercial buildings: Lessonsfrom 224 buildings. ProceedingsNational Conference on Building Commissioning. [5]. CABA.

Hong Ph.D., Tianzhen

2014-01-01T23:59:59.000Z

190

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

On May 4, 2007, a massive tornado destroyed or severely damaged 95% On May 4, 2007, a massive tornado destroyed or severely damaged 95% of Greensburg, Kansas. Since then, city and community leaders have been committed to rebuilding the town as a model sustainable community. Experts from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) worked with city leaders, business owners, and residents to identify ways to incorporate energy efficiency and renewable energy technologies into the new buildings. The town showcases energy-saving best practices that can be replicated not only in other communi- ties recovering from disaster, but any location focused on sustainability. The Town of Greensburg Founded in 1886, Greensburg had a population of approximately 1,400 people prior to the tornado, and relied on the agricultural, oil, and gas industries to

191

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On May 4, 2007, a massive tornado destroyed or severely damaged 95% On May 4, 2007, a massive tornado destroyed or severely damaged 95% of Greensburg, Kansas. Since then, city and community leaders have been committed to rebuilding the town as a model sustainable community. Experts from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) worked with city leaders, business owners, and residents to identify ways to incorporate energy efficiency and renewable energy technologies into the new buildings. The town showcases energy-saving best practices that can be replicated not only in other communi- ties recovering from disaster, but any location focused on sustainability. The Town of Greensburg Founded in 1886, Greensburg had a population of approximately 1,400 people prior to the tornado, and relied on the agricultural, oil, and gas industries to

192

Regional variations in US residential sector fuel prices: implications for development of building energy performance standards  

SciTech Connect

The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

1981-03-01T23:59:59.000Z

193

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

194

Building Energy Software Tools Directory: Building Energy Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Analyzer Building Energy Analyzer Building Energy Analyzer logo. Provides quick economic analysis for commercial and industrial buildings. Building Energy Analyzer (BEA) estimates annual and monthly loads and costs associated with air-conditioning, heating, on-site power generation, thermal storage, and heat recovery systems for a given building and location. The user can compare the performance of standard and high efficiency electric chillers, variable speed electric chillers, absorption chillers, engine chillers, thermal storage, on-site generators, heat recovery, or desiccant systems. The user can also prepare side-by-side economic comparisons of different energy options and equipment life cycle cost analysis. The BEA is a system screening tool. It is a tool that is

195

Southeast Energy Efficiency Alliance's Building Energy Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

196

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

197

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

198

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners, designers, and owners to focus on energy-use goals from the first planning

199

Validation of Simulated Thermal Comfort using a Calibrated Building Energy Simulation (BES) model in the context of Building Performance Evaluation & Optimisation  

E-Print Network (OSTI)

Building Energy Simulation (BES) models play a significant role in the design and optimisation of buildings. Simulation models may be used to compare the cost-effectiveness of Energy- Conservation Measures (ECMs) in the design stage as well...

Coakley, D.; Corry, E. J.; Keane, M. M.

2013-01-01T23:59:59.000Z

200

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

CONSERVATION IN BUILDINGS AND ANALYTIC MODELING Footnotes tobuilding -- and so are inaccurate for passive solar modeling.modeling described above for only one specific hour and one specific building

Goldstein, David Baird

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Savings Performance Contracting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Savings Performance Contracting Energy Savings Performance Contracting Energy Savings Performance Contracting (ESPC) is a budget-neutral approach to make building improvements that...

202

Better Buildings Alliance Equipment Performance Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

203

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

204

EL Program: Net-Zero Energy, High-Performance Build Program Manager: William Healy, Energy and Environment Div  

E-Print Network (OSTI)

associated with building energy consumption, NIST will develop and deploy the measurement science to move heating and cooling equipment, 3) advancing the measurements of onsite energy generation technologies in the United States, while accounting for 40 % of the CO2 emissions. Such energy consumption and emissions from

205

Buildings Energy Databook  

Buildings Energy Data Book (EERE)

2 BUILDINGS 2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered an evolving document as it will be will be periodically updated and additional data will be incorporated. Users are requested to submit additional data (e.g., more current, widely accepted, and/or better documented data) and suggested changes to the contacts below. Please provide full source references along with all data.

206

Commercial Building Performance Monitoring and Evaluation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Projects » Commercial Building Research Projects » Commercial Building Performance Monitoring and Evaluation Commercial Building Performance Monitoring and Evaluation The Building Technologies Office (BTO) uses performance metrics to standardize the measurement and characterization of energy performance in commercial buildings. These metrics help inform the effectiveness of energy efficiency measures in existing buildings and highlight opportunities to improve performance. Various tiers of metrics are available for different users. Performance Metrics Objectives Performance metrics deal with building energy consumption and on-site energy production. To be useful, industry must agree on standard definitions for these metrics and share consistent procedures for collecting and reporting data as well as ensuring data quality.

207

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

208

The Value of Energy Performance and Green Attributes in Buildings: A Review of Existing Literature and Recommendations for Future Research  

E-Print Network (OSTI)

quantify the value of green and energy efficiency upgradesofhomeswithBuildGreen,ENERGYSTARorLEEDforHomesmajor renovations, and energy or green upgrade projects.

Stuart, Elizabeth

2012-01-01T23:59:59.000Z

209

Manage energy use in manufacturing | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve building and plant performance Improve building and plant performance » Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing

210

Buildings Performance Database | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database Buildings Performance Database Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV Source Department of Energy's Buildings Performance Database Date Released July 09th, 2012 (2 years ago) Date Updated Unknown Keywords Buildings Performance Database Dayton Electricity Gainesville Natural Gas open data Residential Data application/zip icon BPD Dayton and Gainesville Residential csv files in a zip file (zip, 2.8 MiB) text/csv icon BPD Dayton and Gainesville Residential Building Characteristics data (csv, 1.4 MiB) text/csv icon BPD Dayton and Gainesville Residential data headers (csv, 5.8 KiB)

211

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

212

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

213

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

The Energy Index for Commercial Buildings The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results yield national totals for commercial buildings. For more information on CBECS, visit EIA's website. Location Census Division View Map New England West North Central West South Central Middle Atlantic South Atlantic Mountain East North Central East South Central Pacific

214

Building Energy Software Tools Directory: Star Perfomer  

NLE Websites -- All DOE Office Websites (Extended Search)

Star Perfomer Star Perfomer Star Perfomer logo. Outlines simple steps to help office building owners, managers and tenants improve their greenhouse and energy efficiency performance, simply by asking some straightforward questions about the size, operating hours, current performance and equipment standards of the building. Star Performer is a diagnostic tool that uses the current operational energy performance of the building measured against a national benchmark, obtained through the Australian Building Greenhouse Rating scheme (see links below), as a basis for making recommendations. The tool covers all areas of the building which affect operational energy performance, including building fabric, equipment and operational practices. Star Perfomer will point you in the right direction and give

215

Guidelines Establishing Criteria for Excluding Buildings from the Energy Performance Requirements of Section 543 of the National Energy Conservation Policy Act as Amended by the Energy Policy Act of 2005  

Energy.gov (U.S. Department of Energy (DOE))

This document contains the Guidelines Establishing Criteria for Excluding Buildings from the Energy Performance Requirements of Section 543 of the National Energy Conservation Policy Act as Amended by the Energy Policy Act of 2005

216

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

217

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

Kinney, Satkartar; Piette, Mary Ann

2003-07-01T23:59:59.000Z

218

Building America Update Newsletter | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. Department of Energy's Building America program, which helps to engineer American homes for better energy performance, durability, quality, affordability, and comfort. Each...

219

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

building itself. 4b. A Trombe wall is a south-facing heavywall. The inventor of the Trombe wall discusses some of itsOther windows illuminate Trombe walls of l~ foot concrete. (

Goldstein, David Baird

2011-01-01T23:59:59.000Z

220

Building Energy Software Tools Directory: BuildingAdvice  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingAdvice BuildingAdvice BuildingAdvice™ is a user-friendly, Web-based platform designed to assess building energy performance and identify and quantify energy savings opportunities. Target buildings are in the 5k-200k sq. ft. range, with scalability up to 1mm sq. ft. The platform combines 1) portable wireless sensor packages for capture of real-time building data, 2) automated entry of weather data, 3) manual entry of basic building information, and 4) proprietary EnGen™ energy modeling software. Output is a suite of comprehensive reports that benchmark against CBECS; provide key performance parameters including Energy Star rating, energy usage index, energy cost per square foot, and carbon emissions; provide ASHRAE Level II audits that quantify energy usage in four areas of

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Buildings Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Project Decision Making EERE's Buildings Performance Database, launched in June 2013, provides access to empirical data on the actual energy performance, as well as...

222

Building Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Building Science Residential Buildings » Building America » Building Science Education Building Science Education The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to: Increase awareness of high performance home benefits Build a solid infrastructure for delivering building science

223

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network (OSTI)

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: Buildingof comparing three Building Energy Modeling Programs (BEMPs)

Zhu, Dandan

2014-01-01T23:59:59.000Z

224

Building Energy-Efficiency Best Practice Policies and Policy Packages  

E-Print Network (OSTI)

the Building Energy Efficiency Market in India - Lessonson the high-energy-performance market, most constructionand Market-based Mechanisms to Improve Building Energy

Levine, Mark

2014-01-01T23:59:59.000Z

225

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

226

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Most Popular Tables PDFXLS 3.1.4 2010 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 1.1.1 U.S. Residential and Commercial Buildings Total Primary Energy Consumption PDFXLS...

227

Data Preparation Process for the Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE))

Data Preparation Process for the Buildings Performance Database, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, and Lawrence Berkeley Laboratory.

228

Developing Performance-Based Policies for Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The State & Local Energy Efficiency Action Network (SEE Action) recently released a report, Greater Energy Savings through Building Energy Performance Policy: Four Leading Policy and Program...

229

High Performance Green Building Partnership Consortia | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are groups from the public and private sectors recognized by the U.S. Department of Energy (DOE) for their commitment to high-performance green buildings. Groups that met...

230

Building America Roadmap to High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Name or Ancillary Text Program Name or Ancillary Text eere.energy.gov Building America Technical Update Meeting - April 29, 2013 Building America Roadmap to High Performance Homes Eric Werling Building America Coordinator Denver, CO April 29, 2013 Building Technology Office U.S. Department of Energy EERE's National Mission Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 2 | Building Technologies Office eere.energy.gov Why It Matters to America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation

231

The Value of Energy Performance and Green Attributes in Buildings: A Review of Existing Literature and Recommendations for Future Research  

SciTech Connect

Labels, certifications, and rating systems for energy efficiency performance and green attributes of buildings have been available in the U.S. for over 10 years, and used extensively in the European Union and Australia for longer. Such certifications and ratings can make energy efficiency more visible, and could help spur demand for energy efficiency if these designations are shown to have a positive impact on sales or rental prices. This policy brief discusses the findings and methodologies from recent studies on this topic, and suggests recommendations for future research. Although there have been just a handful of studies within the last 10 years that have investigated these effects, a few key findings emerge: To maximize sales price impact, label or rating information must be disclosed early and visibly in the sales process; The approach to evaluating energy efficiency labels (e.g., ENERGY STAR) and general green certifications (e.g., LEED or GreenPoint Rated) may need to be different, depending on the type, vintage and market penetration of the label; Collaborative efforts to promote label adoption and build a large dataset of labeled buildings will be required to produce reliable study results.

Stuart, Elizabeth

2011-09-07T23:59:59.000Z

232

Building Performance Simulation  

E-Print Network (OSTI)

lighting-switch data 1. Green Energy and EnvironmentSystem Division, Green Energy and Environment ResearchRoad, Berkeley, CA 94720, USA Green Energy and Environment

Hong, Tianzhen

2014-01-01T23:59:59.000Z

233

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Deployment Building Technologies Deployment SHARE Building Technologies Deployment benchmarking commercial buildings Once building technologies emerge and become commercially available, only in exceptional cases does robust market uptake automatically follow. Additional efforts remain to ensure that emerging and under-utilized technologies are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use in residential, commercial, and industrial sectors through applications research, technical assistance, and a variety of deployment strategies. The team's comprehensive knowledge of buildings and energy use spans multi-building sites, whole-buildings, systems, components, and multi-level

234

Improve energy use in commercial buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve energy use in commercial buildings Improve energy use in commercial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing Develop programs and policies

235

Building Technologies Program | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Program Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across disciplines to support federally-and privately-funded research. ORNL's buildings research is directed and funded primarily by the DOE Office of Energy Efficiency and Renewable Energy, specifically the Building Technologies Program. The Federal Energy Management Program, Geothermal Technologies Program, Advanced Manufacturing Office,Office of Weatherization and Intergovernmental Program, Policy and International Affairs, Concentrating Solar Power Program, Sustainability Performance Office, and other partners also support ORNL's research to develop new building technologies. Building Technologies Office

236

Energy Department Announces Building Energy Efficiency Investments...  

Energy Savers (EERE)

Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States June...

237

Saving Energy in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is for the Building Technologies program webinar titled Saving Energy in Multifamily Buildings delivered on July 25, 2011.

238

Building Technologies Office: Home Energy Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Score to Home Energy Score to someone by E-mail Share Building Technologies Office: Home Energy Score on Facebook Tweet about Building Technologies Office: Home Energy Score on Twitter Bookmark Building Technologies Office: Home Energy Score on Google Bookmark Building Technologies Office: Home Energy Score on Delicious Rank Building Technologies Office: Home Energy Score on Digg Find More places to share Building Technologies Office: Home Energy Score on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background FAQs Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

239

Commercial Building Partners Catalyze High Performance Buildings Across the Nation  

SciTech Connect

In 2008 the US Department of Energy (DOE) launched the Commercial Buildings Partnership (CBP) project to accelerate market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The CBP represents a unique collaboration between industry leaders and DOE to develop high performance buildings as a model for future construction and renovation. CBP was implemented in two stages. This paper focuses on lessons learned at Pacific Northwest National Laboratory (PNNL) in the first stage and discusses some partner insights from the second stage. In the first stage, PNNL and the National Renewable Energy Laboratory recruited CBP partners that own large portfolios of buildings. The labs provide assistance to the partners' design teams and make a business case for energy investments.

Baechler, Michael C.; Dillon, Heather E.; Bartlett, Rosemarie

2012-08-01T23:59:59.000Z

240

Building Energy Software Tools Directory: Autodesk Green Building Studio  

NLE Websites -- All DOE Office Websites (Extended Search)

Autodesk Green Building Studio Autodesk Green Building Studio Green Building Studio logo. Seamlessly links architectural building information models (BIM) and certain 3-D CAD building designs with energy, water, and carbon analysis. Autodesk Green Building Studio enables architects to quickly calculate the operational and energy implications of early design decisions. The Autodesk Green Building Studio web service automatically generates geometrically accurate, detailed input files for major energy simulation programs. Green Building Studio uses the DOE-2.2 simulation engine to calculate energy performance and also creates geometrically accurate input files for EnergyPlus. Key to the integrated interoperability exhibited is the gbXML schema, an open XML schema of the International Alliance of

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Energy Modeling Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

242

Building Energy Data Exchange Specification (BEDES) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Building Energy Data Exchange Specification Commercial Buildings » Building Energy Data Exchange Specification (BEDES) Building Energy Data Exchange Specification (BEDES) The Building Energy Data Exchange Specification (BEDES, pronounced "beads" or /bi:ds/) is designed to support analysis of the measured energy performance of commercial, multifamily, and residential buildings, by providing a common data format, definitions, and an exchange protocol for building characteristics, efficiency measures, and energy use. Challenge One of the primary challenges to expanding the building energy efficiency retrofit market is the lack of empirical data on the energy performance and physical and operational characteristics of commercial, multifamily, and residential buildings. This makes it difficult for building-level

243

Buildings Performance Database Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

such as lighting and HVAC type. * Create graphs of the selected dataset comparing: * Energy metrics such as: energy use intensity, source consumption, site consumption, electric...

244

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

8.1 Buildings Sector Water Consumption 8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy needed to supply that water. The main points from this chapter are summarized below: In 2005, water use in the buildings sector was estimated at 39.6 billion gallons per day, which is nearly 10% of total water use in the United States. From 1985 to 2005, water use in the residential sector closely tracked population growth, while water use in the commercial sector grew almost twice as fast.

245

Building Performance Simulation  

E-Print Network (OSTI)

Energy and Environment Research Laboratories, Industrial Technology Research Institute, Taiwan ABSTRACT

Hong, Tianzhen

2014-01-01T23:59:59.000Z

246

High-Performance Sustainable Building Design for New Construction and Major Renovations  

Energy.gov (U.S. Department of Energy (DOE))

New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy...

247

Building Energy Monitoring and Analysis  

E-Print Network (OSTI)

energy efficiency. Intelligent Buildings, 3:43-46, 2011. InM. Bhandari. Comparison of Building Energy Use Data betweenand China, Energy and Buildings, 2013. Under reviewed. 5. T.

Hong, Tianzhen

2014-01-01T23:59:59.000Z

248

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

E-Print Network (OSTI)

Consumption and Provide Energy and Cost Savings in Non-applications to save energy and costs. This potential couldof ESPCs to provide energy and cost savings in non-building

Williams, Charles

2014-01-01T23:59:59.000Z

249

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

250

Building Technologies Office: Home Energy Score Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by E-mail Partners to someone by E-mail Share Building Technologies Office: Home Energy Score Partners on Facebook Tweet about Building Technologies Office: Home Energy Score Partners on Twitter Bookmark Building Technologies Office: Home Energy Score Partners on Google Bookmark Building Technologies Office: Home Energy Score Partners on Delicious Rank Building Technologies Office: Home Energy Score Partners on Digg Find More places to share Building Technologies Office: Home Energy Score Partners on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background FAQs Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

251

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

252

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network (OSTI)

during construction. many passive houses have performed muchif it occurred, the optimwll passive house would likely havephotographs of a passive solar house at First Village in

Goldstein, David Baird

2011-01-01T23:59:59.000Z

253

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

5.1 Building Materials/Insulation 5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 5 contains market and technology data on building materials and equipment. Sections 5.1 and 5.2 cover the building envelope, including building assemblies, insulation, windows, and roofing. Sections 5.3 through 5.7 cover equipment used in buildings, including space heating, water heating, space cooling, lighting, thermal distribution (ventilation and hydronics), and appliances. Sections 5.8 and 5.9 focus on energy production from on-site power equipment. The main points from this chapter are summarized below:

254

Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Buildings EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

255

Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing  

E-Print Network (OSTI)

approaches for building energy modeling: forward model andbe developed for rapid building energy modeling at the urbanbuilding performance, energy efficiency, energy modeling,

Pang, Xiufeng

2014-01-01T23:59:59.000Z

256

Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency  

Science Journals Connector (OSTI)

Abstract Two single-layer, waterborne cool white coatings for building envelopes were recently developed for use in improving building energy efficiency. After the coatings were manufactured, their optical properties over the solar spectrum and their indoor temperature reduction effect were systematically investigated using appropriate tools, and the advantages/disadvantages of single layer cool white coatings over multilayer ones were discussed in detail. The preparation process enables these two coatings to integrate multiple cooling principles and thereby exhibit high solar heat reflectance and good indoor temperature reduction. The predicted industrial limit of solar heat reflectance for practical reflective cool white coatings is 0.91. Use of cool white coatings significantly reduces radiant heat flux. The temperature reduction effects evaluated by a self-developed device cannot describe adequately the indoor cooling performance of cool coatings.

Zhongnan Song; Weidong Zhang; Yunxing Shi; Jianrong Song; Jian Qu; Jie Qin; Tao Zhang; Yanwen Li; Hongqiang Zhang; Rongpu Zhang

2013-01-01T23:59:59.000Z

257

Building Technologies Office: Home Energy Score Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by E-mail Publications to someone by E-mail Share Building Technologies Office: Home Energy Score Publications on Facebook Tweet about Building Technologies Office: Home Energy Score Publications on Twitter Bookmark Building Technologies Office: Home Energy Score Publications on Google Bookmark Building Technologies Office: Home Energy Score Publications on Delicious Rank Building Technologies Office: Home Energy Score Publications on Digg Find More places to share Building Technologies Office: Home Energy Score Publications on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background FAQs Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

258

Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing  

E-Print Network (OSTI)

XXXXX Commercial Building Energy Baseline Modeling Software:2013 Commercial Building Energy Baseline Modeling Software:evaluating the building-level baseline modeling capabilities

Price, Phillip N

2014-01-01T23:59:59.000Z

259

Buildings Energy Data Book: 7.1 National Legislation  

Buildings Energy Data Book (EERE)

4 4 Energy Independence and Security Act 2007, High Performance Commercial Buildings Create the Office of Commercial High Performance Green Buildings The Office of Commercial High Performance Green Buildings with The Office of Federal High Performance Green Buildings will establish a High Performance Green Buildings Clearinghouse to disseminate research through outreach, education, and technical assistance Zero Net Energy Initiative for Commercial Buildings was also included establishing specific goals: -- Net zero energy use in all new commercial buildings constructed by 2030 -- Net zero energy use in 50% of the United State commercial building stock by 2040 -- Net zero energy use in the entire United States commercial building stock by 2050 Source(s):

260

Sustainable Building Case Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Studies Case Studies Sustainable Building Case Studies October 4, 2013 - 4:58pm Addthis These case studies feature examples of sustainably designed buildings and facilities from Federal agencies and industry. High Performance Federal Buildings Database The High Performance Federal Buildings database presents a sampling of sustainable buildings projects in the Federal Government. This database taps into the existing U.S. Department of Energy High Performance Buildings database, showcasing only Federal case study examples. Third-Party Certification ENERGY STAR for Federal Agencies: A site that provides access to the ENERGY STAR Portfolio Manager, the Federal High Performance Sustainable Buildings Checklist, and ENERGY STAR qualified products, and much more. Green Globes: A Web-based program from the Green Building Initiative for

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sustainable Building Case Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Studies Case Studies Sustainable Building Case Studies October 4, 2013 - 4:58pm Addthis These case studies feature examples of sustainably designed buildings and facilities from Federal agencies and industry. High Performance Federal Buildings Database The High Performance Federal Buildings database presents a sampling of sustainable buildings projects in the Federal Government. This database taps into the existing U.S. Department of Energy High Performance Buildings database, showcasing only Federal case study examples. Third-Party Certification ENERGY STAR for Federal Agencies: A site that provides access to the ENERGY STAR Portfolio Manager, the Federal High Performance Sustainable Buildings Checklist, and ENERGY STAR qualified products, and much more. Green Globes: A Web-based program from the Green Building Initiative for

262

Buildings Performance Database (BPD)- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

The overall goal of the Buildings Performance Database (BPD) is to provide public access to high-quality building characteristics and energy consumption data to incentivize, analyze, and validate energy efficiency investments.

263

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use...

264

Clean Energy Program Policy Brief. The Value of Energy Performance and Green Attributes in Buildings: Review of Existing Literature and Recommendations for Future Research.  

E-Print Network (OSTI)

quantify the value of green and energy efficiency upgradesofhomeswithBuildGreen,ENERGYSTARorLEEDforHomesmajor renovations, and energy or green upgrade projects.

Stuart, Elizabeth

2013-01-01T23:59:59.000Z

265

Creative graphics | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

How can we help you? How can we help you? » Communicate and educate » ENERGY STAR communications toolkit » Motivate with a competition » ENERGY STAR National Building Competition » Competitor resources » Creative graphics Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance

266

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

7.1 National Legislation 7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 7 outlines national climate change legislation, tax incentives, Federal regulations, and State programs that have influenced building energy consumption. Section 7.1 summarizes the past 40 years of national energy legislation beginning with the Clean Air Act of 1970. Section 7.2 describes the energy efficiency-related Federal tax incentives created in the last 5 years. Sections 7.3 through 7.7 describe the energy and water efficiency standards currently or soon to be in effect for residential and commercial HVAC equipment, appliances, lighting, and water-consuming products. Section 7.8 covers building energy codes. Following is a summary of the energy legislation discussed in this chapter:

267

Building Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Equipment Building Technologies Deployment System/Building Integration Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy consumption of the nation's buildings and resulting carbon emissions is essential to achieving a sustainable clean energy future. To address the enormous challenge, Oak Ridge National Laboratory is focused on helping develop new building technologies, whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations in all of these areas.

268

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

and parking lots, and swimming pools. EPA 1999 describes thethe building total. The swimming pool model, developed byEPA staff based on a swimming pool model developed by LBNL,

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

269

DOE Announces Webinars on New Energy Savings Performance Contracting Resources, Better Buildings Challenge, and More  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce.

270

BUILDING ENERGY 1987 Edition  

E-Print Network (OSTI)

) The alternative HVAC compliance method for second generation nonresidential standards has been codifiedBUILDING ENERGY EFFICIENCY STANDARDS 1987 Edition 1988 SUPPLEMENT December 1987 Supplement May 1988 ,+ -.* CALIFORNIA *-3q-:-- =id-,/* + ,+ I ENERGY For historical reference Current Title 24 Standards are available

271

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners,

272

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Massachusetts Program Type Building Energy Code Provider State Board of Building Regulations and Standards ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Massachusetts Board of Building Regulations and Standards has authority

273

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

274

Guidelines Establishing Criteria for Excluding Buildings from the Energy Performance Requirements of Section 543 of the National Energy Conservation Policy Act as Amended by the Energy Policy Act of 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidelines Establishing Criteria for Excluding Buildings Guidelines Establishing Criteria for Excluding Buildings from the Energy Performance Requirements of Section 543 of the National Energy Conservation Policy Act as Amended by the Energy Policy Act of 2005 January 27, 2006 These guidelines and accompanying criteria fulfill the requirement under Section 543(c)(3) of the National Energy Conservation Policy Act (NECPA) as amended by the Energy Policy Act of 2005 (EPACT). Section 543(c)(3) states that the Secretary of Energy shall issue guidelines that establish criteria for exclusions from the energy performance requirement for a fiscal year, any Federal building or collection of Federal buildings, within the statutory framework provided by the law. The purpose of these guidelines is to clarify and explicate, as necessary, the statutory

275

Guidelines Establishing Criteria for Excluding Buildings from the Energy Performance Requirements of Section 543 of the National Energy Conservation Policy Act as Amended by the Energy Policy Act of 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidelines Establishing Criteria for Excluding Buildings Guidelines Establishing Criteria for Excluding Buildings from the Energy Performance Requirements of Section 543 of the National Energy Conservation Policy Act as Amended by the Energy Policy Act of 2005 January 27, 2006 These guidelines and accompanying criteria fulfill the requirement under Section 543(c)(3) of the National Energy Conservation Policy Act (NECPA) as amended by the Energy Policy Act of 2005 (EPACT). Section 543(c)(3) states that the Secretary of Energy shall issue guidelines that establish criteria for exclusions from the energy performance requirement for a fiscal year, any Federal building or collection of Federal buildings, within the statutory framework provided by the law. The purpose of these guidelines is to clarify and explicate, as necessary, the statutory

276

Building Energy Software Tools Directory: Be06  

NLE Websites -- All DOE Office Websites (Extended Search)

Be06 Be06 Be06 logo Calculates the energy demand of buildings in relation to the new energy requirements in the 2006 additions to the Danish Building Regulations 1995 implementing the EU EPBD, Energy Performance of Building Directive. Be06 calculations are performed in accordance with the mandatory calculation procedure described in SBi-direction 213: Energy Demand of Buildings (In Danish: SBi-anvisning 213: Bygningers Energibehov). The software uses the mandatory calculation core also developed by the Danish Building Research Institute, SBi. Be06 calculates the expected energy demand to operate the heating and climate conditioning systems in all types of buildings e.g. houses, block of flats, offices, institutions, schools, shops and workshops. The Be06 software calculates the needed energy supply to a building for room

277

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

278

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Ohio Program Type Building Energy Code Provider Ohio Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Board of Building Standards is the primary state agency that protects

279

Cost Optimal Energy Performance  

Science Journals Connector (OSTI)

EPBD recast requires Member States (MS) to ensure that minimum energy performance requirements of buildings are set with a view to achieving cost optimal levels using a comparative methodology framework...1]. Cost

Jarek Kurnitski

2013-01-01T23:59:59.000Z

280

2008 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network (OSTI)

2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards the adoption of the 2008 Building Energy Efficiency Standards to Jon Leber, PE, (November 13, 1947 - February

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nevada Energy Code for Buildings  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

282

Energy Conservation in Public Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The Florida Energy Conservation and Sustainable Buildings Act requires the use of energy-efficient equipment and design, and solar energy devices for heating and cooling state buildings where life...

283

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Buildings Hub Energy Efficient Buildings Hub Energy Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and

284

Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings  

SciTech Connect

In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project.

Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

1993-12-01T23:59:59.000Z

285

Flexible Framework for Building Energy Analysis: Preprint  

SciTech Connect

In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

2012-09-01T23:59:59.000Z

286

High Performance Building Façade Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsors Sponsors High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Sponsors California Energy Commission Public Interest Energy Research (PIER) Buildings End-Use Energy Efficiency Program Michael Seaman, California Energy Commission Contract Manager http://www.energy.ca.gov/research/index.html U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Office of Building Technology, State and Community Programs Office of Building Research and Standards Marc LaFrance, Program Manager http://www.eere.energy.gov/buildings/ In-kind Cost-share Advanced Glazings Ltd. Hunter Douglas Köster Lichplanung

287

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Alabama Program Type Building Energy Code Provider Alabama Department of Economic and Community Affairs ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Legislation passed in March 2010 authorized the Alabama Energy and

288

Advanced Energy Retrofit Guide Retail Buildings  

SciTech Connect

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

289

Best Practices Guide for High-Performance Indian Office Buildings  

E-Print Network (OSTI)

energy efficiency in commercial office buildings. energy efficiency in commercial office buildings. energy efficiency in commercial office buildings.

Singh, Reshma

2014-01-01T23:59:59.000Z

290

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

291

Guidance on Basic Best Practices in Management of Energy Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Best Practices in Management of Energy Performance Buildings Building energy management best practices 11001eecbgsepbuildingbestpractice.pdf More Documents & Publications...

292

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Compliance Regulations Resource Center About Building Energy Codes U.S. Energy Consumption by Sector (2011) Source: U.S. Energy Information Administration, Annual Energy Review According to the U.S. Energy Information Administration's Electric Power Annual, U.S. residential and commercial buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in significant cost savings in both the private and public sectors of the U.S. economy. Efficient buildings reduce power demand and have less of an environmental impact. The Purpose of Building Energy Codes Energy codes and standards set minimum efficiency requirements for new and renovated buildings, assuring reductions in energy use and emissions over

293

Use ENERGY STAR benchmarking tools | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Use ENERGY STAR benchmarking tools Use ENERGY STAR benchmarking tools Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use Learn about benchmarking Use ENERGY STAR benchmarking tools ENERGY STAR in action Communicate and educate

294

New Funding Alternatives, Sources and Strategies To Create High-Performing, Energy Efficient Buildings  

E-Print Network (OSTI)

MM ? 10 year contract term ? $5 per square foot of hard cost invested for improvements ? $1 per square foot in energy savings created on average Distributed Energy Generation Systems (DEGS) ? Characteristics ? Small scale power generation... Lease Purchase Agreements ? Enables you to acquire essential-use assets, including energy efficiency retrofits and upgrades. ? A tax-exempt municipal lease, the government entity MAY have a ?non appropriation of funds? clause in the agreement...

Flores, M.

2012-01-01T23:59:59.000Z

295

Better Buildings Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge Better Buildings Challenge Better Buildings Challenge Better Buildings Challenge: Leadership, Transparency and Results Read more Partners Recognized at Industrial Energy Technology Conference Read more Jones Lang LaSalle's Showcase Project: Moscone Convention Center Read more Portland Public Schools' Showcase Project: Benson Polytechnic High School Read more Delaware's Showcase Project: Carvel State Office Building Read more Challenge Partners & Allies Represent 2 Billion Square Feet Committed $2 Billion in Financing through Allies 300+ Manufacturing Facilities Highlights Program Expansion: Multifamily Residential Better Buildings Challenge: Progress Update - Spring 2013 Partner Solutions: Implementation Models Partner Progress Against Energy Performance Goals Demonstrating Results: Showcase Projects

296

Benchmarking and Performance Based Rating System for Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking and Performance Based Rating System for Commercial Buildings Benchmarking and Performance Based Rating System for Commercial Buildings in India Speaker(s): Saket Sarraf Date: May 4, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Girish Ghatikar The Indian building sector has witnessed huge surge in interest in energy performance in the last decade. The 'intention' based codes like the national Energy Conservation Building Code (ECBC) and green building rating systems such as Leadership in Energy and Environment Design (LEED-India) and Green Rating for Integrated Habitat Assessment (GRIHA) have been the prime mechanisms to design and assess energy efficient buildings. However, they do not rate the 'achieved' energy performance of buildings over time or reward their performance through a continuous evaluation process.

297

Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)  

SciTech Connect

There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

Not Available

2014-09-01T23:59:59.000Z

298

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Connecticut Program Type Building Energy Code Provider Connecticut Office of Policy and Management ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/

299

Advancing Building Energy Codes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Advancing Building Energy Codes Advancing Building Energy Codes 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. Energy Codes Ensure Efficiency in Buildings

300

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Buildings Hub Energy Efficient Buildings Hub Energy Efficient Buildings Hub August 1, 2010 - 4:27pm Addthis This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility’s renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Department's Energy Innovation Hubs are helping to advance promising

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building Energy Software Tools Directory: SBEM  

NLE Websites -- All DOE Office Websites (Extended Search)

SBEM SBEM SBEM screen Simplified tool which provides an analysis of a building's energy consumption primarily for the purposes of assessing compliance with Part L (England & Wales), Section 6 (Scotland) and Part F (Northern Ireland) of Building Regulations and eventually for building performance certification EPBD in UK. SBEM (Simplified Building Energy Model) calculates monthly energy use and carbon dioxide emissions of a building given a description of the building’s geometry, construction, use, and HVAC and lighting equipment. It was originally based on the Dutch methodology NEN 2916:1998 (Energy Performance of Non-Residential Buildings) and has since been modified to comply with the emerging CEN Standards. SBEM makes use of standard sets of data for different activity areas and calls on databases

302

Integral energy performance characterization of semi-transparent photovoltaic elements for building integration under real operation conditions  

Science Journals Connector (OSTI)

Abstract In this paper, a methodology for the integral energy performance characterization (thermal, daylighting and electrical behavior) of semi-transparent photovoltaic modules (STPV) under real operation conditions is presented. An outdoor testing facility to analyze simultaneously thermal, luminous and electrical performance of the devices has been designed, constructed and validated. The system, composed of three independent measurement subsystems, has been operated in Madrid with four prototypes of a-Si STPV modules, each one corresponding to a specific degree of transparency. The extensive experimental campaign, continued for a whole year rotating the modules under test, has validated the reliability of the testing facility under varying environmental conditions. The thermal analyses show that both the solar protection and insulating properties of the laminated prototypes are lower than those achieved by a reference glazing whose characteristics are in accordance with the Spanish Technical Building Code. Daylighting analysis shows that STPV elements have an important lighting energy saving potential that could be exploited through their integration with strategies focused to reduce illuminance values in sunny conditions. Finally, the electrical tests show that the degree of transparency is not the most determining factor that affects the conversion efficiency.

L. Olivieri; E. Caamao-Martin; F .Olivieri; J. Neila

2014-01-01T23:59:59.000Z

303

ENERGY STAR certification for your building | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

certification for your building certification for your building Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Find financing Earn recognition 20-percent recognition ENERGY STAR certification How to apply for ENERGY STAR certification Tips for low-cost verifications Submit a profile of your building

304

BUILD UP: Energy Solutions for Better Buildings (Website) | Open Energy  

Open Energy Info (EERE)

BUILD UP: Energy Solutions for Better Buildings (Website) BUILD UP: Energy Solutions for Better Buildings (Website) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BUILD UP: Energy Solutions for Better Buildings (Website) Focus Area: Energy Efficiency Topics: Best Practices Website: www.buildup.eu/home Equivalent URI: cleanenergysolutions.org/content/build-energy-solutions-better-buildin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Building Certification This website serves as a forum for the exchange of best working practices and knowledge and the transfer of tools and resources. The BUILD UP initiative was established by the European Commission to support European

305

Memorandum of American High-Performance Buildings Coalition DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

organizations committed to promoting performance-based energy efficiency and sustainable building standards developed through true, consensus-bases processes, and the U.S....

306

Real-time Building Energy Simulation using EnergyPlus and the Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-time Building Energy Simulation using EnergyPlus and the Building Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Title Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Publication Type Conference Proceedings LBNL Report Number LBNL-5390E Year of Publication 2011 Authors Pang, Xiufeng, Prajesh Bhattacharya, Zheng O'Neill, Philip Haves, Michael Wetter, and Trevor Bailey Conference Name Proc. of the 12th IBPSA Conference Pagination p. 2890-2896 Date Published 11/2011 Conference Location Sydney, Australia Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

307

Guam - Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam - Building Energy Code Guam - Building Energy Code Guam - Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by the legislature before it is official. This entry and information will be updated accordingly. Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the

308

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Glossary Glossary Acronyms and Initialisms Technology Descriptions Residential Space Heating Residential Space Cooling Residential Water Heating Commercial Space Cooling Commercial Space Heating Commercial Refrigeration Lighting Building Descriptions Commercial Residential Acronyms and Initialisms A B C D E F G H I L M N O P Q R S U V AAMA - American Architectural Manufacturers Association ACEEE - American Council for an Energy Efficient Economy AEO - EIA's Annual Energy Outlook AFEAS - Alternative Fluorocarbons Environmental Acceptability Study AFUE - Annual Fuel Utilization Efficiency AHAM - Association of Home Appliance Manufacturers ARI - Air-Conditioning and Refrigeration Institute ASHRAE - American Society of Heating, Refrigerating and Air-Conditioning Engineers BTS - DOE's Office of Building Technology, State and Community Programs

309

Building Energy Conservation in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Conservation in China Building Energy Conservation in China Speaker(s): Zhang Fulin Date: January 29, 2013 - 11:15am Location: 90-3122 Seminar Host/Point of Contact: Haley Gilbert Mr. Zhang Fulin is a Senior Engineer and Director of the Division of Energy Efficiency in Buildings, Department of Energy Efficiency in Buildings and Science &Technology of the Ministry of Housing and Urban-Rural Development (MOHURD) in China. He is tasked with developing China building energy conservation policies and regulations and is responsible for the approval of major China building energy efficiency projects. Mr. Zhang has been working in the field of building energy efficiency for more than two decades. He will speak about current laws and regulations governing building energy efficiency practice in China,

310

Improving Building Performance at Urban Scale with a Framework for  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance at Urban Scale with a Framework for Building Performance at Urban Scale with a Framework for Real-time Data Sharing Title Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing Publication Type Conference Proceedings LBNL Report Number LBNL-6303E Year of Publication 2013 Authors Pang, Xiufeng, Tianzhen Hong, and Mary Ann Piette Date Published 05/2013 Keywords building performance, energy efficiency, energy modeling, optimal operation, urban scale. Abstract This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.

311

Using Utility Bills and Average Daily Energy Consumption to Target Commissioning Efforts and Track Building Performance  

E-Print Network (OSTI)

energy. This sort of analysis can be done using relatively simple techniques such as a hand calculation or a spreadsheet and is the type of thing that any facility engineer or operator could handle and would be interested in. Techniques are also discussed...

Sellers, D.

2001-01-01T23:59:59.000Z

312

ENERGY STAR Building Upgrade Manual | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Building Upgrade Manual ENERGY STAR Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach

313

Better Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over $400 billion. These buildings and operations can be made much more efficient using a variety of cost effective efficiency improvements while creating jobs and building a stronger economy. We have similar opportunities in our homes. In February 2011, President Obama, building upon the investments of the American Recovery and Reinvestment Act, announced the Better Buildings Initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years and accelerate private sector investment in energy efficiency. Better Buildings strategies include: Last year, commercial and industrial buildings used roughly 50% of the

314

Frequently Asked Questions About the Buildings Performance Database |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Commercial Buildings » Buildings Performance Database » Frequently Asked Questions About the Buildings Performance Database Frequently Asked Questions About the Buildings Performance Database On this page you will find answers to frequently asked questions pertaining to the DOE Buildings Performance Database (BPD). General What is the purpose of the BPD? What building energy performance data is included in the BPD? Access Information How can I access the database? How can I contribute data to the BPD? Database and Analysis Information What kinds of buildings does the BPD have? What are the data sources that populate the BPD? Does the BPD have time series data? How do you ensure that the data from these multiple sources is consistent and valid? What data format does the BPD utilize?

315

ENERGY STAR industrial partnership | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR industrial partnership ENERGY STAR industrial partnership Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership New ENERGY STAR industrial partners Energy guides Energy efficiency and air regulation

316

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

commercial and residential buildings, appliances and equipment, and the vali- dation of computational tools for estimating energy usage.

Wall, L.W.

2009-01-01T23:59:59.000Z

317

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

318

Building America Energy Renovations: A Business Case for Home...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Renovations: A Business Case for Home Performance Contracting Building America Energy Renovations: A Business Case for Home Performance Contracting This research report...

319

Building design guidance and resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

4: Design to be energy efficient 4: Design to be energy efficient » Building design guidance and resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Why you should design to earn the ENERGY STAR Follow EPA's step-by-step process Step 1: Assemble a team Step 2: Set an energy performance target Step 3: Evaluate your target using ENERGY STAR tools Step 4: Design to be energy efficient

320

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Buildings Hub Efficient Buildings Hub Energy Efficient Buildings Hub August 1, 2010 - 4:27pm Addthis This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility’s renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Department's Energy Innovation Hubs are helping to advance promising

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building America Research Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tools Tools Building America Research Tools Building America provides technical tools to support researchers and building industry professionals in ensuring consistent research results for new and existing homes. The following resources can be used to evaluate optimal building designs, access performance and cost data, execute field tests, and track research progress. Image is a rendering of a two-story residential building with an entrance on the front. To the right of this building is another large building shaded in gray, and to the left is a smaller structure shaded in gray. Building Energy Optimization Software (BEopt): This software provides capabilities to evaluate residential building designs and identify cost-optimal efficiency packages at various levels of whole-house energy

322

Building Dashboard Kiosk | Open Energy Information  

Open Energy Info (EERE)

Management, Building Systems, Energy Management, Enterprise Management, Reporting, Sustainability, Tools, Water Building Dashboard Kiosk Screenshot Logo: Building Dashboard Kiosk...

323

Building Dashboard Network | Open Energy Information  

Open Energy Info (EERE)

Management, Building Systems, Energy Management, Enterprise Management, Reporting, Sustainability, Tools, Water Building Dashboard Network Screenshot Logo: Building Dashboard...

324

Building Technologies Office: Guidelines for Home Energy Professionals  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidelines for Home Guidelines for Home Energy Professionals to someone by E-mail Share Building Technologies Office: Guidelines for Home Energy Professionals on Facebook Tweet about Building Technologies Office: Guidelines for Home Energy Professionals on Twitter Bookmark Building Technologies Office: Guidelines for Home Energy Professionals on Google Bookmark Building Technologies Office: Guidelines for Home Energy Professionals on Delicious Rank Building Technologies Office: Guidelines for Home Energy Professionals on Digg Find More places to share Building Technologies Office: Guidelines for Home Energy Professionals on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR

325

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

326

Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building  

E-Print Network (OSTI)

water supplied by thermal energy storage in the centralchilled water thermal energy storage (TES) tank provides

Dudley, Junqiao Han

2010-01-01T23:59:59.000Z

327

Building Energy Data Exchange Specification Scoping Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building Energy Data Exchange Specification Scoping Report Building Energy Data Exchange Specification Scoping Report The Building Energy Data Exchange Specification (BEDES),...

328

Sustainable Buildings and Infrastructure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure "A sustainable society is one which satisfies its needs without diminishing the prospects of future generations." - Lester R. Brown, Founder and President, Worldwatch Institute Department of Energy facilities managers have a significant role to play in achieving the goals of E.O. 13423, Strengthening Federal Environmental Energy and Transportation Management and E.O. 13514, Federal Leadership in Environmental, Energy, and Economic Performance. The expectation is that DOE will build, operate and maintain energy efficient, environmentally sensitive buildings that provide a comfortable and productive working environment. DOE Sustainable Environmental Stewardship will reduce the

329

Memorandum of American High-Performance Buildings Coalition DOE Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Memorandum of American High-Performance Buildings Coalition DOE Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This memorandum is intended to provide a summary of a meeting between the American HighPerformance Buildings Coalition (AHBPC), a coalition of industry organizations committed to promoting performance-based energy efficiency and sustainable building standards developed through true, consensus-bases processes, and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) that took place on Monday, August 19, 2013. Memorandum of AHPBC DOE Meeting_8_19_2013_FINAL_SIGNED More Documents & Publications Federal Leadership in High Performance and Sustainable Buildings Memorandum

330

Linking occupant complaints to building performance  

E-Print Network (OSTI)

and A. -C. E. , U.S. Green Building Council. , & CharteredD.C. 28. United States Green Building Council. Certifiedfor performance in green buildings are a good basis for

Goins, John; Moezzi, Mithra

2012-01-01T23:59:59.000Z

331

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings....

Zhou, A.; Tutterow, V.; Harris, J.

332

High Performance Commercial Building Systems William L. Carroll  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy underHigh Performance Commercial Building Systems William L. Carroll Ernest Orlando Lawrence Berkeley.2 ­ Retrofit Tools Task 2 HPBCS E2P2.2T3 LBNL - 57775 California Energy Commission Public Interest Energy

333

Commercial Building Energy Asset Score Program  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet summarizing the Building Technologies Program's commercial building energy asset score program

334

Building Energy Codes Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

Building energy codes have been in place for over 20 years. Today's codes are providing energy savings of more than 30% compared to the codes of a decade ago. They're also saving consumers an estimated $5 billion annually as of 2012. Since 1992, building codes have saved about 300 million tons of carbon cumulatively. Read the fact sheet below to learn more about the Building Technologies Office's Building Energy Codes program.

335

Resources on Sustainable Buildings and Campuses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources on Resources on Sustainable Buildings and Campuses Resources on Sustainable Buildings and Campuses October 4, 2013 - 5:04pm Addthis Building Technology Office Resources The Building Technology Office offers useful resources to plan and implement energy-efficiency projects. Building Energy Software Tools Directory Buildings Performance Database Energy Modeling Software Better Buildings Alliance Webinars Hospital Energy Alliance Videos Solid-State Lighting Technology Fact Sheets Many helpful resources about sustainable buildings and campuses are available. Also see Case Studies and Contacts. Federal Requirements and Programs Buildings Technologies Program: A U.S. Department of Energy (DOE) program that leads a vast network of research and industry partners to continually

336

An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery  

Science Journals Connector (OSTI)

Abstract Modeling the energy performance of existing buildings enables quick identification and reporting of potential areas for building retrofit. However, current modeling practices of using energy simulation tools do not model the energy performance of buildings at their element level. As a result, potential retrofit candidates caused by construction defects and degradations are not represented. Furthermore, due to manual modeling and calibration processes, their application is often time-consuming. Current application of 2D thermography for building diagnostics is also facing several challenges due to a large number of unordered and non-geo-tagged images. To address these limitations, this paper presents a new computer vision-based method for automated 3D energy performance modeling of existing buildings using thermal and digital imagery captured by a single thermal camera. First, using a new image-based 3D reconstruction pipeline which consists of Graphic Processing Unit (GPU)-based Structure-from-Motion (SfM) and Multi-View Stereo (MVS) algorithms, the geometrical conditions of an existing building is reconstructed in 3D. Next, a 3D thermal point cloud model of the building is generated by using a new 3D thermal modeling algorithm. This algorithm involves a one-time thermal camera calibration, deriving the relative transformation by forming the Epipolar geometry between thermal and digital images, and the MVS algorithm for dense reconstruction. By automatically superimposing the 3D building and thermal point cloud models, 3D spatio-thermal models are formed, which enable the users to visualize, query, and analyze temperatures at the level of 3D points. The underlying algorithms for generating and visualizing the 3D spatio-thermal models and the 3D-registered digital and thermal images are presented in detail. The proposed method is validated for several interior and exterior locations of a typical residential building and an instructional facility. The experimental results show that inexpensive digital and thermal imagery can be converted into ubiquitous reporters of the actual energy performance of existing buildings. The proposed method expedites the modeling process and has the potential to be used as a rapid and robust building diagnostic tool.

Youngjib Ham; Mani Golparvar-Fard

2013-01-01T23:59:59.000Z

337

Training | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Training Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training Facility owners and managers Service providers Energy efficiency program administrators Tools and resources Training Training EPA offers training on a range of energy efficiency topics - from the ins and outs of Portfolio Manager to guidance on improving the energy performance of your buildings and plants. And that's all with no travel,

338

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Heating Program Info State California Program Type Building Energy Code Provider California Energy Commission '''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to take effect on January 1, 2014, and represent significant energy and water savings compared to the current standards. Among many notable provisions, the new standards will

339

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Oregon Program Type Building Energy Code Provider Oregon Building Codes Division ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://www.oregon.gov/ENERGY/CONS/Codes/cdpub.shtml The Oregon Energy

340

Building Technologies Office: Building-Level Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Performance of thermal distribution systems in large commercial buildings  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy, Office of BuildingEnergy Efficiency and Renewable Energy, Office of Building

Xu, T.

2011-01-01T23:59:59.000Z

342

Building Energy Software Tools Directory: HOT2000  

NLE Websites -- All DOE Office Websites (Extended Search)

HOT2000 HOT2000 HOT2000 logo. Easy-to-use energy analysis and design software for low-rise residential buildings. Utilizing current heat loss/gain and system performance models, the program aids in the simulation and design of buildings for thermal effectiveness, passive solar heating and the operation and performance of heating and cooling systems. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users Over 1400 worldwide. HOT2000 is used mainly in Canada and the United States with a few users in Japan and Europe. Audience Builders, design evaluators, engineers, architects, building and energy code writers, Policy writers. HOT2000 is also used as the compliance

343

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

344

Building America Efficient Solutions for New Homes Case Study: Tommy Williams Homes Initial Performance of Two Zero Energy Homes, Gainesville, Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Description Description These high-performance homes in northern Florida are two that have achieved Home Energy Rating System (HERS) ratings of less than zero since Building America (BA) builders started building them in 2010. The homes (TW1 and TW2) were built in the Gainesville area by Tommy Williams Homes (TW), with technical assistance from Florida H.E.R.O. and energy-efficient home design input provided by Energy Smart Home Plans. The homes are being metered by the Florida Solar Energy Center (FSEC) as part of BA efforts to collect data that characterize the performance of the homes and verify that the solar photovoltaic (PV) system used in their design produces more energy than these all-electric homes require, as the HERS rating of <0 implies.

345

Proper Setup of HVAC System in Conjunction with Sound Building 'Skin' Design for Alleviation of IAQ and Energy Performance Problems  

E-Print Network (OSTI)

climates, not only because of the loss of energy, but also because of damage that can result to insulation, drywall, and structure in addition to promotion of mold and mildew growth. Proper setup of the HVAC system, in conjunction with sound building skin...

Rosenberg, M.

2006-01-01T23:59:59.000Z

346

Building America's Top Innovations Advance High Performance Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Top America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently

347

Building Technologies Office: Commercial Building Energy Asset Scoring Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoring Tool to someone by E-mail Scoring Tool to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

348

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

6.1 Electric Utility Energy Consumption 6.1 Electric Utility Energy Consumption 6.2 Electricity Generation, Transmission, and Distribution 6.3 Natural Gas Production and Distribution 6.4 Electric and Generic Quad Carbon Emissions 6.5 Public Benefit Funds/System Benefit Funds 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 6 focuses on the U.S. energy supply. Sections 6.1 and 6.2 contain data on electric utilities, including generation capacity, primary fuel consumption, transmission and distribution losses, and electricity prices. Section 6.3 addresses the production, consumption, and storage of natural gas and petroleum. Section 6.4 covers emissions from the utility sector. Section 6.5 provides data on how utilities spend public and system benefit funds. The main points from this chapter are summarized below:

349

Commercial Building Codes and Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes and Standards Codes and Standards Commercial Building Codes and Standards Local code officials enforce building energy codes. Credit: iStockphoto Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building Technologies Office (BTO) provides support to states and local governments as they adopt and monitor commercial building code as well as builders working to meet and exceed code. BTO also develops test procedures and minimum efficiency standards for commercial equipment. Building Energy Codes DOE encourages using new technologies and better building practices to improve energy efficiency. Mandating building energy efficiency by

350

Building Energy Codes News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes News Building Energy Codes News News Category: National Policy DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Posted: Tuesday, August 6, 2013 On August 6, DOE published an RFI on its methodology for assessing code compliance into the Federal Register. Based on feedback received from the individual state compliance pilot studies in 2011-2012, the RFI seeks input on DOE's methodology and fundamental assumptions from the general public. Read the full article... Source: U.S. Department of Energy Building Energy Codes Program Energy 2030 Report Calls for Stricter Energy Building Codes Posted: Tuesday, February 12, 2013 The Alliance Commission on National Energy Efficiency Policy aims to double US energy productivity by 2030, and one of its many ways to achieve that

351

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New York Program Type Building Energy Code Provider NYS Department of State ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Energy Conservation Construction Code of New York State (ECCCNYS) requires that all government, commercial and residential buildings,

352

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Montana Program Type Building Energy Code Provider Building Codes Bureau ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The energy codes are reviewed on a three-year cycle corresponding to the adoption of new versions of the International Code Conference (ICC) Uniform

353

GSA Building Energy Strategy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rapid Building Assessments Green Button 12 Remote Building Analytics Platform First Fuel Dashboard 13 Data Center Ronald Reagan Detail Summary First Fuel Analysis 14...

354

Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

355

CBECS Building Types | Open Energy Information  

Open Energy Info (EERE)

CBECS Building Types CBECS Building Types Jump to: navigation, search The list below contains the Building Type classifications, also known as Principal Building Activity, established by the Commercial Buildings Energy Consumption Survey (CBECS) performed by the U.S. Energy Information Administration (EIA)[1]. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Enclosed and Strip Malls) Mercantile (Retail Other Than Mall) Office Other Public Assembly Public Order and Safety Religious Worship Service Vacant Warehouse and Storage References ↑ EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http://en.openei.org/w/index.php?title=CBECS_Building_Types&oldid=270205" What links here Related changes

356

Energy Efficient Industrial Building Design  

E-Print Network (OSTI)

The design of industrial buildings today is still largely unaffected by energy legislation and building technologies. The present corporate tax structures for industry do little to encourage investment of capital for future operating cost savings...

Holness, G. V. R.

1983-01-01T23:59:59.000Z

357

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

358

Autotune E+ Building Energy Models  

SciTech Connect

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

359

Better Buildings Neighborhood Program: Energy Efficiency Market...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business...

360

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings Events Buildings Events February 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 2015 ACI Northwest Regional Home Performance Conference 9:00AM to 5:00PM EST...

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ENERGY STAR plant certification | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

» ENERGY STAR plant certification » ENERGY STAR plant certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition ENERGY STAR Partner of the Year Award

362

DOE Buildings Performance Database, sample Residential data | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database, sample Residential data Buildings Performance Database, sample Residential data Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV The Buildings Performance Database will have an API that allows access to the statistics about the data without exposing private information about individual buildings. The data available in this sample is limited due to the nature of the original datasets; the Buildings Performance database combines data from multiple sources to improve overall robustness. Data fields stored in the database can be seen in the BPD taxonomy: http://www1.eere.energy.gov/buildings/buildingsperformance/taxonomy.html

363

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New Hampshire Program Type Building Energy Code Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites. New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. SB 81 was enacted in July 2007, and it upgraded the New

364

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State District of Columbia Program Type Building Energy Code Provider Washington State Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The State Building Code Council revised the [https://fortress.wa.gov/ga/apps/sbcc/Page.aspx?nid=14 Washington State

365

Building Energy Code | Open Energy Information  

Open Energy Info (EERE)

Code Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

366

Building Energy Monitoring and Analysis  

SciTech Connect

This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

2013-06-01T23:59:59.000Z

367

Building America Webinar: High Performance Space Conditioning...  

Energy Savers (EERE)

Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable...

368

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider Colorado Energy Office ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Colorado is a home rule state so no statewide energy code exists. Voluntary

369

Better Buildings Federal Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis....

370

Energy Department Issues Green Building Certification System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building...

371

Energy Department Issues Green Building Certification System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification...

372

Building Energy Use Benchmarking Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Use Benchmarking Guidance April 15, 2010 EISA SECTION 432 - Benchmarking of Federal Facilities (42 U.S.C. 8253 Subsection (f), Use of Energy and Water Efficiency Measures in Federal Buildings) I. Background A. Authority - Benchmarking Requirements Section 432 of the Energy Independence and Security Act of 2007 (EISA) requires the Secretary of the United States Department of Energy (DOE) to select or develop a building energy use benchmarking system and to issue guidance for use of the system. EISA requires the designated agency energy managers to enter energy use data for each metered building that is (or is a part of) a covered facility into a building energy use benchmarking system, such as the ENERGY STAR Portfolio Manager tool (Portfolio Manager) (see 42 U.S.C. 8253(f)(8)(A), as

373

News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

News News A variety of resources and news from BECP, states, and other news sources are available for anyone interested in learning more about building energy codes. This includes newsletters, articles, links and more. To receive BECP News and other updates from the Building Energy Codes Program via email, join our mailing list. Featured Codes News DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Mayors Urge Cities to Strengthen Energy Code AZ Legislature Preserves Local Control of Building Energy Efficiency Codes Washington State Home Builders Lead the Nation in Energy Code Compliance Mississippi Invests in Future Growth With Adoption of Best-in-Class Energy Efficiency Legislation Energy 2030 Report Calls for Stricter Energy Building Codes

374

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State West Virginia Program Type Building Energy Code Provider West Virginia Division of Energy ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. Local jurisdictions must adopt

375

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Mississippi Program Type Building Energy Code Provider Mississippi Development Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement

376

Real Performance for Real Buildings- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Shanti Pless, National Renewable Energy Laboratory This project aims to develop deployable resources to assist building decision makers in understanding and replicating the benefits of using measureable energy performance targets to better connect design and operations.

377

Building Technologies Office: Commercial Building Energy Asset Score Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Tool Report to someone by E-mail Tool Report to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

378

Industrial energy management information center | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

energy management information center energy management information center Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

379

Communicate energy efficiency | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Communicate energy efficiency Communicate energy efficiency Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

380

High Performance Sustainable Building - DOE Directives, Delegations...  

NLE Websites -- All DOE Office Websites (Extended Search)

6A, High Performance Sustainable Building by Adam Pugh Functional areas: Program Management, Project Management This Guide provides approaches for implementing the High Performance...

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building America Webinar: High Performance Enclosure Strategies...  

Energy Savers (EERE)

II, New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated System Solutions Building America Webinar: High Performance Enclosure...

382

Building Energy Software Tools Directory: Tools by Country - Canada  

NLE Websites -- All DOE Office Websites (Extended Search)

Canada Canada A C D E F H I M P R S V Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. CATALOGUE windows, fenestration, product information, thermal characteristics Free software. DAYSIM annual daylight simulations, electric lighting energy use, lighting controls Free software. Software has been updated. EE4 CBIP whole building performance, building incentives Free software. Software has been updated. EE4 CODE standards and code compliance, whole building energy performance Free software. Software has been updated. Energy Profile Tool benchmarking, energy efficiency screening, end-use energy analysis, building performance analysis, utility programs ENERPASS

383

Building America Solution Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America America Solution Center Building America Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR®

384

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Georgia Program Type Building Energy Code Provider Georgia Environmental Finance Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory"

385

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy A B C D E F G H I L M N O P R S T U Z Tool Applications Free Recently Updated AEPS System Planning electrical system, renewable energy system, planning and design software, modeling, simulation, energy usage, system performance, financial analysis, solar, wind, hydro, behavior characteristics, usage profiles, generation load storage calculations, on-grid, off-grid, residential, commercial, system sizing, utility rate plans, rate comparison, utility costs, energy savings Software has been updated. Archelios PRO Photovoltaic simulation, 3D design, economics results BlueSol PV system sizing, PV system simulation, grid-connected PV systems, electrical components, shading, economic analysis. COMFIE energy performance, design, retrofit, residential buildings, commercial buildings, passive solar Software has been updated.

386

Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Building Design As a researcher at the Pacific Northwest National Laboratory, Dr. Michael Brambley is working to improve the energy efficiency of our nation’s buildings. In this "10 Questions," learn how he is marrying engineering and computer technology to cut energy waste in commercial buildings. As a researcher at the Pacific Northwest National Laboratory, Dr. Michael Brambley is working to improve the energy efficiency of our nation's buildings. In this "10 Questions," learn how he is marrying engineering and computer technology to cut energy waste in commercial buildings. Commercial buildings have high energy needs and can put great strain on the nation's power grids during peak periods. Developing more efficient

387

Building Technologies Office: Hospital Energy Alliance Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings Commercial Buildings Printable Version Share this resource Send a link to Building Technologies Office: Hospital Energy Alliance Videos to someone by E-mail Share Building Technologies Office: Hospital Energy Alliance Videos on Facebook Tweet about Building Technologies Office: Hospital Energy Alliance Videos on Twitter Bookmark Building Technologies Office: Hospital Energy Alliance Videos on Google Bookmark Building Technologies Office: Hospital Energy Alliance Videos on Delicious Rank Building Technologies Office: Hospital Energy Alliance Videos on Digg Find More places to share Building Technologies Office: Hospital Energy Alliance Videos on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Better Buildings Challenge Better Buildings Alliance

388

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

SciTech Connect

Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

2011-11-01T23:59:59.000Z

389

High-Performance Sustainable Building Design for New Construction and Major  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Buildings & Campuses » Sustainable Buildings & Campuses » High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New Construction and Major Renovations October 4, 2013 - 4:52pm Addthis New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies along with other innovative strategies. Also see Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Performance-Based Design Build Typically, architects, engineers, and project managers consider the

390

[ HIGH PERFORMANCE BUILDING STANDARD] STATE OF MONTANA HIGH PERFORMANCE BUILDING STANDARDS  

E-Print Network (OSTI)

[ HIGH PERFORMANCE BUILDING STANDARD] PART 2 HPBS STATE OF MONTANA HIGH PERFORMANCE BUILDING. These High Performance Building Standards are promulgated to implement the directives established in SB 49 which amended Section 17-7-201, MCA. B. These High Performance Building Standards were adopted on June 1

Dyer, Bill

391

"Building Energy Data Exchange Specification"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification" Building Energy Data Exchange Specification" "Version 2.3" "application/vnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships. " "BEDES is used for the DOE Building Performance Database (BPD) as well as the Standard Energy Efficiency Disclosure (SEED) platform, as shown below. Note that SEED includes additional fields that are outside BPD scope (e.g. property address and auditor contact information)."

392

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas, High Performance Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) This fact sheet provides a summary of how NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. 53539.pdf More Documents & Publications From Tragedy to Triumph: Rebuilding Greensburg, Kansas To Be a 100% Renewable Energy City: Preprint Rebuilding It Better; BTI-Greensburg, John Deere Dealership (Brochure) (Revised) Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study;

393

Howard County - High Performance and Green Building Property Tax Credits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Howard County - High Performance and Green Building Property Tax Howard County - High Performance and Green Building Property Tax Credits Howard County - High Performance and Green Building Property Tax Credits < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Maximum Rebate High Performance Buildings: none specified High Performance R-2, R-3 Buildings: $5,000 per building or owner-occupied unit Green Buildings (w/energy conservation devices): limited to assessed property taxes on the structure Program Info Start Date 07/01/2008 State Maryland

394

The Navy Saves Energy in its Buildings With EERE Expertise |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy savings performance contract (ESPC) partnership, the NUWC installed geothermal heat pumps, high-efficiency HVAC and building systems; improved energy management...

395

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

396

Building Energy Asset Score | Department of Energy  

Office of Environmental Management (EM)

- such as the building envelope (roof, walls and windows) and lighting, hot water and HVAC systems - have a significant impact on how efficiently energy is used within a building...

397

ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980  

SciTech Connect

The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

Authors, Various

1981-05-01T23:59:59.000Z

398

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network (OSTI)

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

399

Energy Efficiency and Green Building Standards for State Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

400

Climate change and buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate change and buildings Climate change and buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings Climate change and buildings

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building Energy Use Benchmarking Guidance | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Use Benchmarking Guidance Use Benchmarking Guidance Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

402

Commercial Building Energy Asset Score Tool Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Score Tool Score Tool Report Commercial Building Energy Asset Score Tool Report Energy Asset Score Report The Energy Asset Score report will be comprised of four sections: Current Asset Score-The source EUI is obtained by performing the whole-building energy simulation using the asset scoring tool; the modeled source EUI is adjusted to account for local climate; the adjusted EUI is compared to a fixed scale to obtain an asset score of 1 to 100. An asset score of 100 represents an ultra-efficient building; a score of 1 represents a very inefficient building in the current commercial building stock. After a building upgrade package is identified, the energy asset scoring tool will calculate the potential energy use after upgrades using standard operating conditions (by use types).

403

Building Energy Codes | Open Energy Information  

Open Energy Info (EERE)

Codes Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Contents 1 Building Energy Code Incentives 2 References Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

404

Building Energy Software Tools Directory: DOE Sponsored Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Sponsored Tools DOE Sponsored Tools The Department of Energy sponsors continued development of a variety of building energy software tools. See the following for more information about software tools now under development: Whole-Building Energy Performance Simulation EnergyPlus A new-generation building energy simulation program from the creators of BLAST and DOE-2. DOE-2 An hourly, whole-building energy analysis program which calculates energy performance and life-cycle cost of operation. The current version is DOE-2.1E. Building Design Advisor Provides building decision-makers with the energy-related information they need beginning in the initial, schematic phases of building design through the detailed specification of building components and systems. SPARK Models complex building envelopes and mechanical systems that are beyond

405

Benchmark energy use | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmark energy use Benchmark energy use Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use Learn about benchmarking Use ENERGY STAR benchmarking tools ENERGY STAR in action Communicate and educate Find out who's partnered with ENERGY STAR

406

Earn ENERGY STAR certification | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Earn ENERGY STAR certification Earn ENERGY STAR certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

407

Whole Building Design Approach | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Approach Design Approach Whole Building Design Approach October 16, 2013 - 5:17pm Addthis Picture of a Spanish-style building with xeriscape, including palm trees. Camp Pendleton's temporary lodging facility was constructed from 20% recycled materials and will be 100% recyclable upon its distant demolition. The four-story South Mesa Lodge also received one of the U.S. Green Building Council's highest energy efficiency ratings, saving more than 30% percent of water, lighting, and overall utility usage. As defined by the Whole Building Design Guide, the goal of whole building design is to create a successful high-performance building by applying an integrated design and team approach to the project during the planning and programming phases. Whole building design has proven to help:

408

Review of Building Energy Saving Techniques  

E-Print Network (OSTI)

The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use...

Zeng, X.; Zhu, D.

2006-01-01T23:59:59.000Z

409

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

410

Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Building Design October 16, 2013 - 4:41pm Addthis Planning, Programming & Budgeting Building Design Project Construction Integrating renewable energy within Federal new construction or major renovations is critical at each phase of the design process. This overview covers considerations for renewable energy in the design phases of a construction project, including choosing the design team, the design team charrette, preliminary design, schematic design, design development, and construction documents. Information on this page introduces each of the design phases and provides a link to deeper-level information. Key Actions in Building Design Require specific renewable energy experience and skills for design team. Prioritize energy-related program

411

DOE Commercial Reference Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings DOE Commercial Reference Buildings DOE Commercial Reference Buildings refbldgseuitables1-47-0.pdf More Documents & Publications Energy Information Agency's 2003...

412

Whole Building Energy Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Simulation Energy Simulation Whole Building Energy Simulation October 16, 2013 - 4:39pm Addthis Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations may be pursued. Whole building energy simulation software adequately assesses the interactions between complex building systems and equally complex schedules and utility rates structures for projects in specific locations throughout the world. Energy models incorporate actual building construction, internal load sources, and associated schedules using annual hourly weather data specific to the project location. These models can be used early in the design process when little information is known and updated, continually

413

Decision-Making Aid Tool for the Evaluation and Improvement of the Energy Performance of Stock of Buildings  

E-Print Network (OSTI)

, the simulation of buildings stock is possible starting from the definition of some standard buildings. SIMBAD (SIMulator of Building And Devices) is the first HVAC toolbox developed under the MATLAB/SIMULINK environment. This toolbox provides a large..., the simulation of buildings stock is possible starting from the definition of some standard buildings. SIMBAD (SIMulator of Building And Devices) is the first HVAC toolbox developed under the MATLAB/SIMULINK environment. This toolbox provides a large...

Joutey, H. A.; Vaezi-Nejad, H.; Lahrech, R.

2005-01-01T23:59:59.000Z

414

Building Energy Software Tools Directory: DOE-2  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-2 DOE-2 Hourly, whole-building energy analysis program calculating energy performance and life-cycle cost of operation. Can be used to analyze energy efficiency of given designs or efficiency of new technologies. Other uses include utility demand-side management and rebate programs, development and implementation of energy efficiency standards and compliance certification, and training new corps of energy-efficiency conscious building professionals in architecture and engineering schools. Keywords energy performance, design, retrofit, research, residential and commercial buildings Validation/Testing N/A Expertise Required Recommend 3 days of formal training in basic and advanced DOE-2 use. Users 800 user organizations in U.S., 200 user organizations internationally;

415

Building Technologies Office: Researching Energy Use in Hospitals  

NLE Websites -- All DOE Office Websites (Extended Search)

Researching Energy Use Researching Energy Use in Hospitals to someone by E-mail Share Building Technologies Office: Researching Energy Use in Hospitals on Facebook Tweet about Building Technologies Office: Researching Energy Use in Hospitals on Twitter Bookmark Building Technologies Office: Researching Energy Use in Hospitals on Google Bookmark Building Technologies Office: Researching Energy Use in Hospitals on Delicious Rank Building Technologies Office: Researching Energy Use in Hospitals on Digg Find More places to share Building Technologies Office: Researching Energy Use in Hospitals on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database

416

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

417

Building America Research Teams | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teams Teams Building America Research Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions

418

Building Energy Modeling Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable Support and Training Services Platform Center-Led Projects CERC: Human Behavior, Standards and Tools to Improve Design & Operation CBERD: Building Energy Simulation &...

419

About Building Energy Modeling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

mechanical systems, and dynamic building control for energy optimization or demand response. The design use cases can exploit prescriptive guidelines rather than simulation....

420

Building Energy Simulation & Modeling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

strategies in a building or test bed equipped with a low-energy heating, ventilation, and air conditioning system. Project Impact Products: Improved design analysis tools and data,...

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Industries in focus | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants ENERGY STAR Energy Performance Indicators for plants » Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance

422

2005 Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

5 Buildings Energy Data Book 5 Buildings Energy Data Book Prepared for the Offi ce of Energy Effi ciency and Renewable Energy 2005 Buildings Energy Data Book August 2005 Prepared for the Office of Planning, Budget Formulation and Analysis Energy Efficiency and Renewable Energy U.S. Department of Energy by D&R International, Ltd. under contract to Oak Ridge National Laboratory This version is dated: August 2005 D I S C L A I M E R This document was designed for the internal use of the United States Department of Energy. This document will be occasionally updated and, therefore, this copy may not reflect the most current version. This document was prepared as account of work sponsored by an agency of the United States Government.

423

Model Predictive Control for Energy Efficient Buildings  

E-Print Network (OSTI)

feedback control. Green buildings are expected to maintainHigh-performance green buildings are expected to maintain

Ma, Yudong

2012-01-01T23:59:59.000Z

424

Building Energy Software Tools Directory: EnergyPeriscope  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyPeriscope EnergyPeriscope Logo for EnergyPeriscope EnergyPeriscope is a professional-level performance estimating and financial analysis engine. Use it to create financial performance reports for single- or multiple-technology energy solutions. EnergyPeriscope accommodates retrofit applications, new construction buildings, and "Energy Farms" for selling PV- or wind-generated electricity. Model PV, solar water heating, solar pool/spa heating, solar hydronic radiant floor systems, wind turbines and energy efficiency projects. Screen Shots Keywords Renewable energy performance analysis, financial analysis, sales proposals Validation/Testing Data results were validated against RETScreen, PVWatts and other energy analysis tools. Reports are available. Expertise Required

425

Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings  

SciTech Connect

This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among

Patrick O'Neill

2009-06-30T23:59:59.000Z

426

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Iowa Program Type Building Energy Code Provider Iowa Office of Energy Independence ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://coolice.legis.state.ia.us/Cool-ICE/default.asp?Category=billinfo&... House File 2361] was signed in April 2006. This law rescinded Iowa's minimum energy efficiency standard for residential construction, the "home heating index," and instead requires the state building commissioner to adopt energy conservation requirements based on a nationally recognized

427

Building America Webinar: High Performance Space Conditioning...  

Energy Savers (EERE)

Kohta Ueno, Building Science Corporation. Kohta will discuss BSC's research on ductless heat pumps versus mini-splits being used in high performance (high R value enclosurelow...

428

On Variations of Space-heating Energy Use in Office Buildings  

E-Print Network (OSTI)

A methodology for building energy modeling and calibrationamong different building energy modeling programs, and themodeling framework for energy systems to improve energy efficiency and environmental performance of commercial buildings,

Lin, Hung-Wen

2014-01-01T23:59:59.000Z

429

Building Technologies Office: Energy Systems Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Energy Systems Innovations to someone by E-mail Share Building Technologies Office: Energy Systems Innovations on Facebook Tweet about Building Technologies Office: Energy Systems Innovations on Twitter Bookmark Building Technologies Office: Energy Systems Innovations on Google Bookmark Building Technologies Office: Energy Systems Innovations on Delicious Rank Building Technologies Office: Energy Systems Innovations on Digg Find More places to share Building Technologies Office: Energy Systems Innovations on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

430

Danish Energy Research Programme (EFP) Energy Performance Contracting  

E-Print Network (OSTI)

Danish Energy Research Programme (EFP) Energy Performance Contracting ­ energy saving potential) Energy Performance Contracting ­ energy saving potential of selected energy conservation measures (ECM- es) and the building owners. The EU directive on Energy Service Contracting points at the buildings

431

Vermont | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont Last updated on 2013-06-03 Current News The Vermont Commercial Building Energy Standards (CBES) became effective January 3, 2012. The CBES incorporates elements of the 2012 IECC. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information 2011 Vermont Commercial Building Energy Standards (CBES) are based on the 2009 IECC. Commercial Building Energy Standards Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Vermont (BECP Report, Sept. 2009) Approximate Energy Efficiency More energy efficient than 2009 IECC Effective Date 01/03/2012 Adoption Date 10/03/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No

432

Energy Performance Indicator Tool  

Energy.gov (U.S. Department of Energy (DOE))

The EnPI V4.0 is a regression analysis based tool developed by the U.S. Department of Energy to help plant and corporate managers establish a normalized baseline of energy consumption, track annual progress of intensity improvements, energy savings, Superior Energy Performance (SEP) EnPIs, and other EnPIs that account for variations due to weather, production, and other variables. The tool is designed to accommodate multiple users including Better Buildings, Better Plants Program and Challenge Partners, SEP participants, other manufacturing firms, and non-manufacturing facilities such as data centers.

433

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

434

Building the case for automated building energy management  

Science Journals Connector (OSTI)

Energy consumption in buildings comprises a significant fraction of total worldwide energy consumption and is strongly influenced by occupant behavior. To explore the quantitative effect of particular occupant actions on building energy consumption, ... Keywords: building automation, energy saving behaviors, in-home display

Alan Marchiori; Qi Han; William C. Navidi; Lieko Earle

2012-11-01T23:59:59.000Z

435

Federal Energy Management Program: Resources on Sustainable Buildings and  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Buildings and Campuses Sustainable Buildings and Campuses Building Technology Office Resources The Building Technology Office offers useful resources to plan and implement energy-efficiency projects. Building Energy Software Tools Directory Buildings Performance Database Energy Modeling Software Better Buildings Alliance Webinars Hospital Energy Alliance Videos Solid-State Lighting Technology Fact Sheets Many helpful resources about sustainable buildings and campuses are available. Also see Case Studies. Federal Requirements and Programs Buildings Technologies Program: A U.S. Department of Energy (DOE) program that leads a vast network of research and industry partners to continually develop innovative, cost-effective, energy-saving solutions for buildings. Crosswalk of Sustainability Goals and Targets: A document that features a table listing sustainability goals/targets under the requirement of Executive Order (E.O.) 13514 and E.O. 13423.

436

High Performance Building Façade Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Building Façade Solutions High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Glazing and façade systems have very large impacts on all aspects of commercial building performance. They directly influence peak heating and cooling loads, and indirectly influence lighting loads when daylighting is considered. In addition to being a major determinant of annual energy use, they can have significant impacts on peak cooling system sizing, electric load shape, and peak electric demand. Because they are prominent architectural and design elements and because they influence occupant preference, satisfaction and comfort, the design optimization challenge is

437

Building Energy Codes ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ENFORCEMENT TOOLKIT ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES i Building Energy Codes ENFORCEMENT TOOLKIT Prepared by: Building Energy Codes Program The U.S. Department of Energy's Building Energy Codes Program is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90467 LEARNING SERIES OVERVIEW Building Energy Codes ACE

438

Building Energy Codes COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPLIANCE TOOLKIT COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES III Building Energy Codes COMPLIANCE TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90466 LEARNING SERIES OVERVIEW Building Energy Codes

439

Building Energy Codes ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ADOPTION TOOLKIT ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES I Building Energy Codes ADOPTION TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-89963 LEARNING SERIES OVERVIEW Building Energy Codes

440

Building America Whole-House Solutions for Existing Homes: Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions, Chicago, Illinois  

Energy.gov (U.S. Department of Energy (DOE))

This case study presents information about a Building America study conducted by the Partnership for Advanced Residential Retrofit team comparing measure packages installed during 800 Illinois Home Performance with ENERGY STAR residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software.

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High-Performance Sustainable Building Design for New Construction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Buildings & Campuses High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New...

442

Commercial Building Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Research Commercial Building Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

443

National Laboratories Supporting Building America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratories Laboratories Supporting Building America National Laboratories Supporting Building America The U.S. Department of Energy's (DOE) national laboratories work very closely with the Building America research teams to achieve program goals. The laboratories offer extensive scientific and technical R&D expertise for building technologies and improved building practices. Following is a brief description of the laboratories involved with Building America. Logo for the Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory's Environmental Energy Technologies Division (EETD) performs analysis, research, and development leading to improved energy technologies and reduction of adverse energy-related environmental impacts. EETD conducts research in advanced energy

444

Commercial Buildings | Department of Energy  

Energy Savers (EERE)

clean, renewable energy to power its municipally owned buildings. This ground-mounted solar array is built on a brownfield site. | Photo courtesy of Con Edison Solutions. How a...

445

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Energy Center of Wisconsin's Better Buildings: Better Business Wisconsin Conference 9:00AM to...

446

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Michigan Program Type Building Energy Code Provider Michigan Department of Labor and Economic Growth ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code. The state energy code is evaluated for revisions or modifications every three years. The new code requirements are adopted at the beginning of each state building code cycle (which corresponds with the three-year cycle of

447

Buildings Success Stories | Department of Energy  

Office of Environmental Management (EM)

Efficiency Buildings Success Stories Buildings Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in technology cost reduction,...

448

Energy Information Administration (EIA)- Commercial Buildings...  

U.S. Energy Information Administration (EIA) Indexed Site

information for that building such as building size, year constructed, type of energy used, energy-using equipment, and conservation features. The smallest level of...

449

Commercial Buildings Integration | Department of Energy  

Energy Savers (EERE)

owners adopt new energy efficient technologies. Read more Join the Better Buildings Alliance Join the Better Buildings Alliance Engaging industry leaders to deploy energy saving...

450

Building Technologies Office | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Building Technologies Office Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. About the Building Technologies Office The Energy Department's Building Technologies Office leads a network of research and industry partners to continually develop innovative, cost-effective energy-saving solutions for homes and buildings. Learn more about the Building Technologies Office. How We Help Homes & Buildings Save Energy Value-Driven Applications Advanced energy efficiency technologies like lighting, HVAC, windows, appliances, and commercial equipment. Practical Standards

451

State Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

In June 2007, South Carolina enacted legislation (the Energy Independence and Sustainable Construction Act of 2007) to promote effective energy and environmental standards for construction,...

452

Building Energy Software Tools Directory: TAS  

NLE Websites -- All DOE Office Websites (Extended Search)

TAS TAS TAS logo Tas is an industry-leading building modelling and simulation tool. Capable of performing fast dynamic thermal simulation for the world’s largest and most complex buildings, Tas allows designers to accurately predict energy consumption, CO2 emissions, operating costs and occupant comfort. Tas is a complete solution for the thermal simulation of a building and a comprehensive tool for modelling plant and systems using it’s graphical and component based analysis. Tas is a powerful design tool in the optimisation of a buildings environmental, energy and comfort performance. Tas can import gbXML, INP, and IDF files from 3rd party programs. There are also customisable report generation facilities. The Tas suite allows full automation available through visual basic. This

453

Building Energy Software Tools Directory: EE4 CBIP  

NLE Websites -- All DOE Office Websites (Extended Search)

CBIP CBIP EE4 CBIP logo. Designed to demonstrate a building's compliance to the requirements of the Commercial Building Incentive Program (CBIP) performance path approach. EE4 CBIP is offered by Natural Resources Canada's Office of Energy Efficiency to building owners and developers for the design and construction of new commercial and institutional buildings that use 25% less energy than similar buildings built to the requirements of the Model National Energy Code for Buildings (MNECB). EE4 CBIP may also be used to perform non-compliance energy analyses and thus to predict a building's annual energy consumption, and to assess the impact of design changes to the building. Alternatively, EE4 CBIP can be used to determine a building's heating and cooling loads for equipment sizing. EE4 CBIP calculations are

454

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network (OSTI)

The 2007 Florida Building Code (ICC, 2008) requires building designers and architects to achieve a minimum energy efficiency rating for commercial buildings located throughout Florida. Although the Florida Building Code is strict in the minimum...

Raustad, R.; Basarkar, M.; Vieira, R.

455

90.1 Prototype Building Models Outpatient Healthcare | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Outpatient Healthcare Outpatient Healthcare The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

456

Update on U.S. Department of Energy Building America Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Update on U.S. Department of Energy Building America Program Goals Collective Impact for Zero Net Energy Homes Building America Roadmap to High Performance Homes...

457

Commercial Prototype Building Models | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

458

Framework for formulating a performance-based incentive-rebate scale for the demand-side-energy management scheme for commercial buildings in Hong Kong  

Science Journals Connector (OSTI)

Many, but not all, rebate-type demand side management (DSM) programmes worldwide have met with success. The rebate rate offered is a critical factor to success but a rational rebate scale determination method that would help strike a proper balance between the incentive offered and the effectiveness of the programme is lacking. For the DSM programmes recently launched in Hong Kong, the rebate rates are disproportionate to the cost and performance of the promoted energy-saving measures, resulting in diverse participation rates among the programmes. This paper presents a conceptual framework for formulating the rebate scales for incentive-based DSM programmes for commercial buildings, which would attract participation of building owners and boost electricity saving. The establishment of the scale starts from developing a performance curve that relates the cost effectiveness and the long-term benefits of different energy-saving DSM measures. The rebate scale is set based on the premise that a proportionally higher rebate rate should be offered for the adoption of each additional measure, which would yield a diminished marginal rate of return. Analysis showed that replacing the current rebate scale by the proposed scale would lead to benefits, both to the building owners and the utility companies.

W.L. Lee; F.W.H. Yik

2002-01-01T23:59:59.000Z

459

Building Envelopes | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Envelope SHARE Building Envelopes MFEL.jpg The building envelope-the materials that separate the indoor and outdoor environments-primarily determines the amount of energy required to heat, cool, and ventilate a building. The envelope also can significantly influence energy needs in areas accessible to sunlight. To cost-effectively improve the energy efficiency, moisture-durability, and environmental sustainability of building envelopes, ORNL is exploring new and emerging materials, components, and systems as well as the fundamentals of heat, air, and moisture transfer. Research is also focused on multifunctional solutions where the envelope serves as a filter that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling, ventilation, and lighting.

460

Building Energy Software Tools Directory: ENERPASS  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERPASS ENERPASS Detailed building energy simulation program for residential and smaller commercial buildings. ENERPASS calculates the annual energy use for space heating, cooling, lighting, water heating and fan energy. The calculations are performed on an hourly basis using hourly measured weather data. ENERPASS can model up to seven building zones and provides hourly temperature and humidity predictions for each zone. A wide range of HVAC systems can be modelled including make-up air units, heat recovery ventilators, rooftop units, VAV, four-pipe fan coil, and dual duct. The program uses full screen data entry in an easy-to-use format. A typical building model can be generated in one to two hours. In IEA validation studies ENERPASS results compare favorably with other hourly based computer

Note: This page contains sample records for the topic "building energy performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Indiana Program Type Building Energy Code Provider TSREI ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process, certain seismic provisions were weakened, primarily affecting nine southwestern counties. Local jurisdictions may amend to make the code more stringent with state approval only.

462

Building Energy Software Tools Directory: EnergyPlus  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyPlus EnergyPlus EnergyPlus Logo Next generation building energy simulation program that builds on the most popular features and capabilities of BLAST and DOE-2. EnergyPlus includes innovative simulation capabilities including time steps of less than an hour, modular systems simulation modules that are integrated with a heat balance-based zone simulation, and input and output data structures tailored to facilitate third party interface development. Recent additions include multizone airflow, electric power simulation including fuel cells and other distributed energy systems, and water manager that controls and report water use throughout the building systems, rainfall, groundwater, and zone water use. Keywords energy simulation, load calculation, building performance, simulation,

463

Building Energy Optimization Software | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Optimization Software Building Energy Optimization Software BEopt 2.1 Now Available! BEopt Version 2.1 is now available and includes major features such as: mini-split heat pumps and room air conditioners (E+); new modeling inputs; component-based air leakage estimate for existing buildings; and more. Read about the new features and visit the BEopt website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable Energy Laboratory (NREL) developed the Building Energy Optimization (BEopt) software tool. This specialized computer program is designed to identify optimally efficient designs for new and existing homes at the lowest possible cost. BEopt produces detailed simulation-based analysis and design optimization

464

High Performance and Sustainable Buildings Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIGH PERFORMANCE and SUSTAINABLE BUILDINGS GUIDANCE Final (12/1/08) PURPOSE The Interagency Sustainability Working Group (ISWG), as a subcommittee of the Steering Committee established by Executive Order (E.O.) 13423, initiated development of the following guidance to assist agencies in meeting the high performance and sustainable buildings goals of E.O. 13423, section 2(f). 1 E.O. 13423, sec. 2(f) states "In implementing the policy set forth in section 1 of this order, the head of each agency shall: ensure that (i) new construction and major renovations of agency buildings comply with the Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings set forth in the Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding (2006)

465

Windows and Building Envelope Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of building energy performance and human factors (comfort, indoor environmental quality (IEQ), occupant satisfaction and acceptance of technologies) for emerging window...

466

THERMAL BUILDING PERFORMANCE OPTIMIZATION USING SPATIAL ARCHETYPES  

E-Print Network (OSTI)

is spent for heating and cooling systems, see Figure 1.2. Figure 1.1 Primary energy consumption by sector, 1970-2020 in quadrillion Btu (EIA, 2001) Figure 1.2 Residential Primary Energy Consumption by end use encouragement, love and support #12;1 CHAPTER 1 INTRODUCTION 1.1. Energy Consumption Energy conscious building

Papalambros, Panos

467

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

SciTech Connect

Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

2013-06-06T23:59:59.000Z