Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

2

Building Distributed Energy Performance Optimization for China...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization...

3

Building Energy Optimization Software | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Optimization Software Building Energy Optimization Software BEopt 2.1 Now Available! BEopt Version 2.1 is now available and includes major features such as: mini-split heat pumps and room air conditioners (E+); new modeling inputs; component-based air leakage estimate for existing buildings; and more. Read about the new features and visit the BEopt website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable Energy Laboratory (NREL) developed the Building Energy Optimization (BEopt) software tool. This specialized computer program is designed to identify optimally efficient designs for new and existing homes at the lowest possible cost. BEopt produces detailed simulation-based analysis and design optimization

4

DOE Hydrogen Analysis Repository: Building Energy Optimization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Optimization (BEopt) Software Project ID: 105 Principal Investigator: Craig Christensen Brief Description: BEopt is a computer program designed to find optimal...

5

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable...

6

Strategic Energy Management Through Optimizing the Energy Performance of Buildings  

E-Print Network (OSTI)

1/12/2007 Strategic Energy Management Through Optimizing the Energy Performance of Buildings Oak ambitious federal energy goals and achieve energy independence. The energy engineers, building equipment Buildings and Industrial Energy Efficiency areas has engendered a unique, comprehensive capability

7

Optimization of energy parameters in buildings  

E-Print Network (OSTI)

When designing buildings, energy analysis is typically done after construction has been completed, but making the design decisions while keeping energy efficiency in mind, is one way to make energy-efficient buildings. The ...

Jain, Ruchi V

2007-01-01T23:59:59.000Z

8

Applications of Optimal Building Energy System Selection and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Figure 1 Energy Flows in a Building Microgrid DER-CAM solves a grid's investment optimization problem given its end-use energy loads, energy tariff structures and fuel...

9

Building Distributed Energy Performance Optimization for China - a Regional  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-81770 Year of Publication 2012 Authors Feng, Wei, Nan Zhou, Chris Marnay, Michael Stadler, and Judy Lai Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings, August 12-17, 2012 Date Published 08/2012 Conference Location Pacific Grove, California ISBN Number 0-918249-XX-X Notes LBNL - XXXXX Refereed Designation Refereed Attachment Size PDF 5 MB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/52998

10

National Renewable Energy Laboratory (NREL) researchers enhanced this building energy optimization tool to analyze  

E-Print Network (OSTI)

data, and standard occupants. BEopt has been used extensively in the U.S. Department of Energy Energy Optimization Software. U.S. Department of Energy Building America website. www.buildings.energy.gov/building_america/building_energy of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

11

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Chinese cities and climate zones. To optimize each building’are shown in the building climate zone map in Figure 1. Theon the following factors: Climate zones and building energy

Feng, Wei

2013-01-01T23:59:59.000Z

12

Ordinal optimization-based multi-energy system scheduling for building energy saving  

Science Conference Proceedings (OSTI)

Buildings contribute a significant part in the energy consumption and CO2 emission in many countries. Building energy saving has thus become a hot research topic recently. The technology advances in power co-generation, on-site generation, and storage ... Keywords: building energy saving, linear programming, multi-energy system, ordinal optimization, renewable energy

Zhong-Hua Su; Qing-Shan Jia; Chen Song

2011-08-01T23:59:59.000Z

13

Monitoring and Optimization of Building Operations of a Low-Energy School Building  

E-Print Network (OSTI)

The ambitious design and energy concept of the new Gebhard-Müller-Schule (GMS) school building in Biberach/Riss, Germany proved itself during the first three school years of operation. The intended target value of 30 kWh/(m2a) overall heating energy consumption was almost met during the second year of operation in 2006 and finally achieved in 2007, due to well-working optimization measures, which were identified through monitoring of the building operation. Heating and cooling energy is mainly provided by a groundwater well plant, which serves as a heat source for two heat pumps as well as a direct cooling source for supplying the radiant heating and cooling system that is integrated in the concrete floor and ceiling slabs (thermally activated building component systems – TABS). Indoor air conditioning and server room cooling are also connected to the groundwater cooling system. The main component of the groundwater well plant is a submersible pump on the bottom of the well which is located underneath the building. The pump supplies the building reliably with geothermal energy, but also consumes a significant amount of electricity. Monitoring and optimization of the building’s operation, funded by the Federal Ministry of Economics and Technology in Germany, revealed fundamental findings about the operation of the system and the possibilities to improve the building’s performance. Since 2005, the measurements show a continuous increase in efficiency, particularly in the field of auxiliary energies. This significantly increased performance clearly shows the potential of the use of groundwater for heating and cooling purposes and of thermally activated building component systems. In addition the measurements reveal the sensitivity of the system efficiency in terms of operating parameters.

Koenigsdorff, R.; Heinrich, S.; Baumann, O.; Reiser, C.

2008-10-01T23:59:59.000Z

14

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

China Environmental Energy Technologies Division 2012 ACEEEsuitable building energy technologies in different regionssuitable building energy technologies for different building

Feng, Wei

2013-01-01T23:59:59.000Z

15

Building America Top Innovations Hall of Fame Profile Â… Building Energy Optimization Analysis Method (BEopt)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

House geometries are among the many House geometries are among the many options users can enter in BEopt. Results shown here are rendered in SketchUp and show neighboring houses for shading analysis. To achieve Building America's ambitious energy-efficiency goals, it becomes increasingly important that researchers can identify the most cost-effective, high-performance improvements. BEopt has proven to be an invaluable analysis tool enabling Building America and its research partners to progress to zero net-energy new homes and deep energy retrofits. There are many energy analysis software tools out there-some do optimization, some do residential analysis, some do retrofit analysis, some come pre-packaged with options and costs, etc. With support from DOE's Building America program, researchers at the National Renewable Energy

16

Applications of Optimal Building Energy System Selection and Operation  

DOE Green Energy (OSTI)

Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

2011-04-01T23:59:59.000Z

17

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

of Public Buildings. Energy and Buildings (41), 426–435.and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

18

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

as building’s energy load profile, city’s solar radiationthe buildingsenergy load profiles. The annual energythe buildingsenergy load profiles. The Chinese residential

Feng, Wei

2013-01-01T23:59:59.000Z

19

Applications of Optimal Building Energy System Selection and...  

NLE Websites -- All DOE Office Websites (Extended Search)

for several years. Given load curves for energy services requirements in a building microgrid (grid), fuel costs and other economic inputs, and a menu of available...

20

Optimizing HVAC Control to Improve Building Comfort and Energy Performance  

E-Print Network (OSTI)

This paper demonstrates the benefits of optimal control in well-designed and operated buildings using a case study. The case study building was built in 2001. The HVAC and control systems have been installed with state-of-the-art equipment which include a terminal box temperature integrated minimum airflow reset. The building has been used and operated based on the design intents. This paper presents both the existing and the optimal control schedules, which include the VAV box operation schedule, AHUs optimal control, chiller and chilled water pump control, and boiler and hot water pump control. The measured hourly HVAC electricity consumption shows that annual savings of up to 40% can be achieved with an optimal control schedule.

Song, L.; Joo, I.; Dong, D.; Liu, M.; Wang, J.; Hansen, K.; Quiroz, L.; Swiatek, A.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint  

DOE Green Energy (OSTI)

A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

2005-04-01T23:59:59.000Z

22

Optimizing architectural and structural aspects of buildings towards higher energy efficiency  

Science Conference Proceedings (OSTI)

In this on-going work, we aim at contributing to the issue of energy consumption by proposing tools to automatically define some aspects of the architectural and structural design of buildings. Our framework starts with a building design, and automatically ... Keywords: construction costs, energy efficiency, intelligent building design, multi-objective optimization, sustainable development

Álvaro Fialho; Youssef Hamadi; Marc Schoenauer

2011-07-01T23:59:59.000Z

23

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

24

Control and Room Temperature Optimization of Energy Efficient Buildings  

SciTech Connect

The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

Djouadi, Seddik M [ORNL; Kuruganti, Phani Teja [ORNL

2012-01-01T23:59:59.000Z

25

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

426–435. LBNL. (2012). Distributed Energy Resources CustomerATIONAL L ABORATORY Building Distributed Energy Performanceemployer. Building Distributed Energy Performance

Feng, Wei

2013-01-01T23:59:59.000Z

26

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

building operations. ” Energy and Buildings 33, (8):783–791.Laboratory Buildings. ” Energy and Buildings 34 Geoghegan,consumption data. ” Energy and Buildings 24, Hampton, Dave.

O'Donnell, James

2008-01-01T23:59:59.000Z

27

Building Energy Software Tools Directory : CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

CHP Capacity Optimizer Back to Tool CHP Capacity Optimizer data entry screen CHP Capacity Optimizer results screen CHP Capacity Optimizer restult map...

28

Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings  

DOE Green Energy (OSTI)

Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

Horowitz, S.; Christensen, C.; Anderson, R.

2008-01-01T23:59:59.000Z

29

Towards a unified cost optimal methodology for designing low energy buildings in the mediterranean sea region  

Science Conference Proceedings (OSTI)

The increasing sustainability problems our world faces because of the thoughtless energy consumption and emissions production puts an increasing pressure for immediate and drastic energy saving measures. Although the consumption of energy - through appropriate ... Keywords: cost optimal, design methodology, low energy building, mediterranean

Stratis Kanarachos; Ahmed Medhat; Georgette Kanarachou; Mona Fanny

2011-02-01T23:59:59.000Z

30

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

EnergyPlus (DOE, 2011). The energy usage intensity is shownResidential Building Site Energy Usage Intensity in ChinaGas Residen>al Building Energy Usage Intensity Comparison

Feng, Wei

2013-01-01T23:59:59.000Z

31

Building Energy Software Tools Directory: CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links CHP Capacity Optimizer CHP Capacity Optimizer logo Selecting the proper installed capacity for cooling, heating, and power (CHP) equipment is critical to the...

32

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

with factors such as energy tariff and incentive policies.energy services requirements, usage patterns, tariffs, andelectricity tariff structure and the buildingsenergy load

Feng, Wei

2013-01-01T23:59:59.000Z

33

Applications of Optimal Building Energy System Selection and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Issue Date Published 022013 Keywords batteries, building systems scheduling, microgrids, mixed integer linear programming, optimisation, pv, solar thermal Abstract Berkeley...

34

Building America Top Innovations Hall of Fame Profile – Building Energy Optimization Analysis Method (BEopt)  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes the DOE-sponsored BEopt software, which ensures a consistent analysis platform and accurate simulations. Many BEopt algorithms have been adopted by private-sector HERS software tools that have helped improve the energy efficiency of tens-of-thousands of ENERGY STAR-certified homes.

35

BEopt(TM) Software for Building Energy Optimization: Features and Capabilities  

SciTech Connect

BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options in a linked options library spreadsheet. BEopt calls the DOE2 and TRNSYS simulation engines and uses a sequential search technique to automate the process of identifying optimal building designs along the path to ZNE. BEopt finds these optimal and near-optimal designs based on discrete building options reflecting realistic construction options. BEopt handles special situations with positive or negative interactions between options in different categories. The BEopt software includes a results browser that allows the user to navigate among different design points and retrieve detailed results regarding energy end-use and option costs in different categories. Multiple cases, based on a selected parameter such as climate, can be included in a BEopt project file for comparative purposes.

Christensen, C.; Anderson, R.; Horowitz, S.; Courtney, A.; Spencer, J.

2006-08-01T23:59:59.000Z

36

Toward zero net energy buildings : optimized for energy use and cost  

E-Print Network (OSTI)

Recently, there has been a push toward zero net energy buildings (ZNEBs). While there are many options to reduce the energy used in buildings, it is often difficult to determine which are the most appropriate technologies ...

Brown, Carrie Ann, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

37

Automatic Calibration of a Building Energy Simulation Model Using a Global Optimization Program  

E-Print Network (OSTI)

A simulation model used to analyze the energy performance of an existing building should be calibrated to measured consumption data from the building so the simulation output closely follows the measured time series energy consumption data and shows the same temperature dependence. This paper has used optimization software to show that a simple simulation program which is a coding of the ASHRAE 'Simplified Energy Analysis Procedure' can be automatically calibrated to “measured” data. The “measured data” used in this case study was simulation data to which a small amount of white noise had been added.

Lee, S. U.; Claridge, D.

2002-01-01T23:59:59.000Z

38

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Other data, for example solar radiation, electricity tariff,and building energy loads Solar radiation profiles for PVload profile, city’s solar radiation data, electricity and

Feng, Wei

2013-01-01T23:59:59.000Z

39

Autotune Building Energy Models  

NLE Websites -- All DOE Office Websites (Extended Search)

service" within the BTO Strategic BEM Portfolio 5 | Building Technologies Office eere.energy.gov Approach Approach: * Multi-objective optimization algorithms to minimize error...

40

Opt-E-Plus Software for Commercial Building Optimization; Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Commercial Building Optimization Electricity, Resources, & Building Systems Integration National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado...

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Integration of Low Energy Technologies for Optimal Building and Space Conditioning Design  

DOE Green Energy (OSTI)

EnergyPlus is the DOE's newest building energy simulation engine. It was developed specifically to support the design of low energy building systems. This project focused on developing new low energy building simulation models for EnergyPlus, verifying and validating new and existing EnergyPlus models and transferring the new technology to the private sector. The project focused primarily on geothermal and radiant technologies, which are related by the fact that both are based on hydronic system design. As a result of this project eight peer reviewed journal and conference papers were added to the archival literature and five technical reports were published as M.S. theses and are available in the archival literature. In addition, several reports, including a trombe wall validation report were written for web publication. Thirteen new or significantly enhanced modules were added to the EnergyPlus source code and forty-two new or significantly enhanced sections were added to the EnergyPlus documentation as a result of this work. A low energy design guide was also developed as a pedagogical tool and is available for web publication. Finally several tools including a hybrid ground source heat pump optimization program and a geothermal heat pump parameter estimation tool were developed for research and design and are available for web publication.

D.E. Fisher

2006-01-07T23:59:59.000Z

42

Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings: Preprint  

SciTech Connect

Zero net energy buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis.

Horowitz, S.; Christensen, C.; Anderson, R.

2008-08-01T23:59:59.000Z

43

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

44

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

45

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

SciTech Connect

Building performance assessment for the operational phase of a building's life cycle is heuristic, typically working from available historical metered data and focusing on bulk energy assessment. Building Management Systems are used in the operational phase of the building to control the building's internal environment according to the design criteria outlined during the design phase. Recent developments in mechanisms that communicate building performance such as standardized building performance objectives and metrics enable the use of the output from whole building energy simulation tools by nontechnical personnel and all project stakeholders. This paper proposes to specify and demonstrate the utilization of an Information Delivery Tool that supports optimum holistic environmental and energy analysis aimed at an established profile of building managers utilizing standardized performance objectives and metrics.

O' Donnell, James; Keane, Marcus; Bazjanac, Vladimir

2008-07-01T23:59:59.000Z

46

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

CIBSE. 2004. CIBSE Guide F: Energy ef?ciency in buildings.methods include CIBSE Guide F, Energy Star, Dutch NEN 2916 (Energy simulated zone temperature and the actual zone tempera- ture. This table guides

O'Donnell, James

2008-01-01T23:59:59.000Z

47

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Title Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Publication Type Report LBNL Report Number LBNL-5193E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, Alan H. Sanstad, and Gabriel Burch Document Number LBNL-5193E Pagination 59 Date Published October Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the 'direct-DC house' with respect to today's typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector-because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation-this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

48

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

49

Development of an integrated building energy simulation with optimal central plant control.  

E-Print Network (OSTI)

??The purpose of computer-based building energy analysis programs is to assist heating, ventilation, and air conditioning (HVAC) engineers in the design process and to help… (more)

Taylor, Russell Derek

1996-01-01T23:59:59.000Z

50

Application Study of the Pump Water Flow Station for Building Energy Consumption Monitoring and Control Optimization  

E-Print Network (OSTI)

This paper presents a new building energy monitoring and pump speed control method. The pump speed is controlled to maintain the system resistance at an optimized value to approach the best pump efficiency and save pump power. The system resistance can be obtained by the pump head and the water flow rate calculated by the pump water-flow station (PWS), which was recently developed. The PWS measures the water flow rate using the pump head, pump speed, and pump performance curve. This method has been experimentally proved in real HVAC systems. A case study was demonstrated in this paper for application of this new method in a Continuous Commissioning (CC) practice. The case study shows that the PWS can control the pump speed to maintain the optimized system operating point. It can also measure the water flow rate and monitor energy consumption continuously with low installation and almost no maintenance cost. The results show that the new technology can save pump power and increase pump efficiency significantly.

Liu, G.; Liu, M.

2006-01-01T23:59:59.000Z

51

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Usage Intensity Comparison City The retail prototype building is an internal load dominated model in which lighting,

Feng, Wei

2013-01-01T23:59:59.000Z

52

Building Technologies Office: HVAC Optimized Heat Exchangers Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimized Heat Optimized Heat Exchangers Research Project to someone by E-mail Share Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Facebook Tweet about Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Twitter Bookmark Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Google Bookmark Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Delicious Rank Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on Digg Find More places to share Building Technologies Office: HVAC Optimized Heat Exchangers Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

53

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

2009, Special Issue on Microgrids and Energy Management 3.of Commercial-Building Microgrids,” IEEE Transactions on2009, Special Issue on Microgrids and Energy Management 15.

Stadler, Michael

2010-01-01T23:59:59.000Z

54

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

Science Conference Proceedings (OSTI)

The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

2009-05-26T23:59:59.000Z

55

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

56

Analysis of Building Envelops to Optimize Energy Efficiency as per Code of Practice for Energy Efficient Buildings in Sri Lanka - 2008.  

E-Print Network (OSTI)

?? Residential and commercial buildings consume approximately 20% of the global energy generation. This value is continuously growing and the governments across the globe have… (more)

Kumari, Epa

2012-01-01T23:59:59.000Z

57

Building Energy Software Tools Directory: New Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Auditing & Sales Tool, home energy assessments, energy analysis, home performance, residential retrofits 2013-05-17 MyVerdafero Utility Optimization, building performance,...

58

Building Energy Software Tools Directory: Cepenergy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis of the Energy Matrix (Electricity, Water, Fuel), and CO2 emissions in buildings. Energy Problems, Saving and Optimizing. Tool of Management for Energy leakage. Culture and...

59

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

2009-08-10T23:59:59.000Z

60

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

62

Intelligent Building Energy Information and Control Systems for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response Title Intelligent Building Energy Information and Control Systems for...

63

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

Marnay, C. (2008), “Microgrids and Heterogeneous Powerof Commercial-Building Microgrids,” IEEE Transactions on

Stadler, Michael

2009-01-01T23:59:59.000Z

64

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

65

Building Technologies Office: Building Energy Software Tools...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Links This directory provides information on 404 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools...

66

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

2003. Hatziargyriou, N. et al. , “Microgrids, An Overview ofand Operation of Microgrids in Commercial Buildings”, IEEEsuccessful deployment of microgrids will depend heavily on

Stadler, Michael

2008-01-01T23:59:59.000Z

67

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

68

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

69

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

70

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

71

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

72

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

73

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

74

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

75

Midwest Building Energy Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

76

Midwest Building Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

77

Building energy modeling programs comparison Research on HVAC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in...

78

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

www.electricitystorage.org/tech/technologies_comparisons_Chandran (2008), “Optimal Technology Selection and Operationand Thermal Storage Technologies,” ACEEE 2008 Summer Study

Stadler, Michael

2009-01-01T23:59:59.000Z

79

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

1. However, a part of the battery capacity is replaced bycapacity close to the optimal could be acquired, e.g. battery

Stadler, Michael

2008-01-01T23:59:59.000Z

80

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,and J.L. Edwards, “Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

Torchiere Source: [6]. Energy AC-DC Savings Conv.Effand fans unchanged Energy AC-DC Savings Conv.Eff Solar WaterFigure 10. Appliances energy savings versus direct-DC energy

Garbesi, Karina

2012-01-01T23:59:59.000Z

82

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

on minimized costs, energy efficiency, and CO 2 emissions (energy costs vary when electrical, thermal storage, efficiency

Stadler, Michael

2009-01-01T23:59:59.000Z

83

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

84

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

85

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

be acquired. Battery storage costs are roughly consistentcosts ($/kW or $/kWh) lifetime (a) thermal storage 15 flow batterycosts, carbon emissions, or other objectives, and delivers optimal schedules. Recently, electrical (conventional lead/acid battery) and

Stadler, Michael

2009-01-01T23:59:59.000Z

86

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in...

87

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations,”International Journal of Distributed Energy Resources 4(4):A.S. Siddiqui (2008b), “Distributed Energy Resources On-Site

Stadler, Michael

2009-01-01T23:59:59.000Z

88

Achieving real transparency : optimizing building energy ratings and disclosure in the U.S. residential sector  

E-Print Network (OSTI)

Residential energy efficiency in the U.S. has the potential to generate significant energy, carbon, and financial savings. Nonetheless, the market of home energy upgrades remains fragmented, and the number of homes being ...

Nadkarni, Nikhil S. (Nikhil Sunil)

2012-01-01T23:59:59.000Z

89

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

kWh) Ideal(kWh) Cost (e) Cooling Tower Energy Chiller EnergyLoad Condenser Loop Load Cooling Tower Energy Requirementscoil, chiller and cooling tower are con- suming excessive

O'Donnell, James

2008-01-01T23:59:59.000Z

90

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

91

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

a Microgrid,” Journal of Energy Engineering 131(1): 2-25. Toand Storage,” Journal of Energy Engineering 133(3): 181-210.

Stadler, Michael

2009-01-01T23:59:59.000Z

92

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

Solar Market Trends 2009, 2010, Interstate Renewable EnergyMarket-Trends-Report- 2010_7-27-10_web1.pdf Solar Energy

Garbesi, Karina

2012-01-01T23:59:59.000Z

93

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

appliance converters were estimated using external power supply (EPS) data from the Energy Star database

Garbesi, Karina

2012-01-01T23:59:59.000Z

94

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

Wall, L.W.

2009-01-01T23:59:59.000Z

95

Building Technologies Program: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Program: ENERGY STAR on Google Bookmark Building Technologies Program: ENERGY STAR on Delicious Rank Building...

96

Building Technologies Office: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Office: ENERGY STAR on Google Bookmark Building Technologies Office: ENERGY STAR on Delicious Rank Building...

97

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Deployment Building Technologies Deployment SHARE Building Technologies Deployment benchmarking commercial buildings Once building technologies emerge and become commercially available, only in exceptional cases does robust market uptake automatically follow. Additional efforts remain to ensure that emerging and under-utilized technologies are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use in residential, commercial, and industrial sectors through applications research, technical assistance, and a variety of deployment strategies. The team's comprehensive knowledge of buildings and energy use spans multi-building sites, whole-buildings, systems, components, and multi-level

98

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

1344-1352. EIA. Solar Photovoltaic Cell/Module Manufacturingenergized by photovoltaic–wind/fuel cell hybrid energy

Garbesi, Karina

2012-01-01T23:59:59.000Z

99

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

100

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Systems, forthcoming 2008. Microgrid Symposium. Held atand carbon emissions, a microgrid’s distributed energyIn this paper, a microgrid is defined as a cluster of

Stadler, Michael

2008-01-01T23:59:59.000Z

102

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

N. Zhou (2007), “Distributed Generation with Heat RecoveryCO 2 emissions, distributed generation, energy management,2008)). Although distributed generation ( DG) units are less

Stadler, Michael

2009-01-01T23:59:59.000Z

103

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

October 11-13,2005 Pittsburgh, PA, USA. ICEBO. CIBSE.2004. CIBSE Guide F: Energy ef?ciency inbuildings. CIBSE Publications no. ISBN: 1903287340. CIBSE.

O'Donnell, James

2008-01-01T23:59:59.000Z

104

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

The Feasibility of Small-Scale Residential DC Distributionof a DC microgrid for residential houses. In Transmission &energy storage with PV for residential and commercial use.

Garbesi, Karina

2012-01-01T23:59:59.000Z

105

Buildings Energy Databook  

Buildings Energy Data Book (EERE)

2 BUILDINGS 2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered an evolving document as it will be will be periodically updated and additional data will be incorporated. Users are requested to submit additional data (e.g., more current, widely accepted, and/or better documented data) and suggested changes to the contacts below. Please provide full source references along with all data.

106

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

Heat and Power Adoption by a Microgrid,” Journal of EnergyStorage and Reliability on Microgrid Viability: A Study ofa cost- or carbon-minimizing microgrid that is able to adopt

Stadler, Michael

2009-01-01T23:59:59.000Z

107

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

and achieve demand response. For example, on a hot August after- noon during the energy crisis, high demand-in trans- former used for everything from cell phones to computers could be up to 50 percent more efficient

108

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

109

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

DOE Green Energy (OSTI)

An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

2011-10-13T23:59:59.000Z

110

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

electricity consumption sketched above for a single future year –year 2035, in quads Reference Extended case Policies case 1 A: Total electricity consumptionyear period the PV system’s energy production (including inverter losses) equals the total annual AC- house electricity consumption.

Garbesi, Karina

2012-01-01T23:59:59.000Z

111

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

112

Energy Efficiency in Commercial Buildings - Experiences and Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

HostPoint of Contact: Peng Xu Within the German funding program "Solar optimized buildings - SolarBau" commercial buildings are subsidized, if the predicted primary energy...

113

NREL: Technology Deployment - Building Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

114

Buildings News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings News Buildings News RSS November 6, 2013 Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge National Program to Reduce Energy Use and Save...

115

Building America Research Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tools Tools Building America Research Tools Building America provides technical tools to support researchers and building industry professionals in ensuring consistent research results for new and existing homes. The following resources can be used to evaluate optimal building designs, access performance and cost data, execute field tests, and track research progress. Image is a rendering of a two-story residential building with an entrance on the front. To the right of this building is another large building shaded in gray, and to the left is a smaller structure shaded in gray. Building Energy Optimization Software (BEopt): This software provides capabilities to evaluate residential building designs and identify cost-optimal efficiency packages at various levels of whole-house energy

116

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

The Energy Index for Commercial Buildings The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results yield national totals for commercial buildings. For more information on CBECS, visit EIA's website. Location Census Division View Map New England West North Central West South Central Middle Atlantic South Atlantic Mountain East North Central East South Central Pacific

117

Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially...

118

Energy Efficiency Standards for Federal Buildings | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Site Map Printable Version Development Adoption Compliance Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards...

119

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

120

Building Energy Software Tools Directory: Building Energy Modelling...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Eligibility Commercial Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial...

122

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial...

123

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Most Popular Tables PDFXLS 3.1.4 2010 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 1.1.1 U.S. Residential and Commercial Buildings Total Primary Energy Consumption PDFXLS...

124

ENERGY STAR ® Building Manual  

E-Print Network (OSTI)

Businesses are reducing their energy use by 30 percent or more through effective energy management practices that involve assessing energy performance, setting energy savings goals, and regularly evaluating progress. Building-level energy performance benchmarking is an integral part of this effort. It provides the reference points necessary for developing sound energy management practices and strategies and for gauging their effectiveness. Energy use benchmarking is a process that either compares the energy use of a building or group of buildings with other similar structures or looks at how energy use varies from a baseline. It is a critical step in any building upgrade project, because it informs organizations about how and where they use energy and what factors drive their energy use. Benchmarking enables energy managers to determine the key metrics for assessing performance, to establish baselines, and to set goals for energy performance. It also helps them identify building upgrade opportunities that can increase profitability by lowering energy and operating costs, and it facilitates continuous improvement by providing diagnostic measures to evaluate performance over time. Benchmarking energy performance helps energy managers to identify best practices that can

unknown authors

2008-01-01T23:59:59.000Z

125

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

126

Communicating Building Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Communicating Building Energy Performance Communicating Building Energy Performance Speaker(s): William Bordass Date: August 26, 2008 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Paul Mathew The heightened interest in building energy performance has exposed problems with reporting and benchmarking. Established conventions may no longer suit current needs, and new complications are emerging as national and corporate reporting (e.g. for carbon accounting and trading) begin to impact on the certification and labelling of building energy performance. If we are to achieve genuinely low-energy and carbon buildings, we need to get much better at reporting and benchmarking our intentions and outcomes, and particularly making performance visible and communicating it to all the people concerned. In design, this could help us to reduce the persistent

127

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

Firestone, R. (2004), “Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations,”A.S. Siddiqui (2008b), “Distributed Energy Resources On-Site

Stadler, Michael

2010-01-01T23:59:59.000Z

128

Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems  

E-Print Network (OSTI)

panel system are given by its energy (the consumption of gas for heating, electricity for pumps for residential buildings are increasingly used. According to some studies, this figure exceeds 50% (Kilkis et al of new calculation methods. However, in terms of heat transfer modelling, there are several analytical

Paris-Sud XI, Université de

129

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

9Market Transformation 9Market Transformation 9.1 ENERGY STAR 9.2 LEED 9.3 Certification Programs 9.4 High Performance Buildings Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter contains data on two market transformation programs that reach across the United States and to other countries: the ENERGY STAR program, jointly administered by the U.S. Environmental Protection Agency and the U.S. Department of Energy, and the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) rating system. It also includes data on three professional certifications and five case studies of high performance buildings. The main points from this chapter are summarized below:

130

Building Energy Modeling Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

131

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

a Microgrid,” Journal of Energy Engineering 131(1): 2-25. Toand Storage,” Journal of Energy Engineering 133(3): 181-210.

Stadler, Michael

2010-01-01T23:59:59.000Z

132

Comparison of Building Energy Modeling Programs: Building Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Building Energy Modeling Programs: Building Loads Title Comparison of Building Energy Modeling Programs: Building Loads Publication Type Report LBNL Report Number...

133

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes Resource Guide: COMMERCIAL BUILDINGS for Architects Prepared by: Building Energy Codes Program (BECP) and the American...

134

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

8.1 Buildings Sector Water Consumption 8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy needed to supply that water. The main points from this chapter are summarized below: In 2005, water use in the buildings sector was estimated at 39.6 billion gallons per day, which is nearly 10% of total water use in the United States. From 1985 to 2005, water use in the residential sector closely tracked population growth, while water use in the commercial sector grew almost twice as fast.

135

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

136

Buildings Energy Efficiency Policy  

E-Print Network (OSTI)

· Emphasized lighting · Insulation, HVAC, motors, windows also significant · Savings typically 1-10% per al., 2009, ACEEE #12;Building Energy Rating & Disclosure · Two states: California and Washington · Five cities: Austin, DC, NYC, San Francisco, Seattle · Coverage will extend to 60,000 buildings & 4.1B

Oak Ridge National Laboratory

137

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Energy Efficiency > Commercial Buildings Energy Intensities > Table 6a. U.S. Commercial Buildings Energy

138

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

139

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

5.1 Building Materials/Insulation 5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 5 contains market and technology data on building materials and equipment. Sections 5.1 and 5.2 cover the building envelope, including building assemblies, insulation, windows, and roofing. Sections 5.3 through 5.7 cover equipment used in buildings, including space heating, water heating, space cooling, lighting, thermal distribution (ventilation and hydronics), and appliances. Sections 5.8 and 5.9 focus on energy production from on-site power equipment. The main points from this chapter are summarized below:

140

Building load control and optimization  

E-Print Network (OSTI)

Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and curtail peak demand. This research focuses on load control by improving the operations in existing building HVAC ...

Xing, Hai-Yun Helen, 1976-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

"Building Energy Data Exchange Specification"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification" "Version 2.3" "applicationvnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification...

142

Connecticut | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

143

Maryland | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

144

Oregon | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

145

Indiana | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

146

California | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

147

Building Technologies Office: Saving Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving Energy Printable Version Share this resource Send a link to Building Technologies Office: Saving Energy to someone by E-mail Share Building Technologies Office: Saving...

148

Energy and building envelope  

SciTech Connect

This book presents the papers given at a conference on building thermal insulation, energy efficiency, and solar architecture. Topics considered at the conference include thermal comfort, heating loads, the air change rate in residential buildings, core-insulated external walls, passive solar options, cooling loads, daylighting, solar gain, the energy transmittance of glazings, heat storage units in phase change materials, heat transfer through windows, and rock bed heat storage for solar heating systems.

1986-01-01T23:59:59.000Z

149

Building Technologies Office: Energy-Efficient and Comfortable...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy consumption in retrofit and new commercial buildings by developing integrated energy optimization control systems for electric lighting, daylight, and local heating,...

150

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs. Learn more about the: Benefits of sustainable building design

151

Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Buildings EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

152

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes...

153

Building Energy Software Tools Directory: Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

154

Building Energy Software Tools Directory: TOP Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

155

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

N. Zhou (2007), “Distributed Generation with Heat RecoveryCO 2 emissions, distributed generation, energy management,1]. Although thermal distributed generation (DG) units are

Stadler, Michael

2010-01-01T23:59:59.000Z

156

Better Buildings | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over 400 billion. These buildings...

157

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

Heat and Power Adoption by a Microgrid,” Journal of EnergyStorage and Reliability on Microgrid Viability: A Study ofa cost- or CO 2 - minimizing microgrid that is able to adopt

Stadler, Michael

2010-01-01T23:59:59.000Z

158

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

7.1 National Legislation 7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 7 outlines national climate change legislation, tax incentives, Federal regulations, and State programs that have influenced building energy consumption. Section 7.1 summarizes the past 40 years of national energy legislation beginning with the Clean Air Act of 1970. Section 7.2 describes the energy efficiency-related Federal tax incentives created in the last 5 years. Sections 7.3 through 7.7 describe the energy and water efficiency standards currently or soon to be in effect for residential and commercial HVAC equipment, appliances, lighting, and water-consuming products. Section 7.8 covers building energy codes. Following is a summary of the energy legislation discussed in this chapter:

159

Building Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Equipment Building Technologies Deployment System/Building Integration Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy consumption of the nation's buildings and resulting carbon emissions is essential to achieving a sustainable clean energy future. To address the enormous challenge, Oak Ridge National Laboratory is focused on helping develop new building technologies, whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations in all of these areas.

160

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Sustainable Program Areas » Sustainable Buildings & Campuses » Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Massachusetts Program Type Building Energy Code Provider State Board of Building Regulations and Standards ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Massachusetts Board of Building Regulations and Standards has authority

162

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

163

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Eligibility Low-Income Residential Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization...

164

Building Energy Code (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

modified on September 28, 2012. Rules Regulations Policies Program Place Connecticut Name Building Energy Code Incentive Type Building Energy Code Applicable Sector Commercial,...

165

Building Energy Efficiency Technologies - Energy Innovation Portal  

Building Energy Efficiency Technology Marketing Summaries Here you’ll find marketing summaries of building energy efficiency technologies available for licensing ...

166

High Performance Buildings - Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

... Buildings - Alternative/Renewable Energy. High Performance Buildings - Alternative/Renewable Energy Information at NIST. ...

2010-09-23T23:59:59.000Z

167

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 5b

168

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 5a

169

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 7a

170

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table7c

171

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 7b

172

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

173

Build an energy management program | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Advance your energy program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

174

Build an energy program | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

information center Build an energy program ENERGY STAR is here to help. Use the Energy Program Assessment Matrix to identify the elements to include in your program. Read...

175

Enhanced Sequential Search Methodology for Identifying Cost-Optimal Building Pathways  

SciTech Connect

The BEopt software is a building energy optimization tool that generates a cost-optimal path of building designs from a reference building up to zero-net energy. It employs a sequential search methodology to account for complex energy interactions between building efficiency measures. Enhancement strategies to this search methodology are developed to increase accuracy (ability to identify the true cost-optimal curve) and speed (number of required energy simulations). A test suite of optimizations is used to gauge the effectiveness of each strategy. Combinations of strategies are assembled into packages, ranging from conservative to aggressive, with so up to 71% fewer required simulations are required.

Horowitz, S.; Christensen, C.; Brandemuehl, M.; Krarti, M.

2008-06-01T23:59:59.000Z

176

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

177

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Ohio Program Type Building Energy Code Provider Ohio Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Board of Building Standards is the primary state agency that protects

178

Nevada Energy Code for Buildings  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

179

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

180

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Buildings Hub Energy Efficient Buildings Hub Energy Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Alabama Program Type Building Energy Code Provider Alabama Department of Economic and Community Affairs ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Legislation passed in March 2010 authorized the Alabama Energy and

182

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Compliance Regulations Resource Center About Building Energy Codes U.S. Energy Consumption by Sector (2011) Source: U.S. Energy Information Administration, Annual Energy Review According to the U.S. Energy Information Administration's Electric Power Annual, U.S. residential and commercial buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in significant cost savings in both the private and public sectors of the U.S. economy. Efficient buildings reduce power demand and have less of an environmental impact. The Purpose of Building Energy Codes Energy codes and standards set minimum efficiency requirements for new and renovated buildings, assuring reductions in energy use and emissions over

183

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

In order to allow equivalent comparisons of buildings across the U.S., the Asset Scoring Tool applies a weather adjustment to those energy uses that depend on climate (e.g.,...

184

Real-Time Optimization Strategies for Building Systems  

E-Print Network (OSTI)

Our analysis indicates that it is possible to obtain energy savings of more than ... This information can be used to compute economic-optimal set-point ... This ability is key in reducing the exposure of buildings to real-time market volatility and.

185

Buildings to Grid Integration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings to Grid Integration Buildings to Grid Integration Buildings to Grid Integration The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to address the integration and optimization of buildings with the nation's energy grid. Buildings and the Energy Grid As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and/or variable generation sources and loads, such as those of electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. For example, the U.S. government, many states, municipalities, and utility service areas are diversifying and distributing their generation mix, including a larger percentage of

186

Buildings to Grid Integration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings to Grid Integration Buildings to Grid Integration Buildings to Grid Integration The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to address the integration and optimization of buildings with the nation's energy grid. Buildings and the Energy Grid As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and/or variable generation sources and loads, such as those of electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. For example, the U.S. government, many states, municipalities, and utility service areas are diversifying and distributing their generation mix, including a larger percentage of

187

Building energy benchmarks and rating tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building energy benchmarks and rating tools Building energy benchmarks and rating tools Building energy benchmarks and rating tools Building energy benchmarks and rating tools More...

188

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Connecticut Program Type Building Energy Code Provider Connecticut Office of Policy and Management ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/

189

ENERGY STAR for existing buildings | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program...

190

Building Energy Software Tools Directory : Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Expert Back to Tool Screenshot of load profile for Energy Expert Screenshot of calendar for Energy Expert Screenshot for building results in Energy Expert...

191

Advancing Building Energy Codes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Advancing Building Energy Codes Advancing Building Energy Codes 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. Energy Codes Ensure Efficiency in Buildings

192

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Buildings Hub Energy Efficient Buildings Hub Energy Efficient Buildings Hub August 1, 2010 - 4:27pm Addthis This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility’s renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Department's Energy Innovation Hubs are helping to advance promising

193

ENERGY STAR certification for your building | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

certification for your building certification for your building Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Find financing Earn recognition 20-percent recognition ENERGY STAR certification How to apply for ENERGY STAR certification Tips for low-cost verifications Submit a profile of your building

194

BUILD UP: Energy Solutions for Better Buildings (Website) | Open Energy  

Open Energy Info (EERE)

BUILD UP: Energy Solutions for Better Buildings (Website) BUILD UP: Energy Solutions for Better Buildings (Website) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BUILD UP: Energy Solutions for Better Buildings (Website) Focus Area: Energy Efficiency Topics: Best Practices Website: www.buildup.eu/home Equivalent URI: cleanenergysolutions.org/content/build-energy-solutions-better-buildin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Building Certification This website serves as a forum for the exchange of best working practices and knowledge and the transfer of tools and resources. The BUILD UP initiative was established by the European Commission to support European

195

Sustainable Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Sustainable Buildings Mission The team evaluates and incorporates the requirements for sustainable buildings as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The team advocates the use of sustainable building practices. Scope The team evaluates how to locate, design, construct, maintain, and operate its buildings and facilities in a resource-efficient, sustainable, and economically viable manner, consistent with its mission. The team provides a process to evaluate sustainable building practices for any new construction, major renovation, and existing capital asset buildings in

196

Building Energy Conservation in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Conservation in China Building Energy Conservation in China Speaker(s): Zhang Fulin Date: January 29, 2013 - 11:15am Location: 90-3122 Seminar Host/Point of Contact: Haley Gilbert Mr. Zhang Fulin is a Senior Engineer and Director of the Division of Energy Efficiency in Buildings, Department of Energy Efficiency in Buildings and Science &Technology of the Ministry of Housing and Urban-Rural Development (MOHURD) in China. He is tasked with developing China building energy conservation policies and regulations and is responsible for the approval of major China building energy efficiency projects. Mr. Zhang has been working in the field of building energy efficiency for more than two decades. He will speak about current laws and regulations governing building energy efficiency practice in China,

197

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Glossary Glossary Acronyms and Initialisms Technology Descriptions Residential Space Heating Residential Space Cooling Residential Water Heating Commercial Space Cooling Commercial Space Heating Commercial Refrigeration Lighting Building Descriptions Commercial Residential Acronyms and Initialisms A B C D E F G H I L M N O P Q R S U V AAMA - American Architectural Manufacturers Association ACEEE - American Council for an Energy Efficient Economy AEO - EIA's Annual Energy Outlook AFEAS - Alternative Fluorocarbons Environmental Acceptability Study AFUE - Annual Fuel Utilization Efficiency AHAM - Association of Home Appliance Manufacturers ARI - Air-Conditioning and Refrigeration Institute ASHRAE - American Society of Heating, Refrigerating and Air-Conditioning Engineers BTS - DOE's Office of Building Technology, State and Community Programs

198

ENERGY STAR Building Upgrade Manual | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Building Upgrade Manual ENERGY STAR Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach

199

Commercial Building Design Pathways Using Optimization Analysis: Preprint  

SciTech Connect

Whole-building simulation and analysis has demonstrated a significant energy savings potential in a wide variety of design projects. Commercial building design, however, traditionally integrates simulation and modeling analyses too late in the design process to make a substantial impact on energy use. The National Renewable Energy Laboratory (NREL) commercial building group created an optimization platform called Opt-E-Plus that uses multivariate and multi-objective optimization theory to navigate a large parameter space and find economically valid, energy-saving solutions. The analysis results provide designers and engineers valuable information that influences the design. The pathways are not full 'construction ready' design alternatives; rather, they offer guidance about performance and cost criteria to reach a range of energy and economic goals. Having this knowledge early in the design phase helps designers establish project goals and direct the design pathway before they make important decisions. Opt-E-Plus has been deployed on several projects, including a retrofit mixed-use building, a new NREL office building, and several nationwide design guides. Each of these projects had different design criteria, goals, and audiences. In each case the analysis results provided pathways that helped inform the design process.

Long, N.; Hirsch, A.; Lobato, C.; Macumber, D.

2010-08-01T23:59:59.000Z

200

Evaluation and Optimization of Underground Thermal Energy Storage Systems of Energy Efficient Buildings (WKSP)- A Project within the new German R&D- Framework EnBop  

E-Print Network (OSTI)

Until 2003 the research on buildings in operation in Germany focused mainly on demonstration buildings. Starting with the EVA project managed by IGS the attention is shifting towards performance in operation. The paper gives a general review of these research projects and presents detailed results of project WKSP. The performance of buildings with systems for underground thermal energy storage is analysed in this project. As the analyses show several systems work worse than expected. Within the project most of the systems could be significantly improved in operation. The scientific work on building performance in operation will be broadened within the new R&D framework EnBop. IGS will coordinate the framework funded by the German Ministry of Economics and Technology.

Bockelmann, F.; Kipry, H.; Plesser, S.; Fisch, M. N.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Guam - Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam - Building Energy Code Guam - Building Energy Code Guam - Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by the legislature before it is official. This entry and information will be updated accordingly. Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the

202

Better Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over $400 billion. These buildings and operations can be made much more efficient using a variety of cost effective efficiency improvements while creating jobs and building a stronger economy. We have similar opportunities in our homes. In February 2011, President Obama, building upon the investments of the American Recovery and Reinvestment Act, announced the Better Buildings Initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years and accelerate private sector investment in energy efficiency. Better Buildings strategies include: Last year, commercial and industrial buildings used roughly 50% of the

203

California commercial building energy benchmarking  

E-Print Network (OSTI)

benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings.

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

204

Build an energy management program | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

205

Green buildings and ENERGY STAR | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Green buildings and ENERGY STAR Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

206

ENERGY STAR Building Upgrade Manual | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new...

207

Build an energy program | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

208

Building Energy Software Tools Directory: Autodesk Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

209

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

210

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

211

Energy Efficient Buildings Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Buildings Hub Efficient Buildings Hub Energy Efficient Buildings Hub August 1, 2010 - 4:27pm Addthis This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility’s renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The Department's Energy Innovation Hubs are helping to advance promising

212

Energy Department Announces Building Energy Efficiency Investments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Efficiency Investments in Twenty-Two States Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States June 27, 2012 - 6:55pm Addthis...

213

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program...

214

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

215

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

216

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

217

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

218

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arizona Program Type Building Energy Code ''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes...

219

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

220

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program...

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and...

222

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the...

223

Rating the energy performance of buildings  

E-Print Network (OSTI)

Journal of Low Energy and Sustainable Buildings, 2004Journal of Low Energy and Sustainable Buildings, Vol. 3, (Journal of Low Energy and Sustainable Buildings, Vol. 2 pp.

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

224

Building Energy Information Systems: User Case Studies  

E-Print Network (OSTI)

Web based enterprise energy and building automation systems.operations. Energy and Buildings, 33(8), 10. Heinemeier,from an analysis of building Energy Information System

Granderson, Jessica

2010-01-01T23:59:59.000Z

225

Revealing myths about people, energy and buildings  

E-Print Network (OSTI)

Myths about People, Energy and Buildings Rick Diamond andmyths about people, energy and buildings are current today?myths about people, energy and buildings? Who tells these

Diamond, R.

2011-01-01T23:59:59.000Z

226

Energy Efficiency and Green Building Standards for State Buildings...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

227

Building Technologies Program: ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

with ENERGY STAR DOE conducts research, development, and deployment to improve the energy efficiency of existing homes using a whole-building approach, which results in the...

228

Building Energy Code Compliance Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

April 4, 2013 Ian Finlayson Manager of Buildings & Climate Programs Creating A Cleaner Energy Future For the Commonwealth 2 What do we want? Improved energy performance of...

229

Energy Star Building Upgrade Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

program helping businesses and individuals fight global warming through superior energy efficiency. ENERGY STAR Building Upgrade Manual United States Environmental Protection...

230

Commissioning Building Systems for Improved Energy ...  

Science Conference Proceedings (OSTI)

Commissioning Building Systems for Improved Energy Performance Project. Summary: NIST will advance commercial building ...

2012-12-17T23:59:59.000Z

231

Building Technologies Office: Building-Level Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

232

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Heating Program Info State California Program Type Building Energy Code Provider California Energy Commission '''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to take effect on January 1, 2014, and represent significant energy and water savings compared to the current standards. Among many notable provisions, the new standards will

233

Building Technologies Office: Commercial Building Energy Asset Scoring Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoring Tool to someone by E-mail Scoring Tool to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

234

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

235

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Oregon Program Type Building Energy Code Provider Oregon Building Codes Division ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://www.oregon.gov/ENERGY/CONS/Codes/cdpub.shtml The Oregon Energy

236

Variables optimization of building air conditioning system  

Science Conference Proceedings (OSTI)

A heating and climatizer system based on selective absorption of solar energy by a selective collector. The experimental study shows that the performance of this system depends on several variables: the nature of the colporteur fluid, the flow of the ... Keywords: heating and climatisation, modelation and optimization, solar energy

Marius-Constantin Popescu; Cornelia Aida Bulucea; Gheorghe Manolea; Cristian Vladu

2009-10-01T23:59:59.000Z

237

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

6.1 Electric Utility Energy Consumption 6.1 Electric Utility Energy Consumption 6.2 Electricity Generation, Transmission, and Distribution 6.3 Natural Gas Production and Distribution 6.4 Electric and Generic Quad Carbon Emissions 6.5 Public Benefit Funds/System Benefit Funds 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 6 focuses on the U.S. energy supply. Sections 6.1 and 6.2 contain data on electric utilities, including generation capacity, primary fuel consumption, transmission and distribution losses, and electricity prices. Section 6.3 addresses the production, consumption, and storage of natural gas and petroleum. Section 6.4 covers emissions from the utility sector. Section 6.5 provides data on how utilities spend public and system benefit funds. The main points from this chapter are summarized below:

238

Building Energy Codes News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes News Building Energy Codes News News Category: National Policy DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Posted: Tuesday, August 6, 2013 On August 6, DOE published an RFI on its methodology for assessing code compliance into the Federal Register. Based on feedback received from the individual state compliance pilot studies in 2011-2012, the RFI seeks input on DOE's methodology and fundamental assumptions from the general public. Read the full article... Source: U.S. Department of Energy Building Energy Codes Program Energy 2030 Report Calls for Stricter Energy Building Codes Posted: Tuesday, February 12, 2013 The Alliance Commission on National Energy Efficiency Policy aims to double US energy productivity by 2030, and one of its many ways to achieve that

239

Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

240

Optimization Online - Energy Security: a robust optimization ...  

E-Print Network (OSTI)

Sep 9, 2010 ... Energy Security: a robust optimization approach to design a robust European energy supply via TIAM. F Babonneau(fbabonneau ***at*** ...

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New York Program Type Building Energy Code Provider NYS Department of State ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Energy Conservation Construction Code of New York State (ECCCNYS) requires that all government, commercial and residential buildings,

242

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Montana Program Type Building Energy Code Provider Building Codes Bureau ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The energy codes are reviewed on a three-year cycle corresponding to the adoption of new versions of the International Code Conference (ICC) Uniform

243

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed...

244

Energy Efficiency Standards for State Buildings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Standards for State Buildings Energy Efficiency Standards for State Buildings Savings For Heating & Cooling Home Weatherization Construction Commercial...

245

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. Coal. ... such as principal building activity or energy sources used.

246

Showcasing California Better Buildings Challenge Partners' Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Showcasing California Better Buildings Challenge Partners' Energy Saving Solutions Showcasing California Better Buildings Challenge Partners' Energy Saving Solutions August 28,...

247

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving...

248

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

249

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Code Building Energy Code Eligibility Commercial Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling...

250

Hybrid Model for Building Performance Diagnosis and Optimal Control  

E-Print Network (OSTI)

Modern buildings require continuous performance monitoring, automatic diagnostics and optimal supervisory control. For these applications, simplified dynamic building models are needed to predict the cooling and heating requirement viewing the building as a whole system. This paper proposes a new hybrid model. Half of the model is represented by detailed physical parameters and another half is described by identified parameters. 3R2C thermal network model, which consists of three resistances and two capacitances, is used to simulate building envelope whose parameters are determined in frequency domain using the theoretical frequency characteristics of the envelope. Internal mass is represented by a 2R2C thermal network model, which consists of three resistances and two capacitances. The resistances and capacitances of the 2R2C model are assumed to be constant. A GA (genetic algorithm)-based method is developed for model parameter identification by searching the optimal parameters of 3R2C models of envelopes in frequency domain and that of the 2R2C model of the building internal mass in time domain. As the model is based on the physical characteristics, the hybrid model can be used to predict the cooling and heating energy consumption of buildings accurately in wide range of operation conditions.

Wang, S.; Xu, X.

2003-01-01T23:59:59.000Z

251

Building Energy Software Tools Directory: Solar Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

252

Building Energy Software Tools Directory: Cake Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

253

Building Energy Software Tools Directory: Acoustics Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

254

Rating the energy performance of buildings  

E-Print Network (OSTI)

Energy and Sustainable Buildings, 2004 Available at http://Energy and Sustainable Buildings, Vol. 3, (2004), Olofsson,for a commercial office building in Melbourne, Australia,

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

255

Energy Performance Certificate Non-Domestic Building  

U.S. Energy Information Administration (EIA)

66 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

256

Building Energy Software Tools Directory : Engineering Toolbox  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

257

Building Energy Software Tools Directory: Engineering Toolbox  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory EERE Building Technologies Office Building Energy Software Tools Directory Printable Version Share this resource Home About the...

258

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by...

259

Achieving Better Building Performance and Savings Using Optimal Control Strategies  

E-Print Network (OSTI)

The Continuous Commissioning (CCSM) process has become a very important energy conservation topic for new and existing commercial buildings. This process can yield substantial operating savings, improved indoor air quality, and enhanced occupant comfort. It also provides solutions to reoccurring building maintenance problems. One tool that can be implemented during commissioning work is a nearoptimal global set point method in an Energy Management Control System (EMCS) Direct Digital Controller (DDC). This algorithm is based on mathematical models for the chillers, boilers, chilled and hot water pumps, and air handler fans that relate the power of these components as a function of the chilled water and hot water differential temperature. The algorithm will minimize the total plant power consumption. These optimal control strategies make the CC process more effective. The Texas A&M University Systems State Headquarters is an office building, with a total floor area of approximately 123,960 ft2. An integrated commissioning of the HVAC systems was performed for this building. This paper describes the commissioning activities and demonstrates how newly developed optimized control strategies improved the building comfort conditions and reduced utility costs during and after the commissioning period.

Chen, H.; Deng, S.; Bruner, H.

2003-01-01T23:59:59.000Z

260

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New Hampshire Program Type Building Energy Code Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites. New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. SB 81 was enacted in July 2007, and it upgraded the New

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State District of Columbia Program Type Building Energy Code Provider Washington State Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The State Building Code Council revised the [https://fortress.wa.gov/ga/apps/sbcc/Page.aspx?nid=14 Washington State

262

EnergyPlus: Energy Simulation Software for Buildings - Energy ...  

EnergyPlus is a building energy simulation program for modeling building heating, cooling, lighting, ventilating, and other energy flows. While it is based on the ...

263

Building Energy Code | Open Energy Information  

Open Energy Info (EERE)

Code Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

264

Energy Information Handbook: Applications for Energy-Efficient Building Operations  

E-Print Network (OSTI)

and Renewable Energy, Building Technologies Program, of theU.S. Department of Energy Buildings Energy Data Book andchallenges encountered in building energy benchmarking, and

Granderson, Jessica

2013-01-01T23:59:59.000Z

265

Building Energy Software Tools Directory: ISOVER Energi  

NLE Websites -- All DOE Office Websites (Extended Search)

ISOVER Energi ISOVER Energi ISOVER Energi logo Calculates: U-value, for constructions with and without thermal bridges; total heat loss for buildings; and energy demand for buildings. ISOVER Energi compares heat loss to the heat loss frame in the Danish Building Regulations. The energy demand is compared to the energy frame in the Danish Building Regulations. Furthermore ISOVER Energi calculates the profitability of activities e.g. retrofit, renewing of windows, to improve the energy performance of existing buildings. The profitability is compared to the criteria in the Danish Building Regulations. Access to databases with characteristics for common building materials and with linear heat losses for typical solutions for connections. The database facility is planned to be enlarged with databases for windows, boilers,

266

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider Colorado Energy Office ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Colorado is a home rule state so no statewide energy code exists. Voluntary

267

Building Energy Use Benchmarking Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Use Benchmarking Guidance April 15, 2010 EISA SECTION 432 - Benchmarking of Federal Facilities (42 U.S.C. 8253 Subsection (f), Use of Energy and Water Efficiency Measures in Federal Buildings) I. Background A. Authority - Benchmarking Requirements Section 432 of the Energy Independence and Security Act of 2007 (EISA) requires the Secretary of the United States Department of Energy (DOE) to select or develop a building energy use benchmarking system and to issue guidance for use of the system. EISA requires the designated agency energy managers to enter energy use data for each metered building that is (or is a part of) a covered facility into a building energy use benchmarking system, such as the ENERGY STAR Portfolio Manager tool (Portfolio Manager) (see 42 U.S.C. 8253(f)(8)(A), as

268

News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

News News A variety of resources and news from BECP, states, and other news sources are available for anyone interested in learning more about building energy codes. This includes newsletters, articles, links and more. To receive BECP News and other updates from the Building Energy Codes Program via email, join our mailing list. Featured Codes News DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Mayors Urge Cities to Strengthen Energy Code AZ Legislature Preserves Local Control of Building Energy Efficiency Codes Washington State Home Builders Lead the Nation in Energy Code Compliance Mississippi Invests in Future Growth With Adoption of Best-in-Class Energy Efficiency Legislation Energy 2030 Report Calls for Stricter Energy Building Codes

269

Building Energy Software Tools Directory: Building Energy Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Analyzer Building Energy Analyzer Building Energy Analyzer logo. Provides quick economic analysis for commercial and industrial buildings. Building Energy Analyzer (BEA) estimates annual and monthly loads and costs associated with air-conditioning, heating, on-site power generation, thermal storage, and heat recovery systems for a given building and location. The user can compare the performance of standard and high efficiency electric chillers, variable speed electric chillers, absorption chillers, engine chillers, thermal storage, on-site generators, heat recovery, or desiccant systems. The user can also prepare side-by-side economic comparisons of different energy options and equipment life cycle cost analysis. The BEA is a system screening tool. It is a tool that is

270

Building Technologies Office: Commercial Building Energy Asset Score Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Tool Report to someone by E-mail Tool Report to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

271

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

272

Building Energy Software Tools Directory: Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

software that creates a smart model of a building using interval data and hourly weather data and compares daily energy consumption against this norm. The Energy Expert...

273

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State West Virginia Program Type Building Energy Code Provider West Virginia Division of Energy ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. Local jurisdictions must adopt

274

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Mississippi Program Type Building Energy Code Provider Mississippi Development Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement

275

Rating the energy performance of buildings  

E-Print Network (OSTI)

and present results, Energy and Buildings Vol. 33, pp. 229-for Existing Houses, Energy and Buildings, Vol. 29, pp. 107-Laboratory Building, Energy and Buildings, Vol. 34, pp. 203-

Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

2004-01-01T23:59:59.000Z

276

Utah | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

compliance with the energy code requirements. The Division of Facilities Construction Management is responsible for enforcement for all state-owned or -funded buildings....

277

Buildings News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Commercial Real Estate Executives Launch Alliance to Reduce Energy Consumption of Buildings WASHINGTON, D.C. - Top executives from 19 commercial real estate companies met with...

278

Montana | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

for Commercial Buildings in the State of Montana (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 03262010 Adoption Date 11302009...

279

Optimization for the Chilled Water System of HVAC Systems in an Intelligent Building  

Science Conference Proceedings (OSTI)

The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view and an optimum scheduling scheme which can save energy of the system facilities and satisfy the constraints of the real time cold ... Keywords: genetic algorithm, intelligent building, systematic energy saving, chilled water system, optimal scheduling

Ming-hai Li; Qing-chang Ren

2010-12-01T23:59:59.000Z

280

Building Technologies Office: Hospital Energy Alliance Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings Commercial Buildings Printable Version Share this resource Send a link to Building Technologies Office: Hospital Energy Alliance Videos to someone by E-mail Share Building Technologies Office: Hospital Energy Alliance Videos on Facebook Tweet about Building Technologies Office: Hospital Energy Alliance Videos on Twitter Bookmark Building Technologies Office: Hospital Energy Alliance Videos on Google Bookmark Building Technologies Office: Hospital Energy Alliance Videos on Delicious Rank Building Technologies Office: Hospital Energy Alliance Videos on Digg Find More places to share Building Technologies Office: Hospital Energy Alliance Videos on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Better Buildings Challenge Better Buildings Alliance

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Building Design As a researcher at the Pacific Northwest National Laboratory, Dr. Michael Brambley is working to improve the energy efficiency of our nation’s buildings. In this "10 Questions," learn how he is marrying engineering and computer technology to cut energy waste in commercial buildings. As a researcher at the Pacific Northwest National Laboratory, Dr. Michael Brambley is working to improve the energy efficiency of our nation's buildings. In this "10 Questions," learn how he is marrying engineering and computer technology to cut energy waste in commercial buildings. Commercial buildings have high energy needs and can put great strain on the nation's power grids during peak periods. Developing more efficient

282

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Georgia Program Type Building Energy Code Provider Georgia Environmental Finance Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory"

283

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

284

Energy guides | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

guides guides Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial service and product providers

285

State building energy codes status  

Science Conference Proceedings (OSTI)

This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

NONE

1996-09-01T23:59:59.000Z

286

Energy Efficiency and Green Building Standards for State Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

287

Climate change and buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate change and buildings Climate change and buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings Climate change and buildings

288

Building Energy Software Tools Directory: Autodesk Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

289

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

290

Technologies for Energy Efficient Buildings  

E-Print Network (OSTI)

-site home energy generation, energy storage with load energy usage; b. Coordinate operation of energy generation, energy storage and load usage to minimize utility energy cost while adhering to homeowner with a thermal and energy model of the home to plan the optimal usage of the thermostat, control the storage

291

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

292

Building Energy Use Benchmarking Guidance | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Use Benchmarking Guidance Use Benchmarking Guidance Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

293

Building Energy Use Benchmarking Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Use Benchmarking Guidance April 15, 2010 EISA SECTION 432 - Benchmarking of Federal Facilities (42 U.S.C. 8253 Subsection (f), Use of Energy and Water Efficiency...

294

2008 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network (OSTI)

energy values energy savings greater during periods of likely peak demand, such as hot summer weekday and service hot water needs of residential buildings. Outdoor lighting, including parking lots and garages

295

OPTIMIZATION FOR COGENERATION SYSTEMS IN BUILDINGS BASED ON LIFE CYCLE ASSESSMENT  

E-Print Network (OSTI)

SUMMARY: This paper presents a model that is developed to optimize the selection and operation of energy systems in commercial buildings based on their environmental performance. The model can be used for decision support regarding infrastructure in both design and operation of building energy systems. The approach is composed of energy simulation to generate building’s energy demand, life cycle assessment (LCA) to model different energy systems, and optimization model to optimize the selection and operation of these energy systems. The energy systems that are discussed in this paper are cogeneration systems, average electric grid, gas boilers, and absorption and electric chillers. The performance criteria presented in this paper are primary energy consumption (PEC) and tropospheric ozone precursor potential (TOPP).

J. Vanier; Ayat E. Osman; Phd C; Robert Ries; Assistant Professor

2005-01-01T23:59:59.000Z

296

Building Energy Codes | Open Energy Information  

Open Energy Info (EERE)

Codes Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Contents 1 Building Energy Code Incentives 2 References Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

297

Monitoring of energy flows and optimization of energy efficiency in a production facility  

Science Conference Proceedings (OSTI)

The present paper reports the findings of an assessment of the energy flows of a building equipped with machine tools and discusses options to optimize its energy efficiency. The energy flows in the buildings are recorded based on collected data and ... Keywords: building simulation, energy consumption, energy efficiency in production, energy flow analysis

I. Leobner; K. Ponweiser; C. Dorn; F. Bleicher

2011-07-01T23:59:59.000Z

298

Building Technologies Office: Video: Home Energy Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Video: Home Energy Score to someone by E-mail Share Building Technologies Office: Video: Home Energy Score on Facebook Tweet about Building Technologies Office: Video: Home Energy...

299

Building Energy Software Tools Directory: SUNREL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

300

Building Energy Software Tools Directory: RIUSKA  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building Energy Software Tools Directory: BESTEST  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

302

Building Energy Software Tools Directory: SMILE  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

303

Building Energy Software Tools Directory: TRACE 700  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

304

Building Energy Software Tools Directory: ADELINE  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

305

Building Energy Software Tools Directory: TRNSYS  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

306

Building Energy Software Tools Directory: Cepenergy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

307

Building Energy Software Tools Directory: Recurve  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

308

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

309

Model Predictive Control for Energy Efficient Buildings  

E-Print Network (OSTI)

Energy Savings”. In: Energy and Buildings 40.7 (2008), pp.Thermal Dynamics”. In: Energy and Buildings 47 (Apr. 2011),Storage Systems”. In: Energy and Buildings 35.2 (2003), pp.

Ma, Yudong

2012-01-01T23:59:59.000Z

310

Buildings | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Program Better Buildings Challenge Max Tech and Beyond Design Competition Rooftop Solar Challenge Rooftop Unit Challenge for Commercial Air Conditioners Wireless...

311

California commercial building energy benchmarking  

SciTech Connect

Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

Kinney, Satkartar; Piette, Mary Ann

2003-07-01T23:59:59.000Z

312

Building Technologies Office: Improving the Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share this resource Send a link to Building Technologies Office: Improving the Energy Efficiency of Commercial Buildings to someone by E-mail Share Building Technologies Office:...

313

Home and Building Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technologies Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

314

Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Building Design October 16, 2013 - 4:41pm Addthis Planning, Programming & Budgeting Building Design Project Construction Integrating renewable energy within Federal new construction or major renovations is critical at each phase of the design process. This overview covers considerations for renewable energy in the design phases of a construction project, including choosing the design team, the design team charrette, preliminary design, schematic design, design development, and construction documents. Information on this page introduces each of the design phases and provides a link to deeper-level information. Key Actions in Building Design Require specific renewable energy experience and skills for design team. Prioritize energy-related program

315

Department of Energy Quadrennial Technology Review Building ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building & Industrial Efficiency Workshop Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop Public release of the documents and...

316

Sustainable Buildings and Infrastructure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure Aviation Management Green Leases Executive Secretariat Energy Reduction at HQ Real Estate...

317

EIA Energy Kids - In Commercial Buildings  

U.S. Energy Information Administration (EIA)

Using & Saving Energy In Commercial Buildings. How do commercial buildings — like offices, hospitals, schools, places of worship, warehouses, hotels, ...

318

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

319

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

320

Energy utilization analysis of buildings  

DOE Green Energy (OSTI)

The accurate calculation of the energy requirements and heating and cooling equipment sizes for buildings is one of the most important, as well as one of the most difficult, problems facing the engineer. The fundamental principles utilized in the procedures developed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) are explained and brief descriptions of the computer programs using these procedures are given. Such computer programs generally are capable of: simulating the thermal response of a building to all sources of heat gains and losses, accounting for all non-thermal energy requirements in the building or on the sites, translating the building operating schedules into energy demand and consumption, identifying the peak capacity requirements of heating and cooling equipment, and performing an economic analysis that would select the most economical overall owning and operating cost equipment and energy source that minimize the building's life cycle cost.

Lokmanhekim, M.

1978-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Methodology for adapting rigorous simulation programs to supervisory control of building HVAC&R systems: simulation, calibration and optimization.  

E-Print Network (OSTI)

??In this thesis, general and systematic methodologies were developed for simulating, calibrating and optimal control of building energy system. Based on investigation of two popular… (more)

Sun, Jian

2005-01-01T23:59:59.000Z

322

Whole Building Energy Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Simulation Energy Simulation Whole Building Energy Simulation October 16, 2013 - 4:39pm Addthis Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations may be pursued. Whole building energy simulation software adequately assesses the interactions between complex building systems and equally complex schedules and utility rates structures for projects in specific locations throughout the world. Energy models incorporate actual building construction, internal load sources, and associated schedules using annual hourly weather data specific to the project location. These models can be used early in the design process when little information is known and updated, continually

323

2005 Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

5 Buildings Energy Data Book 5 Buildings Energy Data Book Prepared for the Offi ce of Energy Effi ciency and Renewable Energy 2005 Buildings Energy Data Book August 2005 Prepared for the Office of Planning, Budget Formulation and Analysis Energy Efficiency and Renewable Energy U.S. Department of Energy by D&R International, Ltd. under contract to Oak Ridge National Laboratory This version is dated: August 2005 D I S C L A I M E R This document was designed for the internal use of the United States Department of Energy. This document will be occasionally updated and, therefore, this copy may not reflect the most current version. This document was prepared as account of work sponsored by an agency of the United States Government.

324

Building Energy Software Tools Directory: ISOVER Energi  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory Printable Version Share this resource Home About the Directory Tools by Subject Tools Listed Alphabetically Tools by Platform PC...

325

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Design & Remodeling Program Information Oklahoma Program Type Building Energy Code ''Much of the information presented in this summary is drawn from the...

326

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

required the Department of Commerce (DOC) to create codes for energy conservation in public buildings and places of employment and to review that code. In conducting the review,...

327

Building Energy Efficiency Success Stories - Energy Innovation ...  

Building Energy Efficiency Success Stories These success stories highlight some of the effective licensing and partnership activity between laboratories and industry ...

328

Building Technologies Office: Energy Systems Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Energy Systems Innovations to someone by E-mail Share Building Technologies Office: Energy Systems Innovations on Facebook Tweet about Building Technologies Office: Energy Systems Innovations on Twitter Bookmark Building Technologies Office: Energy Systems Innovations on Google Bookmark Building Technologies Office: Energy Systems Innovations on Delicious Rank Building Technologies Office: Energy Systems Innovations on Digg Find More places to share Building Technologies Office: Energy Systems Innovations on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

329

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Iowa Program Type Building Energy Code Provider Iowa Office of Energy Independence ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://coolice.legis.state.ia.us/Cool-ICE/default.asp?Category=billinfo&... House File 2361] was signed in April 2006. This law rescinded Iowa's minimum energy efficiency standard for residential construction, the "home heating index," and instead requires the state building commissioner to adopt energy conservation requirements based on a nationally recognized

330

Building Energy Software Tools Directory: EnerCAD  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerCAD EnerCAD EnerCAD logo. An interactive design environment for building energy evaluation and optimization. The software is designed and maintained by a multidisciplinary team of architects, physicists, and engineers as part of the whole-building design process. Building physics are understandable to architects, building designers, and nonspecialists. Screen Shots Keywords Building Energy Efficiency; Early Design Optimization; Architecture Oriented; Life Cycle Analysis Validation/Testing Based on the European standard “Thermal performance of buildings” EN ISO 13790, Swiss SIA 380/1, and the “Building Energy Efficiency Rating Certificate” SIA 2031. Certification N° 0982 (OFEN/BFE : http://www.bfe.admin.ch/energie/00580/00605/index.html?lang=fr&dossier_id=00689).

331

Buildings | Open Energy Information  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in...

332

Building Energy Software Tools Directory: Green Energy Compass  

NLE Websites -- All DOE Office Websites (Extended Search)

Whole Building Analysis Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, &...

333

State Buildings Energy Reduction Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Buildings Energy Reduction Plan State Buildings Energy Reduction Plan Eligibility Institutional State Government Savings For Heating & Cooling Home Weatherization...

334

Vermont | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Vermont Vermont Last updated on 2013-06-03 Current News The Vermont Commercial Building Energy Standards (CBES) became effective January 3, 2012. The CBES incorporates elements of the 2012 IECC. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information 2011 Vermont Commercial Building Energy Standards (CBES) are based on the 2009 IECC. Commercial Building Energy Standards Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Vermont (BECP Report, Sept. 2009) Approximate Energy Efficiency More energy efficient than 2009 IECC Effective Date 01/03/2012 Adoption Date 10/03/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No

335

Green Building Studio | Open Energy Information  

Open Energy Info (EERE)

Green Building Studio Green Building Studio Jump to: navigation, search Tool Summary Name: Green Building Studio Agency/Company /Organization: Autodesk Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Software/modeling tools Website: usa.autodesk.com/adsk/servlet/pc/index?id=11179508&siteID=123112 References: http://usa.autodesk.com/adsk/servlet/pc/index?id=11179508&siteID=123112 Energy analysis software to help architects and designers perform whole building analysis to optimize energy efficiency. Carbon emission details are calculated, as well as natural ventilation, daylight and water useage costs. Tool Summary Name: Green Building Studio Agency/Company /Organization: Autodesk Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property., Develop Goals, Create Early Successes, "Perpare a Plan" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property.

336

Building the case for automated building energy management  

Science Conference Proceedings (OSTI)

Energy consumption in buildings comprises a significant fraction of total worldwide energy consumption and is strongly influenced by occupant behavior. To explore the quantitative effect of particular occupant actions on building energy consumption, ... Keywords: building automation, energy saving behaviors, in-home display

Alan Marchiori; Qi Han; William C. Navidi; Lieko Earle

2012-11-01T23:59:59.000Z

337

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH  

E-Print Network (OSTI)

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

338

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

339

Building Energy Software Tools Directory: Building Performance Compass  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Performance Compass Building Performance Compass Building Performance Compass logo Building Performance Compass analyzes commercial and multi-family building energy use patterns in a simple, easy-to-use Web-based interface. Using building details and energy data from the buildingÂ’s utility bills, it is unique in its ability to benchmark and compare all buildings, whether residential or commercial. Recent enhancements to Building Performance Compass include new multi-family support, the ability to track non-energy quantities such as water and waste, and features such as its fast-feedback report, which enables reporting energy savings as early as one month after work is completed. Building Performance Compass also provides extensive tracking of building data and usage, as well as the ability to upload and track

340

Energy efficiency buildings program, FY 1980  

SciTech Connect

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Energy Codes ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ENFORCEMENT TOOLKIT ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES i Building Energy Codes ENFORCEMENT TOOLKIT Prepared by: Building Energy Codes Program The U.S. Department of Energy's Building Energy Codes Program is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90467 LEARNING SERIES OVERVIEW Building Energy Codes ACE

342

Building Energy Codes COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPLIANCE TOOLKIT COMPLIANCE TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES III Building Energy Codes COMPLIANCE TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90466 LEARNING SERIES OVERVIEW Building Energy Codes

343

Building Energy Codes ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ADOPTION TOOLKIT ADOPTION TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES I Building Energy Codes ADOPTION TOOLKIT Prepared by: Building Energy Codes Program (BECP) The U.S. Department of Energy's (DOE) Building Energy Codes Program (BECP) is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-89963 LEARNING SERIES OVERVIEW Building Energy Codes

344

NREL-Renewable Energy Optimization Presentation | Open Energy...  

Open Energy Info (EERE)

Renewable Energy Optimization Presentation Jump to: navigation, search Logo: Renewable Energy Optimization Presentation Name Renewable Energy Optimization Presentation Agency...

345

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network (OSTI)

creating a new-generation building energy simulationprogram. Energy and Buildings, 33: 319-331. Haves, P. ,Liu M. 2001. Use of Whole Building Simulation in On- Line

Pang, Xiufeng

2013-01-01T23:59:59.000Z

346

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

347

Hawaii | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

at least as energy efficient as the statewide code. State Specific Research Impacts of ASHRAE.1-2007 for Commercial Buildings in the State of Hawaii (BECP Report, Sept. 2009)...

348

Energy Efficiency: Transportation and Buildings  

Science Conference Proceedings (OSTI)

We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings

Michael S. Lubell; Burton Richter

2011-01-01T23:59:59.000Z

349

Building a Universal Nuclear Energy Density Functional  

NLE Websites -- All DOE Office Websites (Extended Search)

Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

350

Efficient thermal energy distribution in commercial buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient thermal energy distribution in commercial buildings -- Final Report Title Efficient thermal energy distribution in commercial buildings -- Final Report Publication Type...

351

Maximum Building Energy Efficiency Research Laboratory secures...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Network - Maximum Building Energy Efficiency Research Laboratory secures LEED Gold July 01, 2013 The recently completed 14.3m Maximum Building Energy Efficiency...

352

Federal Energy Management Program: Sustainable Buildings and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Buildings and Campuses to someone by E-mail Share Federal Energy Management Program: Sustainable Buildings and Campuses on Facebook Tweet about Federal Energy...

353

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Basics to someone by E-mail Share Federal Energy Management Program: Sustainable Building Basics on Facebook Tweet about Federal Energy Management Program:...

354

Federal Energy Management Program: Sustainable Building Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Contacts to someone by E-mail Share Federal Energy Management Program: Sustainable Building Contacts on Facebook Tweet about Federal Energy Management Program:...

355

Building Energy Retrofit Research: Multifamily Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Retrofit Research: Multifamily Sector Title Building Energy Retrofit Research: Multifamily Sector Publication Type Report Year of Publication 1985 Authors Diamond,...

356

Residential Code Methodology | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Site Map...

357

New Mexico | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Adoption ...

358

Building Energy Information Systems: User Case Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Building Energy Information Systems: User Case Studies Title Building Energy Information...

359

Mainstreaming Building Energy Efficiency Codes in Developing...  

Open Energy Info (EERE)

Building Energy Efficiency Codes in Developing Countries: Global Experiences and Lessons from Early Adopters Jump to: navigation, search Name Mainstreaming Building Energy...

360

Worldwide Energy Efficiency Action through Capacity Building...  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Department Launches Better Buildings Workforce Guidelines...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Better Buildings Workforce Guidelines Project Energy Department Launches Better Buildings Workforce Guidelines Project September 26, 2013 - 2:38pm Addthis The Energy...

362

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Table 7c. U.S. Commercial Buildings Energy Intensity Using Primary Energy 1 by Census Region and Principal Building Activity, 1992-1999 (Million Btu per Worker)

363

Building Technologies Office: Energy Modeling Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software on Twitter Bookmark Building Technologies Office: Energy Modeling Software on Google Bookmark Building Technologies Office: Energy Modeling Software on Delicious Rank...

364

Energy Information Administration (EIA)- Commercial Buildings...  

U.S. Energy Information Administration (EIA) Indexed Site

information for that building such as building size, year constructed, type of energy used, energy-using equipment, and conservation features. The smallest level of...

365

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

366

Building Technologies Office | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Building Technologies Office Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. About the Building Technologies Office The Energy Department's Building Technologies Office leads a network of research and industry partners to continually develop innovative, cost-effective energy-saving solutions for homes and buildings. Learn more about the Building Technologies Office. How We Help Homes & Buildings Save Energy Value-Driven Applications Advanced energy efficiency technologies like lighting, HVAC, windows, appliances, and commercial equipment. Practical Standards

367

90.1 Prototype Building Models Outpatient Healthcare | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Outpatient Healthcare Outpatient Healthcare The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

368

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Michigan Program Type Building Energy Code Provider Michigan Department of Labor and Economic Growth ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code. The state energy code is evaluated for revisions or modifications every three years. The new code requirements are adopted at the beginning of each state building code cycle (which corresponds with the three-year cycle of

369

Commercial Prototype Building Models | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

370

Building Energy Software Tools Directory: EA-QUIP  

NLE Websites -- All DOE Office Websites (Extended Search)

online format at www.ea-quip.com. EA-QUIP determines economically optimal mixes of energy-saving measures for a given building and within a chosen budget, for which it uses...

371

Energy use in office buildings  

SciTech Connect

This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

None

1980-10-01T23:59:59.000Z

372

Extremely Low-Energy Design for Army Buildings: Tactical Equipment Maintenance Facility; Preprint  

Science Conference Proceedings (OSTI)

This paper describes the integrated energy optimization process for buildings and building clusters and demonstrates this process for new construction projects and building retrofits. An explanation is given of how mission critical building loads affect possible site and source energy use reduction in Army buildings.

Langner, R.; Deru, M.; Zhivov, A.; Liesen, R.; Herron, D.

2012-03-01T23:59:59.000Z

373

Building Envelopes | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Envelope SHARE Building Envelopes MFEL.jpg The building envelope-the materials that separate the indoor and outdoor environments-primarily determines the amount of energy required to heat, cool, and ventilate a building. The envelope also can significantly influence energy needs in areas accessible to sunlight. To cost-effectively improve the energy efficiency, moisture-durability, and environmental sustainability of building envelopes, ORNL is exploring new and emerging materials, components, and systems as well as the fundamentals of heat, air, and moisture transfer. Research is also focused on multifunctional solutions where the envelope serves as a filter that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling, ventilation, and lighting.

374

Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint  

SciTech Connect

An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

Anderson, R.; Christensen, C.; Horowitz, S.

2006-08-01T23:59:59.000Z

375

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners, designers, and owners to focus on energy-use goals from the first planning

376

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Indiana Program Type Building Energy Code Provider TSREI ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process, certain seismic provisions were weakened, primarily affecting nine southwestern counties. Local jurisdictions may amend to make the code more stringent with state approval only.

377

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Global Superior Energy Performance Partnership to someone by E-mail Share Building Technologies Office: Global Superior Energy Performance Partnership on Facebook Tweet about Building Technologies Office: Global Superior Energy Performance Partnership on Twitter Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Google Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Delicious Rank Building Technologies Office: Global Superior Energy Performance Partnership on Digg Find More places to share Building Technologies Office: Global Superior Energy Performance Partnership on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

378

Topic: Building Energy Conservation  

Science Conference Proceedings (OSTI)

... Group. Indoor Air Quality and Ventilation Group. Heat Transfer and Alternative Energy Systems Group. Instrument. Roof Photovoltaic Test Facility. ...

2012-01-19T23:59:59.000Z

379

Design commercial buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Why you should design to earn the ENERGY STAR Follow EPA's step-by-step process ENERGY STAR Challenge for Architects Design commercial buildings Photo of several people congregated around a building design plan. The climate is changing. Commercial buildings in the United States consume 17 percent of the

380

Optimal building-integrated photovoltaic applications  

DOE Green Energy (OSTI)

Photovoltaic (solar electric) modules are clean, safe and efficient devices that have long been considered a logical material for use in buildings. Recent technological advances have made PVs suitable for direct integration into building construction. PV module size, cost, appearance and reliability have advanced to the point where they can function within the architectural parameters of conventional building materials. A building essentially provides free land and structural support for a PV module, and the module in turn displaces standard building components. This report identifies the highest-value applications for PVs in buildings. These systems should be the first markets for BIPV products in the commercial buildings, and should remain an important high-end market for the foreseeable future.

Kiss, G.; Kinkead, J. [Kiss and Co. Architects, New York, NY (United States)

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Enumerating a Diverse Set of Building Designs Using Discrete Optimization: Preprint  

Science Conference Proceedings (OSTI)

Numerical optimization is a powerful method for identifying energy-efficient building designs. Automating the search process facilitates the evaluation of many more options than is possible with one-off parametric simulation runs. However, input data uncertainties and qualitative aspects of building design work against standard optimization formulations that return a single, so-called optimal design. This paper presents a method for harnessing a discrete optimization algorithm to obtain significantly different, economically viable building designs that satisfy an energy efficiency goal. The method is demonstrated using NREL's first-generation building analysis platform, Opt- E-Plus, and two example problems. We discuss the information content of the results, and the computational effort required by the algorithm.

Hale, E.; Long, N.

2010-08-01T23:59:59.000Z

382

On solar building energy devices  

Science Conference Proceedings (OSTI)

A method for simulation of solar energy devices connected to a building has been proposed. The solutions of one dimensional heat conduction and heat transport equations are obtained both with the new method as well as traditional method used for design ... Keywords: experiments, heat exchange, numerical model, simulation method, solar energy

Himanshu Dehra

2007-05-01T23:59:59.000Z

383

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Glossary The following is a compilation of building energy-code related terms and acronyms used on the Building Energy Codes website and throughout the building construction industry. Select a letter to navigate through the glossary: Filter A (25) B (22) C (41) D (27) E (27) F (15) G (12) H (21) I (20) K (5) L (11) M (16) N (15) O (11) P (21) R (22) S (37) T (14) U (12) V (11) W (10) Z (1) AAMA Architectural Aluminum Manufacturers Association. Above-Grade Wall A wall that is not a below-grade wall. Above-Grade Walls Those walls (Section 802.2.1) on the exterior of the building and

384

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Program Type Building Energy Code Provider Delaware Department of Natural Resources and Environmental Control ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' In 2004, the governor signed [http://delcode.delaware.gov/sessionlaws/ga142/chp418.shtml SB 306] adopting the 2000 International Energy Conservation Code (IECC) for residential construction and American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 90.1-1999 for commercial

385

Building Energy Software Tools Directory: BuildingAdvice  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingAdvice BuildingAdvice BuildingAdvice™ is a user-friendly, Web-based platform designed to assess building energy performance and identify and quantify energy savings opportunities. Target buildings are in the 5k-200k sq. ft. range, with scalability up to 1mm sq. ft. The platform combines 1) portable wireless sensor packages for capture of real-time building data, 2) automated entry of weather data, 3) manual entry of basic building information, and 4) proprietary EnGen™ energy modeling software. Output is a suite of comprehensive reports that benchmark against CBECS; provide key performance parameters including Energy Star rating, energy usage index, energy cost per square foot, and carbon emissions; provide ASHRAE Level II audits that quantify energy usage in four areas of

386

Building Energy Software Tools Directory: Autodesk Green Building Studio  

NLE Websites -- All DOE Office Websites (Extended Search)

Autodesk Green Building Studio Autodesk Green Building Studio Green Building Studio logo. Seamlessly links architectural building information models (BIM) and certain 3-D CAD building designs with energy, water, and carbon analysis. Autodesk Green Building Studio enables architects to quickly calculate the operational and energy implications of early design decisions. The Autodesk Green Building Studio web service automatically generates geometrically accurate, detailed input files for major energy simulation programs. Green Building Studio uses the DOE-2.2 simulation engine to calculate energy performance and also creates geometrically accurate input files for EnergyPlus. Key to the integrated interoperability exhibited is the gbXML schema, an open XML schema of the International Alliance of

387

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, manufacturing, and transportation. Coal.

388

Energy-Saving Homes, Buildings, and Manufacturing | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Saving Homes, Buildings, and Manufacturing Energy-Saving Homes, Buildings, and Manufacturing Buildings Homes Advanced Manufacturing Government Energy Management Buildings...

389

Federal Energy Management Program: Use Renewable Energy in Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation to someone by E-mail Share Federal Energy Management Program: Use Renewable Energy in Buildings for Greenhouse Gas...

390

Building Energy Software Tools Directory: Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

391

Building Energy Software Tools Directory: EnergyGauge Summit...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

392

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Data from the 1999 Commercial Buildings Energy Consumption Survey ... and energy-using equipment types (heating, cooling, refrigeration, water ...

393

Energy Efficiency Standards for Manufactured Housing | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards for Manufactured Housing Section 413 of the Energy...

394

Building Energy Performance Certificate. Asset Rating.  

U.S. Energy Information Administration (EIA)

Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA029636 Keywords: Energy Performance Certificate ...

395

Building Energy Software Tools Directory: LISA  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

396

Building Energy Software Tools Directory: TAPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

397

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

... EPA Energy Star, EPA Office of Water, National Renewable Energy Laboratory (NREL), ... Performance Buildings Systems, Grundfos, National Trust for Historic ...

398

Building Energy Software Tools Directory: Evergreen LED  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems...

399

Building Energy Software Tools Directory: Solar Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory...

400

Building Energy Software Tools Directory: Engineering Toolbox  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory...

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Commercial Building Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Activities Building Activities Commercial Building Activities The Building Technologies Office commercial buildings effort researches and deploys advanced technologies and systems to reduce energy consumption in commercial buildings. Industry partners and national laboratories help identify market needs and solutions to accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's key projects. 179d Tax Calculator The 179d Calculator can help determine whether improvements qualify for a Federal tax deduction, and allows owners and managers to estimate energy cost savings of efficiency improvements. Advanced Energy Design Guides These recommendations can help designers achieve between 30% and 50% energy savings in a new commercial building.

402

Building Upgrade Manual | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Upgrade Manual Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

403

Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an  

E-Print Network (OSTI)

Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy consumption structure and building conditions, living customs, family income, and thermal environment, as well as local climatic conditions, etc., is analyzed. Measures to optimize the energy utilization consumption are proposed, and further improvements to the energy efficiency of current residential buildings is also discussed.

Ma, B.; Yan, Z.; Gui, Z.; He, J.

2006-01-01T23:59:59.000Z

404

Nebraska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Nebraska Last updated on 2013-11-04 Current News Nebraska Legislature adopted the 2009 IECC/ASHRAE 90.1-2007. The code became effective August 27, 2011. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Cities and counties may adopt codes that differ from the Nebraska Energy Code; however, state law requires the adopted code to be equivalent to the Nebraska Energy Code. For existing buildings, only those renovations that will cost more than 50 percent of the replacement cost of the building must comply with the code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Nebraska (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

405

Wyoming | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

406

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Explore Survey Data from the Energy Information Administration Follow the links below to two easy-to-use query tools, developed exclusively for this website. With these tools you...

407

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

160 Fan Coil Units 123 DOWNLOAD TABLE AS PDF XLS Related Tables: PDFXLS 5.5.6 1999 Energy Efficient Motors, Replacements and Sales, by Horsepower Class Sources: BTSA.D....

408

Commercial Reference Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings » Research Projects » Commercial Reference Buildings » Research Projects » Commercial Reference Buildings Commercial Reference Buildings The U.S. Department of Energy (DOE), in conjunction with three of its national laboratories, developed commercial reference buildings, formerly known as commercial building benchmark models. These reference buildings play a critical role in the program's energy modeling software research by providing complete descriptions for whole building energy analysis using EnergyPlus simulation software. There are 16 building types that represent approximately 70% of the commercial buildings in the U.S., according to the report published by the National Renewable Energy Laboratory titled U.S. Department of Energy Commercial Reference Building Models of the National Building Stock. These

409

Building Energy Code (Idaho) | Open Energy Information  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Building Energy Code (Idaho) This is the approved revision of this page, as well as being the most recent. Jump...

410

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

publicactsfulltext.asp?name093-0936&GA... Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois...

411

Building Energy Software Tools Directory: Sefaira  

NLE Websites -- All DOE Office Websites (Extended Search)

Sefaira Sefaira tool_sefaira.jpg Sefaira allows architects to focus on performance from the beginning of their design process with software that provides them with real-time feedback for their buildingÂ’s design. Architects can directly use that feedback to influence their design, instead of validating a design at the end of their process. Architects can study form & facade design, compare design options and strategies, find the strategies with the biggest impact and optimize key design parameters, such as shading, glazing ratios, and orientation. Screen Shots Keywords Early-stage performance analysis of building envelope, HVAC, water & renewables , Real-time building performance analysis, Parametric analysis, Thermal comfort analysis Validation/Testing Sefaira leverages two energy analysis engines for different types of

412

Energy Conservation in State Buildings (Maryland) | Open Energy...  

Open Energy Info (EERE)

Type Energy Standards for Public Buildings Applicable Sector Construction, Schools, State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

413

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

414

Total Floorspace of Commercial Buildings - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities >Table 4

415

Summary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary Summary The impact of energy codes on our future is apparent. From environmental and resource conservation to national security, energy concerns, and our economic challenges, energy codes will continue to be a key component of a sound public policy. For further information on building energy code adoption, compliance, and enforcement, review the ACE toolkits Adoption Compliance Enforcement Popular Links ACE Learning Series ACE Overview Top 10 Reasons for Energy Codes Development of Energy Codes Adoption of Energy Codes Compliance with Energy Codes Enforcement of Energy Codes Going Beyond Code Summary Acronyms and Abbreviations Toolkit Definitions Adoption Toolkit Compliance Toolkit Enforcement Toolkit Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Thursday, January 31, 2013 - 15:19

416

Alabama | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption » Status of State Energy Code Adoption Adoption » Status of State Energy Code Adoption Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Alabama Last updated on 2013-05-31 Current News The Alabama Energy and Residential Codes Board adopted the 2009 International Energy Conservation Code (IECC) for Commercial Buildings and the 2009 International Residential Code (IRC) for Residential Construction. The new codes will become effective on October 1, 2012. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in Alabama (BECP Report, Sept. 2009)

417

An optimal stock building strategy in a manufacturing company  

E-Print Network (OSTI)

This thesis aims to tackle a demand seasonality problem by building either work-in-process inventory or finished goods inventory before the peak season. A linear programming algorithm is developed to determine the optimal ...

Li, Meng, M. Eng. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

418

Building Energy Conservation Initiative (New Hampshire) | Open...  

Open Energy Info (EERE)

Technologies Lighting, Chillers, Furnaces, Boilers, Heat pumps, Central Air conditioners, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing, Building Insulation Active...

419

Better Buildings Neighborhood Program: Garfield Clean Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Partners Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Garfield Clean Energy to someone by E-mail Share Better...

420

Building Technologies Office: Residential Energy Efficiency Stakeholde...  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events DOE Challenge Home Zero Net-Energy-Ready Home Training September 23, 2013 EEBA...

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Technologies Office: Residential Energy Efficiency Stakeholde...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Building Technologies Office: Residential Energy Efficiency Stakeholder's Meeting - Spring 2011 on Facebook Tweet about Building Technologies Office:...

422

Building Technologies Office: Residential Energy Efficiency Technical...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Building Technologies Office: Residential Energy Efficiency Technical Update Meeting - Summer 2011 on Facebook Tweet about Building Technologies Office:...

423

Building Technologies Office: Home Energy Score: Information...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organizations to someone by E-mail Share Building Technologies Office: Home Energy Score: Information for Interested Organizations on Facebook Tweet about Building Technologies...

424

Energy Efficiency Standards for State Buildings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for State Buildings Energy Efficiency Standards for State Buildings Eligibility State Government Savings For Heating & Cooling Home Weatherization Construction Commercial...

425

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's...

426

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

427

Building Technologies Office: EnergyPlus Energy Simulation Software  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Account Sign In EnergyPlus Energy Simulation Software Search Search Help EnergyPlus Energy Simulation Software EERE Building Technologies Office EnergyPlus Energy Simulation...

428

Real-Time Optimization Strategies for Building Systems  

E-Print Network (OSTI)

Jul 2, 2011 ... Abstract: We propose real-time optimization strategies for energy ... reductions of energy intensity compared with traditional strategies.

429

Buildings*","Buildings Using Any Energy  

U.S. Energy Information Administration (EIA) Indexed Site

apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Other a " "All Buildings* ...",4645,4414,4404,2391,451,67,33,5...

430

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

431

Building Energy Software Tools Directory: BuildingSim  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingSim BuildingSim BuildingSim logo BuildingSim allows users to model a building and analyze the heating and cooling energy costs in any climate. Users can create any building—from a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90 climates around the world to numerically solve the full thermodynamic differential equations every minute of the year, giving the user the actual energy use down to the cent. The simulation algorithm fully accounts for thermostat and HVAC controls, allowing the user to analyze the effects of different thermostat algorithms (programmable thermostats, setback, split-zone, etc.) on the energy costs for a specific building and climate. Screen Shots

432

Tennessee | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Tennessee Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2006 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Tennessee (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2006 IECC Effective Date 07/01/2011 Adoption Date 06/02/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Tennessee DOE Determination Letter, May 31, 2013 Tennessee State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Tennessee (BECP Report, Sept. 2009)

433

Building Technologies Office: Home Energy Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Score to Home Energy Score to someone by E-mail Share Building Technologies Office: Home Energy Score on Facebook Tweet about Building Technologies Office: Home Energy Score on Twitter Bookmark Building Technologies Office: Home Energy Score on Google Bookmark Building Technologies Office: Home Energy Score on Delicious Rank Building Technologies Office: Home Energy Score on Digg Find More places to share Building Technologies Office: Home Energy Score on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background FAQs Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

434

Building Energy Software Tools Directory: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

BLAST, EnergyPlus, Genopt, SPARK, Energy-10, and Building Design Advisor BLDG-SIM - A free e-mail list for all building energy simulation program users to ask questions to...

435

TECHNICAL DOCUMENTATION Commercial Buildings Energy Consumption Survey  

Reports and Publications (EIA)

This is the technical documentation for the public use data set based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), the national sample survey of commercial buildings and their energy suppliers conducted by the Energy Information Administration.

Information Center

1996-07-01T23:59:59.000Z

436

Contacts | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Provide feedback, ask questions, or formally request assistance: Website Contact Report broken links and suggest content and/or updates to information on this website. Please use the Online Help Desk for questions or issues with the compliance software tools. Online Help Desk Submit questions regarding energy codes, compliance, REScheck(tm), COMcheck(tm), or other BECP tools to a building energy codes expert. Technical Assistance Request Submit a formal, state or local jurisdiction-level request for technical assistance. Program Contacts U.S. Department of Energy (DOE) contacts for the Building Energy Codes Program (BECP). Federal (DOE) Contact Program Area Jeremy Williams, Project Manager Adoption Compliance Compliance Tools- REScheck& COMcheck Technical Assistance

437

Energy Optimization Standard | Open Energy Information  

Open Energy Info (EERE)

Last modified on October 10, 2012. Rules Regulations Policies Program Place Michigan Name Energy Optimization Savings Standard Incentive Type Energy Efficiency Resource Standard...

438

Intelligent Controls for Net-Zero Energy Buildings  

SciTech Connect

The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

Li, Haorong; Cho, Yong; Peng, Dongming

2011-10-30T23:59:59.000Z

439

Building Energy Monitoring System: Making Energy Manageable  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Monitoring System: Making Energy Manageable Building Energy Monitoring System: Making Energy Manageable Speaker(s): Bob Hunter Date: July 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Peng Xu For any line-item expense to be managed, it must first be manageable. In most organizations, this means bringing that expense into the budget/forecast/variance cycle at the department and individual level. While energy costs are the second fastest growing for most organizations, they have simply received a pass on individual accountability. TrendPoint provides a patented system for monitoring energy at the department and user-level. By monitoring each circuit, we assign a circuit to a user, each user to a group and each group to a site. Energy budgets can then be created and assigned to departments, allowing energy costs become a part of

440

Building Component Library | Open Energy Information  

Open Energy Info (EERE)

Building Component Library Building Component Library Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Component Library Agency/Company /Organization: NREL Sector: Energy Focus Area: Buildings Phase: Create a Vision, Evaluate Options, Develop Goals, Prepare a Plan Topics: Resource assessment, Technology characterizations Resource Type: Dataset Website: bcl.nrel.gov Cost: Free OpenEI Keyword(s): buildings, nrel, data, component Language: English Building Component Library Screenshot References: Buildings Component Library[1] The Building Component Library is a repository of building data used to create building energy models. The Building Component Library is a repository of building data used to create building energy models. The data are broken down into separate

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Security and Privacy Notices Security and Privacy Notices Security Notice This Web site is part of a Federal computer system used to accomplish Federal functions. The Department of Energy monitors this Web site for security purposes to ensure it remains available to all users and to protect information in the system. By accessing this Web site, you are expressly consenting to these monitoring activities. Unauthorized attempts to defeat or circumvent security features, to use the system for other than intended purposes, to deny service to authorized users, to access, obtain, alter, damage, or destroy information, or otherwise interfere with the system or its operation are prohibited. Evidence of such acts may be disclosed to law enforcement authorities and result in criminal prosecution under the Computer Fraud and Abuse Act of 1986 (Pub. L. 990474) and the National Information Infrastructure Protection Act of 1996 (Pub. L. 104-294), (18 U.S.C. 1030), or other applicable criminal laws.

442

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

E-Print Network (OSTI)

Energy and Buildings, 33: 319-331. Haves, P. , Salsbury,using simulation. Energy and Buildings, 32:5-17. US DOE.a new-generation building energy simulation program.

Pang, Xiufeng

2013-01-01T23:59:59.000Z

443

Towards The Removal Of Uncertainty In Sustainable Building Design Through Full Scale Optimization.  

E-Print Network (OSTI)

??The lack of whole-building design optimization resources available to building designers has led to uncertainty in design decisions involved with building highly sustainable or 'Green'… (more)

Fix, Stuart C.

2010-01-01T23:59:59.000Z

444

Building Technologies Program | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Program Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across disciplines to support federally-and privately-funded research. ORNL's buildings research is directed and funded primarily by the DOE Office of Energy Efficiency and Renewable Energy, specifically the Building Technologies Program. The Federal Energy Management Program, Geothermal Technologies Program, Advanced Manufacturing Office,Office of Weatherization and Intergovernmental Program, Policy and International Affairs, Concentrating Solar Power Program, Sustainability Performance Office, and other partners also support ORNL's research to develop new building technologies. Building Technologies Office

445

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... energy management features, energy consumption, and water consumption for hospital buildings greater than 200,000 square feet.

446

Building Technologies Office: Home Energy Score: Information...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information for Home Energy Assessors to someone by E-mail Share Building Technologies Office: Home Energy Score: Information for Home Energy Assessors on Facebook Tweet about...

447

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

448

Building Energy Codes Resource Guide: Commerical Buildings for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide: Commerical Buildings for Architects This guide provides key information on energy codes tailored for architects and provides guidance on how they can support the adoption of...

449

Simulation-assisted building energy performance improvement using sensible control decisions  

Science Conference Proceedings (OSTI)

The building sector contributes significantly to global energy consumption and emission of greenhouse gases. Thermal insulation along with installation of energy-efficient building systems can reduce energy needs while preserving or improving occupant ... Keywords: adaptive optimization, energy efficiency in buildings, large-scale systems, non-linear systems

M. F. Pichler; A. Dröscher; H. Schranzhofer; G. D. Kontes; G. I. Giannakis; E. B. Kosmatopoulos; D. V. Rovas

2011-11-01T23:59:59.000Z

450

Building energy modeling programs comparison Research on HVAC systems  

NLE Websites -- All DOE Office Websites (Extended Search)

energy modeling programs comparison Research on HVAC systems energy modeling programs comparison Research on HVAC systems simulation part Title Building energy modeling programs comparison Research on HVAC systems simulation part Publication Type Journal Year of Publication 2013 Authors Zhou, Xin, Da Yan, Tianzhen Hong, and Dandan Zhu Keywords Building energy modeling programs, comparison tests, HVAC system simulation, theory analysis Abstract Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in simulated results when different BEMPs are used to model the same building has caused wide concern. Urgent research is needed to identify the main elements that contribute towards the simulation results. This technical report summarizes methodologies, processes, and the main assumptions of three building energy modeling programs (BEMPs) for HVAC calculations: EnergyPlus, DeST, and DOE-2.1E, and test cases are designed to analyze the calculation process in detail. This will help users to get a better understanding of BEMPs and the research methodology of building simulation. This will also help build a foundation for building energy code development and energy labeling programs.

451

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Disclaimer Disclaimer This document was designed for the internal use of the United States Department of Energy. This document will be occasionally updated and, therefore, this copy may not reflect the most current version. This document was prepared as account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor or subcontractor thereof

452

Optimal Coupling of Energy Infrastructures  

E-Print Network (OSTI)

This paper presents a framework for integrated modeling and optimization of energy systems with multiple energy carriers. Based on the concept of energy hubs, a generic steadystate model for describing conversion and storage of multiple energy carriers, such as electricity, natural gas, hydrogen, or district heating, is developed and used for system optimization. Besides operational optimization of energy flows, the optimal structure of the system is investigated. Mathematically, the problems are stated as (mixed-integer) nonlinear programming problems. An example demonstrates the use and potential applications of the proposed method and highlights its features.

M. Geidl; G. Andersson

2007-01-01T23:59:59.000Z

453

ENERGY STAR Building Upgrade Manual Chapter 8: Air Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings National Building Competition Find Expert Help How can we help you? Build an energy program Improve buildings & plant performance Earn the ENERGY STAR & other...

454

Building Technologies Office: Home Energy Score Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by E-mail Partners to someone by E-mail Share Building Technologies Office: Home Energy Score Partners on Facebook Tweet about Building Technologies Office: Home Energy Score Partners on Twitter Bookmark Building Technologies Office: Home Energy Score Partners on Google Bookmark Building Technologies Office: Home Energy Score Partners on Delicious Rank Building Technologies Office: Home Energy Score Partners on Digg Find More places to share Building Technologies Office: Home Energy Score Partners on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background FAQs Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

455

Energy Mgmt. Systems/Building Controls | Open Energy Information  

Open Energy Info (EERE)

Energy Mgmt. SystemsBuilding Controls Incentives Retrieved from "http:en.openei.orgwindex.php?titleEnergyMgmt.SystemsBuildingControls&oldid267162" Category: Articles...

456

Arkansas | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Arkansas Arkansas Last updated on 2013-12-10 Current News ASHRAE 90.1-2007 became the effective commercial code in Arkansas on January 1, 2013. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information Arkansas Supplements and Amendments Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Arkansas Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 01/01/2013 Adoption Date 01/13/2012 Code Enforcement Mandatory DOE Determination ASHRAE Standard 90.1-2007: Yes ASHRAE Standard 90.1-2010: No Energy cost savings for Arkansas resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $100 million annually by 2030.

457

Minnesota | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota Minnesota Last updated on 2013-06-03 Current News The 2009 editions of the International Residential Code (IRC), International Building Code (IBC), and International Fire Code (IFC) will be published soon and the Construction Codes and Licensing Division and the State Fire Marshal Division have been discussing this adoption. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2004 with Amendments Amendments / Additional State Code Information Commercial Energy Code Approved Compliance Tools Compliance forms can be downloaded from ASHRAE State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Minnesota (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than ASHRAE 90.1-2004 Effective Date 06/01/2009

458

Delaware | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Delaware Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Agriculture structures are excluded. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Delaware (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 07/29/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Delaware DOE Determination Letter, May 31, 2013 Delaware State Certification of Commercial and Residential Building Energy Codes

459

Washington | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington Washington Last updated on 2013-11-05 Current News The Washington State Building Code Council recently completed deliberations on adoption and amendment of the 2012 codes. This includes adoption of the 2012 IECC with state amendments. The new codes became effective July 1, 2013. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information WA 2012 Nonresidential Codes Approved Compliance Tools Nonresidential Energy Code Compliance Tools Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2010 Effective Date 07/01/2013 Adoption Date 02/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Washington DOE Determination Letter, May 31, 2013 Washington State Certification of Commercial and Residential Building Energy Codes

460

Alaska | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Alaska Last updated on 2013-12-10 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Alaska (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Code Enforcement DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Energy cost savings for Alaska resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $50 million annually by 2030. Alaska DOE Determination Letter, May 31, 2013

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy conservation by adaptive control for a solar heated building  

DOE Green Energy (OSTI)

Identification and optimal control techniques are combined to form an adaptive optimal control strategy which is used to minimize the auxiliary energy consumption for a solar heated building. The adaptive optimal control strategy is described and application of the adaptive optimal controller to the heating, ventilating, and air conditioning (HVAC) system in an appropriate building is modeled. The building used is the newly completed National Security and Resources Study Center (NSRSC) at the Los Alamos Scientific Laboratory (LASL). The NSRSC uses an 8000 sq. ft. solar collector to provide energy for heating and cooling the building. A cost functional to define optimal performance of the HVAC system and an identification process to produce a linearized building model are combined to yield an adaptive linear regulator solution. Although solar energy is used for both heating and cooling the NSRSC, only the results from the heating simulation are available for presentation here. Energy savings predicted by the model when compared to a conventional control system are described and an alternate system configuration is briefly discussed. Plans for actual implementation of the adaptive optimal controller are discussed.

Farris, D.R.; Melsa, J.L.; Murray, H.S.; McDonald, T.E.; Springer, T.E.

1977-01-01T23:59:59.000Z

462

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

and HVAC operations. A real-time optimization program suchHVAC IES ISO-NE LBNL MILP NOx NP NRC NREL OLS P&DC PJM PUCT PURPA PV RETScreen RReDC Hybrid OptimizationHVAC equipment and other building energy equipment. This research is similar to the IES dispatch optimization

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

463

MILP approach in analysis of low energy building elements influence on energy savings in residences  

Science Conference Proceedings (OSTI)

Mixed Integer Linear Programming (MILP) is used for optimization of global energy system of two-family residence, located in Kragujevac, Serbia and energy, equipment and building element prices valid at Serbian and German market in year 2000. The mathematical ... Keywords: LCC, MILP, energy savings, optimization, present value

Katarina K. Pantovic

2007-08-01T23:59:59.000Z

464

Building Energy Code Resource Guide: Air Leakage Guide | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage Guide Air Leakage Guide The U.S. Department of Energy (DOE) recognizes the enormous potential that exists for improving the energy efficiency, safety and comfort of homes. The 2012 International Energy Conservation Code (IECC) sets the bar for energy efficiency, and air sealing requirements are one of the key provisions. This guide is a resource for understanding the air leakage requirements in the 2012 IECC and suggestions on how these measures can be met. It also provides information from Building America's Air Sealing Guide, best Practices and case studies on homes that are currently meeting the provisions. The 2012 IECC and a few International Residential Code requirements are referenced throughout the guide. Publication Date: Friday, September 30, 2011 BECP_Buidling Energy Code Resource Guide Air Leakage

465

Kentucky | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky Last updated on 2013-08-02 Current News Kentucky moves forward with the 2009 IECC by reference in their updated 2007 Kentucky Building Code. 2009 IECC is effective 3/6/2011 with mandatory compliance beginning 6/1/2011. Kentucky residential code was also updated to the 2009 IECC. The code is effective 7/1/2012 with an enforcement date of 10/1/2012. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Amendments are contained in the latest update to the 2007 Kentucky Building Code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kentucky (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

466

Building Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Building Science Residential Buildings » Building America » Building Science Education Building Science Education The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to: Increase awareness of high performance home benefits Build a solid infrastructure for delivering building science

467

Building Technologies Office: Home Energy Score Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by E-mail Publications to someone by E-mail Share Building Technologies Office: Home Energy Score Publications on Facebook Tweet about Building Technologies Office: Home Energy Score Publications on Twitter Bookmark Building Technologies Office: Home Energy Score Publications on Google Bookmark Building Technologies Office: Home Energy Score Publications on Delicious Rank Building Technologies Office: Home Energy Score Publications on Digg Find More places to share Building Technologies Office: Home Energy Score Publications on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background FAQs Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

468

An Optimization and Assessment on DG adoption in Japanese Prototype Buildings  

E-Print Network (OSTI)

hotel, and office building. Keywords: distributed energyHotel Retail Sports facility 49.S% S2.S% 27.S% S4.S% S1.7% 27.S% S2.3% 14J emissions, and energyhotel, retail, and sports facility. Based on the optimization results, energy

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2005-01-01T23:59:59.000Z

469

Building Energy Software Tools Directory: Tools by Subject - Other  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Conservation Water Conservation C D E F G H I K M R S T U W Tool Applications Free Recently Updated Cymap Mechanical Load calculation, Pipe sizing & Radiator selection, Duct sizing, Hot and cold water design, SAP, iSBEM, EPCs, Psychrometrics. Dataplus-online monitoring and targeting, energy management, self-billing e-Bench energy benchmarking, environmental benchmarking, energy audit, invoice verification and reconciliation, performance contract verification Software has been updated. E.A.S.Y. - Energy Accounting System for Your Buildings Energy Accounting, OMV System, Building baseline development, Energy and Emissions Savings Software has been updated. EA-QUIP building modeling, energy savings analysis, retrofit optimization (work scope development), investment analysis, online energy analysis tool, multifamily building analysis Software has been updated.

470

Method for Determining Optimal Residential Energy Efficiency Retrofit Packages  

SciTech Connect

Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

2011-04-01T23:59:59.000Z

471

Buildings*","Buildings Using Any Energy  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Sources, Floorspace for Non-Mall Buildings, 2003" 3. Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Other a " "All Buildings* ...............",64783,63343,63307,43468,15157,5443,2853,7076,1401 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6362,6346,3084,600,"Q","Q",806,199 "5,001 to 10,000 ..............",6585,6212,6197,3692,716,"Q","Q",725,"Q"

472

Building Energy Software Tools Directory: TRACE 700  

NLE Websites -- All DOE Office Websites (Extended Search)

700 700 TRACE 700 logo. Trane's TRACE 700 software - the latest version of Trane Air Conditioning Economics - brings the algorithms recommended by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) to the familiar Windows operating environment. Use it to assess the energy and economic impacts of building-related selections such as architectural features, comfort-system design, HVAC equipment selections, operating schedules, and financial options. Flexible data entry, coupled with multiple views and "drag-and-drop" load assignments, simplify the modeling process and help you identify optimal zoning and plant configurations. Compare up to four alternatives for a single project by modeling various air distribution and mechanical

473

Autotune E+ Building Energy Models  

SciTech Connect

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

474

Buildings Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Buildings Energy Data Book Buildings Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Buildings Energy Data Book Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Buildings Topics: Market analysis, Pathways analysis, Technology characterizations Resource Type: Dataset Website: buildingsdatabook.eere.energy.gov/ Country: United States Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

The Role of Energy Storage in Commercial Building  

DOE Green Energy (OSTI)

Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R&D activities in this space.

Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

2010-09-30T23:59:59.000Z

476

U.S. Commercial Buildings Weather-Adjusted Site Energy  

U.S. Energy Information Administration (EIA)

Energy Efficiency > Commercial Buildings Energy Intensities > Table 1b . U.S. Commercial Buildings Weather-Adjusted Site Energy

477

Commercial Building National Accounts | Open Energy Information  

Open Energy Info (EERE)

Commercial Building National Accounts Commercial Building National Accounts Jump to: navigation, search National Accounts is part of DOE's Net-Zero Energy Commercial Building Initiative (CBI), which was mandated by the 2007 Energy Independence and Security Act (EISA). EISA enabled DOE to bring together parties from the private sector, DOE national labs, other federal agencies and nongovernmental organizations to advance research into low- and zero-net-energy buildings. CBI's goal is to develop market-ready, net zero-energy commercial buildings by 2025. A net zero-energy building makes as much energy as it uses over a year[1] [2]. As of 2009, estimates indicated that retail and office buildings consume 18 percent of the nation's total energy and half of nation's overall building energy (including homes, schools, and other structures). The program

478

Compliance Toolkit | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

operation and maintenance of the building-however important that might be to the overall energy usage of the building-is not considered in current national model energy codes and...

479

Improve energy use in commercial buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve energy use in commercial buildings Improve energy use in commercial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing Develop programs and policies

480

Florida | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida Florida Last updated on 2013-11-18 Current News The triennial code change process is currently underway. Florida expects to be equivalent to ASHRAE 90.1-10 and IECC 2012 by early 2014. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information N/A Approved Compliance Tools Can use State specific EnergyGauge Summit FlaCom State Specific Research Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/15/2012 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Florida DOE Determination Letter, May 31, 2013 Florida State Certification of Commercial Building Codes Current Code State Specific Amendments / Additional State Code Information Florida Building Code

Note: This page contains sample records for the topic "building energy optimization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sustainable Buildings and Campuses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Campuses and Campuses Sustainable Buildings and Campuses October 4, 2013 - 4:18pm Addthis Sustainable Buildings and Campuses The Federal Energy Management Program (FEMP) provides strategies, best practices, and resources to help Federal agencies implement sustainable design practices within Federal buildings and facilities. Learn about: Sustainable building design basics Federal requirements Sustainability for existing buildings Sustainable design for new construction and major renovations Life cycle cost analysis for sustainability Energy security planning Case studies Interagency Sustainability Working Group. Also see Sustainable Building Contacts. Addthis Related Articles Energy Department Training Breaks New Ground Sustainable Building Contacts Commissioning Training Available

482

Buildings Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Buildings Blog RSS November 5, 2013 The Building Technologies Office's Emerging Technologies Program works to advance new commerical building technologies that are expected to...

483

California commercial building energy benchmarking  

E-Print Network (OSTI)

querying (building type, climate zone, etc) sufficient forBuilding Type Floor Area Climate Zone Building Age Heatingtype, and zip code/climate zone. A memo describing the

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

484

Building Insulation | Open Energy Information  

Open Energy Info (EERE)

Building Insulation Jump to: navigation, search TODO: Add description List of Building Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleBuildingInsulat...

485

Property:Buildings/ModelBuildingType | Open Energy Information  

Open Energy Info (EERE)

Buildings/ModelBuildingType Buildings/ModelBuildingType Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Model. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Retail Other Than Mall) Mercantile (Enclosed and Strip Malls) Office Public Assembly Public Order and Safety Religious Worship Service Warehouse and Storage Other Vacant Pages using the property "Buildings/ModelBuildingType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + Mercantile (Retail Other Than Mall) + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Mercantile (Retail Other Than Mall) + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + Mercantile (Retail Other Than Mall) +

486

Building Assessment and Energy Coordinator | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities Environment, Safety & Health Procurement Division Technology Transfer Furth Plasma Physics Library Jobs Building Assessment and Energy Coordinator Department:...

487

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... representing a variety of industries ... Following the suspension of the 2011 Commercial Buildings Energy Consumption ...

488

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, ... Grundfos, National Trust for Historic Preservation, and Center for Environmental Innovation in Roofing.

489

Building Energy Software Tools Directory: Acoustics Program  

NLE Websites -- All DOE Office Websites (Extended Search)

by Subject Whole Building Analysis Codes & Standards Materials, Components, Equipment, & Systems Other Applications Atmospheric Pollution Energy Economics Indoor Air Quality...

490

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. Coal. Reserves, production, prices, employ- ment and ... Data Tools & Models ...

491

Integrating Renewable Energy Systems in Buildings (Presentation)  

SciTech Connect

This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

Hayter, S. J.

2011-08-01T23:59:59.000Z

492

Review of Building Energy Saving Techniques  

E-Print Network (OSTI)

The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use efficiency. The approach of realizing energy savings is to exploit greatly and use reproducible new energy while trying to reduce total energy demand quantity in buildings. It can then reduce the utilization of energy that can easily lead to environmental pollution in building areas. Reducing total energy demand quantity in building mainly embarks from the following aspects: building programming and design, round safeguard structure, enhancing energy using efficiency of the end-User and heightening total energy using efficiency. The utilization of new energy plays an important role in the aspects of saving energy and protecting the environment. In contrast with the past, building energy savings put forward a higher requirement for building materials. Building materials play a very important role in building energy savings.

Zeng, X.; Zhu, D.

2006-01-01T23:59:59.000Z

493

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners,

494

Better Buildings Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Better Buildings Challenge Commercial Buildings » Better Buildings Challenge Better Buildings Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts. The Better Buildings Challenge supports commercial and industrial building

495

Predicting hourly building energy usage  

SciTech Connect

This article presents the results of an evaluation to identify the most accurate method for making hourly energy use predictions. The prediction of energy usage by HVAC systems is important for the purposes of HVAC diagnostics, system control, parameter and system identification, optimization and energy management. Many new techniques are now being applied to the analysis problems involved with predicting the future behavior of HVAC systems and deducing properties of these systems. Similar problems arise in most observational disciplines, including physics, biology and economics.

Kreider, J.F. (Univ. of Colorado, Boulder, CO (United States). Dept. of Civil, Environmental and Architectural Engineering); Haberl, J.S. (Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.)

1994-06-01T23:59:59.000Z

496

Manage energy use in manufacturing | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve building and plant performance Improve building and plant performance » Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing

497

Building Energy Software Tools Directory: DesignBuilder  

NLE Websites -- All DOE Office Websites (Extended Search)

naturally ventilated buildings, buildings with daylighting control, double facades, advanced solar shading strategies etc. Screen Shots Keywords Building energy simulation,...

498