National Library of Energy BETA

Sample records for building electricity usage

  1. RECS Electricity Usage Form_v2 (25418 - Activated, Traditional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electricity usage for this service address between September 2008 and April 2010. Billing ... Electricity was: BBoth Sold and Delivered SSold Only DDelivered Only (select one) B S D ...

  2. Commercial Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  3. Issues in International Energy Consumption Analysis: Electricity Usage in

    U.S. Energy Information Administration (EIA) Indexed Site

    India's Housing Sector - Energy Information Administration Canadian Energy Demand Electricity Usage in India's Housing Sector SERIES: Issues in International Energy Consumption Analysis Canadian Energy Demand Release date: June 2, 2015 The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site

  4. Updated Miscellaneous Electricity Loads and Appliance Energy Usage Profiles for Use in Home Energy Ratings, the Building America Benchmark Procedures and Related Calculations. Revised

    SciTech Connect (OSTI)

    Parker, Danny; Fairey, Philip; Hendron, Robert

    2011-06-10

    This report discusses how TIAX data, supplemented by the 2005 Residential Energy Consumption Survey (RECS)public use data set was used to make significant improvements in the prediction metods for estimating energy use of miscellaneous electric loads.

  5. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level of aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.

  6. A Look at Health Care Buildings - How do they use electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Usage Return to: A Look at Health Care Buildings How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them?...

  7. Commercial Building Tenant Energy Usage Data Aggregation and Privacy: Technical Appendix

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.

    2014-11-12

    This technical appendix accompanies report PNNL–23786 “Commercial Building Tenant Energy Usage Data Aggregation and Privacy”. The objective is to provide background information on the methods utilized in the statistical analysis of the aggregation thresholds.

  8. Issues in International Energy Consumption Analysis: Electricity Usage in Indias Housing Sector

    U.S. Energy Information Administration (EIA) Indexed Site

    Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of

  9. Evolutionary Tuning of Building Models to Monthly Electrical Consumption

    SciTech Connect (OSTI)

    Garrett, Aaron; New, Joshua Ryan; Chandler, Theodore

    2013-01-01

    Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

  10. Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  11. Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  12. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    SciTech Connect (OSTI)

    Mindy Kirkpatrick

    2012-05-01

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

  13. Table 2.11 Commercial Buildings Electricity Consumption by End...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office ...

  14. Analyzing the Impact of Residential Building Attributes, Demographic and Behavioral Factors on Natural Gas Usage

    SciTech Connect (OSTI)

    Livingston, Olga V.; Cort, Katherine A.

    2011-03-03

    attempts to bridge that gap by analyzing behavioral data and investigate the applicability of additive nonparametric regression to this task. This study evaluates the impact of 31 regressors on residential natural gas usage. The regressors include weather, economic variables, demographic and behavioral characteristics, and building attributes related to energy use. In general, most of the regression results were in line with previous engineering and economic studies in this area. There were, however, some counterintuitive results, particularly with regard to thermostat controls and behaviors. There are a number of possible reasons for these counterintuitive results including the inability to control for regional climate variability due to the data sanitization (to prevent identification of respondents), inaccurate data caused by to self-reporting, and the fact that not all relevant behavioral variables were included in the data set, so we were not able to control for them in the study. The results of this analysis could be used as an in-sample prediction for approximating energy demand of a residential building whose characteristics are described by the regressors in this analysis, but a certain combination of their particular values does not exist in the real world. In addition, this study has potential applications for benefit-cost analysis of residential upgrades and retrofits under a fixed budget, because the results of this study contain information on how natural gas consumption might change once a particular characteristic or attribute is altered. Finally, the results of this study can help establish a relationship between natural gas consumption and changes in behavior of occupants.

  15. Usage possibilities of diesel aggregate for room heating and electric energy production

    SciTech Connect (OSTI)

    Kegl, K.; Vor Ic, J.

    1998-07-01

    Article shows reasons for introduction of cogeneration generally. The present manner of heating and electricity connection at the Faculty of electrical engineering and computer science in Maribor is described. The idea is to build in the cogeneration complex in heating room next to the existent boilers. Gathered data of electricity and heat demand are presented. Paper deals with question of electrical, heat and fuel connections. Comparison between two types of cogeneration (motor and turbine) helps to make a decision: cogeneration with motor. Depending to the daily electricity demands diagram and arranged heating diagram the authors focused to the small cogeneration (around 200 kWe). Availability of natural gas at the placement of the cogeneration leads us to the gas motor but leaves the diesel engine possibility opened. A brief economical estimation includes common investment costs regarding to the savings of energy and fuel expenses. Payback time calculation gives precedence to the gas motor if diesel is used with motor instead of fuel oil. Except the energy savings there are greater benefits of the cogeneration: it can be good study case for students of electrotechnics as well as future mechanical engineers.

  16. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  17. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  18. Buildings Energy Data Book: 8.5 Federal Government Water Usage

    Buildings Energy Data Book [EERE]

    5 Federal Government Water Usage March 2012 8.5.1 Federal Water Consumption Intensity and Costs (Millions of Gallons) Agency Total Source(s): 164,382.9 536,301.9 3,129,134.9 52.5 FEMP, Annual Report to Congress on Federal Government Energy Management and Conservation Programs FY 2007, Table 9, p. 26, Jan. 2010. HUD 21.8 139.1 1,432.0 15.2 RRB 5.5 19.5 346.9 15.9 SSA 125.0 617.1 9,262.0 13.5 Archives 107.9 552.9 4,062.0 26.6 State 169.0 762.2 4,476.7 37.8 EPA 168.1 1,196.0 3,723.3 45.2 Treasury

  19. Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys

    SciTech Connect (OSTI)

    Belzer, David B.

    2004-09-04

    This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

  20. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  1. Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Handling Fuel Cells for Building Electric Peak Shaving Applications U.S. Department of Energy Fuel Cell Technologies Office August 11, 2015 Presenter: Michael Penev of NREL DOE Host: Pete Devlin 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 Acknowledgments Fuel Cell Technologies Office, DOE EERE For providing funding for this project and for supporting sustainable hydrogen technology development through analysis, demonstration,

  2. Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  3. Biocide usage in cooling towers in the electric power and petroleum refining industries

    SciTech Connect (OSTI)

    Veil, J.; Rice, J.K.; Raivel, M.E.S.

    1997-11-01

    Cooling towers users frequently apply biocides to the circulating cooling water to control growth of microorganisms, algae, and macroorganisms. Because of the toxic properties of biocides, there is a potential for the regulatory controls on their use and discharge to become increasingly more stringent. This report examines the types of biocides used in cooling towers by companies in the electric power and petroleum refining industries, and the experiences those companies have had in dealing with agencies that regulate cooling tower blowdown discharges. Results from a sample of 67 electric power plants indicate that the use of oxidizing biocides (particularly chlorine) is favored. Quaternary ammonia salts (quats), a type of nonoxidizing biocide, are also used in many power plant cooling towers. The experience of dealing with regulators to obtain approval to discharge biocides differs significantly between the two industries. In the electric power industry, discharges of any new biocide typically must be approved in writing by the regulatory agency. The approval process for refineries is less formal. In most cases, the refinery must notify the regulatory agency that it is planning to use a new biocide, but the refinery does not need to get written approval before using it. The conclusion of the report is that few of the surveyed facilities are having any difficulty in using and discharging the biocides they want to use.

  4. Positioning the electric utility to build information infrastructure

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

  5. Analysis of electric vehicle interconnection with commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Mendes, Goncalo; Marnay, Chris; Mégel, Olivier; Lai, Judy

    2011-04-01

    The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  6. Usage Demographics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demographics Usage Demographics NERSC Usage Demographics 2014 In 2014, NERSC supported about 6,000 users from universities, national laboratories and industry, working on 849...

  7. Next-generation building energy management systems and implications for electricity markets.

    SciTech Connect (OSTI)

    Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A.

    2011-08-11

    The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

  8. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  9. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    2009-09-01

    Factsheet developed to describe the activities of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  10. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  11. RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications".

  12. Greater than the Sum of its Parts; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    NREL's Electricity, Resources, and Building Systems Integration Center brings together a diverse group of experts performing grid integration and optimization R&D activities.

  13. Usage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Statistics Usage Statistics Genepool Cluster Statistics Period: daily weekly monthly quarter yearly 2year Utilization By Group Jobs Pending Last edited: 2013-09-26 18:21:13...

  14. NERSC Usage Demographics 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 NERSC Usage Demographics 2010 Academic Usage Usage by Discipline DOE & Other Lab Usage Usage by Institution Type Last edited: 2015-03-02 16:21:16...

  15. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  16. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

    2010-11-17

    We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

  17. CBECS 2012: Energy Usage Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary CBECS 2012 - Release date: March 18, 2016 Despite a 14% increase in total buildings and a 22% increase in total floorspace since 2003, energy use in the estimated 5.6 million U.S. commercial buildings was up just 7% during the same period, according to new analysis from the 2012 Commercial Buildings Energy Consumption Survey (CBECS). Slower growth in commercial building energy demand since 2003 is explained in part by

  18. Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning

    SciTech Connect (OSTI)

    Price, Phillip N.; Mathieu, Johanna L.; Kiliccote, Sila; Piette, Mary Ann

    2011-07-01

    Whole-building electric load data can often reveal problems with building equipment or operations. In this paper, we present methods for analyzing 15-minute-interval electric load data. These methods allow building operators, energy managers, and commissioning agents to better understand a building's electricity consumption over time and to compare it to other buildings, helping them to 'ask the right questions' to discover opportunities for electricity waste elimination, energy efficiency, peak load management, and demand response. For example: Does the building use too much energy at night, or on hot days, or in the early evening? Knowing the answer to questions like these can help with retro-commissioning or continuous commissioning. The methods discussed here can also be used to assess how building energy performance varies with time. Comparing electric load before and after fixing equipment or changing operations can help verify that the fixes have the intended effect on energy consumption. Analysis methods discussed in this paper include: ways to graphically represent electric load data; the definition of various parameters that characterize facility electricity loads; and a regression-based electricity load model that accounts for both time of week and outdoor air temperature. The methods are illustrated by applying them to data from commercial buildings. We demonstrate the ability to recognize changes in building operation, and to quantify changes in energy performance. Some key findings are: 1) Plotting time series electric load data is useful for understanding electricity consumption patterns and changes to those patterns, but results may be misleading if data from different time intervals are not weather-normalized. 2) Parameter plots can highlight key features of electric load data and may be easier to interpret than plots of time series data themselves. 3) A time-of-week indicator variable (as compared to time-of-day and day-of-week indicator variables

  19. Design-Build Contract Awarded for Electrical Substation at Los Alamos

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration | (NNSA) Design-Build Contract Awarded for Electrical Substation at Los Alamos National Laboratory April 27, 2016 LOS ALAMOS, NM - Under an interagency agreement with the Department of Energy's National Nuclear Security Administration (DOE/NNSA), the U.S. Army Corps of Engineers (USACE) has awarded a design-build contract at Los Alamos National Laboratory (LANL) to Gardner Zemke Mechanical and Electrical Contractors of

  20. Electricity and the environment: Building partnerships through technology

    SciTech Connect (OSTI)

    Yeager, K.E.; Torrens, I.

    1995-12-01

    The vision for electricity in the world today transcends its role as just an energy medium and focuses on its ability to furnish ever greater productivity of labor, capital and primary energy resources. Its efficiency and precision, through innovative technology, have become essential assets for resolving the interrelated economic, environmental and energy security issues facing the world. As a result, electricity has become a major differentiating factor in the global economy. For example, the fraction of all primary energy converted to electricity is typically used as a rough indication of regional prosperity. This index reflects the importance of electricity in both creating and harvesting technological innovation. Electricity`s advantages in focusing and amplifying physical power during the first century are being complemented in the second by its even greater advantages for focusing and amplifying the power of knowledge. As its importance grows, electricity will likely expand in the next half-century to provide over half the world`s energy demands while providing the means for the most effective conservation of natural resources. Collaborative R&D organizations such as EPRI are acting as new catalysts and partners to transfer technology on a world-wide basis. With respect to Central and Eastern Europe, this effort focuses on new, more cost-effective innovations for the generation and delivery of electricity because obsolete and inefficient technology is contrary to our mutual interest in achieving efficient and sustainable economic development. EPRI stands ready to assist in this international endeavor.

  1. Building a 21st Century Electric Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Editor's note: This article has been cross-posted from WhiteHouse.gov. As part of President Obama's initiative to make America a magnet for jobs by building a 21st century ...

  2. Solar electric buildings: An overview of today`s applications

    SciTech Connect (OSTI)

    1997-02-01

    This brochure presents a broad look at photovoltaic-powered buildings. It includes residential and commercial systems, both stand-alone and connected to utility power, that are located in urban, near-urban, and rural settings around the world. As photovoltaic (PV) technology continues to improve and costs drop, opportunities for PV will multiply. PV systems for buildings, such as those shown here, represent one of the strongest near-term markets.

  3. Build-it-yourself solar water heater: reduce electric use

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Drawings and instructions for a simple breadbox-style solar water heater are presented. This booklet is a step-by-step guide to building a solar water heater for approximately 15 percent of the cost of most commercially-installed systems. This system does not provide as much energy as the commercially available systems. (MHR)

  4. HSI Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage HSI Usage HSI is a flexible and powerful command-line utility to access the NERSC HPSS storage systems. Like FTP, you can use it to store and retrieve files but it has a much larger set of commands for listing your files and directories, creating directories, changing file permissions, etc. The command set has a UNIX look and feel (e.g. mv, mkdir, rm, cp, cd, etc.) so that moving through your HPSS directory tree is almost identical to what you would find on a UNIX file system. HSI can be

  5. HTAR Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage HTAR Usage HTAR is a command line utility that creates and manipulates HPSS-resident tar-format archive files. It is ideal for storing groups of files in HPSS. Since the tar file is created directly in HPSS, it is generally faster and uses less local space than creating a local tar file then storing that into HPSS. Furthermore, HTAR creates an index file that (by default) is stored along with the archive in HPSS. This allows you to list the contents of an archive without retrieving it to

  6. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  7. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  8. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  9. Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

  10. Usage Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Summaries PDSF Group Batch Summary Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 Partial SGE62 2015 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2014 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2013 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2012 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62

  11. Basics of a Solar Electric System: Better Buildings Series Solar Electric Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    Today's solar technologies are more efficient and versatile than ever before, adding to the appeal of an already desirable energy source. This fact sheet provides information on the basics of a solar electric system, including components of a system, how to choose solar modules, and how to choose a solar system.

  12. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Historically, only Industrial Facilities (ISO 50003 Industry - light to medium and ... is allowing Commercial Buildings (ISO 50003 - Buildings and Building Complexes) ...

  13. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect (OSTI)

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  14. Federal Buildings Supplemental Survey - Index Page

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings 1993 Federal Buildings Supplemental Survey Overview Full Report Tables Energy usage and energy costs, by building characteristics, for federally-owned buildings in...

  15. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  16. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    SciTech Connect (OSTI)

    McNeil, MIchael; Letschert, Virginie; Shen, Bo; Sathaye, Jayant; de la Ru du Can, Stephane

    2011-01-12

    The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side management or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1

  17. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    6 Cost of an Electric Quad Used in the Buildings Sector ($2010 Billion) Residential Commercial Buildings Sector 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 11.82 11.82 11.82 11.94 11.68 11.82 10.59 10.83 10.70 11.41 11.58 11.48 11.68 11.33 11.51 11.49 10.77 11.15 11.71 11.67 11.69 11.72 11.52

  18. NERSC Usage Demographics 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 NERSC Usage Demographics 2011 Last edited: 2016-08-18 15:54:34

  19. NERSC Usage Demographics 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 NERSC Usage Demographics 2012 Last edited: 2016-06-29 14:26:22

  20. NERSC Usage Demographics 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 NERSC Usage Demographics 2013 Last edited: 2016-06-29 14:27:1

  1. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  2. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-16

    Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

  3. Building-Level Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  4. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  5. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from

  6. Building.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in ITER refers to plant systems located outside the Tokamak Building. A thick wall ... The cooling water system provides for the rejection of heat from a variety of ITER systems ...

  7. Advanced Usage Examples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Examples Advanced Usage Examples Transferring Data from Batch Jobs Once you have set up your automatic HPSS authentication you can access HPSS within batch scripts. Read More ...

  8. NERSC Usage Demographics 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 NERSC Usage Demographics 2014 In 2014, NERSC supported about 6,000 users from universities, national laboratories and industry, working on 849 projects with allocations of NERSC...

  9. Opt-E-Plus Software for Commercial Building Optimization; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laborato Innovation for Our Energy Future Horizontal Format-A Horizontal Format-A Reversed Providing Options to Meet Design Goals Opt-E-Plus was developed by NREL to help determine cost- effective, energy-efficient building strategies quickly, taking into account the many factors involved in the

  10. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  11. Building Technologies Office: R&D Opportunities to Reduce Energy Consumption in Miscellaneous Electric Loads (MELs)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: R&D Opportunities to Reduce Energy Consumption in Miscellaneous Electric Loads (MELs) Pat Phelan (patrick.phelan@ee.doe.gov) BTO Emerging Technologies June 3, 2016 2 Why Do We Care About MELs? Problem: Fraction of energy consumption due to MELs is rising as other building technologies become more efficient. DOE Quadrennial Technology Review (2015)  60% of remaining energy consumption after 2020 R&D targets are achieved, the majority of which are MELs. FY16 Activities: * Panel

  12. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Electricity Consumption and Expenditure Intensities in FBSS Buildings in Federal Region 3, 1993 Electricity Consumption Electricity Expenditures Distribution of Building-Level...

  13. Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use.

  14. Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes

    SciTech Connect (OSTI)

    Barley, C. D.; Haley, C.; Anderson, R.; Pratsch, L.

    2008-11-01

    This research plan describes the overall scope of system research that is needed to reduce miscellaneous electrical loads (MEL) in future net zero energy homes.

  15. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    5 2010 Impacts of Saving an Electric Quad (1) Utility Average-Sized Aggregate Number of Units Fuel Input Utility Unit (MW) to Provide the Fuel's Share Plant Fuel Type Shares (%) in 2010 of the Electric Quad (2) Coal 49% 36 Petroleum 1% 96 Natural Gas 19% 141 Nuclear 22% 3 Renewable (3) 10% 184 Total 100% 460 Note(s): Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2; and EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2 for consumption and Table A8 for electricity

  16. NERSC Usage and User Demographics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Demographics Users and Projects Through the Years Careers Visitor Info Web Policies Home » About » Usage and User Demographics NERSC Usage and User Demographics Usage Demographics Number of NERSC Users and Projects Through the Years Number of NERSC Users and Projects Through the Years Read More » Last edited: 2015-03-02 16:21:25

  17. How usage is charged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours the number of nodes allocated to the

  18. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    7 U.S. Electric Power Sector Cumulative Power Plant Additions Needed to Meet Future Electricity Demand (1) Typical New Number of New Power Plants to Meet Demand Electric Generator Plant Capacity (MW) 2015 2020 2025 2030 2035 Coal Steam 1,300 7 8 8 8 8 Combined Cycle 540 28 29 43 79 130 Combustion Turbine/Diesel 148 62 105 174 250 284 Nuclear Power 2,236 1 3 3 3 4 Pumped Storage 147 (2) 0 0 0 0 0 Fuel Cells 10 0 0 0 0 0 Conventional Hydropower 20 (2) 20 47 81 125 185 Geothermal 50 9 26 41 62 81

  19. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  20. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    SciTech Connect (OSTI)

    Stadler, Michael; Cardoso, Goncalo; DeForest, Nicholas; Donadee, Jon; Gomez, Tomaz; Lai, Judy; Marnay, Chris; Megel, Olivier; Mendes, Goncalo; Siddiqui, Afzal

    2011-05-01

    Some conclusions from this presentation are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions because stationary storage is available 24 hours a day for energy management - it's more effective; (3) stationary storage will be charged by PV, mobile only marginally; and (4) results will depend on the considered region and tariff. Final research work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  1. NERSC Usage Demographics 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 NERSC Usage Demographics 2014 In 2014, NERSC supported about 6,000 users from universities, national laboratories and industry, working on 849 projects with allocations of NERSC resources. Our users come from across the U.S. and around the globe, with 48 states and 46 countries represented. Last edited: 2016-06-29 14:26:5

  2. Video game console usage and US national energy consumption: Results from a field-metering study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; et al

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates.more » We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.« less

  3. Video game console usage and US national energy consumption: Results from a field-metering study

    SciTech Connect (OSTI)

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; Ganeshalingam, Mohan

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates. We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.

  4. Clean Energy State Program Guide: Mainstreaming Solar Electricity Strategies for States to Build Local Markets

    Office of Energy Efficiency and Renewable Energy (EERE)

    A PV mapping tool visually represents a specific site and calculates PV system size and projected electricity production. This report identifies the commercially available solar mapping tools and thoroughly summarizes the source data type and resolution, the visualization software program being used, user inputs, calculation methodology and algorithms, map outputs, and development costs for each map.

  5. Label Building Natural Gas Usage Form 1999 Commercial Buildings...

    Gasoline and Diesel Fuel Update (EIA)

    (toll free) at 1-888-861-0464. For general information about the survey, visit our Web site at http:www.ei a.doe.govemeucbecs. 6. Please use the enclosed self-addre ssed, ...

  6. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use Electricity Use Residential Transportation 21 quads 27 quads Commercial 18 quads Industrial 31 quads U.S. Energy Bill for Buildings: $410 billion per year 2 Building Technologies Office (BTO) Ecosystem Emerging Technologies Building Codes Appliance Standards Residential Buildings Integration Commercial Buildings

  7. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    5 U.S. Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Coal Steam Other Fossil Combine Cycle Combustion Turbine Nuclear Pumped Total 1980 0.0 1981 0.0 1982 0.0 1983 0.0 1984 0.0 1985 0.0 1986 0.0 1987 0.0 1988 0.0 1989 18.1 1990 19.5 1991 18.4 1992 21.2 1993 21.1 1994 21.2 1995 21.4 1996 21.1 1997 19.3 1998 19.5 1999 19.6 2000 19.5 2001 19.7 2002 20.4 2003 20.5 2004 20.8 2005 21.3 2006 21.5 2007 21.9 2008 21.9 2009 22.2 2010 22.2 2011 22.2 2012 22.2 2013 22.2 2014

  8. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  9. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)"

  10. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2010 Existing Capacity, by Energy Source (GW) Number of Generator Nameplate Net Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and Photovoltaic Wood and Wood Derived Fuels Geothermal Other Biomass Pumped Storage Other Total Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2. 51 1.0 0.9 0.9 18,150 1,138.6 1,039.1 1,078.7 1,574 5.0 4.4 4.4 151 20.5 22.2 22.1 346 7.9

  11. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    3 Electric Capacity Factors, by Year and Fuel Type (1) Conventional Coal Petroleum Natural Gas Nuclear Hydroelectric Solar/PV Wind Total 1990 59% 17% 23% 66% 45% 13% 18% 46% 1991 59% 18% 22% 70% 43% 17% 18% 46% 1992 59% 14% 22% 71% 38% 13% 18% 45% 1993 61% 16% 21% 70% 41% 16% 19% 46% 1994 61% 15% 22% 74% 38% 17% 23% 46% 1995 62% 11% 22% 77% 45% 17% 21% 47% 1996 65% 11% 19% 76% 52% 18% 22% 48% 1997 66% 13% 20% 72% 51% 17% 23% 48% 1998 67% 20% 23% 79% 47% 17% 20% 50% 1999 67% 20% 22% 85% 46% 15%

  12. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    6 U.S. Renewable Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Conv. Hydropower Geothermal Municipal Solid Waste Biomass Solar Thermal Solar PV Wind 1980 81.7 0.9 0.0 0.1 0.0 N.A. N.A. 1981 82.4 0.9 0.0 0.1 0.0 N.A. 0.0 1982 83.0 1.0 0.0 0.1 0.0 N.A. 0.0 1983 83.9 1.2 0.0 0.2 0.0 N.A. 0.0 1984 85.3 1.2 0.0 0.3 0.0 N.A. 0.0 1985 88.9 1.6 0.2 0.2 0.0 N.A. 0.0 1986 89.3 1.6 0.2 0.2 0.0 N.A. 0.0 1987 89.7 1.5 0.2 0.2 0.0 N.A. 0.0 1988 90.3 1.7 0.2 0.2 0.0 N.A. 0.0

  13. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  15. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    4 U.S. Electricity Net Generation, by Plant Type (Billion kWh) Renewables Growth Rate Hydr(1) Oth(2) Total CHP (3) Tot.(4) 2010-year 1980 276 6 282 N.A. 1981 261 6 267 N.A. 1982 309 5 314 N.A. 1983 332 6 339 N.A. 1984 321 9 330 N.A. 1985 281 11 292 N.A. 1986 291 12 302 N.A. 1987 250 12 262 N.A. 1988 223 12 235 N.A. 1989 269 28 297 42 1990 290 35 324 61 1991 286 38 324 72 1992 250 40 290 91 1993 278 42 320 108 1994 254 42 296 123 1995 305 39 345 141 1996 341 41 382 147 1997 351 41 392 148 1998

  16. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    4 Electric Conversion Factors and Transmission and Distribution (T&D) Losses Average Utility Average Utility Growth Rate Delivery Efficiency (1, 2) Delivery Ratio (Btu/kWh) (2, 3) (2010-year) 1980 29.4% 1981 29.9% 1982 29.7% 1983 29.8% 1984 30.5% 1985 30.4% 1986 30.8% 1987 31.1% 1988 31.1% 1989 30.2% 1990 30.3% 1991 30.5% 1992 30.7% 1993 30.6% 1994 30.9% 1995 30.7% 1996 30.7% 1997 30.8% 1998 30.7% 1999 30.6% 2000 30.7% 2001 31.1% 2002 31.1% 2003 31.3% 2004 31.3% 2005 31.5% 2006 31.7% 2007

  17. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect (OSTI)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  18. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    2 U.S. Electricity Generation Input Fuel Shares (Percent) Renewables Natural Gas Petroleum Coal Hydro. Oth(2) Total Nuclear Other (3) Total 1980 15.7% 10.8% 50.2% 11.8% 0.2% 12.1% 11.3% (1) 100% 1981 15.4% 9.0% 51.8% 11.2% 0.3% 11.4% 12.3% (1) 100% 1982 13.9% 6.6% 52.6% 13.6% 0.2% 13.8% 13.1% (1) 100% 1983 12.2% 6.3% 53.9% 14.3% 0.3% 14.6% 13.1% (1) 100% 1984 12.6% 5.1% 54.9% 13.2% 0.4% 13.5% 14.0% (1) 100% 1985 12.1% 4.2% 56.2% 11.3% 0.4% 11.8% 15.7% (1) 100% 1986 10.2% 5.6% 55.3% 11.7% 0.5%

  19. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    3 U.S. Electricity Generation Input Fuel Consumption (Quadrillion Btu) Renewables Growth Rate Hydro. Oth(2) Total Nuclear Other (3) Total 2010-Year 1980 2.87 0.06 2.92 2.74 (1) 24.32 1981 2.72 0.06 2.79 3.01 (1) 24.49 1982 3.23 0.05 3.29 3.13 (1) 23.95 1983 3.49 0.07 3.56 3.20 (1) 24.60 1984 3.35 0.09 3.44 3.55 (1) 25.59 1985 2.94 0.11 3.05 4.08 (1) 26.09 1986 3.04 0.12 3.16 4.38 (1) 26.22 1987 2.60 0.13 2.73 4.75 (1) 26.94 1988 2.30 0.12 2.43 5.59 (1) 28.27 1989 2.81 0.41 3.22 5.60 (1) 29.88

  20. Buildings Energy Data Book: 6.4 Electric and Generic Quad Carbon Emissions

    Buildings Energy Data Book [EERE]

    2 Electric Quad Average Carbon Dioxide Emissions with Average Utility Fuel Mix (Million Metric Tons) (1) Petroleum Natural Gas Coal Nuclear Renewable Total 2010 0.83 10.14 46.45 0.00 0.30 57.72 2011 0.00 0.21 0.00 0.00 0.00 0.21 2012 0.00 0.65 0.00 0.00 0.00 0.65 2013 0.00 0.16 0.00 0.00 0.00 0.16 2014 0.00 0.61 0.00 0.00 0.00 0.61 2015 0.00 1.04 0.00 0.00 0.00 1.04 2016 0.00 0.83 0.00 0.00 0.00 0.83 2017 0.00 0.58 0.00 0.00 0.00 0.58 2018 0.00 0.62 0.00 0.00 0.00 0.62 2019 0.00 0.70 0.00 0.00

  1. Energy Information Administration (EIA)- Commercial Buildings Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Survey (CBECS) Data 9 CBECS Survey Data 2012 | 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures

  2. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    SciTech Connect (OSTI)

    Kavousian, A; Rajagopal, R; Fischer, M

    2013-06-15

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of daily maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.

  3. High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  4. Compare All CBECS Activities: Electricity Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Use Compare Activities by ... Electricity Use Total Electricity Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 908 billion...

  5. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating ...

  6. usage_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Contact: Stephanie J. Battles, Survey Manager (stephanie.battles@eia.doe.gov) World Wide Web: http:www.eia.doe.govemeuconsumption Table HC6-1a. Usage Indicators by Climate ...

  7. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy

  8. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  9. Better Buildings Challenge Accelerator Support- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Monisha Shah, National Renewable Energy Laboratory Through the Better Buildings Energy Data Accelerator, local governments are joining forces with their utilities so that commercial and multifamily building owners can more easily access whole-building energy usage data.

  10. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2008-12-01

    In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and

  11. Table 2a. Electricity Consumption and Electricity Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity...

  12. CO2 Capture Using Electric Fields: Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University’s approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize the energy needed for the process.

  13. Data & Communication for Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and service co-optimization Building to third-party services examples Campus microgrid coordination Computation coordinated across data centers to minimize electric bill ...

  14. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC ...

  15. Opportunistic Resource Usage in CMS

    SciTech Connect (OSTI)

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.

    2014-01-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.

  16. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    SciTech Connect (OSTI)

    Sturgeon, Richard W.

    2012-06-27

    organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and

  17. DC Fast Charger Usage in the Pacific Northwest

    SciTech Connect (OSTI)

    Salisbury, Shawn; Smart, John

    2015-02-01

    This document will describe the use of a number of Direct Current Fast Charging Stations throughout Washington and Oregon as a part of of the West Coast Electric Highway. It will detail the usage frequency and location of the charging stations INL has data from. It will also include aggregated data from hundreds of privately owned vehicles that were enrolled in the EV Project regarding driving distance when using one of the West Coast Electric Highway fast chargers. This document is a white paper that will be published on the INL AVTA website.

  18. Building Energy Management Open-Source Software Development ...

    Office of Environmental Management (EM)

    BEMOSS will be able to optimize electricity usage to reduce energy consumption and help implement demand response (DR). This opens up demand side ancillary services markets and ...

  19. Building America Top Innovations 2012: Tankless Gas Water Heater Performance

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America field testing that shed light on how real-world water usage affects energy saving estimates of high-efficiency water heating systems.

  20. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2009-03-10

    Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York, (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage, and (3) to make an initial effort towards adding consideration of power quality and reliability (PQR) to the capabilities of DER-CAM. All of these objectives have been pursued via analysis of the attractiveness of a Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid consisting of multiple nameplate 100 kW Tecogen Premium Power Modules (CM-100). This unit consists of an asynchronous inverter-based variable speed internal combustion engine genset with combined heat and power (CHP) and power surge capability. The essence of CERTS Microgrid technology is that smarts added to the on-board power electronics of any microgrid device enables stable and safe islanded operation without the need for complex fast supervisory controls. This approach allows plug and play development of a microgrid that can potentially provide high PQR with a minimum of specialized site-specific engineering. A notable feature of the CM-100 is its time-limited surge rating of 125 kW, and DER-CAM capability to model this feature was also a necessary model enhancement.

  1. DOE Quadrennial Energy Review Comments by Cree, Inc. "Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... user, event and environmental response and accommodation across multiple systems. ... Building codes need to accommodate usage patterns and intelligence, not just static device ...

  2. NREL: Electricity Integration Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities NREL's electricity integration research is conducted in state-of-the-art ... reliable integration of renewable electricity, fuel production, storage, and building ...

  3. Tidal Electric | Open Energy Information

    Open Energy Info (EERE)

    Tidal Electric Place: London, Greater London, United Kingdom Zip: SW19 8UY Product: Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates:...

  4. TOLEDO BETTERS BUILDINGS WITH FINANCING OPTIONS | Department...

    Energy Savers [EERE]

    With utility prices for electricity and natural gas at record lows, building energy ... for building controls and systems integration, software, high-efficiency lighting, ...

  5. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    SciTech Connect (OSTI)

    Wall, L.W.; Rosenfeld, A.H.

    1982-12-01

    Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

  6. Data Network Equipment Energy Use and Savings Potential in Buildings

    SciTech Connect (OSTI)

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  7. Using Models to Provide Predicted Ranges for Building-Human Interfaces: Preprint

    SciTech Connect (OSTI)

    Long, N.; Scheib, J.; Pless, S.; Schott, M.

    2013-09-01

    Most building energy consumption dashboards provide only a snapshot of building performance; whereas some provide more detailed historic data with which to compare current usage. This paper will discuss the Building Agent(tm) platform, which has been developed and deployed in a campus setting at the National Renewable Energy Laboratory as part of an effort to maintain the aggressive energyperformance achieved in newly constructed office buildings and laboratories. The Building Agent(tm) provides aggregated and coherent access to building data, including electric energy, thermal energy, temperatures, humidity, and lighting levels, and occupant feedback, which are displayed in various manners for visitors, building occupants, facility managers, and researchers. This paper focuseson the development of visualizations for facility managers, or an energy performance assurance role, where metered data are used to generate models that provide live predicted ranges of building performance by end use. These predicted ranges provide simple, visual context for displayed performance data without requiring users to also assess historical information or trends. Several energymodelling techniques were explored including static lookup-based performance targets, reduced-order models derived from historical data using main effect variables such as solar radiance for lighting performance, and integrated energy models using a whole-building energy simulation program.

  8. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  9. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    SciTech Connect (OSTI)

    Hong, Tianzhen; Yang, Le; Hill, David; Feng, Wei

    2014-01-25

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC

  10. Building Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office The Future of Air Conditioning for Buildings Report The Future of Air Conditioning for Buildings Report This report characterizes the current landscape and trends in the global air conditioning (A/C) market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. Read more Energy Department Invests $19 Million to Improve Efficiency of Nation's Buildings Energy Department Invests $19 Million

  11. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  12. Hawaii Electric Co. Inc. Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Reliability and Power Quality Reduced Operating and Maintenance Costs Reduced Electricity Costs for Customers Reduced Truck Fleet Fuel Usage Reduced Greenhouse Gas and...

  13. Black Hills/Colorado Electric Utility Co. Smart Grid Project...

    Open Energy Info (EERE)

    Thermostats Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability Reduced Ancillary Service Cost Reduced Truck Fleet Fuel Usage Reduced Greenhouse...

  14. Lakeland Electric Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    for Customers Reduced Operating and Maintenance Costs Improved Electric Service Reliability Reduced Costs from Distribution Line Losses Reduced Truck Fleet Fuel Usage Reduced...

  15. EERE & Buildings to Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    74% electricity produced in the US (CBECS 2009) Buildings have the potential to reduce their consumption by 20%- ... is added cost to the end user, manufacturers and utilities. ...

  16. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Consumption and Expenditures for Sum of Major Fuels, Electricity, and Natural Gas in FBSS Buildings in Federal Region 3, 1993 Sum of Sum of Major Major Electricity Natural...

  17. Buildings | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results

  18. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey (CBECS) About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, including their energy-related building characteristics and energy usage data (consumption and expenditures). Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential,

  19. An Overview of the Building Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Innovation, Speeding Adoption, Scaling Savings An Overview of the Building Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption Costs U.S. $410 billion to power 2 National Electricity Use Our homes and buildings use 76% of all U.S. electricity 3 The Opportunity: Energy Savings Potential for Buildings and Homes Reduce building energy use by 50% 4 BTO Budget: FY2013 - Proposed FY2016 $0 $50 $100 $150 $200 $250 $300 Residential Buildings

  20. Buildings interoperability landscape - Draft

    SciTech Connect (OSTI)

    Hardin, Dave B.; Stephan, Eric G.; Wang, Weimin; Corbin, Charles D.; Widergren, Steven E.

    2015-02-01

    Buildings are an integral part of our nation’s energy economy. The advancement in information and communications technology (ICT) has revolutionized energy management in industrial facilities and large commercial buildings. As ICT costs decrease and capabilities increase, buildings automation and energy management features are transforming the small-medium commercial and residential buildings sectors. A vision of a connected world in which equipment and systems within buildings coordinate with each other to efficiently meet their owners’ and occupants’ needs, and where buildings regularly transact business with other buildings and service providers (such as gas and electric service providers) is emerging. However, while the technology to support this collaboration has been demonstrated at various degrees of maturity, the integration frameworks and ecosystems of products that support the ability to easily install, maintain, and evolve building systems and their equipment components are struggling to nurture the fledging business propositions of their proponents.

  1. Recent Trends in Car Usage in Advanced Economies - Slower Growth...

    Open Energy Info (EERE)

    Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

  2. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Gasoline and Diesel Fuel Update (EIA)

    Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ... Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ...

  3. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics ...

  4. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed

  5. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel

  6. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel

  7. Scalable Tuning of Building Models to Hourly Data

    SciTech Connect (OSTI)

    Garrett, Aaron; New, Joshua Ryan

    2015-01-01

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The ``Autotune'' project is a novel, model-agnostic methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.

  8. Scalable tuning of building models to hourly data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garrett, Aaron; New, Joshua Ryan

    2015-03-31

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The "Autotune'' project is a novel, model-agnosticmore » methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Furthermore, accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.« less

  9. Scalable tuning of building models to hourly data

    SciTech Connect (OSTI)

    Garrett, Aaron; New, Joshua Ryan

    2015-03-31

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The "Autotune'' project is a novel, model-agnostic methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Furthermore, accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.

  10. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  11. pre-electricity | OpenEI Community

    Open Energy Info (EERE)

    pre-electricity Home Dc's picture Submitted by Dc(266) Contributor 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling...

  12. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    6.1 Electric Utility Energy Consumption 6.2 Electricity Generation, Transmission, and Distribution 6.3 Natural Gas Production and Distribution 6.4 Electric and Generic Quad Carbon Emissions 6.5 Public Benefit Funds/System Benefit Funds 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to

  13. Application of the Software as a Service Model to the Control of Complex Building Systems

    SciTech Connect (OSTI)

    Stadler, Michael; Donadee, Jonathan; Marnay, Chris; Mendes, Goncalo; Appen, Jan von; Megel, Oliver; Bhattacharya, Prajesh; DeForest, Nicholas; Lai, Judy

    2011-03-17

    In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building. The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analysed.

  14. Application of the Software as a Service Model to the Control of Complex Building Systems

    SciTech Connect (OSTI)

    Stadler, Michael; Donadee, Jon; Marnay, Chris; Lai, Judy; Mendes, Goncalo; Appen, Jan von; Mégel, Oliver; Bhattacharya, Prajesh; DeForest, Nicholas; Lai, Judy

    2011-03-18

    In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building. The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analyzed.

  15. Table C10. Electricity Consumption and Expenditure Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Expenditure Intensities, 1999" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square Foot (kWh)","per...

  16. Maximizing the Benefits of Plug-in Electric Vehicles - Continuum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In fact, most usage scenarios show that PEVs may actually benefit the utility grid." A photo of two electric vehicles in a research facility. Electric vehicle charging stations in ...

  17. The impact of demand-controlled ventilation on energy use in buildings

    SciTech Connect (OSTI)

    Braun, J.E.; Brandemuehl, M.J.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

  18. Type A Accident Investigation Board Report on the July 11, 1996, Electrical Shock at Technical Area 53, Building MPF-14, Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of an electrical shock accident investigation board appointed by Bruce G. Twining, Manager, Albuquerque Operations Office, Department of Energy.

  19. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  20. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ... Water ......",33,32,6,8,"Q",24,"Q","N" "Propane ......",502,489,179,40,59...

  1. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Commercial Buildings Commercial Buildings At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's <a href="/node/712411">National Renewable Energy Lab</a> could help commercial buildings save on lighting and ventilation costs by improving the accuracy of motion detection. At an estimated cost of

  2. EERE Success Story—Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  3. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  4. EERE & Buildings to Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE & Buildings to Grid Integration Joe Hagerman, Senior Advisor DOE Building Technologies Office July 22, 2015 EERE: Office of Energy Efficiency and Renewable Energy BTO: Building Technologies Office (Portfolio - RD&D, Deployment, Regulatory) Opportunity to Control Building Loads is Key to Integrating EE & RE effectively with the GRID! Buildings consume 74% electricity produced in the US (CBECS 2009) Buildings have the potential to reduce their consumption by 20%- 30% (18 quads or

  5. NREL Transportation Project to Reduce Fuel Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Project to Reduce Fuel Usage For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Barba Golden, Colo., Mar. 23, 2001 - The Jefferson County Seniors Resource Center (SRC) Paratransit Service has become an important part of Eulalia Gaillard's life since her stroke in 1996. She calls on SRC to drive her to cardiologist, neurologist and chiropractor appointments each week. "It's wonderful," Gaillard says. "I'd give this program 150 plus in regards

  6. Data Center Metering and Power Usage Effectiveness | Department...

    Office of Environmental Management (EM)

    Data Center Metering and Power Usage Effectiveness Data Center Metering and Power Usage Effectiveness July 28, 2016 2:00PM to 3:00PM EDT Webinar will cover material from the Data ...

  7. 2010 News | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 News Below are news stories related to Buildings. RSS Learn about RSS. November 29, 2010 IEEE Honors DeBlasio with Steinmetz Award Richard DeBlasio, chief engineer for renewable electricity and end use systems with the U.S. Department of the Energy's National Renewable Energy Laboratory (NREL), will be honored by IEEE (Institute of Electrical and Electronics Engineers), the world's largest technical professional association, with the 2010 Charles Proteus Steinmetz Award. The award will be

  8. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Simulation Protocols (Building America Benchmark) - Building America Top Innovation House Simulation Protocols (Building America Benchmark) - Building America Top Innovation ...

  9. Energy Information Administration (EIA)- Guide to 2012 Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey (CBECS) Guide to the 2012 CBECS Detailed Tables Column categories Row categories Relative Standard Errors (RSEs) The Detailed Tables for the 2012 Commercial Buildings Energy Consumption Survey (CBECS) consist of building characteristics tables (B1-B46), which contain the number of buildings and amount of floorspace for structural and energy-related characteristics of buildings, and consumption and expenditures tables, which contain total energy usage data by the

  10. Guideline For Retrieving Customer Usage Data From Utilities

    Broader source: Energy.gov [DOE]

    This webinar, held on Dec. 16, 2010, provides information for utilities interested in retrieving data on customer usage.

  11. Mercantile Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are...

  12. Education Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high...

  13. Better Buildings

    Broader source: Energy.gov [DOE]

    The Better Buildings Initiative aims to make commercial and industrial buildings 20% more energy efficient by 2020 and accelerate private sector investment in energy efficiency.

  14. City of Greensburg- Green Building Requirement for New Municipal Buildings

    Broader source: Energy.gov [DOE]

    As of 2014, Greensburg is home to the most LEED buildings per capita in the U.S. Other notable clean energy achievements include 100% of the electricity used in the City of Greensburg is renewabl...

  15. The impact of demand-controlled and economizer ventilation strategies on energy use in buildings

    SciTech Connect (OSTI)

    Brandemuehl, M.J.; Braun, J.E.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

  16. Building America Update - December 7, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Publications Library offers an extensive ... Evaluation of Northern Illinois Residential Retrofit ... net-zero all-electric buildings and where natural gas is ...

  17. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square ... Source: Energy Information Administration, Office of Energy Markets and End ...

  18. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  19. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  20. Residential Buildings Historical Publications reports, data and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  1. Residential Buildings Historical Publications reports, data and...

    Gasoline and Diesel Fuel Update (EIA)

    2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End ...

  2. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  3. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  4. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per ... Source: Energy Information Administration, Office of Energy Markets and End Use, ...

  5. Types of Lighting in Commercial Buildings - Introduction

    U.S. Energy Information Administration (EIA) Indexed Site

    Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other...

  6. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  7. Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest (Fact Sheet), Building America Case Study: Whole-House Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Existing Homes Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest Tacoma, Washington PROJECT INFORMATION New Construction: Phase 7 Retrofit Existing: Phases 1-6 Type: Multifamily, affordable Builder: Walsh Construction Size: Phases 1-7, 975 ft 2 to 1,109 ft 2 Years Completed: Phase 7, 2010; Phases 1-6, 2003-2006 Climate Zone: Marine PERFORMANCE DATA Billing analysis savings-Phase 7 versus Phases 1-6: 1,400-3,044 kWh/year Phases 1-6 projected energy savings and

  8. An assessment of worldwide supercomputer usage

    SciTech Connect (OSTI)

    Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

    1995-01-01

    This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

  9. High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building

    SciTech Connect (OSTI)

    Christian, J.

    2011-01-01

    sensors installed in ZEH5 to monitor electric sub-metered usage, temperature and relative humidity, hot water usage, and heat pump operation for 1 year are presented. This information should be particularly useful to those considering structural insulated panel (SIP) walls and roofing; foundation geothermal heat pumps for space heating and cooling; solar water heaters; and roof-mounted, grid-tied photovoltaic systems. The document includes plans for ZEH6 (adapted from ZEH5), a one-story, high-performance house, as well as projections of how the design might perform in five major metropolitan areas across the TVA service territory. The HERS ratings for this all-electric house vary from 36 (Memphis, Tennessee) to 46 (Bristol, Tennessee).

  10. Commercial Miscellaneous Electric Loads Report: Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization and Savings Potential in 2008 by Building Type | Department of Energy Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial miscellaneous electric loads (MELs) are generally defined as all electric loads except those related to main systems for heating,

  11. "Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  12. "Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes"

  13. "Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  14. "Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  15. "Table HC4.13 Lighting Usage Indicators by Renter-Occupied Housing Unit Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Renter-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  16. "Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  17. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  18. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  19. Systems and methods for controlling energy use in a building management system using energy budgets

    DOE Patents [OSTI]

    Wenzel, Michael J.

    2012-06-17

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A mathematical linear operator is found that transforms the unused or deferred cooling power usage of the HVAC system based on pre-determined temperature settings to a target cooling power usage. The mathematical operator is applied to the temperature settings to create a temperature setpoint trajectory expected to provide the target cooling power usage.

  20. Building technologies

    SciTech Connect (OSTI)

    Jackson, Roderick

    2014-07-14

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  1. Building technologies

    ScienceCinema (OSTI)

    Jackson, Roderick

    2014-07-15

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  2. Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy

  3. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  4. Healthcare Energy: Spotlight on Lighting and Other Electric Loads...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    See below for a few highlights from monitoring lighting and other electric loads. Lighting and Other Electric Loads at the Gray Building For the Massachusetts General Hospital Gray ...

  5. Parallel File Systems at HPC Centers: Usage,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Systems at HPC Centers: Usage, Experiences, and Recommendations William ( Bill) E . A llcock ALCF D irector o f O pera:ons Production Systems: ALCF-2 2 Mira - B G/Q s ystem - 49,152 nodes / 786,432 cores - 786 TB of memory - Peak fl op r ate: 1 0 P F - Linpack fl op r ate: 8 .1 P F Vesta --- B G/Q s ystem - 2,048 nodes / 3 2,768 c ores - 32 TB of memory - Peak fl op r ate: 4 19 T F Cetus --- B G/Q s ystem - 1,024 n odes / 1 6,384 c ores - 16 TB of memory - Peak fl op r ate: 2 09 T F Tukey -

  6. Using Wireless Technology to Reduce Facility Energy Usage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Using Wireless Technology to Reduce Facility Energy Usage Using Wireless Technology to Reduce Facility Energy Usage This presentation details the U.S. Department of Energy's TEAM initiative's wireless technologies and their applications. Using Wireless Technology to Reduce Facility Energy Usage (December 4, 2009) (2.57 MB) More Documents & Publications New and Emerging Technologies Figure 1: Chamber experiment to study impact of air movement on thermal comfort using personally

  7. About Buildings-to-Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid » About Buildings-to-Grid Integration About Buildings-to-Grid Integration As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and variable generation sources, such as photovoltaic systems, as well as new load sources, such as electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. At the same time, smart sensing, metering and

  8. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting ...

  9. Ethanol Usage in Urban Public Transportation - Presentation of...

    Open Energy Info (EERE)

    - Presentation of Results Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ethanol Usage in Urban Public Transportation - Presentation of Results AgencyCompany...

  10. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ... Estimate less than 0.5. WWithheld to avoid disclosing data for individual establishments. ...

  11. Commercial Buildings Energy Consumption Survey (CBECS) - How Was Energy

    Gasoline and Diesel Fuel Update (EIA)

    Usage Information Collected in the 2012 CBECS? Energy Usage Information Collected in the 2012 CBECS? CBECS 2012 - Release date: March 18, 2016 The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at least four years, beginning with development of the sample frame and survey questionnaire and ending with release of data to the public. This set of three methodology documents provides details about each of the three major stages of the 2012 CBECS survey process. * How

  12. Buildings-to-Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings-to-Grid Integration Buildings-to-Grid Integration Integrating buildings and the grid increases energy efficiency, supports incorporation of renewable energy, and balances new loads, such as electric vehicles. Integrating buildings and the grid increases energy efficiency, supports incorporation of renewable energy, and balances new loads, such as electric vehicles. The U.S. Department of Energy's Building Technologies Office is coordinating strategies and activities with stakeholders

  13. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  14. A Look at Health Care Buildings - How do they use natural gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Usage Return to: A Look at Health Care Buildings How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them?...

  15. Energy Storage: Building a Better Battery via Public-Private Partnership |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Energy Storage: Building a Better Battery via Public-Private Partnership Share Topic Energy Energy usage Energy storage Programs Chemical sciences & engineering Electrochemical energy storage

  16. BUILDING STRONG

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WHITE RIVER BASIN COMPREHENSIVE STUDY BUILDING STRONG ® * The Cache River Basin portion of the Watershed Management Plan will be completed in FY15. * Next step will be a watershed assessment for the entire White River Basin and move forward in developing a Comprehensive Watershed Management Plan. CURRENT STATUS BUILDING STRONG ® WATER SUPPLY STORAGE REALLOCATIONS BUILDING STRONG ® M&I Water Supply Reallocation Studies Greers Ferry Lake * Current Study * Request from MAWA for 15.25 mgd

  17. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  18. Advanced Load Identification and Management for Buildings: Cooperative Research and Development Final Report, CRADA Number: CRD-11-422

    SciTech Connect (OSTI)

    Gentile-Polese, L.

    2014-05-01

    The goal of this CRADA work is to support Eaton Innovation Center (Eaton) efforts to develop advanced load identification, management technologies, and solutions to reduce building energy consumption by providing fine granular visibility of energy usage information and safety protection of miscellaneous electric loads (MELs) in commercial and residential buildings. MELs load identification and prediction technology will be employed in a novel 'Smart eOutlet*' to provide critical intelligence and information to improve the capability and functionality of building load analysis and design tools and building power management systems. The work scoped in this CRADA involves the following activities: development and validation of business value proposition for the proposed technologies through voice of customer investigation, market analysis, and third-party objective assessment; development and validation of energy saving impact as well as assessment of environmental and economic benefits; 'smart eOutlet' concept design, prototyping, and validation; field validation of the developed technologies in real building environments. (*Another name denoted as 'Smart Power Strip (SPS)' will be used as an alternative of the name 'Smart eOutlet' for a clearer definition of the product market position in future work.)

  19. BUILDING STRONG

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BUILDING STRONG ® WATER SUPPLY STORAGE REALLOCATION STUDIES BUILDING STRONG ® Beaver Lake Project Area BUILDING STRONG ® M&I Water Supply Reallocation - Beaver Lake * Current Study - Total Request for 22 mgd (41,960 ac-ft)  Benton Washington in 2000 for 12.0 mgd (22,887.11 ac-ft)  Carroll Boone in 2001 for 6.0 mgd (11,443.66 ac-ft)  Madison County in 2006 for 4.0 mgd (7,629.04 ac-ft) BUILDING STRONG ® M&I Water Supply Reallocation - Beaver Lake Continued. . . * Current Tasks

  20. Vacant Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacant Characteristics by Activity... Vacant Vacant buildings are those in which more floorspace was vacant than was used for any single commercial activity at the time of the...

  1. Service Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic...

  2. Other Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics See also: Equipment |...

  3. Buildings Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

  4. Buildings Interoperability Landscape | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interoperability Landscape Buildings Interoperability Landscape A vision is emerging of a connected world in which building equipment and systems coordinate with each other to efficiently meet their owners' and occupants' needs and buildings regularly transact business with other buildings and service providers (e.g., gas and electric service providers). While the technology to support this collaboration has been demonstrated at various degrees of maturity, the integration frameworks and

  5. Renewable Energy Applications for Existing Buildings: Preprint

    SciTech Connect (OSTI)

    Hayter, S. J.; Kandt, A.

    2011-08-01

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  6. Building Technologies Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BUILDING TECHNOLOGIES OFFICE FY 2017 BUDGET AT-A-GLANCE Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation's total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%-50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will continue to develop and demonstrate advanced building efficiency technologies

  7. NREL: Energy Analysis - Electric Infrastructure Systems Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Buildings Electric Infrastructure Systems Energy Sciences Geothermal Hydrogen and Fuel Cells Solar Vehicles and Fuels Research Wind Geospatial Analysis Key Activities ...

  8. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  9. Table B27. Cooking Energy Sources, Number of Buildings and Floorspace...

    U.S. Energy Information Administration (EIA) Indexed Site

    (more than one may apply)" ,,,"Electricity","Natural Gas","Propane",,,"Electricity","Natural Gas","Propane" "All Buildings ......",4657,857,437,505,118,67338,24681...

  10. Table B24. Cooling Energy Sources, Number of Buildings and Floorspace...

    U.S. Energy Information Administration (EIA) Indexed Site

    apply)" ,,,"Electricity","Natural Gas","District Chilled Water",,,"Electricity","Natural Gas","District Chilled Water" "All Buildings ......",4657,3560,3450,142,50,6733...

  11. Building Controls and Lighting Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation to State Energy Advisory Board (STEAB) February 22, 2011 Francis Rubinstein Lead, Lighting Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory fmrubinstein@lbl.gov Lawrence Berkeley National Laboratory U.S. Building End Use Energy Consumption Buildings consume 40% of Building
sector
has:
 total U.S. energy Largest
Energy
Use!
 * 71% of electricity *54% of natural gas No Single End Use Dominates Fastest
growth
rate!
 Lawrence

  12. Intelligent Buildings

    SciTech Connect (OSTI)

    Brambley, Michael R.; Armstrong, Peter R.; Kintner-Meyer, Michael CW; Pratt, Robert G.; Katipamula, Srinivas

    2001-01-01

    The topic of "intelligent buildings" (IBs) emerged in the early 1980s. Since, the term has been used to represent a variety of related, yet differing topics, each with a slightly different focus and purpose. Wiring and networking-infrastructure companies emphasize the cabling requirements for communication in intelligent buildings and the need to accommodate future needs for higher-speed broadband. Lucent (Lucent 2000) for example, defines an IB as "...one with a completely integrated wiring architecture. A single cabling system that handles all information traffic - voice, data, video, even the big building management systems."

  13. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and

  14. Making America's Buildings Better (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

  15. Jefferson Lab's Education Web Site Hits New High-Usage Record...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Site Hits New High-Usage Record Jefferson Lab's Education Web Site Hits New High-Usage Record April 22, 2002 Jefferson Lab's Science Education web site hit a new high in usage ...

  16. New Jersey SmartStart Buildings- New Construction and Retrofits

    Broader source: Energy.gov [DOE]

    New Jersey SmartStart Buildings is a program sponsored by the New Jersey Board of Public Utilities in partnership with New Jersey’s gas and electric utilities. New Jersey SmartStart Buildings rec...

  17. Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    page, please call 202-586-8800. There were enough buildings in the responding sample to report statistics for all of these types except for research and development, which has...

  18. Lodging Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    were then asked to place the building into the following more specific categories: a hotel a motel, inn, or resort a retirement home a shelter, orphanage, or children's home a...

  19. Building America Expert Meeting: Transforming Existing Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report ...

  20. Building America Webinar: Ventilation in Multifamily Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential ...

  1. Building America Webinar: High Performance Building Enclosures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: High Performance Building Enclosures: Part I, Existing Homes The webinar, presented on May 21, 2014, focused on specific Building America projects that ...

  2. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary report and ...

  3. BUILDING STRONG

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BUILDER NNSA Achieves Major Milestone in BUILDER Implementation WASHINGTON, D.C. - The Department of Energy's National Nuclear Security Administration (DOE/NNSA) achieved a major milestone in improving the management of the Nuclear Security Enterprise's infrastructure through the successful migration of all current information on building

    BUILDING STRONG ® Communications * Division and District Command level strategic involvement * Increased communication * Refined business processes *

  4. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving ...

  5. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Earl D Mattson; Larry Hull 02 PETROLEUM water water A system dynamic model was construction to...

  6. Team Middlebury On How to Create Buildings That Improve Communities...

    Energy Savers [EERE]

    Because of my upbringing in Brooklyn, NY, where electricity flows invisibly throughout apartment buildings and skyscrapers as opposed to solar panels or windmills, I didn't know ...

  7. We're Data Jammin': Building Interactive Educational Materials...

    Energy Savers [EERE]

    ... Open Energy Information (OpenEI) Buildings, Industry, Transportation and Electricity ... The Energy Data Jam Goes on Tour Applications powered by open energy data were on display ...

  8. Bill Robinson (Train2Build) | Open Energy Information

    Open Energy Info (EERE)

    Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  9. Photovoltaics for Buildings: New Applications and Lessons Learned: Preprint

    SciTech Connect (OSTI)

    Hayter, S.; Torcellini, P.; Deru, M.

    2002-07-01

    Photovoltaics (PV) for buildings system applications are experiencing exponential growth. This increased activity is the result of building owners becoming more confident with this new technology, designers becoming more comfortable incorporating PV into architectural and building electrical designs, decreasing PV system cost, the heightened public awareness of depleting conventional energy resources, and issues related to power reliability and stability. Usually, these systems meet primary objectives to offset building electrical loads, decrease building electrical demand, or provide continuous power supply during utility grid outages; but because of design flaws, installation errors, or improper maintenance, these systems can perform below the design expectations.

  10. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.