Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Construction and Building  

Science Conference Proceedings (OSTI)

... in building sector energy consumption by improving ... housing construction: improving energy efficiency and ... Reinforced Soil Bridge Pier Load Test ...

2000-03-07T23:59:59.000Z

2

Chapter 8: Constructing the Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: : Constructing the Building Developing a Construction Plan Writing Effective Construction Documents Safeguarding Design Goals During Construction Protecting the Site Low-Impact Construction Processes Protecting Indoor Air Quality Managing Construction Waste LANL | Chapter 8 Constructing the Building Developing a Construction Plan A high-performance design is a great achievement, but it doesn't mean much if the building isn't then built as intended. Getting from design to a completed project happens in two stages: 1) development of construction documents and 2) actual construction. To successfully implement a sustainable design, the construction docu- ments must accurately convey the specifics that deter- mine building performance, and they have to set up

3

Handbook of energy use for building construction  

Science Conference Proceedings (OSTI)

The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

1980-03-01T23:59:59.000Z

4

1999 Commercial Buildings Characteristics--Year Constructed  

U.S. Energy Information Administration (EIA) Indexed Site

Year Constructed Year Constructed Year Constructed More than one-third (37 percent) of the floorspace in commercial buildings was constructed since 1980 and more than one-half (55 percent) after 1969 (Figure 1). Less than one-third of floorspace was constructed before 1960. Detailed tables Figure 1. Distribution of Floorspace by Year Constructed, 1999 Figure 1. Distribution of Floorspace by Year Constructed, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Overall, relatively more buildings than floorspace were represented in the older age categories and more floorspace than buildings in the newer categories (see graphical comparison) because older buildings were smaller than more recently constructed buildings (Figure 2). Buildings constructed prior to 1960 were 11,700 square feet in size on average while those constructed after 1959 were 37 percent larger at 16,000 square feet per building.

5

Existing Commercial Reference Buildings Constructed Before 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 The files on this page contain commercial reference building models for existing buildings constructed before 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

6

Design & Construct New Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design & Construct New Buildings Design & Construct New Buildings Design & Construct New Buildings Photo of NREL's Research Support Facility under construction, with two workers straddling I-beams. Establishing and implementing aggressive energy performance goals during the design and construction of new commercial buildings is important to achieving those goals over the lifetime of the building. Energy efficiency measures can be applied in various stages of the design and construction process, including scoping and design, procurement, codes and standards compliance, construction and commissioning. Energy savings through these measures can be significant and will have lasting positive impacts on the overall energy use of the building. For example, using technologies and concepts such as radiant heating and cooling, precast concrete insulated

7

Perception of a building construction schedule  

Science Conference Proceedings (OSTI)

Evaluating a schedule means making a judgment about the schedule after thinking carefully about its duration, cost, and the probable quality of its deliverable product. Despite recent advances in 4D visualization, (i.e., 3D building geometry + time), ... Keywords: 4D visualization, building construction planning, decision support systems, perception model

Kais Samkari, Ralf Gnerlich, Volkhard Franz

2013-04-01T23:59:59.000Z

8

Construction of MDS self-dual codes over Galois rings  

Science Conference Proceedings (OSTI)

The purpose of this paper is to construct nontrivial MDS self-dual codes over Galois rings. We consider a building-up construction of self-dual codes over Galois rings as a GF(q)-analogue of (Kim and Lee, J Combin Theory ser A, 105:79---95). We ... Keywords: 13H99, 94B05, Galois ring, MDS code, Self-dual code

Jon-Lark Kim; Yoonjin Lee

2007-11-01T23:59:59.000Z

9

Step 4. Inspect the Building During and After Construction | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

4. Inspect the Building During and After Construction 4. Inspect the Building During and After Construction A number of website resources offer checklists to help officials organize the many energy-code-related areas to inspect on the construction site. Several examples of different checklists are listed below. When applicable and approved for use, REScheck and COMcheck inspection checklists should be provided as part of the energy code compliance documentation for the building. REScheck/COMcheck checklists. The REScheck and COMcheck software programs generate reports that list the energy-code-related items to be inspected. The lists include mandatory items such as air leakage control, duct insulation and sealing, temperature controls, and lighting requirements, and can be used by officials to assist during on-site

10

Property:Building/YearConstruction2 | Open Energy Information  

Open Energy Info (EERE)

YearConstruction2 YearConstruction2 Jump to: navigation, search This is a property of type Date. Year of construction 2 (Year of construction) Pages using the property "Building/YearConstruction2" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1921 + Sweden Building 05K0002 + 1999 + Sweden Building 05K0003 + 1960 + Sweden Building 05K0004 + 1914 + Sweden Building 05K0005 + 1940 + Sweden Building 05K0006 + 1995 + Sweden Building 05K0007 + 1900 + Sweden Building 05K0008 + 1997 + Sweden Building 05K0009 + 1980 + Sweden Building 05K0010 + 1777 + Sweden Building 05K0011 + 1995 + Sweden Building 05K0012 + 2000 + Sweden Building 05K0013 + 1850 + Sweden Building 05K0014 + 1650 + Sweden Building 05K0015 + 1878 + Sweden Building 05K0016 + 1700 +

11

Property:Building/YearConstruction | Open Energy Information  

Open Energy Info (EERE)

YearConstruction YearConstruction Jump to: navigation, search This is a property of type Date. Year of construction Pages using the property "Building/YearConstruction" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2003 + Sweden Building 05K0002 + 1999 + Sweden Building 05K0003 + 1960 + Sweden Building 05K0004 + 1914 + Sweden Building 05K0005 + 1940 + Sweden Building 05K0006 + 1995 + Sweden Building 05K0007 + 1900 + Sweden Building 05K0008 + 1997 + Sweden Building 05K0009 + 1980 + Sweden Building 05K0010 + 1777 + Sweden Building 05K0011 + 1995 + Sweden Building 05K0012 + 2000 + Sweden Building 05K0013 + 1850 + Sweden Building 05K0014 + 1650 + Sweden Building 05K0015 + 1878 + Sweden Building 05K0016 + 1700 + Sweden Building 05K0017 + 1987 +

12

Property:Building/YearConstruction1 | Open Energy Information  

Open Energy Info (EERE)

YearConstruction1 YearConstruction1 Jump to: navigation, search This is a property of type Date. Year of construction 1 (taxation year) Subproperties This property has the following 1 subproperty: S Sweden Building 05K0004 Pages using the property "Building/YearConstruction1" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2003 + Sweden Building 05K0002 + 27 June 2013 21:11:42 + Sweden Building 05K0003 + 27 June 2013 21:10:49 + Sweden Building 05K0005 + 27 June 2013 21:11:38 + Sweden Building 05K0006 + 1995 + Sweden Building 05K0007 + 1972 + Sweden Building 05K0008 + 1997 + Sweden Building 05K0009 + 1980 + Sweden Building 05K0010 + 2004 + Sweden Building 05K0011 + 1995 + Sweden Building 05K0012 + 2000 + Sweden Building 05K0013 + 1992 +

13

Some of the buildings constructed at Y-12  

NLE Websites -- All DOE Office Websites (Extended Search)

of the buildings constructed at Y-12 In researching the history of Y-12, I have found the following information on buildings constructed as a part of the Manhattan Project. There...

14

Anaheim Public Utilities - Green Building and New Construction Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - Green Building and New Construction Anaheim Public Utilities - Green Building and New Construction Rebate Program Anaheim Public Utilities - Green Building and New Construction Rebate Program < Back Eligibility Commercial Construction Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate Commercial Green Building: $75,000 Residential Green Building: $100,000 LEED Certification: $30,000 Green Building Rater Incentive: $6,000 Program Info State California Program Type Utility Rebate Program

15

Guide to Integrating Renewable Energy in Federal Construction: Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Design to someone by E-mail Building Design to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Building Design on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Building Design on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Building Design on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Building Design on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Building Design on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Building Design on AddThis.com... Home Introduction Assessing Renewable Energy Options Planning, Programming, & Budgeting Project Funding Building Design

16

Existing Commercial Reference Buildings Constructed In or After 1980 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed In or After Existing Commercial Reference Buildings Constructed In or After 1980 Existing Commercial Reference Buildings Constructed In or After 1980 The files on this page contain commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012. You can also view related resources: an archive of past reference buildings files

17

New Construction - Commercial Reference Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Construction - Commercial Reference Buildings New Construction - Commercial Reference Buildings New Construction - Commercial Reference Buildings The files on this page contain commercial reference building models for new construction, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These files are updated regularly and comply with ANSI/ASHRAE/IESNA Standard 90.1-2004. For more information about standards, visit the ASHRAE Web site. There are two versions of these files on this page. Version 1.3_5.0 was updated September 27, 2010 and Version 1.4_7.2 was updated November 13, 2012.

18

Existing Commercial Reference Buildings Constructed In or After 1980 -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed In or After Existing Commercial Reference Buildings Constructed In or After 1980 - Archive Existing Commercial Reference Buildings Constructed In or After 1980 - Archive Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. Archived Reference Buildings Building Type Version 1.2_4.0 updated 3/12/10 Large office (ZIP 2.3 MB) Medium office (ZIP 2.2 MB) Small office (ZIP 1.4 MB) Warehouse (ZIP 980 KB) Stand-alone retail (ZIP 2 MB) Strip mall (ZIP 2.3 MB) Primary school (ZIP 2.7 MB) Secondary school (ZIP 3.9 MB) Supermarket (ZIP 2.2 MB) Quick service restaurant (ZIP 1.1 MB)

19

Existing Commercial Reference Buildings Constructed Before 1980 - Archive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Commercial Reference Buildings Constructed Before 1980 - Existing Commercial Reference Buildings Constructed Before 1980 - Archive Existing Commercial Reference Buildings Constructed Before 1980 - Archive Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. Archived Reference Buildings Building Type Version 1.2_4.0 updated 3/12/10 Large office (ZIP 2.3 MB) Medium office (ZIP 2.2 MB) Small office (ZIP 1.4 MB) Warehouse (ZIP 980 KB) Stand-alone retail (ZIP 2 MB) Strip mall (ZIP 2.3 MB) Primary school (ZIP 2.7 MB) Secondary school (ZIP 3.9 MB) Supermarket (ZIP 2.2 MB) Quick service restaurant (ZIP 1.1 MB) Full service restaurant

20

Building Technologies Office: Perspectives on New Construction  

NLE Websites -- All DOE Office Websites (Extended Search)

on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Performance Building Standards in New State Construction  

Energy.gov (U.S. Department of Energy (DOE))

In January 2008, New Jersey enacted legislation mandating the use of high performance green building standards in new state construction. The standard requires that new buildings larger than 15...

22

UNIVERSITY OF CALIFORNIA (ALAMEDA COUNTY BUILDING AND CONSTRUCTION TRADES COUNCIL)  

E-Print Network (OSTI)

1 UNIVERSITY OF CALIFORNIA AND ACBCTC (ALAMEDA COUNTY BUILDING AND CONSTRUCTION TRADES COUNCIL, a corporation (hereinafter referred to as the "UNIVERSITY" or "MANAGEMENT"), and the Alameda County Building OPERATING ENGINEER LEADWORKER 8141 INSULATION WORKER 8142 MACHINIST LEADWORKER 8143 MACHINIST 8147

Walker, Matthew P.

23

Buildings*","Year Constructed"  

U.S. Energy Information Administration (EIA) Indexed Site

B8. Year Constructed, Number of Buildings for Non-Mall Buildings, 2003" B8. Year Constructed, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2003" "All Buildings* ...............",4645,330,527,562,579,731,707,876,334 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,174,315,331,298,350,438,481,165 "5,001 to 10,000 ..............",889,71,107,90,120,180,98,158,66 "10,001 to 25,000 .............",738,55,64,90,95,122,103,151,58 "25,001 to 50,000 .............",241,19,23,26,33,48,32,39,21

24

Table B8. Year Constructed, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

B8. Year Constructed, Number of Buildings, 1999" B8. Year Constructed, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999" "All Buildings ................",4657,419,499,763,665,774,846,690 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,227,270,359,321,367,413,390 "5,001 to 10,000 ..............",1110,107,102,240,166,193,156,145 "10,001 to 25,000 .............",708,63,90,97,84,130,179,65 "25,001 to 50,000 .............",257,13,20,39,53,44,43,44 "50,001 to 100,000 ............",145,7,9,19,24,26,33,27

25

EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Construction of Mixed Waste Storage RCRA Facilities, 0: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would take place at the U.S. Department of Energy's Oak Ridge National Laboratory in Oak Ridge, Tennessee. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 1994 EA-0820: Finding of No Significant Impact

26

Mechanical estimating guidebook for building construction  

SciTech Connect

Rapid and reliable techniques for estimating the cost of materials and labor are offered in the fifth edition of this handbook. It contains work-hour task times and performance data for hundreds of jobs compiled over years to testing and analysis. New sections are devoted to solar heating, energy management, computer estimating, fire control and sprinkler systems, and estimating life-cycle costs. Like its predecessors, the book also covers criteria for estimating, mechanical cooling and heating equipment, piping, ductwork, insulation, electrical wiring, and foundations and supports. Air distribution, tools and special equipment, tanks, pumps, instrumentation and controls, excavating and trenching, heat and air recovery, and antipollution filtration are also discussed.

Gladstone, J.

1987-01-01T23:59:59.000Z

27

Buildings","Year Constructed"  

U.S. Energy Information Administration (EIA) Indexed Site

B9. Year Constructed, Floorspace, 1999" B9. Year Constructed, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Year Constructed" ,,"1919 or Before","1920 to 1945","1946 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999" "All Buildings ................",67338,4034,6445,9127,10866,11840,13931,11094 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,655,798,1025,928,1056,1153,1159 "5,001 to 10,000 ..............",8238,791,776,1777,1165,1392,1150,1188 "10,001 to 25,000 .............",11153,972,1504,1488,1267,2045,2767,1110 "25,001 to 50,000 .............",9311,489,673,1343,1987,1587,1594,1638

28

Building Technologies Office: Design and Construct a New Energy-Efficient  

NLE Websites -- All DOE Office Websites (Extended Search)

Design and Construct a Design and Construct a New Energy-Efficient Commercial Building to someone by E-mail Share Building Technologies Office: Design and Construct a New Energy-Efficient Commercial Building on Facebook Tweet about Building Technologies Office: Design and Construct a New Energy-Efficient Commercial Building on Twitter Bookmark Building Technologies Office: Design and Construct a New Energy-Efficient Commercial Building on Google Bookmark Building Technologies Office: Design and Construct a New Energy-Efficient Commercial Building on Delicious Rank Building Technologies Office: Design and Construct a New Energy-Efficient Commercial Building on Digg Find More places to share Building Technologies Office: Design and Construct a New Energy-Efficient Commercial Building on AddThis.com...

29

Building Technologies Office: Design and Construct a New Energy-Efficient  

NLE Websites -- All DOE Office Websites (Extended Search)

Design and Construct a New Energy-Efficient Commercial Building Design and Construct a New Energy-Efficient Commercial Building Photo of NREL's Research Support Facility under construction, with two workers straddling I-beams. The National Renewable Energy Laboratory's Research Support Facility in an early stage of construction. Establishing and implementing aggressive energy performance goals during the design and construction of new commercial buildings is important to achieving those goals over the lifetime of the building. Energy efficiency measures can be applied in various stages of the design and construction process, including scoping and design, procurement, codes and standards compliance, construction and commissioning. Energy savings through these measures can be significant and will have lasting positive impacts on the overall energy use of the building. For example, using technologies and concepts such as radiant heating and cooling, precast concrete insulated panels, and an on-site solar energy system, NREL's Research Support Facility (RSF) is 50 percent more efficient than ASHRAE 90.1 2004 Standards.

30

Y-12 Sustainable Design Principles for Building Design and Construction  

Science Conference Proceedings (OSTI)

B&W Y-12 is committed to modernizing the Y-12 complex to meet future needs with a sustainable and responsive infrastructure and to integrating sustainability principles and practices into Y-12 work (Y72-001, B&W Y-12 Environmental, Safety and Health Policy). This commitment to sustainability and specifically sustainable design of buildings is also incorporated into Presidential Executive Orders (EO), DOE Orders (DOE O), and goals. Sustainable building design is an approach to design, construct, and operate facilities in an efficient and environmentally sound manner that will produce a healthful, resource-efficient and productive working environment that is inherently protective of the environment. The DOE has established the following 5 Guiding Principles for High Performance Sustainable Building (HPSB), and has issued directives that require Y-12 to incorporate the principles and a number of supporting specific practices and techniques into building design, construction and renovation projects: (1) Employ Integrated Design Principles; (2) Optimize Energy Performance; (3) Protect and Conserve Water; (4) Enhance Indoor Environmental Quality; and (5) Reduce Environmental Impact of Materials. The purpose of this document is to present the required sustainable building principles, practices and techniques, summarize the key drivers for incorporating them into Y-12 projects, and present additional recommendations and resources that can be used to support sustainable buildings to enhance the environmental and economic performance of the Y-12 Complex.

Jackson, J. G.

2008-11-01T23:59:59.000Z

31

New Jersey SmartStart Buildings - New Construction and Retrofits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » New Jersey SmartStart Buildings - New Construction and Retrofits New Jersey SmartStart Buildings - New Construction and Retrofits < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate General: incentives may be limited to $500,000 per utility account per year. Custom Measures: limited to lesser of $0.16/kWh or $1.60/therm saved annually; 50% of total costs; or buydown to a 1-year payback period Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund)

32

Building Energy Software Tools Directory: Construction R-value Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction R-value Calculator Construction R-value Calculator This online calculator calculates the R-value of a large number of common wall and roof constructions given a specified level of insulation. It uses the isothermal planes method to account for thermal bridging of framing material. Keywords R-value, thermal bridging Validation/Testing N/A Expertise Required Basic understanding of construction details is required. Users Approximately 15,000 web hits per month, mainly from New Zealand. Audience Designers and architects, researchers, officials dealing with building regulations Input The user selects the appropriate wall and roof design details from a number of drop-down boxes and enters the R-value of the installed insulation product. Output The program displays the R-value achieved by the wall or roof construction

33

High-Performance Sustainable Building Design for New Construction and Major  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Buildings & Campuses » Sustainable Buildings & Campuses » High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New Construction and Major Renovations October 4, 2013 - 4:52pm Addthis New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies along with other innovative strategies. Also see Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Performance-Based Design Build Typically, architects, engineers, and project managers consider the

34

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

4 2003 U.S. Private Investment into Construction R&D Sector Average Construction R&D (1) 1.2 Building Technology Heavy Construction 2.0 Appliances 2.0 Special Trade Construction...

35

Anaheim Public Utilities - Green Building and New Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maximum Rebate Commercial Green Building: 75,000 Residential Green Building: 100,000 LEED Certification: 30,000 Green Building Rater Incentive: 6,000 Program Info State...

36

Step 6. Construct the Building to Meet Plans and Specifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Resource Center...

37

Analysis of Building Envelope Construction in 2003 CBECS  

SciTech Connect

The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOEs Reference Buildings .

Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

2007-06-01T23:59:59.000Z

38

Soiling patterns on a tall limestone building: Changes over 60 years  

SciTech Connect

Soiling of limestone caused by air pollution has been studied at the Cathedral of Learning on the University of Pittsburgh campus. The Cathedral was constructed in the 1930s during a period of heavy pollution in Pittsburgh, PA. Archival photographs show that the building became soiled while it was still under construction. Reductions in air pollutant concentrations began in the late 1940s and 1950s and have continued to the present day. Concurrent with decreasing pollution, soiled areas of the stone have been slowly washed by rain, leaving a white, eroded surface. The patterns of white areas in archival photographs of the building are consistent with computer modeling of rain impingement showing greater wash off rates at higher elevations and on the corners of the building. Winds during the rainstorms are predominantly form the quadrant SW to NW at this location, and wind speeds as well as rain intensities are greater when winds are from this quadrant as compared with other quadrants; the sides of the building facing these directions are much less soiled than the opposing sides. Overall, these results suggest that rain washing of soiled areas on buildings occurs over a period of decades, in contrast to the process of soiling that occurs much more rapidly.

Davidson, C.I.; Tang, W.; Finger, S.; Etyemezian, V.; Striegel, M.F.; Sherwood, S.I.

2000-02-15T23:59:59.000Z

39

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

1 1 Estimated Value of All U.S. Construction Relative to the GDP ($2010) - 2007 estimated value of all U.S. construction was $1.82 trillion (including renovation; heavy construction; public works; residential, commercial, and industrial new construction; and non-contract work). - Compared to the $14.6 trillion 2007 U.S. gross domestic product (GDP), all construction held a 12.4% share. - In 2007, residential and commercial building renovation (valued at $496 billion) and new building construction (valued at $759 billion) was estimated to account for 69% (approximately $1.26 trillion) of the $1.81 trillion. Source(s): National Science and Technology Council, Construction & Building: Interagency Program for Technical Advancement in Construction and Building, 1999, p. 5;

40

Panel assemblage for housing : some form and construction explorations for small buildings  

E-Print Network (OSTI)

This thesis examines the consequences of building homes in a factory and explores viable construction alternatives using factory-made panels. The exploration considers panelized systems of dwelling construction and its ...

Borenstein, David Reed

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

8 8 Number of Construction Employees and Total Employees for Select Building Envolope Industries (Thousand Employees) Poured Concrete Foundation and Structure Contractors (NAICS 238110) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Masonry Contractors (NAICS 238140) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Roofing Contractors (NAICS 238160) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Drywall and Insulation Contractors (NAICS 238310) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Painting and Wall Covering Contractors (NAICS 238320) -Total Employment -Construction/Extraction Occupations

42

LES Analysis of the Aerodynamic Surface Properties for Turbulent Flows over Building Arrays with Various Geometries  

Science Conference Proceedings (OSTI)

This paper describes aerodynamic roughness properties for turbulent flows over various building arrays that represent realistic urban surface geometries. First, building morphological characteristics such as roughness density ?f and building ...

Hiromasa Nakayama; Tetsuya Takemi; Haruyasu Nagai

2011-08-01T23:59:59.000Z

43

Adaptive Construction Modelling Within Whole Building Dynamic Simulation  

E-Print Network (OSTI)

............................ vii List of Symbols .......................... ix Chapter 1: Introduction ....................... 1 1.1 The need for building energy simulation ............... 1 1.2 The evolution of building energy simulation tools ............ 2 1.3 The need for accurate building fabric modelling ............ 4 1.4 Objective and outline of the present work ............... 5 Chapter 2: Review of Heat and Moisture Transport within Building Materials ...... 8 2.1 Building energy simulation ................... 8 2.1.1 Heat conduction .................... 8 2.1.2 Mass diffusion .................... 16 2.2 Adaptive gridding ...................... 18 2.3 Thermophysical properties ................... 23 2.4 Combined heat and moisture transport ................ 27 2.4.1 Moisture transport in porous building materials .......... 29 2.4.2 Differential equations for combined heat and moisture transport ..... 33 Chapter 3: Adaptive Building Fabric Gridding ................ 37 3.1 Math...

Abdullatif Nakhi Degree; Abdullatif E. Nakhi; Wife Masoumah

1995-01-01T23:59:59.000Z

44

Building Energy Software Tools Directory: Construction R-value...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory...

45

Building Energy Software Tools Directory: Construction R-value...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory Printable Version Share this resource Home About the Directory Tools by Subject Tools Listed Alphabetically Tools by Platform PC...

46

Solar energy collector for mounting over windows of buildings for space heating thereof  

SciTech Connect

The ornamental design for a solar energy collector for mounting over windows of buildings for space heating thereof, as shown.

Arrington, P.M.

1982-09-07T23:59:59.000Z

47

EA-1107: Construction and Operation of a Office Building at the Stanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Construction and Operation of a Office Building at the 7: Construction and Operation of a Office Building at the Stanford Linear Accelerator Center, Berkeley, California EA-1107: Construction and Operation of a Office Building at the Stanford Linear Accelerator Center, Berkeley, California SUMMARY This EA evaluates the environmental impacts of the proposed project to modify existing Building 51B at the U.S. Department of Energy's Lawrence Berkeley National Laboratory to install and conduct experiments on a new Induction Linear Accelerator System. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 8, 1995 EA-1107: Finding of No Significant Impact Construction and Operation of a Office Building at the Stanford Linear Accelerator Center September 8, 1995 EA-1107: Final Environmental Assessment

48

Buildings Energy Data Book: 2.5 Residential Construction and...  

Buildings Energy Data Book (EERE)

New Privately Owned Housing Units Completed, 2010; and DOC, Manufacturing, Mining and Construction Statistics: Placements of New Manufactured Homes by Region and Size of Home...

49

Functional Suitability of BIM Tools in Pre-Construction, Construction and Post-Construction Phases of a Building Project  

Science Conference Proceedings (OSTI)

Managing building projects and communication of information between the stakeholders of the projects is getting collaborative and faster, with the availability of Building Information Modelling BIM software system. Numerous BIM systems are offered by ...

Vijaya Desai

2013-04-01T23:59:59.000Z

50

Buildings Energy Data Book: 2.5 Residential Construction and...  

Buildings Energy Data Book (EERE)

5 2010 Construction Method of Single-Family Homes, by Region (Thousand Units and Percent of Total Units) Region Total Northeast 49 10% 4 33% 2 18% 54 Midwest 76 16% 3 25% 2 18% 82...

51

New Construction Jobs Begin as Argonne Builds New Energy Research Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Jobs Begin as Argonne Builds New Energy Research Construction Jobs Begin as Argonne Builds New Energy Research Facility New Construction Jobs Begin as Argonne Builds New Energy Research Facility June 3, 2011 - 2:08pm Addthis Senator Richard Durbin, University of Chicago President Robert Zimmer, Secretary Chu, and Argonne Director Eric Isaacs break ground for the new Energy Sciences Building. | Photo Courtesy of Argonne National Laboratory Senator Richard Durbin, University of Chicago President Robert Zimmer, Secretary Chu, and Argonne Director Eric Isaacs break ground for the new Energy Sciences Building. | Photo Courtesy of Argonne National Laboratory Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs America has a long tradition of scientific inquiry and breakthroughs. And

52

Harris County- Green Building Tax Abatement for New Commercial Construction (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

In 2008, the Harris County Commissioners Court adopted guidelines for partial tax abatements for new construction of commercial LEED-certified buildings. The tax abatement was renewed in 2009, and...

53

The systems phenomenon in buildings and its application to construction specifications  

E-Print Network (OSTI)

This thesis proposes that the holistic quality of a building can be improved by modifying the way that it is represented in the specifications document. It develops a construction specifications format based on a substantive ...

Skendzel, Richard A. (Richard Adam)

1994-01-01T23:59:59.000Z

54

The construction industry is comprised of a wide range of businesses involved in engineering standards, building design, and the construction of various types of materials and  

E-Print Network (OSTI)

thermal characteristics of buildings for insulation purposes, and to determine heating, cooling in engineering standards, building design, and the construction of various types of materials and structures-related impacts, such as high winds and flooding, influence the choice of site construction, building techniques

55

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

9 9 Number of Construction Employees and Total Employees for Select Building Equipment Industries (Thousand Employees) Electrical Contractors and Other Wiring Installation Contractors (NAICS 238210) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Plumbing, Heating, and Air-Conditioning Contractors (NAICS 238220) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Other Building Equipment Contractors (NAICS 238290) -Total Employment -Construction/Extraction Occupations -Construction/Extraction % of Total Source(s): Bureau of Labor Statistics, Occupational Employment and Wage Estimates: 2002 OES Estimates for 2002 Data, November 2004 OES Estimates for 2004 Data, May 2006 Estimates for 2006 Data, May 2008 Estimates for 2008 Data, May 2010 Estimates for 2010 Data. Available at

56

An expert system for strategic control of accidents and insurers' risks in building construction projects  

Science Conference Proceedings (OSTI)

Building construction projects appear to have higher accident rates. Contractors procure workers' compensation insurance (WCI) to transfer these risks to insurance companies. The commitment of insurers under WCI is extremely broad; there are no exclusions ... Keywords: Buildings, Expert system, Fuzzy logic, Occupational health and safety, Singapore, Workers' compensation insurance

Kamardeen Imriyas

2009-03-01T23:59:59.000Z

57

The Use of BIM in Construction for Decision Making: A Case of Irregular-Shaped Steel-Framed Building Construction Project in South Korea  

E-Print Network (OSTI)

Building Information Modeling (BIM) is the comprehensive process of developing a computer model of a building project in the phases of designing, analyzing, building, managing, refurbishing and even demolishing the building. Applying BIM to public construction has become an obligation in South Korea. According to the Public Procurement Service in South Korea, the use of BIM has been compulsory on all government projects over $44M since 2012. Moreover, from 2013, the application of BIM will be expanded to all public construction projects over $27.6M. Finally, beginning in 2016, all public construction projects will be required to use BIM. Most research on BIM in South Korea has been focused on developing regulations and policies, application of BIM, solving technical problems, and searching for the value of BIM. However, the use of BIM in Korea during construction for decision-making has not been thoroughly reported in Korea yet. One may be wondering then if BIM is indeed well utilized in Korea during construction for practical decision-making. The objective of this research centers on investigating how a construction company in South Korea is using BIM for its decision making process during ongoing construction phases. For this investigation, a case study method was used. The construction operations on a jobsite in South Korea were monitored June to August in 2012. Field notes were taken to document the decision-making process and information used during field coordination meetings. A total of 36 cases were monitored and recorded. The use of BIM on field was then compared to the industry expectations indicated in the literature. Specifically, the use of BIM for scheduling, estimating, coordination, review of drawings, and tracking for change orders were carefully monitored and compared with the industry expectations as they were addressed in the literature. The results of this research study were mixed. That is, there are not only similarities, but also differences between BIMs role used for decision making at the construction site, and its expected role described in previous research. The similarities were regarded as minimizing reworking. This factor came to fruition at a construction site by minimizing error, omission in design phases, or congruence in design and construction tasks. These factors could have a positive effect on estimating and scheduling at a construction site. However, use of BIM at a construction site was still limited in reducing repetitive work when 2D drawings were not able to provide enough information to conduct construction. Additionally, even though this study was successful in revealing the connection between the decision making process and the application of BIM at a construction site, the results of the study may not be generalizable to the construction industry as a whole in South Korea. Therefore, further research is needed to ensure its applicability to other construction projects.

Yum, Sang Guk

2013-05-01T23:59:59.000Z

58

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

2 2 Value of New Building Construction Relative to GDP, by Year ($2010 Billion) Value of New Construction Put in Place Bldgs. Percent of Residential Commercial (1) All Bldgs. (1) GDP Total U.S. GDP 1980 5.0% 1985 5.8% 1990 4.9% 1995 4.4% 2000 5.2% 2005 6.0% 2006 5.9% 2007 5.2% 2008 4.4% 2009 3.3% 2010 2.6% Note(s): Source(s): 129.8 247.7 377.4 14,660 1) New buildings construction differs from Table 1.3.2 by excluding industrial building construction. DOC, Current Construction Reports: Value of New Construction Put in Place, C30, Aug. 2003, Table 1 for 1980-1990; DOC, Annual Value of Private Construction Put in Place, August 2008 for 1995-2000; DOC, Annual Value of Private Construction Put in Place, February 2012 for 2002-2010; DOC, Annual Value of Public Construction Put in Place, August 2008 for 1995-2000; DOC, Annual Value of Public Construction Put in Place, February 2012 for 2002-2010;

59

Green Building Performance Evaluation in the United States: Measured Results from LEED- New Construction Buildings  

E-Print Network (OSTI)

Is the Leadership in Energy and Environmental Design program (LEED) delivering actual energy savings? This study addresses that question with a post-occupancy assessment of 121 LEED buildings across the United State. Input to the study consisted of energy bills and brief descriptions of actual building use from owners, plus modeled energy usage information from the U.S. Green Buildings Councils (USGBC) LEED submittal files. The actual building performance was viewed through several whole-building metrics: energy use intensity (EUI) relative to national averages, Energy Star ratings, and energy use levels relative to the initial energy modeling (covered in more detail in Frankel, 2008). Two overall results emerged. First, across each of these varied measurements, LEED building performance averaged 25 30% better than the benchmark. However, there is also wide variation within the individual results, even for similar building activities and climate zones, suggesting potential for significant further improvements. This paper presents general EUI patterns, Energy Star ratings, and their relationship to LEED energy credits. The discussion also covers the study process and current challenges to such efforts.

Hewitt, D.; Turner, C.; Frankel, M.

2008-10-01T23:59:59.000Z

60

Renewable Energy Technologies for Designing and Constructing Low-Energy Commercial Buildings  

DOE Green Energy (OSTI)

The Thermal Test Facility (TTF) at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, was designed and constructed using a whole-building energy design approach. This approach treats a building as a single unit, not as a shell containing many separate systems. It relies on the use of energy simulation tools for optimization throughout the design process, and requires the involvement and commitment of the architect, engineer, and owner. It can produce a building that requires substantially less energy than a building designed and constructed with conventional means. TTF operating costs are 63% less than those of a code-compliant basecase building. These savings were achieved by implementing an approach that optimized passive solar technologies and integrated energy-efficient building systems. Passive solar technologies include daylighting, high-efficiency lighting systems, engineered overhangs, direct solar gains for heating, thermal mass building materials, managed glazing, and a good thermal envelope. The energy-efficient heating, ventilating, and air-conditioning (HVAC) system, designed to work with the building's passive solar technologies, includes ventilation air preheat, ceiling fans, indirect/direct evaporative cooling, and an automatic control system. This paper focuses on the design features of the TTF and the results of tests conducted on the TTF since its completion in 1996. These results demonstrate the success of the whole-building approach.

Torcellini, P. A.; Hayter, S. J.; Ketcham, M. S.; Judkoff, R.; Jenior, M. M.

1998-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Two-stage generalized simulated annealing for the construction of change-over designs  

Science Conference Proceedings (OSTI)

Kunert (1983) has found sufficient conditions for the optimal estimation of direct treatment effects from change-over designs. In this paper, a two-stage generalized simulated annealing algorithm uses these conditions to construct large change-over designs ...

Yuk W. Cheng; Deborah J. Street; William H. Wilson

2003-01-01T23:59:59.000Z

62

Energy Value Housing Award Guide: How to Build and Profit with Energy Efficiency in New Home Construction  

SciTech Connect

As concern over the environment grows, builders have the potential to fulfill a market niche by building homes that use fewer resources and have lower environmental impact than conventional construction. Builders can increase their marketability and customer satisfaction and, at the same time, reduce the environmental impact of their homes. However, it takes dedication to build environmentally sound homes along with a solid marketing approach to ensure that customers recognize the added value of energy and resource efficiency. This guide is intended for builders seeking suggestions on how to improve energy and resource efficiency in their new homes. It is a compilation of ideas and concepts for designing, building, and marketing energy- and resource-efficient homes based on the experience of recipients of the national Energy Value Housing Award (EVHA).

Sikora, J. L.

2001-06-01T23:59:59.000Z

63

Entrepreneurial Strategies and New Forms of Rationalisation of Production in the Building Construction Sector of Brazil and France  

E-Print Network (OSTI)

Construction Sector of Brazil and France Proceedings IGLC-7 369 ENTREPRENEURIAL STRATEGIES AND NEW FORMS OF RATIONALISATION OF PRODUCTION IN THE BUILDING CONSTRUCTION SECTOR OF BRAZIL AND FRANCE Francisco F. Cardoso1 in France and Brazil, in the light of strategies of the building construction firms. The above mentioned

Tommelein, Iris D.

64

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

7 7 Buildings Design and Construction Trades, by Year | | | 1980 | 1982 14.4 1990 | 1987 38.4 2000 (4) | 1992 36.3 2005 | 1997 46.6 2006 | 2002 95.4 2007 | 2007 52.4 2008 | 2009 | 2010 | Note(s): Source(s): 1) Does not include industrial building or heavy construction (e.g., dam and bridge building). In 1999, 76% of the employment shown is considered for "production." The entire U.S. construction industry employs an estimated 10 million people, including manufacturing. 2) In 2000, NAHB report having 200,000 members, one-third of which were builders. 3) Excludes homebuilding establishments without payrolls, estimated by NAHB at an additional 210,000 in 1992. 4) NAHB reports that 2,448 full-time jobs in construction and related industries are generated from the construction of every 1,000 single-family homes and 1,030 jobs are created from the construction of every 1,000 multi-

65

Construction of a Solid State Research Facility, Building 3150. Environmental Assessment  

SciTech Connect

The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration of the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems.

Not Available

1993-07-01T23:59:59.000Z

66

Investigation of the Accuracy of Calculation Methods for Conduction Transfer Functions of Building Construction  

E-Print Network (OSTI)

Conduction transfer functions (CTFs) are widely used to calculate conduction heat transfer in building cooling load and energy calculations. They can conveniently fit into any load and energy calculation techniques to perform conduction calculations. There are three methods: the Laplace transform (LP) method, the state-space (SS) method and the frequency-domain regression (FDR) method to calculate CTF coefficients. The limitation of methodology possibly results in imprecise or false CTF coefficients. This paper investigates the accuracy of the three methods applied to the material properties of a single-layer and a multilayer heavyweight building construction.

Chen, Y.; Li, X.; Zhang, Q.; Spitler, J.; Fisher, D.

2006-01-01T23:59:59.000Z

67

Insulation as a Part of the Building System If you are designing and constructing a house, a  

E-Print Network (OSTI)

Insulation as a Part of the Building System If you are designing and constructing a house, a whole as how to calculate the R-value of the insulation in relation to the other building components's design. A whole- house systems approach considers the interaction between you, your building site, your

68

Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction  

Science Conference Proceedings (OSTI)

The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB.

Garvin, L.J.

1997-04-28T23:59:59.000Z

69

Manhattan Project buildings and facilities at the Hanford Site: A construction history  

Science Conference Proceedings (OSTI)

This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

Gerber, M.S.

1993-09-01T23:59:59.000Z

70

Buildings Energy Data Book: 3.5 Commercial Builders and Construction  

Buildings Energy Data Book (EERE)

1 1 Value of New Commercial Building Construction, by Year ($2010 Billion) 1980 159.8 2.5% 1985 226.3 3.0% 1990 227.2 2.6% 1995 203.8 2.0% 2000 312.7 2.5% 2005 302.2 2.2% 2006 334.7 2.3% 2007 383.3 2.6% 2008 399.6 2.7% 2009 328.5 2.3% 2010 257.5 1.8% Source(s): 14,639 14,639 14,254 14,660 DOC, Current Construction Reports: Value of New Construction Put in Place, C30, Aug. 2003, Table 1 for 1980-1990; DOC, Annual Value of Private Construction Put in Place, Aug. 2008 for 1995-2000; DOC, Annual Value of Private Construction Put in Place, Aug. 2011 for 2002-2010; DOC, Annual Value of Public Construction Put in Place, Aug. 2008 for 1995-2000; DOC, Annual Value of Public Construction Put in Place, Aug. 2011 for 2002-2010; and EIA, Annual Energy Review 2010, Aug. 2011, Appendix D, p. 353 for GDP and price deflators.

71

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

8 8 2009 Sales Price and Construction Cost Breakdown of an Average New Single-Family Home ($2010) (1) Function Finished Lot 20% Construction Cost 59% Financing 2% Overhead & General Expenses 5% Marketing 1% Sales Commission 3% Profit 9% Total 100% Function Building Permit Fees 2% Impact Fees 1% Water and Sewer Inspection 2% Excavation, Foundation, & Backfill 7% Steel 1% Framing and Trusses 16% Sheathing 2% Windows 3% Exterior Doors 1% Interior Doors & Hardware 2% Stairs 1% Roof Shingles 4% Siding 6% Gutters & Downspouts 0% Plumbing 5% Electrical Wiring 4% Lighting Fixtures 1% HVAC 4% Insulation 2% Drywall 5% Painting 3% Cabinets, Countertops 6% Appliances 2% Tiles & Carpet 5% Trim Material 3% Landscaping & Sodding 3% Wood Deck/Patio 1% Asphalt Driveway 1% Other 9% Total 100% Note(s): Source(s): NAHB, Breaking Down House Price and Construction Costs, 2010, Table 1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

72

Kids at Camp Discovery Bond Over Building Electric Vehicle | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kids at Camp Discovery Bond Over Building Electric Vehicle Kids at Camp Discovery Bond Over Building Electric Vehicle Kids at Camp Discovery Bond Over Building Electric Vehicle August 13, 2010 - 11:30am Addthis Campers at Camp Discovery put the finishing touches on a newly assembled electric vehicle they built to learn more about EV technology while sharing their experiences with battling cancer. | Photo courtesy of Craig Egan Campers at Camp Discovery put the finishing touches on a newly assembled electric vehicle they built to learn more about EV technology while sharing their experiences with battling cancer. | Photo courtesy of Craig Egan Joshua DeLung Each year, about 150 kids gather during the summer at Camp Discovery in Kerrville, Texas, to learn new things and have fun. But this isn't an ordinary summer camp - the attendees, ages seven to 16, all have been

73

Kids at Camp Discovery Bond Over Building Electric Vehicle | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kids at Camp Discovery Bond Over Building Electric Vehicle Kids at Camp Discovery Bond Over Building Electric Vehicle Kids at Camp Discovery Bond Over Building Electric Vehicle August 13, 2010 - 11:30am Addthis Campers at Camp Discovery put the finishing touches on a newly assembled electric vehicle they built to learn more about EV technology while sharing their experiences with battling cancer. | Photo courtesy of Craig Egan Campers at Camp Discovery put the finishing touches on a newly assembled electric vehicle they built to learn more about EV technology while sharing their experiences with battling cancer. | Photo courtesy of Craig Egan Joshua DeLung Each year, about 150 kids gather during the summer at Camp Discovery in Kerrville, Texas, to learn new things and have fun. But this isn't an ordinary summer camp - the attendees, ages seven to 16, all have been

74

Over the energy edge: Results from a seven year new commercial buildings research and demonstration project  

SciTech Connect

Edge was a research oriented demonstration project that began in 1985. Twenty-eight commercial buildings were designed and constructed to use 30% less electricity than a hypothetical simulated baseline building. Average savings from the 18 buildings evaluated with post-occupancy, ``tuned`` simulation models were less, at 17%. The cost-effectiveness of the energy-efficiency measures at six of the 18 projects met the target cost-of-conserved (CCE) energy of 5.6cent/kWh for the total package of measures. The most important reason energy savings were not as great as predicted is that the actual, installed energy-efficiency measures and building characteristics changed from the design assumptions. The cost effectiveness of the measures would have been greater if the baseline was common practice rather than assumptions based on the regional building code. For example, the Energy Edge small offices use about 30% to 50% less energy than comparable new buildings. Savings also would have been greater if commissioning had been included within the program. Future projects should consider lower-cost ``hands-on`` evaluation techniques that provide direct feedback on measure performance based on functional and diagnostic testing, with annual check-ups to ensure persistence of savings.

Piette, M.A.; Nordman, B.; deBuen, O.; Diamond, R. [Lawrence Berkeley Lab., CA (United States); Codey, B. [Bonneville Power Administration, Portland, OR (United States)

1994-08-01T23:59:59.000Z

75

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

Construction Statistics of New Homes Completed/Placed Year Thousand Units Average SF Thousand Units Average SF 1980 234 1981 229 1982 234 1983 278 1984 288 1985 283 1986 256 1987 239 1988 224 1989 203 1990 195 1991 174 1992 212 1993 243 1994 291 1995 319 1996 338 1997 336 1998 374 1999 338 2000 281 2001 196 2002 174 2003 140 2004 124 2005 123 2006 112 2007 95 2008 81 2009 55 2010 50 Source(s): 496 2,392 155 1,172 701 DOC, 2010 Characteristics of New Housing, 2010, "Median and Average Square Feet of Floor Area in New Single-Family Houses Completed by Location", "Presence of Air-Conditioning in New Single Family Houses", "Number of Multifamily Units Completed by Number of Units Per Building", "Median and Average Square Feet of Floor Area in Units in New Multifamily Buildings Completed", "Placements of New Manufactured Homes by Region and Size of Home, 1980-

76

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

3 3 Value of Building Improvements and Repairs Relative to GDP, by Year ($2010 Billion) (1) GDP 1980 N.A. 1985 (2) 4.2% 1990 (3) 3.9% 1995 3.5% 2000 3.0% 2006 3.6% 2007 3.7% Note(s): Source(s): 235.7 259.8 495.5 13,354.9 1) Improvements includes additions, alterations, reconstruction, and major replacements. Repairs include maintenance. 2) 1986. 3) 1989. DOC, Expenditures for Residential Improvements and Repairs by Property Type, Quarterly, May 2005 for 1980-1990; DOC, Expenditures for Residential Improvements and Repairs by Property Type, Table S2, May 2008 for 1994-2007; DOC, Current Construction Reports: Expenditures for Nonresidential Improvements and Repairs: 1992, CSS/92, Sept. 1994, Table A, p. 2 for 1986-1990 expenditures; DOC, 1997 Census of Construction Industries: Industry

77

Thinking Like a Whole Building: A Whole Foods Market New Construction Case Study  

SciTech Connect

Whole Foods Market participates in the U.S. Department of Energy's Commercial Building Partnerships (CBP) to identify and develop cost-effective, readily deployed, replicable energy efficiency measures (EEMs) for commercial buildings. Whole Foods Market is working with the National Renewable Energy Laboratory (NREL) on a retrofit and a new construction CBP project. Whole Foods Market's CBP new construction project is a standalone store in Raleigh, North Carolina. Whole Foods Market examined the energy systems and the interactions between those systems in the design for the new Raleigh store. Based on this collaboration and preliminary energy modeling, Whole Foods Market and NREL identified a number of cost-effective EEMs that can be readily deployed in other Whole Foods Market stores and in other U.S. supermarkets. If the actual savings in the Raleigh store - which NREL will monitor and verify - match the modeling results, each year this store will save nearly $100,000 in operating costs (Raleigh's rates are about $0.06/kWh for electricity and $0.83/therm for natural gas). The store will also use 41% less energy than a Standard 90.1-compliant store and avoid about 3.7 million pounds of carbon dioxide emissions.

Deru, M.; Bonnema, E.; Doebber, I.; Hirsch, A.; McIntyre, M.; Scheib, J.

2011-04-01T23:59:59.000Z

78

Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction  

SciTech Connect

The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

Ostowari, Ken; Nosson, Ali

2000-09-30T23:59:59.000Z

79

Buildings Energy Data Book: 3.5 Commercial Builders and Construction  

Buildings Energy Data Book (EERE)

2 2 Value of Building Improvements and Repairs, by Sector ($2009 Billion) (1) Total 1980 N.A. N.A. 1985 140.2 (2) 2.0% 1990 142.3 (3) 1.8% 1995 150.9 1.6% 2000 200.0 1.8% 2003 167.3 1.4% 2004 169.1 1.4% 2005 177.2 1.4% 2006 198.2 1.5% 2007 239.0 1.8% 2008 258.3 1.9% 2009 214.5 1.6% 2010 162.4 1.2% Note(s): Source(s): 163.9 50.6 124.1 38.3 1) Improvements includes additions, alterations, reconstruction, and major replacements. Repairs include maintenance. 2) Data is from 1986. 3) Data is from 1989. DOC, Current Construction Reports: Expenditures for Nonresidential Improvements and Repairs: 1992, CSS/92, Sept. 1994, Table A, p. 2 for 1986-1990 expenditures; DOC, 1997 Census of Construction Industries: Industry Summary, Jan. 2000, Table 7, p. 15; DOC, Annual Value of Private Construction Put in

80

Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cladding Attachment Over Thick Cladding Attachment Over Thick Exterior Insulating Sheathing Project InformatIon: Project name: Cladding Attachment Over Thick Exterior Insulating Sheathing Partners: Building Science Corporation www.buildingscience.com The Dow Chemical Company www.dow.com James Hardie Building Products www.jameshardie.com Building component: Building envelope component application: New and/or retrofit; Single and/or multifamily Year research conducted: 2011 through 2012 applicable climate Zone(s): All The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities  

E-Print Network (OSTI)

and technologies." Energy and Buildings 35(2): 129-137.and Technologies. Energy and Buildings 35. pp. 129-137.design implications. Energy and Buildings Petersen, A. K. ,

Stadel, Alexander

2013-01-01T23:59:59.000Z

82

Operational, aesthetic, and construction process performance for innovative passive and active solar building components for residential buildings  

E-Print Network (OSTI)

A system-based framework creates the ability to integrate operational, aesthetic, and construction process performance. The framework can be used to evaluate innovations within residential construction. By reducing the ...

Settlemyre, Kevin (Kevin Franklin), 1971-

2000-01-01T23:59:59.000Z

83

Energy Performance Evaluation and Development of Control Strategies for the Air-conditioning System of a Building at Construction Stage  

E-Print Network (OSTI)

Energy consumption of HVAC systems in commercial buildings takes a great part of the total building energy consumption. Energy performance evaluation plays an important role in building energy efficiency improvement for existing buildings and new buildings. It is also the basis for the retrofitting measure evaluation for existing buildings and the control improvement evaluation of new buildings for building energy performance contracts. In this study, the energy performance evaluation of a super high-rising commercial office building in construction is presented. Alternative control strategies are proposed to improve the energy efficiency based on the current measurements of the original design as well as additional metering instruments as requested. These control strategies mainly involve optimal chiller sequencing control, cooling tower sequencing control, optimal water pressure differential set-point control, AHU supply air static pressure reset control and DCV-based fresh air control, etc. To assess the economic feasibility, the benchmark electricity consumption and the optimal electricity consumption using alternative controls strategies are estimated using dynamic simulations. The results show that the electricity savings using the alternative control strategies can cover the costs of an additional metering system and related software and hardware in about one year.

Wang, S.; Xu, X.; Ma, Z.

2006-01-01T23:59:59.000Z

84

Evaluation of Potential Human Health Inhalation Risks from Mercury in Building and Construction Materials Containing Coal Combustion Products  

Science Conference Proceedings (OSTI)

Concerns have been raised regarding the potential public health risks from mercury that is associated with the use of coal combustion products in building materials and construction applications. This report presents the results of a risk assessment that evaluated mercury inhalation under several exposure scenarios, including concrete and wallboard in residential and classroom settings.

2009-08-20T23:59:59.000Z

85

Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes  

Science Conference Proceedings (OSTI)

This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

1994-07-01T23:59:59.000Z

86

CDM as a Solution for the Present World Energy Problems (An Overview with Respect to the Building and Construction Sector)  

E-Print Network (OSTI)

One of the important responses of Kyoto Protocol towards mitigation of global warming is the Clean Development Mechanism (CDM), which has garnered large emphasis amidst the global carbon market in terms of Certified Emission Reductions (CERs). While CDM aims to achieve sustainable development in the energy production and its consumption in developing countries, the results achieved through its implementation are still uncertain. Presently, the domestic and commercial buildings are responsible for more than one third of the total conventional energy use and associated greenhouse gas emissions. The Inter-governmental Panel on Climate Change (IPCC) stated that, the building sector has the largest potential for significantly reducing greenhouse gas emissions. This paper envisages the important aspects such as, the non-inclusion of construction sector projects in CDM and its reasons, the role of energy efficiency buildings in the energy conservation arena and the new challenges being faced, while implementing the CDM portfolio in building energy sector.

Sudarsan, N.; Jayaraj, S.; Sreekanth, K. J.

2010-01-01T23:59:59.000Z

87

A whole building demonstration of re-cover over an existing wet roof  

SciTech Connect

Roof re-cover, the practice of installing a new roof over an existing failed roof, has become commonplace. The 1994 National Roofing Contractors Annual Roofing Survey reported that approximately 33% of current reroofing activity is re-cover. Market trends suggest that re-cover will become an increasingly more popular option. Moisture in the failed roof complicates the decision whether or not to re-cover and how to do the recover if that is the decision. If the root to be re-covered contains moisture that will not be removed during reroofing, this moisture must be able to escape from the roof system. Otherwise, moisture entrapped in the roofing system may eventually lead to the mechanical failure of fasteners and the roof deck, especially if it is metal. In 1991, the Oak Ridge National Laboratory (ORNL) surveyed its own roofing inventory and found that 164 buildings or 70% of the laboratory roof area needed reroofing. Because of the high cost of tear off and replacement, an alterative was sought. This paper describes the procedure employed to determine the suitability of a particular roof system on a laboratory building for re-covering. The procedure involves the use of field diagnostics, laboratory experiments and numerical simulations that demonstrate that the particular roof type can be re-covered. Furthermore, the building and roof system have been monitored for approximately 16 months after re-cover. The monitoring results are compared to the numerical simulations and demonstrate that the roof system is drying and that the reroofing strategy that they used is cost-effective.

Desjarlais, A.O.; Petrie, T.W.; Christian, J.E.; McLain, H.A.; Childs, P.W. [Oak Ridge National Lab., TN (United States). Energy Div.

1995-12-31T23:59:59.000Z

88

Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities  

E-Print Network (OSTI)

2002). Energy use and carbon dioxide emissions from steel1994). "Energy and carbon dioxide implications of buildingPingoud, R. Sathre (2006b). "Carbon dioxide balance of wood

Stadel, Alexander

2013-01-01T23:59:59.000Z

89

Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House  

DOE Green Energy (OSTI)

The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

Balcomb, J. D.; Hancock, C. E.; Barker, G.

1999-06-23T23:59:59.000Z

90

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

6 6 FY2003-2005 Green Building R&D, as Share of Federal Budget and by Organization Budget Function National Defense 57.2% | DOE Health 23.1% | EPA Other energy, general science, | NSF natural resources, and environment 8.0% | PIER (1) Space research and technology 6.3% | DOC-NIST Transportation 1.5% | NYSERDA Agriculture 1.5% | HUD Veterans' benefits and services research 0.7% | GSA Green building 0.2% | ASHRAE Other functions (2) 1.6% Total 100% Note(s): Source(s): 3,000 2,400 1) PIER = Public Interest Energy Research. 2) Includes education, training, employment, and social services; income security; and commerce. U.S. Green Building Council, Green Building Research Funding: An Assessment of Current Activity in the United States, 2006, Chart 1, p. 3, Chart 2, p. 3. 25,317 22,940 11,100 7,500

91

Low energy architecture in the tropics: from design to building construction  

E-Print Network (OSTI)

This paper presents a realization of passive construction in Reunion, French Department in the Indian Ocean (southern hemisphere) submitted to a wet tropical climate. Aspects of passive construction were integrated at the design stage and this house does not present additional costs towards classical ones. This project was awarded a prize for architecture climate.

Harry Boyer; Frdric Miranville; Franois Payet

2012-12-23T23:59:59.000Z

92

Low energy architecture in the tropics: from design to building construction  

E-Print Network (OSTI)

This paper presents a realization of passive construction in Reunion, French Department in the Indian Ocean (southern hemisphere) submitted to a wet tropical climate. Aspects of passive construction were integrated at the design stage and this house does not present additional costs towards classical ones. This project was awarded a prize for architecture climate.

Boyer, Harry; Payet, Franois

2012-01-01T23:59:59.000Z

93

Thinking Like a Whole Building: Whole Foods Market New Construction Summary, U.S. Department of Energy's Commercial Building Partnerships (Fact Sheet)  

SciTech Connect

Whole Foods Market participates in the U.S. Department of Energy's Commercial Building Partnerships (CBP) to identify and develop cost-effective, readily deployed, replicable energy efficiency measures (EEMs) for commercial buildings. Whole Foods Market is working with the National Renewable Energy Laboratory (NREL) on a retrofit and a new construction CBP project. Whole Foods Market's CBP new construction project is a standalone store in Raleigh, North Carolina. Whole Foods Market examined the energy systems and the interactions between those systems in the design for the new Raleigh store. Based on this collaboration and preliminary energy modeling, Whole Foods Market and NREL identified a number of cost-effective EEMs that can be readily deployed in other Whole Foods Market stores and in other U.S. supermarkets. If the actual savings in the Raleigh store - which NREL will monitor and verify - match the modeling results, each year this store will save nearly $100,000 in operating costs (Raleigh's rates are about $0.06/kWh for electricity and $0.83/therm for natural gas). The store will also use 41% less energy than a Standard 90.1-compliant store and avoid about 3.7 million pounds of carbon dioxide emissions.

Not Available

2011-04-01T23:59:59.000Z

94

Giving the head a hand : constructing a microworld to build relationships with ideas in balance control  

E-Print Network (OSTI)

The major promise of computational technology for learning is in making discovery and acquisition of knowledge accessible to a wider range of people. The protean expressive and constructive nature of computational technology ...

Sipitakiat, Arnan, 1974-

2007-01-01T23:59:59.000Z

95

Building information : means and methods of communication in design and construction  

E-Print Network (OSTI)

Architects are trained and practiced in the means and methods of design. These are distinct from the physical means and methods of construction, which have traditionally been in the hands of contractors. The successful ...

Lobel, Joshua M

2008-01-01T23:59:59.000Z

96

Buildings Energy Data Book: 1.3 Value of Construction and Research  

Buildings Energy Data Book (EERE)

2010, Volume 1, Jan. 2010, Appendix Table 4-53. Construction Electricity, Gas, and Water Percent of Private R&D Percent of Private R&D to Total Private R&D to Total Private...

97

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

98

Evaluating Utility Executives' Perceptions of Smart Grid Costs, Benefits and Adoption Plans To Assess Impacts on Building Design and Construction  

E-Print Network (OSTI)

Smart Grid technology is likely to be implemented in various magnitudes across utilities in the near future. To accommodate these technologies significant changes will have to be incorporated in building design construction and planning. This research paper attempts to evaluate public utility executives plans to adopt smart grid technologies and to assess timing of smart grid impacts on future design and construction practices. Telephone survey was the data collection method used to collect information from executives at cooperative and municipal utilities. The study focuses on small and medium utilities with more than five thousand customers and fewer than one hundred thousand customers. A stratified random sampling approach was applied and sample results for fifty-nine survey responses were used to predict the timing of smart grid implementation and the timing of smart grid impacts on future design and construction practices. Results of this research indicate that design and construction professionals should already be developing knowledge and experience to accommodate smart grid impacts on the built environment.

Rao, Ameya Vinayak

2010-08-01T23:59:59.000Z

99

Modeling attic humidity as a function of weather, building construction, and ventilation rates  

Science Conference Proceedings (OSTI)

A dynamic model for predicting attic relative humidity (RH) and roof-sheathing moisture content (MC) was developed for microcomputer application. The model accepts standard hourly weather data and building-design parameters as input. Model predictions gave good agreement with measured data from a house located in Madison, Wisconsin. Solar radiation varies with roof orientation and plays an important role in determining moisture transfer to and from the roof sheathing. Opposing roof surfaces must be differentiated in attic humidity models to account for the effect of solar radiation. The model described in this paper is capable of such differentiation. Snow accumulation on a roof can significantly alter the temperature and moisture conditions in an attic, but further research is needed to understand the effect of a snow layer on attic temperatures. Various scenarios were simulated with this model to determine the effect of building practice and ventilation strategies on roof sheathing MC. Direct control of RH in the living space by ventilation is very effective in lowering attic moisture conditions. Where natural ventilation is not adequate, a timer-controlled attic fan shows great promise for ensuring efficient and economical attic ventilation.

Gorman, T.M.

1987-01-01T23:59:59.000Z

100

Influence of Project Type and Procurement Method on Rework Costs in Building Construction Projects  

E-Print Network (OSTI)

Abstract: While it is widely recognized that additional costs due to rework can have an adverse effect on project performance, limited empirical research has been done to investigate the influencing factors. The research presented in this paper aims to determine the influence of different project types and procurement methods on rework costs in construction projects. Using a questionnaire survey, rework costs were obtained from 161 Australian construction projects. The direct and indirect consequences of rework are analyzed and discussed. It is shown that, contrary to expectation, rework costs do not differ relative to project type or procurement method. In addition, it was found rework contributed to 52 % of a projects cost growth and that 26 % of the variance in cost growth was attributable to changes due to direct rework. To reduce rework costs and therefore improve project performance, it is posited that construction organizations begin to consider and measure them, so that an understanding of their magnitude can be captured, root causes identified, and effective prevention strategies implemented.

Peter E. D. Love

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Finding of No Significant Impact/Construction of a New Office Building, Child-Care Facility, Parking Garage, and Storm-Water Retention Pond  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEW OFFICE BUILDING, CHILD-CARE FACILITY, PARKING GARAGE, NEW OFFICE BUILDING, CHILD-CARE FACILITY, PARKING GARAGE, AND STORM- WATER RETENTION POND AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FaNS I) SUMMARY: The DOE has prepared an Environmental Assessment (EA), DOE/EA-1444, to analyze the potential environmental consequences of a major facilities construction effort at the Morgantown, West Virginia, campus of the National Energy Technology Laboratory (NETL). Within the existing NETL site, the DOE would construct a new 3-story office building with 48,000 ft2 of usable office space, sufficient to accommodate approximately 135 employees. Existing parking space lost to the proposed new office building would be replaced by construction of a 3-level parking garage plus the addition of one or more new paved parking areas. Several

102

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

7 7 Materials Used in the Construction of a 2,272 Square-Foot Single-Family Home 13,837 board-feet of lumber 12 interior doors 13,118 square feet of sheathing 6 closet doors 19 tons of concrete 2 garage doors 3,206 square feet of exterior siding material 1 fireplace 3,103 square feet of roofing material 3 toilets, 2 bathtubs, 1 shower stall 3,061 square feet of insulation 3 bathroom sinks 6,050 square feet of interior wall material 15 kitchen cabinets, 5 other cabinets 2,335 square feet of interior ceiling material 1 kitchen sink 226 linear feet of ducting 1 range, 1 refrigerator, 1 dishwasher, 1 garbage disposal, 1 range hood 19 windows 1 washer, 1 dryer 4 exterior doors (3 hinged, 1 sliding) 1 heating and cooling system 2,269 square feet of flooring material Source(s):

103

Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-tracable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

2006-05-23T23:59:59.000Z

104

Calculation of Nox Emissions Reductions from Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-traceable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J.; Culp, C.; Gilman, D.; Baltazar-Cervantes, J. C.; Yazdani, B.; Fitzpatrick, T.; Muns, S.; Verdict, M.

2004-01-01T23:59:59.000Z

105

1999 Commercial Buildings Characteristics--Trends in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace The addition of commercial buildings and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty years of CBECS. Each year more buildings are added to the sector (new construction or conversion of pre-existing buildings to commercial activity) than are removed (demolition or conversion to non-commercial activity). The definition for the commercial buildings population was changed for the 1995 CBECS which resulted in a slightly smaller buildings population and accounts for the data break in both Figures 1 and 2 (see report "Trends in the Commercial Buildings Sector" for complete details). Figure 1. Total Commercial Buildings, 1979 to 1999

106

A Case Study of the Use of BIM and Construction Operations Building Information Exchange (COBie) for Facility Management  

E-Print Network (OSTI)

This study investigates the use of Building Information Modeling (BIM) and COBie for Facility Management on three projects where these concepts were used. Factors which affect these concepts are identified through a literature review. The study is divided into the sections of Responsibility for database formulation, Characteristics of database, Technology and Effect on work order response times. A qualitative analysis is conducted to study the application of these concepts and identify any problems encountered. A case study is conducted on three projects where BIM and COBie were used for facility management. It is found that though the database generated by using these concepts is useful for preventive maintenance, the data gathering and formulation process needs to be started during the design and construction phase to make use of BIM for facility management functions like space allocation, 3D mapping, building automation etc. This study can be used as a reference for further research based on quantitative analysis of the factors studied in the case study.

Jawadekar, Salil

2012-08-01T23:59:59.000Z

107

Design and Construction of a Guarded Hot Box Facility for Evaluating the Thermal Performance of Building Wall Materials  

E-Print Network (OSTI)

The focus of this study was to design and build a guarded hot box to test the R-Value of building materials. The Riverside Energy Efficiency Laboratory is looking to expand their testing capabilities by including this service. Eventually, the laboratory will become energy star certified. A guarded hot box facility consists of two boxes maintained at specific temperatures and a guard box around each one that is maintained at the same temperature as the box it surrounds. The ASTM C1363 standard was used as guide for the construction and testing of sample specimen. This standard called for an air velocity profile uniform within 10 percent of the average. Velocity tests were performed with various different configurations to give a uniform velocity. Although the velocity did not meet standards, the configuration chosen included a piece of 1/4" pegboard placed 2" away from the top and the bottom of the inner box. By using the known overall heat added and removed from the system, as well as all the heat losses the heat transferred through the specimen and its R-Value can be calculated. The uncertainty of the R-Value and the accuracy of the testing facility gave conflicting results. Future experiments will use improved testing methods that include differential thermocouples to obtain better uncertainty for the R-Value calculations.

Mero, Claire Renee

2012-05-01T23:59:59.000Z

108

Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benchmarks Benchmarks New Construction Energy Use Intensities (EUIs) [kBtu/ft 2 /yr] May 5, 2009 Miami Houston Phoenix Atlanta Los Angeles Las Vegas San Francisco Baltimore Albuquerque Seattle Chicago Denver Minneapolis Helena Duluth Fairbanks 2003 CBECS Avg. Climate Zone 1A 2A 2B 3A 3B 3B 3C 4A 4B 4C 5A 5B 6A 6B 7 8 Large Office 39 42 40 39 32 40 34 43 39 37 43 38 47 44 49 62 99 Medium Office 38 44 42 44 35 41 40 51 43 46 53 47 59 54 62 82 94 Small Office 46 48 49 46 36 44 38 53 47 47 61 52 70 62 77 110 80 Warehouse 15 15 15 16 14 16 14 18 17 16 21 20 26 23 27 43 48 Stand-alone Retail 48 46 46 41 34 41 35 45 42 40 48 45 54 51 61 88 70 Strip Mall 46 44 44 44 35 43 38 48 45 42 51 47 60 55 66 99 110 Primary School 65 71 69 69 57 65 71 78 68 65 85 74 99 88 107 147 68 Secondary School 69 74 74 73 50 68 67 87 72 72 99 81 117 101 128 181 80 Supermarket 161 171 161 175 155 162 171 191 174 186 206 188 224 209 240

109

Solar Design Standards for State Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Design Standards for State Buildings Solar Design Standards for State Buildings Solar Design Standards for State Buildings < Back Eligibility Construction Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Program Info State Arizona Program Type Energy Standards for Public Buildings Provider Arizona Department of Commerce Arizona law requires that new state building projects over six thousand square feet follow prescribed solar design standards. Solar improvements should be evaluated on the basis of life cycle costs. Affected buildings include buildings designed and constructed by the department of

110

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

2 2 2010 Five Largest Residential Homebuilders Homebuilder PulteGroup 5.3% D.R. Horton 5.9% NVR 3.1% Lennar Corporation 3.4% KB Home 2.3% Top Five Total 19.9% Habitat for Humanity (3) 0.1% Note(s): Source(s): 6,032 402 1) 2010 total U.S. new home closings were 323,000 (only single-family). 2) Total share of closings of top 20 builders was 35%. Total share of the top 100 builders was 54%. 3) Habitat for Humanity built more than 400 homes during the week of May 31, 2007; Habitat for Humanity has built over 1,000 homes in the New Orleans area since Hurricane Katrina. Habitat for Humanity's 2,100 worldwide affiliates have completed more than 200,000 homes since 1976, providing more than 1,000,000 with housing. Housing Giants Magazine, May 2011, Professional Builder's 2011 Housing Giants Rankings.

111

DOE/EA-1444: Environmental Assessment for the Construction of New Office Building, Child-Care Facility, Parking Garage, And Storm Water Retention Pond (September 2002)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 ENVIRONMENTAL ASSESSMENT For the Construction of New Office Building, Child-Care Facility, Parking Garage, And Storm Water Retention Pond United States Department of Energy National Energy Technology Laboratory September 2002 DOE/EA-1444 ENVIRONMENTAL ASSESSMENT For the Construction of New Office Building, Child-Care Facility, Parking Garage, And Storm Water Retention Pond United States Department of Energy National Energy Technology Laboratory September 2002 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes to upgrade facilities and infrastructure at the National Energy Technology Laboratory (NETL), Morgantown, WV, through acquisition of a 5-acre

112

Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Firre Protection System Design  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1

113

Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Firre Protection System Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Review of the Savannah River Site, Waste Solidification Building, Construction Quality of Mechanical Systems Installation and Selected Aspects of Fire Protection System Design Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1

114

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Planning for Construction and Building R&D. National Planning for Construction and Building R&D. (576 K) Wright ...

115

Commercial Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and...

116

Buildings*","Year Constructed"  

U.S. Energy Information Administration (EIA) Indexed Site

"District Heat ...",5166,"Q",1203,661,786,573,780,691,"Q" "Boilers ...",20423,1926,2744,3081,2957,3339,2803,2257,1316 "Packaged...

117

Santa Clara County - Green Building Policy for County Government Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Policy for County Government Green Building Policy for County Government Buildings Santa Clara County - Green Building Policy for County Government Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Santa Clara County Executive's Office In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009. All new buildings over 5,000 square feet are required to meet LEED Silver

118

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

119

A study of building procurement process as a potential tool to enhance safety practice in the construction industry.  

E-Print Network (OSTI)

??Building procurement involves many different parties and resources. It is very common that requires project participants involved to work within budget, on time and according (more)

Sulaiman, K

2008-01-01T23:59:59.000Z

120

Energy Efficiency and Sustainable Construction Standards for Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency and Sustainable Construction Standards for Public Energy Efficiency and Sustainable Construction Standards for Public Buildings Energy Efficiency and Sustainable Construction Standards for Public Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Georgia Program Type Energy Standards for Public Buildings Provider Georgia Environmental Finance Authority Senate Bill 130 of 2008 established energy efficiency goals for new state building projects. All major facility projects over 10,000 square feet should strive to exceed the efficiency standards of ASHRAE 90.1.2004 by 30% where it is determined that such 30% efficiency is cost effective based on

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California  

Science Conference Proceedings (OSTI)

This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

NONE

1995-04-01T23:59:59.000Z

122

Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIAR SRS-2013-5-07 HIAR SRS-2013-5-07 Site: Savannah River Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Savannah River Site (SRS) Waste Solidification Building (WSB) Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design Dates of Activity : 05/07/2013 - 05/09/2013 Report Preparer: Joseph Lenahan Activity Description/Purpose: 1. Review the corrective actions being implemented by the construction contractor to address Findings 1-4, 6, and 9 from a construction quality review performed by the Office of Health, Safety and Security (HSS) (Reference 1). 2. Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the

123

Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design, May 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HIAR SRS-2013-5-07 HIAR SRS-2013-5-07 Site: Savannah River Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Savannah River Site (SRS) Waste Solidification Building (WSB) Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design Dates of Activity : 05/07/2013 - 05/09/2013 Report Preparer: Joseph Lenahan Activity Description/Purpose: 1. Review the corrective actions being implemented by the construction contractor to address Findings 1-4, 6, and 9 from a construction quality review performed by the Office of Health, Safety and Security (HSS) (Reference 1). 2. Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the

124

Solar Ready Buildings Planning Guide  

SciTech Connect

This guide offers a checklist for building design and construction to enable installation of solar photovoltaic and heating systems at some time after the building is constructed.

Lisell, L.; Tetreault, T.; Watson, A.

2009-12-01T23:59:59.000Z

125

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

126

Eagle County - Eagle County Efficient Building Code (ECO-Green Build) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eagle County - Eagle County Efficient Building Code (ECO-Green Eagle County - Eagle County Efficient Building Code (ECO-Green Build) Eagle County - Eagle County Efficient Building Code (ECO-Green Build) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Colorado Program Type Building Energy Code Provider Eagle County In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction and renovations/additions over 50% of the existing floor area of single-family and multifamily residences, and commercial buildings.

127

Construction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Construction Construction In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. Learn more about the Better Buildings Neighborhood Program. In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. Learn more about the Better Buildings Neighborhood Program. Learn about the energy-efficient construction projects that are saving businesses and communities money while creating jobs.

128

Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago  

SciTech Connect

This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

Neuhauser, K.

2013-08-01T23:59:59.000Z

129

Affine buildings for dihedral groups  

E-Print Network (OSTI)

We construct rank 2 thick nondiscrete affine buildings associated with an arbitrary finite dihedral group.

Berenstein, Arkady

2008-01-01T23:59:59.000Z

130

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Cost-Effective Responses to Terrorist Risks in Constructed Facilities. ... building economics; disaster mitigation; economic analysis; homeland security ...

131

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management system. Friend or Foe? ... Bushby, ST; Information Model for Building Automation Systems. Automation in Construction, Vol. ...

132

Green Building and Energy Reduction Standards for State Agencies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Green Building and Energy Reduction Standards for State Agencies Green Building and Energy Reduction Standards for State Agencies < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State District of Columbia Program Type Energy Standards for Public Buildings Provider Washington Department of General Administration On January 5, 2005, Washington's governor signed Executive Order 05-01, directing state agencies to adopt green building practices in the construction of all new buildings and in major (over 60%) renovation of

133

Mallinckrodt Chemical Co., Former Construction Worker Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Mallinckrodt Chemical Co., Former Construction Worker Screening Projects Project Name: Building Trades...

134

Digital buildings - Challenges and opportunities  

Science Conference Proceedings (OSTI)

This paper considers the wider implications of digital buildings (as currently exemplified by building information models) becoming the norm within the building construction sector. Current deployment is reviewed and the growing opportunity to better ... Keywords: BIM, Building, Digital, Futures, Sustainability

Alastair Watson

2011-10-01T23:59:59.000Z

135

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Eligibility Commercial Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial...

136

Energy Efficiency Standards for State Buildings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Standards for State Buildings Energy Efficiency Standards for State Buildings Savings For Heating & Cooling Home Weatherization Construction Commercial...

137

New Buildings Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Program New Buildings Program Eligibility Commercial State Government Savings For Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction...

138

Commercial New Construction  

Energy.gov (U.S. Department of Energy (DOE))

Efficiency Vermont offers support to encourage energy efficient design for new construction. Efficiency Vermont will provide support for new commercial buildings, including technical assistance at...

139

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by...

140

Gamma ray spectroscopic analysis of building materials used in Tiruvannamalai, Tamilnadu, India  

SciTech Connect

Building materials cause direct radiation exposure because of their radium, thorium and potassium content. In this paper, samples of commonly used building materials in Tiruvannamalai, city, have been collected randomly over the city. The samples were tested for their radioactivity contents by using gamma spectroscopic measurements. All samples under investigation are within the recommended safety limit when used as building construction.

Ravisankar, R.; Vanasundari, K.; Suganya, M.; Chandrasekaran, A.; Raghu, Y.; Sivakumar, S.; Vijayagopal, P.; Meenakshisundaram, V. [Post Graduate and Research Department of Physics, Government Arts College, Tiruvannamalai-606603 (India); Department of Physics, Global Institute of Engineering and Technology, Vellore-632509, Tamilnadu (India); Department of Physics, Aarupadai Veedu Institute of Technology, Paiyanoor-603 104.Tamilnadu (India); Department of Physics, Arunai Engineering College, Tiruvannamalai-606603, Tamilnadu (India); Radiological Safety Division. Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

2012-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

142

Project Construction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Construction Project Construction Project Construction October 16, 2013 - 5:14pm Addthis Building Design Project Construction Commisioning Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule. Construction Team

143

Whole Building Efficiency for Whole Foods: Preprint  

SciTech Connect

The National Renewable Energy Laboratory partnered with Whole Foods Market under the Commercial Building Partnership (CBP) program to design and implement a new store in Raleigh, North Carolina. The result was a design with a predicted energy savings of 40% over ASHRAE Standard 90.1-2004, and 25% energy savings over their standard design. Measured performance of the as-built building showed that the building did not achieve the predicted performance. A detailed review of the project several months after opening revealed a series of several items in construction and controls items that were not implemented properly and were not fully corrected in the commissioning process.

Deru, M.; Doebber, I.; Hirsch, A.

2013-02-01T23:59:59.000Z

144

Building and ConstruCtion  

E-Print Network (OSTI)

Systems Design 2 Small Wind Energy Systems 2 Solar Photovoltaic (PV) Energy Systems Design 2 Solar thermalItS Solar Photovoltaic (PV) Energy Systems: Overview 0.8 CEU Solar thermal Energy Systems: Overview 0.8 CEU Solar Photovoltaic (PV) Energy Systems Design 2 Solar thermal Energy Systems Design 2 Solar Photovoltaic

California at Davis, University of

145

Building and ConstruCtion  

E-Print Network (OSTI)

in Solar Energy Systems and Design. Learn to design photovoltaic and thermal solar systems, and explore Design Small Wind Energy Systems Solar Photovoltaic (PV) Energy Systems Design Solar Thermal Energy in utilizing solar energy systems for residential and commercial use. REQUIRED COURSES Solar Photovoltaic (PV

California at Davis, University of

146

Nanotechnology in Building and Construction  

Science Conference Proceedings (OSTI)

... coatings: Sense pressure, impact, damage, chemicals, heat ... TiO 2 greatly increases photovoltaic efficiency. ... costs relative to conventional solar cells. ...

2010-07-27T23:59:59.000Z

147

THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY  

E-Print Network (OSTI)

parameters for typ- ical building envelope constructions,Energy Conservation: Buildings," u. s. Dept. of Commerce,Heated Floor Structures and Buildings Foundation Soils with

Carroll, William L.

2011-01-01T23:59:59.000Z

148

18 December 2006 BUILDING INSULATION  

E-Print Network (OSTI)

18 December 2006 07200-1 BUILDING INSULATION CONSTRUCTION STANDARD SPECIFICATION SECTION 07200 BUILDING INSULATION PART 1 - GENERAL 1.01 Summary.....................................................................................5 2.04 Pre-Engineered Building Insulation

149

Better Buildings | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over 400 billion. These buildings...

150

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management system. Information Model for Building Automation Systems. Automation in Construction, Vol. 16, No. 2, 125-139, March 2007. ...

151

Interoperable, life-cycle tools for assuring building performance: An overview of a commercial building initiative  

SciTech Connect

A key impediment to improving the energy efficiency and reducing the environmental impact of buildings is the complexity and cost of managing information over the life cycle of a building. A surprisingly large fraction of the total cost of buildings is embodied in the decision making and information management process due to the structure of the building industry, the numerous people and companies involved in the process, the current nature of the building acquisition process, and the long time periods over which buildings operate once design and construction are completed. The authors suggest that new interoperable software tools could greatly facilitate and rationalize this complex process, thereby reducing time and cost, and greatly improving the habitability and environmental impact of these buildings. They describe a series of projects in which they are building and testing several prototype toolkits as part of a building life-cycle information system that will allow interoperable software tools to function more effectively throughout the design, construction, commissioning, and operations phases.

Selkowitz, S.; Piette, M.A.; Papamichael, K.; Sartor, D.; Hitchcock, R.; Olken, F.

1996-11-01T23:59:59.000Z

152

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

153

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

154

Marin County - Green Building Requirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marin County - Green Building Requirements Marin County - Green Building Requirements Eligibility Commercial Construction Residential Savings For Heating & Cooling Home...

155

Energy Conservation in State Buildings (Maryland) | Open Energy...  

Open Energy Info (EERE)

Type Energy Standards for Public Buildings Applicable Sector Construction, Schools, State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

156

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

in the construction and decommissioning of buildings. Thisin the construction and decommissioning of buildings. Thesethe building, and the decommissioning or demolition of the

Fridley, David G.

2008-01-01T23:59:59.000Z

157

New York City - Green Building Requirements for Municipal Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

158

Harris County - Green Building Tax Abatement for New Commercial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harris County - Green Building Tax Abatement for New Commercial Construction (Texas) Harris County - Green Building Tax Abatement for New Commercial Construction (Texas) < Back...

159

Sustainable Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Sustainable Buildings Mission The team evaluates and incorporates the requirements for sustainable buildings as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The team advocates the use of sustainable building practices. Scope The team evaluates how to locate, design, construct, maintain, and operate its buildings and facilities in a resource-efficient, sustainable, and economically viable manner, consistent with its mission. The team provides a process to evaluate sustainable building practices for any new construction, major renovation, and existing capital asset buildings in

160

Building Energy Software Tools Directory: MOIST  

NLE Websites -- All DOE Office Websites (Extended Search)

MOIST MOIST MOIST logo. Program to predict combined transfer of heat and moisture in multi-layer building construction. Inputs hourly weather data from diskette and predicts the moisture content and temperature of the construction layers as a function of time of year. Can be used to develop guidelines and practices for controlling moisture in walls, flat roofs, and cathedral ceilings. Keywords combined heat and moisture transfer, envelope Validation/Testing N/A Expertise Required Low to moderate level of computer literacy; most users require about 3 hours to learn how to use the program. Users Over 1250. Audience Building engineers, architects, consultants. Input ASHRAE WYEC Weather Data (over 50 cities available at http://www.bfrl.nist.gov/863/moist.html); user-defined building

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Analysis and Energy Conservation Options for the Supreme Court and Attorney General Buildings Final Report, Prepared for the Energy Efficiency Division, Texas Public Utility Commission  

E-Print Network (OSTI)

The energy use of the Supreme Court and Attorney General buildings in Austin, Texas was analyzed using the D0E-2.1B building energy simulation program. An analysis was made for each building as specified in the building plans and the specifications provided by the State Purchasing and General Services Commission. The proposed construction of the Supreme Court and Attorney General buildings reflect improvements in energy use over buildings built several years ago. The energy consumption of these buildings were compared with the energy consumption of the buildings modified to comply with the ASHRAE standards. The net reduction of 44% in energy use was obtained using the ASHRAE standards.

Farzad, M.; O'Neal, D. L.

1986-01-01T23:59:59.000Z

162

Gauging Improvements in Urban Building Energy Policy in India  

E-Print Network (OSTI)

constructing a net zero-energy building to house the REECCountry Report on Building Energy Codes in India. Richland,2010. Mainstreaming Building Energy Efficiency Codes in

Williams, Christopher

2013-01-01T23:59:59.000Z

163

Midwest Building Energy Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

164

Midwest Building Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

165

Building Technologies Program: Building America Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

search Most Popular Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report) The addition of insulation to the exterior of buildings is an effective...

166

Building Energy Software Tools Directory: RESEM  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEM RESEM RESEM logo. A simulation-based tool developed to allow the DOE Institutional Conservation Program (ICP) staff and participants to reliably determine the energy savings directly attributable to ICP-supported retrofit measures implemented in a building. RESEM (Retrofit Energy Savings Estimation Model) calculates long-term energy savings directly from actual utility data, with corrections for weather and use variations between the pre-retrofit and post-retrofit utility data collection periods. Keywords retrofit, institutional buildings Validation/Testing N/A Expertise Required Moderate level of computer literacy; familiarity with building energy concepts. Users Over 50. Audience Building managers and energy retrofit engineers. Input Minimal required input includes: original year of building construction,

167

Building Energy Software Tools Directory: HOT2000  

NLE Websites -- All DOE Office Websites (Extended Search)

HOT2000 HOT2000 HOT2000 logo. Easy-to-use energy analysis and design software for low-rise residential buildings. Utilizing current heat loss/gain and system performance models, the program aids in the simulation and design of buildings for thermal effectiveness, passive solar heating and the operation and performance of heating and cooling systems. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users Over 1400 worldwide. HOT2000 is used mainly in Canada and the United States with a few users in Japan and Europe. Audience Builders, design evaluators, engineers, architects, building and energy code writers, Policy writers. HOT2000 is also used as the compliance

168

Real-time Building Energy Simulation using EnergyPlus and the Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-time Building Energy Simulation using EnergyPlus and the Building Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Title Real-time Building Energy Simulation using EnergyPlus and the Building Controls Virtual Test Bed Publication Type Conference Proceedings LBNL Report Number LBNL-5390E Year of Publication 2011 Authors Pang, Xiufeng, Prajesh Bhattacharya, Zheng O'Neill, Philip Haves, Michael Wetter, and Trevor Bailey Conference Name Proc. of the 12th IBPSA Conference Pagination p. 2890-2896 Date Published 11/2011 Conference Location Sydney, Australia Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

169

The Economics of Green Building | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

The Economics of Green Building Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

170

Green buildings and ENERGY STAR | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Green buildings and ENERGY STAR Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

171

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Eligibility Low-Income Residential Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization...

172

Build an energy program | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

173

Build an energy management program | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

174

Energy Efficiency Standards for State Buildings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for State Buildings Energy Efficiency Standards for State Buildings Eligibility State Government Savings For Heating & Cooling Home Weatherization Construction Commercial...

175

Energy Information Administration (EIA)- Commercial Buildings...  

U.S. Energy Information Administration (EIA) Indexed Site

information for that building such as building size, year constructed, type of energy used, energy-using equipment, and conservation features. The smallest level of...

176

More on the buildings at Y-12  

NLE Websites -- All DOE Office Websites (Extended Search)

constructed at Y-12. In addition to the support structures and buildings, pump houses, cooling towers, closely associated with the Alpha and Beta calutron buildings, there were...

177

Florida Solar Energy Center (Building America Partnership for...  

Open Energy Info (EERE)

for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

178

A History of Building 828, Sandia National Laboratories  

SciTech Connect

This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

Ullrich, Rebecca

1999-08-01T23:59:59.000Z

179

A History of Building 828, Sandia National Laboratories  

SciTech Connect

This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

Ullrich, Rebecca

1999-08-01T23:59:59.000Z

180

Heat Recovery in Building Envelopes  

SciTech Connect

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. Previous laboratory and simulation research has indicated that such heat transfer between the infiltrating air and walls may be substantial. In this study, Computational Fluid Dynamics was used to simulate sensible heat transfer in typical envelope constructions. The results show that the traditional method may over-predict the infiltration energy load by up to 95 percent at low leakage rates. A simplified physical model has been developed and used to predict the infiltration heat recovery based on the Peclet number of the flow and the fraction of the building envelope active in infiltration heat recovery.

Sherman, Max H.; Walker, Iain S.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High-Performance Building Requirements for State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

182

Boston's McCormack Building Gets Makeover | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boston's McCormack Building Gets Makeover Boston's McCormack Building Gets Makeover Boston's McCormack Building Gets Makeover November 4, 2010 - 10:53am Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE Constructed from 1931 to 1933, the U.S. Post Office and Courthouse in Boston created quite a buzz with its Art Deco design. A departure from the Classical Revival style popular among federal buildings of the time, its aluminum windows, unadorned granite and limestone base and stepped parapets illustrated its modernity. But over time, the building once hailed for its forward-thinking design grew weary and only an overhaul could restore its architectural significance and its tenants' enthusiasm. "The original vision was to take this tired, old building--but a magnificent historical building-- and restore it to meet the modern,

183

Problems Encountered During the Radiological Remediation of Old Buildings  

SciTech Connect

With several military base closures resulting in property transfer to public use and the decommissioning of many legacy waste facilities, the opportunity for remediation of older buildings is increasing. Along with these projects, come several problems that could give the potential remediator some surprises. During the preconstruction and planning phases of the original construction activities, several generations of drawings were most likely produced for approval and permit submittal. Over the years, buildings may undergo several renovations with or without the full characterization or remediation that should be done when radioactive materials are used on a site. New walls or floors may be built over the original construction materials. Contamination in and around the building may have resulted from processes that were accepted at the time or from inadvertent activities that may have been covered up, including accidental spills. Many buildings contain hidden rooms or accesses that over time became useless and have been closed up or over, these areas may not be very obvious. When characterizing a building the effluents of the building are usually forgotten, sewer lines are important areas to investigate. All these items could cause a remediator to overlook a potentially highly contaminated area. With more of these facilities being turned over for public use, correctly characterizing these buildings will become a more common problem.

Krieger, K. V.; Schillings, D. C.

2003-02-25T23:59:59.000Z

184

Building condition monitoring  

E-Print Network (OSTI)

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

185

Chapter 9: Commissioning the Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: : Commissioning the Building Commissioning Process Overview Commissioning Activities and Documentation LANL | Chapter 9 Commissioning the Building Commissioning Process Overview Commissioning is a process - a systematic process of ensuring that a building performs in accordance with the design intent, contract documents, and the owner's operational needs. Commissioning is fundamental to the success of the whole-building design process. Due to the sophistication of building designs and the com- plexity of building systems constructed today, commis- sioning is necessary, but not automatically included as part of the typical design and contracting process. Commissioning is critical for ensuring that the building design is successfully constructed and operated.

186

Environmental Assessment for the Proposed Upgrade and Operation of the CEBAF and FEL Accelerators and Construction and Use of Buildings Associated with the 2005 Ten-Year Site Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment Proposed Upgrade and Operation of the CEBAF and FEL Accelerators and Construction and Use of Buildings Associated with the 2005 Ten-Year Site Plan at the Thomas Jefferson National Accelerator Facility Newport News, Virginia January 2007 U. S. Department of Energy Thomas Jefferson Site Office Newport News, VA DOE/EA-1534 January 2007 C:\TRANSFER\JANUARY 26 Final EA-1534-012607 (2).doc i TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................... 1 1.0 INTRODUCTION ...........................................................................................11 1.1 PREVIOUS ACTIONS....................................................................................11 1.2 SCOPE OF THIS PROPOSED ACTION .......................................................11

187

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

188

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

189

City of Bloomington- Green Building Requirements for Municipal Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In March 2009, the City of Bloomington passed an ordinance establishing the Green Buildings Program. It requires that all new construction and major renovations of city buildings be built to...

190

Getting to Fifty: Moving Towards Low-Energy Commercial Buildings in the United States  

E-Print Network (OSTI)

The Energy Policy Act of 2005 (EPACT 2005) provides tax incentives for buildings in the U.S. designed to use 50% or less of the energy of typical code buildings. Upon passage of this important legislation, the New Buildings Institute (NBI) developed an initiative to first, determine how many recently constructed buildings would meet this standard, and second, develop a set of linked strategies to encourage and support the development of additional buildings that are designed to use 50% or less of the energy of typical construction, referred to as low-energy buildings. The NBI research indicated that, over the past several years, only about 1 new building in 1,000 in the U.S. is built to a level of efficiency that would qualify for the EPACT 2005 standard. While few in number, these low-energy buildings represent a variety of building types and sizes built across the country, supported by a wide mix of owners and design teams. The barriers to the widespread design and construction of low-energy buildings do not appear to be technical in nature, nor do they appear to be financial; more likely, they are related to the motivation of owners and the skill sets of design and construction teams. This paper explores the nature of these low-energy buildings and examines the strategies developed by a national team of experts to remove real-world obstacles and dramatically improve energy performance.

Frankel, M.; Hewitt, D.; Egnor, T.

2008-10-01T23:59:59.000Z

191

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

SciTech Connect

Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

2011-11-01T23:59:59.000Z

192

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

193

Cook County- LEED Requirements for County Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

194

Glass as a Building Element A Sustainable Approach: A Study of an Existing Academic Building  

E-Print Network (OSTI)

In the aspects of global sustainability, buildings are known to be one of the largest energy consumers. Though sustainable building construction through technological advances is helping in achieving environment friendly buildings, a considerable amount of energy is also being consumed by existing buildings. While many factors at all different stages of building life are responsible for this, the building material is one of the most important considerations. Glass being the most sensitive building material can lead to high energy consumption in the building if used in an improper way. This study takes this factor into account, and tries to investigate the potential of energy savings in buildings through the simple and basic considerations in design. An energy analysis model of an existing academic building in College Station, Texas was developed using Design Builder computer simulation software. This model was then analyzed for the total amount of energy consumption in the base case. The existing building model was then modified by replacing the glass used for external fenestrations. Latest building codes and standards for the site location, glass properties, and parametric simulation results were taken into consideration. Again the model was simulated for annual energy consumption and the results are noted. This formed the first option for the retrofitting scenario. A hypothetical redesign scenario was also established in which the revision of building orientation was taken into consideration. The building was re-oriented to suit the weather conditions and recommendations by Advanced Energy Design Guidelines (30 percent energy savings over ASHRAE Standard 90.1-1999). The building was then simulated for annual energy consumption. A comparative analysis was performed between the three cases and the study concluded by showing 23 percent savings in the annual fuel consumption, 23.35 percent reduction in CO2 emission of the building and 25 percent reduction in annual solar heat gain under Modified case 1. Modified case 2, however, did not show any further savings due to the form of the building (almost square). However, modified case 1 settings emitted 31.8 percent more CO2 over the Energy Star office building in Texas. This methodology sets up a set of guidelines which can be followed while investigating a building for minimum annual energy consumption.

Jori, Swapnil Shriram

2010-12-01T23:59:59.000Z

195

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Code Building Energy Code Eligibility Commercial Residential Savings For Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling...

196

Ohio State 4-H Green Building  

DOE Green Energy (OSTI)

Congressionally directed project to pay in part for construction of a building on the Ohio State University campus.

McCleery, William, A.; Park, James, D.

2007-11-19T23:59:59.000Z

197

Building America Best Practices Series Volume 13: Energy Performance Techniques and Technologies: Preserving Historic Homes  

SciTech Connect

This guide is a resource to help contractors renovate historic houses, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. The guide is available for download from the DOE Building America website www.buildingamerica.gov.

Britt, Michelle L.; Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Makela, Erin KB; Schneider, Elaine C.; Kaufman, Ned

2011-03-01T23:59:59.000Z

198

Building 1 Renovation, Boulder, Colo.  

Science Conference Proceedings (OSTI)

... Construction of the Precision Measurement Laboratory, an extension to Building 1 (B1E) scheduled to be completed in FY 2011, will address the ...

2010-10-05T23:59:59.000Z

199

Boulder Laboratories Building 1 Renovation  

Science Conference Proceedings (OSTI)

... fresh air for modern laboratory work, electrical ... of Building 1 at the NIST Boulder laboratories. ... conservation of water, energy, and construction ...

2012-02-13T23:59:59.000Z

200

Utah | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

compliance with the energy code requirements. The Division of Facilities Construction Management is responsible for enforcement for all state-owned or -funded buildings....

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Why California Stopped Building Freeways  

E-Print Network (OSTI)

Why California S toppeJ Building Freeways BY Planning BRIANUniversity Chapel of California, Hill, Los NC 275QQ-31other modes Constructed in California of transportation. The

Taylor, Brian D.

1993-01-01T23:59:59.000Z

202

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

203

Wynkoop Building Performance Measurement: Water  

SciTech Connect

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (< 30 psi) is less than half the pressure on the 7th floor (>80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

204

Wynkoop Building Performance Measurement: Water  

Science Conference Proceedings (OSTI)

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

205

Commercial Prototype Building Models | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

206

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

207

A Practical Guide for Commissioning Existing Buildings  

SciTech Connect

Although this guide focuses on the retrocommissioning process and its advantages, all three types of commissioning--retrocommissioning, commissioning, and recommissioning--play an equally important role in ensuring that buildings perform efficiently and provide comfortable, safe, and productive work environments for owners and occupants. For new construction and retrofit projects, commissioning should be incorporated early, during design, and last throughout the length of the project. For buildings that were never commissioned, the retrocommissioning process can yield a wealth of cost-saving opportunities while enhancing a building's environment. Finally, once a building is commissioned or retrocommissioned, incorporating recommissioning into the organization's O and M program (by periodically reapplying the original diagnostic testing and checklist procedures) helps ensure that cost savings and other benefits gained from the original process persist over time.

Haasl, T.; Sharp, T.

1999-04-01T23:59:59.000Z

208

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

209

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications  

SciTech Connect

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.

Aden, Nathaniel; Qin, Yining; Fridley, David

2010-09-15T23:59:59.000Z

210

Building Energy Codes Program: National Benefits Assessment, 1992-2040 |  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: National Benefits Assessment, 1992-2040 Program: National Benefits Assessment, 1992-2040 Commercial and residential buildings account for approximately 41% of all energy consumption and 72% of electricity usage in the United States. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, assuring reductions in energy use and greenhouse gas emissions over the life of buildings. The U.S. Department of Energy (DOE), through the Building Energy Codes Program (BECP or the Program), supports the improvement of energy efficiency in buildings. BECP periodically assesses the impacts of its activities by estimating historical and projected energy savings, consumer savings, and avoided emissions. The Pacific Northwest National Laboratory (PNNL) conducted the

211

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

212

Solar Decathlon 2013: Let the Building Begin | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon 2013: Let the Building Begin Solar Decathlon 2013: Let the Building Begin Addthis Day 7 Construction 1 of 22 Day 7 Construction During the 7th day of construction,...

213

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South- and west-facing windows allow more South- and west-facing windows allow more natural light into the building and reduce electricity use * Extensive awnings and overhangs control the light and heat entering the building during the day to reduce cooling loads * Rooftop light monitors in the garden area provide controllable natural light from above to save on electricity consumption * Insulating concrete form block construction with an R-22 insulation value helps control the temperature of the building and maximize

214

On flips of unitary buildings I: Classification of flips  

E-Print Network (OSTI)

We classify flips of buildings arising from non-degenerate unitary spaces of dimension at least 4 over finite fields of odd characteristic in terms of their action on the underlying vector space. We also construct certain geometries related to flips and prove that these geometries are flag transitive.

Blok, Rieuwert J

2010-01-01T23:59:59.000Z

215

Commercial Reference Building: Warehouse | OpenEI  

Open Energy Info (EERE)

Warehouse Warehouse Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Warehouse for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

216

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

217

Building research capacity for indigenous health : a case study of the National Health and Medical Research Council : the evolution and impact of policy and capacity building strategies for indigenous health research over a decade from 1996 to 2006.  

E-Print Network (OSTI)

??As Australias leading agency for funding health research (expending over $400 million in 2006), the National Health and Medical Research Council (NHMRC) has a major (more)

Leon de la Barra, Sophia

2007-01-01T23:59:59.000Z

218

Energy Efficiency and Green Building Standards for State Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

219

Climate change and buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate change and buildings Climate change and buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings Climate change and buildings

220

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Green in Greensburg: Business Incubator Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

222

Department of Energy Commercial Building Benchmarks (New Construction): Summary of Changes from v1.1_3.1 to v1.2_4.0, October 30, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benchmarks Benchmarks New Construction Summary of Changes from v1.1_3.1 to v1.2_4.0 October 30, 2009 Applicable Model(s) Applicable Model Abbreviated Name(s) Change All models (all) Run with EnergyPlus v4.0 instead of 3.1. All models (all) Updated header text to reflect changes. All models (all) Exterior lighting changed from 5.0 W/ft to 0.2 W/ft 2 . All models (all) Added 30 W/ft of exterior lighting for primary entrance doors and 20W/ft for other doors. All Models (all) Infiltration input as flow per exterior wall area, except for attics which have 1.0 ACH infiltration. All Models (all) Many internal gains input as watts/area instead of just total watts, in order to identify

223

Idaho National Laboratory Former Construction Workers, Construction Worker  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Former Construction Workers, Construction Idaho National Laboratory Former Construction Workers, Construction Worker Screening Projects Idaho National Laboratory Former Construction Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Idaho National Laboratory (INL) Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: 1-800-866-9663 Local Outreach Office: Dan Obray 456 N. Arthur Avenue Pocatello, ID 83204 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica

224

Waste Isolation Pilot Plant Construction Workers, Construction Worker  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Construction Workers, Construction Waste Isolation Pilot Plant Construction Workers, Construction Worker Screening Projects Waste Isolation Pilot Plant Construction Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: WIPP Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPh, MHA, MPH Toll-free Telephone: (800) 866-9663 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

225

Rocky Flats Former Construction Workers, Construction Worker Screening  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Former Construction Workers, Construction Worker Rocky Flats Former Construction Workers, Construction Worker Screening Projects Rocky Flats Former Construction Workers, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Rocky Flats Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Local Outreach Office: Dwayne Adkins 7510 W. Mississippi Ave., Suite 230 Lakewood, CO 80226 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica

226

Pinellas Former Construction Worker, Construction Worker Screening Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinellas Former Construction Worker, Construction Worker Screening Pinellas Former Construction Worker, Construction Worker Screening Projects Pinellas Former Construction Worker, Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Pinellas Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: 1-800-866-9663 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by

227

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

228

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

229

City of Seattle - Sustainable Buildings and Sites Policy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City of Seattle - Sustainable Buildings and Sites Policy City of Seattle - Sustainable Buildings and Sites Policy < Back Eligibility Construction Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State District of Columbia Program Type Energy Standards for Public Buildings Provider Seattle Department of Planning and Development Seattle's Sustainable Building Policy was originally adopted in 2000 and significantly expanded in scope in October 2011. This policy calls for new City-funded projects and major renovations with over 5,000 square feet of

230

New opportunities for IT research in construction  

Science Conference Proceedings (OSTI)

The transition to parametric 3D Building information Modeling (BIM) is predicated on the many uses of a fully digital building representation. This paper explores two important uses: (1) the embedding of design and construction expertise into modeling ...

Chuck Eastman

2006-06-01T23:59:59.000Z

231

SNAP Building Requirments for SNAP 2, 4, 8, and 10A Programs  

SciTech Connect

System descriptions, construction summary sheets, composite program schedules, overall building functions, and individual sheets showing purpose, construction features, and work loads of each building.

1961-12-01T23:59:59.000Z

232

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

233

2009 Solar Decathlon Building Code  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING CODE Last Updated: September 29, 2008 2009 Solar Decathlon Building Code i September 29, 2008 Contents Section 1. Introduction ............................................................................................................................................................. 1 Section 2. Adopted Codes ........................................................................................................................................................ 1 Section 3. Building Planning and Construction .............................................................................................................. 1 3-1. Fire Protection and Prevention ................................................................................................................................. 1

234

Better Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over $400 billion. These buildings and operations can be made much more efficient using a variety of cost effective efficiency improvements while creating jobs and building a stronger economy. We have similar opportunities in our homes. In February 2011, President Obama, building upon the investments of the American Recovery and Reinvestment Act, announced the Better Buildings Initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years and accelerate private sector investment in energy efficiency. Better Buildings strategies include: Last year, commercial and industrial buildings used roughly 50% of the

235

Kansas City Plant, Construction Worker Screening Projects | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas City Plant, Construction Worker Screening Projects Kansas City Plant, Construction Worker Screening Projects Project Name: Building Trades National Medicl Screening Program...

236

EA-1065: Proposed Construction and Operation of a Genome Sequencing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

65: Proposed Construction and Operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California EA-1065: Proposed Construction and...

237

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

238

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

construction, Energy and Buildings 20: 205217. Chau 2007.management in China, Energy and Buildings (forthcoming).addition to operational energy, buildings embody the energy

Fridley, David G.

2008-01-01T23:59:59.000Z

239

Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Building Design October 16, 2013 - 4:41pm Addthis Planning, Programming & Budgeting Building Design Project Construction Integrating renewable energy within Federal new construction or major renovations is critical at each phase of the design process. This overview covers considerations for renewable energy in the design phases of a construction project, including choosing the design team, the design team charrette, preliminary design, schematic design, design development, and construction documents. Information on this page introduces each of the design phases and provides a link to deeper-level information. Key Actions in Building Design Require specific renewable energy experience and skills for design team. Prioritize energy-related program

240

High Performance Building Standards in State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Oklahoma Program Type Energy Standards for Public Buildings Provider Oklahoma Department of Central Services In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification program for state construction and renovation projects. The standard, which

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Metrics and Tools for Construction Productivity Project  

Science Conference Proceedings (OSTI)

... the construction of a new building, bridge, or power plant) or renovation ... industry researchers/academics, and Bureau of Labor Statistics (BLS) and ...

2011-11-16T23:59:59.000Z

242

Alternative Energy in New State Construction  

Energy.gov (U.S. Department of Energy (DOE))

Texas requires state government departments to compare the cost of providing energy alternatives for new and reconstructed state government buildings and for certain construction or repair to...

243

REAL-TIME BUILDING ENERGY SIMULATION USING ENERGYPLUS AND THE  

NLE Websites -- All DOE Office Websites (Extended Search)

REAL-TIME BUILDING ENERGY SIMULATION USING ENERGYPLUS AND THE REAL-TIME BUILDING ENERGY SIMULATION USING ENERGYPLUS AND THE BUILDING CONTROLS VIRTUAL TEST BED Xiufeng Pang 1 , Prajesh Bhattacharya 1 , Zheng O'Neill 2 , Philip Haves 1 , Michael Wetter 1 , and Trevor Bailey 2 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA 2 United Technologies Research Center, East Hartford, CT, USA ABSTRACT Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a

244

Broward County - Green Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Broward County - Green Building Policy Broward County - Green Building Policy Eligibility Local Government Savings For Heating & Cooling Home Weatherization Construction Commercial...

245

City of Boulder - Green Points Building Program (Colorado) |...  

Open Energy Info (EERE)

Colorado Name City of Boulder - Green Points Building Program Incentive Type Building Energy Code Applicable Sector Commercial, Construction, Multi-Family Residential, Residential...

246

Guam - Solar-Ready Residential Building Requirement | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar-Ready Residential Building Requirement Guam - Solar-Ready Residential Building Requirement < Back Eligibility Construction Residential Savings Category Heating & Cooling...

247

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

248

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

249

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

250

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings Trend—Detail Commercial Floorspace Trend—Detail Background: Adjustment to data Trends in Buildings and Floorspace Each year buildings are added to and removed from the commercial buildings sector. Buildings are added by new construction or conversion of existing buildings from noncommercial to commercial activity. Buildings are removed by demolition or conversion from commercial to noncommercial activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the United States; by 1992, the number increased 27 percent to 4.8 million (an average annual increase of 1.8%) (Figure 1). In 1995, the estimated number declined to 4.6 million buildings, but it is unlikely that there was an actual decline in the number of buildings. To understand the apparent decline, two factors should be considered—the change in the way that the target population of commercial buildings was defined in 1995 and the uncertainty of estimates from sample surveys:

251

Buildings*","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

B6. Building Size, Number of Buildings for Non-Mall Buildings, 2003" B6. Building Size, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings* ...............",4645,2552,889,738,241,129,65,25,7 "Principal Building Activity" "Education ....................",386,162,56,60,48,39,16,5,"Q" "Food Sales ...................",226,164,44,"Q","Q","Q","Q","N","N"

252

Buildings","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003" A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003" ,"Number of Buildings (thousand)" ,"All Buildings","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",4859,2586,948,810,261,147,74,26,8 "Principal Building Activity" "Education ....................",386,162,56,60,48,39,16,5,"Q" "Food Sales ...................",226,164,44,"Q","Q","Q","Q","N","N"

253

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Massachusetts Program Type Building Energy Code Provider State Board of Building Regulations and Standards ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Massachusetts Board of Building Regulations and Standards has authority

254

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

255

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

256

Commercial Reference Building: Hospital | OpenEI  

Open Energy Info (EERE)

09 09 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278309 Varnish cache server Commercial Reference Building: Hospital Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Hospital for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

257

On epimorphisms of spherical Moufang buildings  

E-Print Network (OSTI)

In this paper we classify the the epimorphisms of irreducible spherical Moufang buildings (of rank at least 2) defined over a field. As an application we characterize indecomposable epimorphisms of these buildings as those epimorphisms arising from R-buildings.

Struyve, Koen

2011-01-01T23:59:59.000Z

258

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

259

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

260

Archived Reference Building Type: Outpatient health care  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

262

Personal building controls  

Science Conference Proceedings (OSTI)

Buildings are some of the largest energy consumers in the world and yet occupants are regularly dissatisfied with the interior environment in large part due to thermal discomfort [7]. Studies show that given personal control over their environment, occupants ... Keywords: building, energy, hvac, lighting, personal controls

Andrew Krioukov; David Culler

2012-04-01T23:59:59.000Z

263

Building America  

Science Conference Proceedings (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

264

Hanford Construction Workers Needs Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSTRUCTION CONSTRUCTION WORKES AT HANFORD: A NEEDS ASSESSMENT Submitted by Center to Protect Workers' Rights on behalf of The Building and Construction Trades Dept., AFL-CIO and The Central Washington Building and Construction Trades Council In cooperation with United Brotherhood of Carpenters University of Cincinnati Occupational Health Foundation George Washington University Zenith Administrators, Inc. Duke University July 1, 1997 Table bt Cóütn 1. Introduction and Background a. Specific Aims b. Rationale for Program 2. Need for Establishing Medical Evaluation and Notification a. Medical Surveillance b. History of Site c. Special Issues for Construction Workers 3. Size of Construction Workers' Population (Since 1943) a. Crude Estimate of Population Size b. Population Before 1950 c. Population After 1950

265

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

266

Berkeley Lab Community Relations: Construction Information: Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

part of Berkeley Lab and occupies approximately 2.25 acres. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and...

267

Building Construction Technology Extension Program (BCTEP ...  

Science Conference Proceedings (OSTI)

... with the goal of having a single, national program curriculum available." Our question is: We envision creating an e-book, usable nationally by other ...

2012-04-03T23:59:59.000Z

268

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

269

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

270

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

271

Optimization of energy parameters in buildings  

E-Print Network (OSTI)

When designing buildings, energy analysis is typically done after construction has been completed, but making the design decisions while keeping energy efficiency in mind, is one way to make energy-efficient buildings. The ...

Jain, Ruchi V

2007-01-01T23:59:59.000Z

272

Burbank Water & Power- Green Building Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Green Building Council is a non-profit organization that promotes the design and construction of buildings that are environmentally responsible, profitable, and healthy places to live and...

273

Berkeley Lab to Help Build Straw Bale Building  

DOE Green Energy (OSTI)

The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

Worsham, S.A.; Van Mechelen, G.

1998-12-01T23:59:59.000Z

274

Commercial Reference Building: Supermarket | OpenEI  

Open Energy Info (EERE)

Supermarket Supermarket Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Supermarket for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

275

Electrochemical construction  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Einstein, Harry (Springfield, NJ); Grimes, Patrick G. (Westfield, NJ)

1983-08-23T23:59:59.000Z

276

Solar Decathlon 2013: Let the Building Begin | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Let the Building Begin Solar Decathlon 2013: Let the Building Begin September 30, 2013 - 10:45am Addthis Day 7 Construction 1 of 22 Day 7 Construction During the 7th day of...

277

Lincoln County- LEED-Certified Building Incentive Program (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

Lincoln county is providing an incentive for the construction of certified green buildings in the commercial and industrial sector. Only newly constructed buildings are eligible, and they must have...

278

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

279

The Relation between Lean Construction and Performance in the Korean Construction Industry  

E-Print Network (OSTI)

Report 234-11, Construction Industry Institute, UniversityDepartment of Trade and Industry, London, UK. Retrieved MayBuilding a world class industry: Motivators and Enabler.

Cho, Seongkyun

2011-01-01T23:59:59.000Z

280

NREL Facility Named One of Nation's Top Sustainable Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings June 24, 2011 - 12:31pm Addthis The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office It's been a little over a year since the Energy Department's Research Support Facility (RSF) opened on the National Renewable Energy Laboratory (NREL) campus in Colorado. The innovative approach taken in the design and

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL Facility Named One of Nation's Top Sustainable Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings June 24, 2011 - 12:31pm Addthis The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office It's been a little over a year since the Energy Department's Research Support Facility (RSF) opened on the National Renewable Energy Laboratory (NREL) campus in Colorado. The innovative approach taken in the design and

282

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsŽ  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

283

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsŽ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

284

Building Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Building Science Residential Buildings » Building America » Building Science Education Building Science Education The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to: Increase awareness of high performance home benefits Build a solid infrastructure for delivering building science

285

Jackson Park Hospital Green Building Medical Center  

Science Conference Proceedings (OSTI)

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicagoâ??s recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work.

William Dorsey; Nelson Vasquez

2010-03-01T23:59:59.000Z

286

Weatherford Inclined Wellbore Construction  

SciTech Connect

The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed construction of an inclined wellbore with seven (7) inch, twenty-three (23) pound casing at a total depth of 1296 feet. The inclined wellbore is near vertical to 180 feet with a build angle of approximately 4.5 degrees per hundred feet thereafter. The inclined wellbore was utilized for further proprietary testing after construction and validation. The wellbore is available to other companies requiring a cased hole environment with known deviation out to fifty degrees (50) from vertical. The wellbore may also be used by RMOTC for further deepening into the fractured shales of the Steele and Niobrara formation.

Schulte, R.

2002-08-19T23:59:59.000Z

287

Build an energy management program | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Advance your energy program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

288

ENERGY STAR certification for your building | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

certification for your building certification for your building Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Find financing Earn recognition 20-percent recognition ENERGY STAR certification How to apply for ENERGY STAR certification Tips for low-cost verifications Submit a profile of your building

289

Design commercial buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Why you should design to earn the ENERGY STAR Follow EPA's step-by-step process ENERGY STAR Challenge for Architects Design commercial buildings Photo of several people congregated around a building design plan. The climate is changing. Commercial buildings in the United States consume 17 percent of the

290

Building Upgrade Manual | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Upgrade Manual Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

291

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

292

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

293

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Partnerships Market Partnerships This photo shows two men silhouetted against a sky shaking hands, with the frame of a building under construction in the background. The U.S. Department of Energy (DOE) offers partnership opportunities, educational curricula, meetings, and webinars that help industry professionals bring research results to the market. DOE Challenge Home Through the DOE Challenge Home, the Building Technologies Office offers recognition to leading edge builders meeting extraordinary levels of excellence. Builders taking the challenge gain competitive advantage in the marketplace by providing their customers with unparalleled energy savings, quality, comfort, health, durability, and much more. Learn more about the DOE Challenge Home. ENERGY STAR for Homes Version 3

294

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

295

Tips for effective energy analysis of commercial building designs...  

NLE Websites -- All DOE Office Websites (Extended Search)

owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

296

Archive Reference Buildings by Building Type: Large Hotel | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Hotel Large Hotel Archive Reference Buildings by Building Type: Large Hotel Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-large_hotel.zip benchmark-v1.1_3.1-large_hotel.zip benchmark-new-v1.2_4.0-large_hotel.zip More Documents & Publications Archive Reference Buildings by Building Type: Small Hotel

297

Building America: Bringing Building Innovations to Market | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America: Bringing Building America: Bringing Building Innovations to Market Building America: Bringing Building Innovations to Market INNOVATIONS Advanced technologies and whole-house solutions for saving energy and costs. Read more SOLUTION CENTER Solutions for improving the energy performance and quality of new and existing homes. Read more RESEARCH TOOLS Tools to ensure consistent research results for new and existing homes. Read more MARKET PARTNERSHIPS Resources and partnering opportunities for the U.S. building industry. Read more Learn about how this world-class research program can help the U.S. building industry promote and construct homes that are better for business, homeowners, and the nation. Building America logo The U.S. Department of Energy's (DOE) Building America program has been a

298

Archive Reference Buildings by Building Type: Large office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large office Large office Archive Reference Buildings by Building Type: Large office Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-large_office.zip benchmark-v1.1_3.1-large_office.zip benchmark-new-v1.2_4.0-large_office.zip More Documents & Publications Archive Reference Buildings by Building Type: Large Hotel

299

Archive Reference Buildings by Building Type: Hospital | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hospital Hospital Archive Reference Buildings by Building Type: Hospital Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-hospital.zip benchmark-v1.1_3.1-hospital.zip benchmark-new-v1.2_4.0-hospital.zip More Documents & Publications Archive Reference Buildings by Building Type: Large office

300

City of Chandler - Green Building Requirement for City Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chandler - Green Building Requirement for City Buildings Chandler - Green Building Requirement for City Buildings City of Chandler - Green Building Requirement for City Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Energy Standards for Public Buildings Provider City of Chandler The mayor and city council of Chandler, AZ adopted Resolution 4199 in June 2008, establishing a requirement for all new occupied city buildings larger than 5,000 square feet to be designed and built to achieve the Silver level

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Archive Reference Buildings by Building Type: Medium office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medium office Medium office Archive Reference Buildings by Building Type: Medium office Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-medium_office.zip benchmark-v1.1_3.1-medium_office.zip benchmark-new-v1.2_4.0-medium_office.zip More Documents & Publications Archive Reference Buildings by Building Type: Large office

302

Guidance on New Construction under an Energy Savings Performance Contract  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance on New Construction under an Energy Savings Performance Guidance on New Construction under an Energy Savings Performance Contract November 2013 This document provides guidance on the limitations on the use of an energy savings performance contract (ESPC) for the construction of a "new" building. 2 Guidance on "New" Construction under an Energy Savings Performance Contract Subject: Limitations on the use of an energy savings performance contract (ESPC) for the construction of a "new" building. Summary: In general, an ESPC must be used for the energy efficiency improvement and retrofit of exisiting Federal buildings. An ESPC may be used for the construction of "new" buildings under an ESPC only under limited circumstances:

303

Guidance on New Construction under an Energy Savings Performance Contract  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance on New Construction under an Energy Savings Performance Guidance on New Construction under an Energy Savings Performance Contract November 2013 This document provides guidance on the limitations on the use of an energy savings performance contract (ESPC) for the construction of a "new" building. 2 Guidance on "New" Construction under an Energy Savings Performance Contract Subject: Limitations on the use of an energy savings performance contract (ESPC) for the construction of a "new" building. Summary: In general, an ESPC must be used for the energy efficiency improvement and retrofit of exisiting Federal buildings. An ESPC may be used for the construction of "new" buildings under an ESPC only under limited circumstances:

304

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Ohio Program Type Building Energy Code Provider Ohio Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Board of Building Standards is the primary state agency that protects

305

City of Dallas- Green Building Requirements for Municipal Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2003 the Dallas City Council passed a resolution requiring that all new municipal buildings larger than 10,000 square feet be constructed to meet LEED Silver Certification standards. In 2006...

306

Snapshot (Spring 2013) | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snapshot (Spring 2013) Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

307

Earthquake Risk Reduction in Buildings and Infrastructure ...  

Science Conference Proceedings (OSTI)

... building and fire safety industries in ways ... supported by the fragmented US construction industry. ... Seismic Design of Steel Special Moment Frames ...

2013-01-09T23:59:59.000Z

308

City of Greensburg - Green Building Requirement for New Municipal Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg - Green Building Requirement for New Municipal Greensburg - Green Building Requirement for New Municipal Buildings City of Greensburg - Green Building Requirement for New Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Kansas Program Type Energy Standards for Public Buildings Provider Greensburg City Hall In the aftermath of a May 2007 tornado that destroyed 95% of the city, the Greensburg City Council passed an ordinance requiring that all newly constructed or renovated municipally owned facilities larger than 4,000

309

MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION  

E-Print Network (OSTI)

to produce a low-energy building over a considerable rangeboth very low energy buildings and buildings operating abovereports. Contact the Buildings Energy Data Group at Lawrence

Piette, M.A.

2010-01-01T23:59:59.000Z

310

The solar cube: A building-integrated photovoltaic incubator  

SciTech Connect

A huge tipped glass tube provides instruction to visitors to the Discovery Science Center in Los Angeles, and an educational diversion to commuters on Interstate 5. The project revealed that photovoltaic industry has a lot to learn from those in the construction industry about building-integrated photovoltaics. The industry must develop products pleasing to the architect and the architect's client, and easily adaptable to the rest of the building. This market requires PV manufacturers to look at photovoltaics as a building material that just so happens to produce electricity, too. Hence, price per square rules in this application over cost per watt. Most importantly, of course, demonstrating as pioneers the potential of building-integrated photovoltaics has delighted the client, The Science Discovery Center.

Perlin, J.

2000-06-01T23:59:59.000Z

311

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE BUILDINGS MEMORANDUM OF UNDERSTANDING PURPOSE: With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High- Performance and Sustainable Buildings. A major element of this strategy is the implementation of common strategies for planning, acquiring, siting, designing, building, operating, and maintaining High Performance and Sustainable Buildings. The signatory agencies will also coordinate with complementary efforts in the private and public sectors. BACKGROUND AND FEDERAL POLICY: The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of

312

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

NLE Websites -- All DOE Office Websites (Extended Search)

FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE BUILDINGS MEMORANDUM OF UNDERSTANDING PURPOSE: With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High- Performance and Sustainable Buildings. A major element of this strategy is the implementation of common strategies for planning, acquiring, siting, designing, building, operating, and maintaining High Performance and Sustainable Buildings. The signatory agencies will also coordinate with complementary efforts in the private and public sectors. BACKGROUND AND FEDERAL POLICY: The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of

313

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE FEDERAL LEADERSHIP IN HIGH PERFORMANCE and SUSTAINABLE BUILDINGS MEMORANDUM OF UNDERSTANDING PURPOSE: With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High- Performance and Sustainable Buildings. A major element of this strategy is the implementation of common strategies for planning, acquiring, siting, designing, building, operating, and maintaining High Performance and Sustainable Buildings. The signatory agencies will also coordinate with complementary efforts in the private and public sectors. BACKGROUND AND FEDERAL POLICY: The Federal government owns approximately 445,000 buildings with total floor space of over 3.0 billion square feet, in addition to leasing an additional 57,000 buildings comprising 374 million square feet of

314

Probabilistic risk assessment for the construction phases of a bridge construction based on finite element analysis  

Science Conference Proceedings (OSTI)

To develop a design, engineering, and construction management information sharing system that allow the project participants to effectively share the information throughout the construction life cycle with the support of 3D, design and building information, ... Keywords: Construction phases, Finite element analysis, Improved response surface method, Risk assessment, Virtual construction

Taejun Cho; Tae Soo Kim

2008-04-01T23:59:59.000Z

315

Building commissioning: The key to quality assurance  

SciTech Connect

This Guide is written to aid building owners and retrofit project managers currently participating in the Rebuild America program. The Guide provides information on implementing building commissioning projects that will optimize the results of existing building equipment improvements and retrofits projects. It should be used in coordination with Rebuild America`s Community Partnership Handbook. The Handbook describes, in detail, eight important steps necessary for planning and carrying out a community-wide energy-efficiency program. In step number 7 of the Handbook, commissioning is shown to be an integral aspect of implementing a building retrofit. The commissioning process ensures that a facility is safe, efficient, comfortable, and conducive to the presumed activities for which it was constructed. Rebuild America strongly encourages its partners to incorporate commissioning into their retrofit projects. By verifying the correct installation, functioning, operation, and maintenance of equipment, the commissioning process ensures that efficiency measures will continue to deliver benefits over the long term. Although commissioning can take place after the equipment has been installed, it is more effective when it takes place over the entire equipment installation process.

1998-05-01T23:59:59.000Z

316

Whole Building Performance-Based Procurement Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole Building Performance-Based Whole Building Performance-Based Procurement Training TDM - Shalon Brown (BTO) Shanti Pless National Renewable Energy Laboratory Shanti.Pless@nrel.gov 303-384-6365 April 4, 2013 2 | Building Technologies Office eere.energy.gov Project Definition Replicating NREL/DOE procurement process successes in reaching 50% building energy savings at typical construction costs, by: - Creating a how-to guide that outlines the entire acquisition process, including: setting a building energy requirement, project

317

Table B6. Building Size, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

B6. Building Size, Number of Buildings, 1999" B6. Building Size, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings ","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",4657,2348,1110,708,257,145,59,23,7 "Principal Building Activity" "Education ....................",327,119,61,52,49,30,10,5,"Q" "Food Sales ...................",174,138,"Q","Q","Q","Q","Q","N","N"

318

Building Technologies Office: Building America Solution Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Solution Center Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR® checklists, alphabetical lists, a house diagram with selectable components, and an information map. Logged-in users can quickly save any of these elements into their personal Field Kit.

319

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

320

42484 secretarys achievement award - 5 x 6 - Building 51  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K-33 K-33 Gaseous Diffusion Process Building Project Daniel B. Poneman Acting Secretary of Energy Secretary's Achievement Award United States Department of Energy Presented to May 2013 Using state-of-the-art technology and an impressive project team, the demolition of the K-33 building was completed 5 months early and nearly $8 million under budget. Constructed in 1954 to conduct uranium enrichment operations, this two-story facility had a footprint of over 32 acres and was one of the largest buildings in the world. The project team efficiently completed the safe removal of over 640,000 square feet of asbestos siding and disposal of nearly 164,000 tons of debris in a safe manner while incurring zero environmental or disposal violations or rejections. The project team

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Community United Methodist Church solar classroom building. Phase II  

DOE Green Energy (OSTI)

The new building reported is formed by three 20 foot by 70 foot modules, each with the long axis in the east-west direction and with a shed roof over each. Solar features include daylighting, fixed insulating shades over the clerestory windows to minimize heat loss during the winter, some operable clerestory windows for ventillation, thermal mass in the form of a concrete floor slab and dark concrete masonry walls on the north end of interior space, ceiling fans for air circulation and sensible cooling, and a large exhaust fan for night cooling. Backup heating is provided by a natural gas furnace, and an air-conditioning unit is included primarily for humidity control in the summer. The building is highly insulated and incorporates designs which minimize air infiltration. A cost analysis for construction of the building is included. (LEW)

Not Available

1981-01-01T23:59:59.000Z

322

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

323

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

324

Commercial Reference Building: Medium Office | OpenEI  

Open Energy Info (EERE)

Medium Office Medium Office Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Medium Office for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

325

Commercial Reference Building: Small Office | OpenEI  

Open Energy Info (EERE)

Office Office Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Small Office for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

326

Energy Modeling of a High Performance Building in the U.A.E. for Sustainability Certification  

E-Print Network (OSTI)

The Sheikh Zayed Desert Learning Centre (SZDLC) is a high performance sustainable exhibition center under construction in the U.A.E, aiming for the highest achievable sustainability ratings within the LEED and Estidama sustainability building rating programs. The Leadership in Energy and Environmental Design (LEED) sustainable building program provides a set of criteria for rating sustainable buildings (U.S. Green Building Council 2009). The Estidama rating program, currently in its pilot phase, is an upcoming sustainable building guideline for the Emirate of Abu Dhabi (Urban Planning Council, Abu Dhabi 2008). The Estidama program is similar to LEED in many ways, with a focus on the integrative design process for sustainable building projects. Both of these rating programs assign a large share of points to reducing energy usage which is related to CO2 production. To demonstrate that a design has improved performance, the rating programs encourage the use of whole building energy simulation. The building as it is designed is simulated and compared to a baseline building, where the building envelope and systems are replaced with materials and components meeting minimum acceptable standards. The percentage improvement of the As-Designed building over the Baseline building dictates the number of points awarded in the respective categories. Innovative solutions in managing the simulation complexity and visualizing energy performance were necessitated by the complexity of performing the building simulations. Improved decision support during the design phase and a better understanding of energy usage in the building are expected to improve the energy efficiency, operating costs, and environmental impact of the building. The detail available from an ambitious modeling approach is presented, demonstrating the usefulness of building energy performance simulation for sustainability ratings as well as design decision support.

Jones, M.; Ledinger, S.

2010-01-01T23:59:59.000Z

327

SRS Construction Workers Needs Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SAVANNAH RIVER BUILDING TRADES SAVANNAH RIVER BUILDING TRADES MEDICAL SCREENING PROGRAM A NEEDS ASSESSMENT Submitted by The Center to Protect Workers' Rights on behalf of The Building and Construction Trades Dept., AFL-CIO and The Augusta, Georgia Building and Construction Trades Council In Cooperation with Duke University Medical Center Medlantic Research Institute United Brotherhood of Carpenters Health and Safety Fund University of Cincinnati Medical Center Zenith Administrators, Inc. June 23, 1998 Contents Summary and Response to Needs Assessment Questions , page i 1. Introduction and Rationale, 1 a. Aims, 1 b. Focus of Needs Assessment, 1 c. Organization, 1 d. Rationale for Program, 2 2. Need for Medical Evaluation and Notification, 3 a. Medical Surveillance, 3

328

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

329

Florida Solar Energy Center (Building America Partnership for Improved  

Open Energy Info (EERE)

(Building America Partnership for Improved (Building America Partnership for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction Place Orlando, FL Website http://www.floridasolarenergyc References Florida Solar Energy Center (Building America Partnership for Improved Residential Construction[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Florida Solar Energy Center (Building America Partnership for Improved Residential Construction is a company located in Orlando, FL. References

330

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

331

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

332

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

333

The Role of Daylight in Achieving Ultra-Low-Energy Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daylight in Achieving Daylight in Achieving Ultra-Low-Energy Buildings May 6, 2011 Neall Digert, Ph.D., MIES Vice President of Product Enterprise Solatube International, Inc. Countries around the globe are experiencing an energy crisis! The World's enormous design and construction market is focused on energy-efficient retrofit and innovative, ultra-low energy new construction. The desire to halt global warming is creating an awareness and need for sustainable buildings, communities, and societies. Energy Policy is at the forefront of governmental initiatives in nearly every country. China needs to increase its generation capacity by over 1,312 GW between 2006 and 2030. Source: International Energy Agency, "World

334

High-performance commercial building systems  

SciTech Connect

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC

Selkowitz, Stephen

2003-10-01T23:59:59.000Z

335

High-performance commercial building systems  

SciTech Connect

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

Selkowitz, Stephen

2003-10-01T23:59:59.000Z

336

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

337

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

338

Building America Top Innovations Hall of Fame Profile … Unvented, Conditioned Crawlspaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

have found that have found that in humid parts of the United States, closed, conditioned crawlspaces perform better than vented crawlspaces, reducing moisture problems and increasing energy efficiency. Building America research on unvented crawlspaces has demonstrated 15% to 18% less energy consumption for heating and cooling while reducing humidity over 20%. These results have substantially influenced changes in the 2009 and 2012 versions of the International Residential Code (R408.3) allowing unvented, conditioned crawlspaces. Thousands of homes have now been constructed with this important innovation. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Unvented, Conditioned

339

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Connecticut Program Type Building Energy Code Provider Connecticut Office of Policy and Management ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/

340

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Alabama Program Type Building Energy Code Provider Alabama Department of Economic and Community Affairs ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Legislation passed in March 2010 authorized the Alabama Energy and

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Green Building Requirement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Requirement Green Building Requirement Green Building Requirement < Back Eligibility Commercial Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info State District of Columbia Program Type Energy Standards for Public Buildings Provider District Department of the Environment The District of Columbia City Council enacted [http://dcclims1.dccouncil.us/images/00001/20061218152322.pdf B16-515] on December 5, 2006, establishing green building standards for public buildings and privately-owned commercial buildings of 50,000 square feet or

342

Sustainable Buildings and Campuses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Campuses and Campuses Sustainable Buildings and Campuses October 4, 2013 - 4:18pm Addthis Sustainable Buildings and Campuses The Federal Energy Management Program (FEMP) provides strategies, best practices, and resources to help Federal agencies implement sustainable design practices within Federal buildings and facilities. Learn about: Sustainable building design basics Federal requirements Sustainability for existing buildings Sustainable design for new construction and major renovations Life cycle cost analysis for sustainability Energy security planning Case studies Interagency Sustainability Working Group. Also see Sustainable Building Contacts. Addthis Related Articles Energy Department Training Breaks New Ground Sustainable Building Contacts Commissioning Training Available

343

Public Order and Safety Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Order and Safety Order and Safety Characteristics by Activity... Public Order and Safety Public order buildings are those used for the preservation of law and order or public safety. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Order and Safety Buildings... Volunteer fire stations tend not to be government owned, which probably explains why 33 percent of public order and safety buildings were not owned by Federal, state, or local governments. Only 7 percent of all public order and safety buildings were constructed in the 1990's. The Northeast Census region had a high concentration of public order and safety buildings—43 percent of these buildings are in the Northeast (while the Northeast region contained only 9 percent of all commercial buildings).

344

Building-integrated photovoltaics  

SciTech Connect

This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

1993-01-01T23:59:59.000Z

345

U.S. Department of Energy Commercial Reference Building Models of the National Building Stock  

SciTech Connect

The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

2011-02-01T23:59:59.000Z

346

BuildingPI: A future tool for building life cycle analysis  

SciTech Connect

Traditionally building simulation models are used at the design phase of a building project. These models are used to optimize various design alternatives, reduce energy consumption and cost. Building performance assessment for the operational phase of a buildings life cycle is sporadic, typically working from historical metered data and focusing on bulk energy assessment. Building Management Systems (BMS) do not explicitly incorporate feedback to the design phase or account for any changes, which have been made to building layout or fabric during construction. This paper discusses a proposal to develop an Industry Foundation Classes (IFC) compliant data visualization tool Building Performance Indicator (BuildingPI) for performance metric and performance effectiveness ratio evaluation.

O' Donnell, James; Morrissey, Elmer; Keane, Marcus; Bazjanac,Vladimir

2004-03-29T23:59:59.000Z

347

Commercial Reference Buildings | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Commercial Reference Buildings Jump to: navigation, search DOE developed Commercial Reference Buildings which provide descriptions for whole building analysis using EnergyPlus. There are 16 building types and three categories that apply to all building types. The commercial reference buildings were developed across 16 reference locations. Contents 1 Building Types 2 Construction Categories 3 Climate Zones Used to Create Reference Buildings 4 References Building Types DOE developed 16 Commercial Reference Building Types[1] , which represent approximately 70% of the commercial buildings in the U.S. [2]. Whole

348

Office building performance - Software based energy calculation of office buildings and comparison with measured energy data.  

E-Print Network (OSTI)

??The usage of energy simulation tools is widespread in the construction field. Indeed, it is useful to predict the energy consumption of a new building, (more)

Druhen, Marie

2013-01-01T23:59:59.000Z

349

ENERGY STAR Building Upgrade Manual | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Building Upgrade Manual ENERGY STAR Building Upgrade Manual Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach

350

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

351

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

352

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

353

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

354

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

355

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

356

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

357

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

358

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

359

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

360

commercial building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description Source EERE Date Released September 27th, 2010 (4 years ago) Date Updated September 27th, 2010 (4 years ago) Keywords buildings commercial building DOE energy use Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon New construction (xlsx, 391.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Post-1980 construction (in or after 1980) (xlsx, 391.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Pre-1980 construction (xlsx, 367.5 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building America Industrialized Housing Partnership (BAIHP)  

DOE Green Energy (OSTI)

This final report summarizes the work conducted by the Building America Industrialized Housing Partnership (www.baihp.org) for the period 9/1/99-6/30/06. BAIHP is led by the Florida Solar Energy Center of the University of Central Florida and focuses on factory built housing. In partnership with over 50 factory and site builders, work was performed in two main areas--research and technical assistance. In the research area--through site visits in over 75 problem homes, we discovered the prime causes of moisture problems in some manufactured homes and our industry partners adopted our solutions to nearly eliminate this vexing problem. Through testing conducted in over two dozen housing factories of six factory builders we documented the value of leak free duct design and construction which was embraced by our industry partners and implemented in all the thousands of homes they built. Through laboratory test facilities and measurements in real homes we documented the merits of 'cool roof' technologies and developed an innovative night sky radiative cooling concept currently being tested. We patented an energy efficient condenser fan design, documented energy efficient home retrofit strategies after hurricane damage, developed improved specifications for federal procurement for future temporary housing, compared the Building America benchmark to HERS Index and IECC 2006, developed a toolkit for improving the accuracy and speed of benchmark calculations, monitored the field performance of over a dozen prototype homes and initiated research on the effectiveness of occupancy feedback in reducing household energy use. In the technical assistance area we provided systems engineering analysis, conducted training, testing and commissioning that have resulted in over 128,000 factory built and over 5,000 site built homes which are saving their owners over $17,000,000 annually in energy bills. These include homes built by Palm Harbor Homes, Fleetwood, Southern Energy Homes, Cavalier and the manufacturers participating in the Northwest Energy Efficient Manufactured Home program. We worked with over two dozen Habitat for Humanity affiliates and helped them build over 700 Energy Star or near Energy Star homes. We have provided technical assistance to several show homes constructed for the International builders show in Orlando, FL and assisted with other prototype homes in cold climates that save 40% over the benchmark reference. In the Gainesville Fl area we have several builders that are consistently producing 15 to 30 homes per month in several subdivisions that meet the 30% benchmark savings goal. We have contributed to the 2006 DOE Joule goals by providing two community case studies meeting the 30% benchmark goal in marine climates.

McIlvaine, Janet; Chandra, Subrato; Barkaszi, Stephen; Beal, David; Chasar, David; Colon, Carlos; Fonorow, Ken; Gordon, Andrew; Hoak, David; Hutchinson, Stephanie; Lubliner, Mike; Martin, Eric; McCluney, Ross; McGinley, Mark; McSorley, Mike; Moyer, Neil; Mullens, Mike; Parker, Danny; Sherwin, John; Vieira, Rob; Wichers, Susan

2006-06-30T23:59:59.000Z

362

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New Construction and Major Renovations New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies along with other innovative strategies. Also see Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Performance-Based Design Build Typically, architects, engineers, and project managers consider the potential to build a high-performance building to be limited by the initial cost. A different approach-performance-based design build-makes high performance the priority, from start to finish. Contracts are developed that focus on both limiting construction costs and meeting performance targets. The approach is not a source of funding, but rather a strategy to make the most out of limited, appropriated, funds.

363

Building Energy Software Tools Directory: BuildingSim  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingSim BuildingSim BuildingSim logo BuildingSim allows users to model a building and analyze the heating and cooling energy costs in any climate. Users can create any building—from a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90 climates around the world to numerically solve the full thermodynamic differential equations every minute of the year, giving the user the actual energy use down to the cent. The simulation algorithm fully accounts for thermostat and HVAC controls, allowing the user to analyze the effects of different thermostat algorithms (programmable thermostats, setback, split-zone, etc.) on the energy costs for a specific building and climate. Screen Shots

364

Buildings","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Building Size, Floorspace for All Buildings (Including Malls), 2003" A6. Building Size, Floorspace for All Buildings (Including Malls), 2003" ,"Total Floorspace (million square feet)" ,"All Buildings","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",71658,6922,7033,12659,9382,10291,10217,7494,7660 "Principal Building Activity" "Education ....................",9874,409,399,931,1756,2690,2167,1420,"Q" "Food Sales ...................",1255,409,356,"Q","Q","Q","Q","N","N"

365

Buildings*","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

B7. Building Size, Floorspace for Non-Mall Buildings, 2003" B7. Building Size, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings* ...............",64783,6789,6585,11535,8668,9057,9064,7176,5908 "Principal Building Activity" "Education ....................",9874,409,399,931,1756,2690,2167,1420,"Q" "Food Sales ...................",1255,409,356,"Q","Q","Q","Q","N","N"

366

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

367

City of Boulder - Green Points Building Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program < Back Eligibility Commercial Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Solar Heating Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider City of Boulder The Boulder Green Points Building Program is a mandatory residential green building program that requires a builder or homeowner to include a variety of sustainable building components based on the size of the proposed structure. Similar to the US Green Building Council's LEED program, the

368

Archived Reference Building Type: Outpatient health care  

Energy.gov (U.S. Department of Energy (DOE))

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zonesis available for reference.Current versionsare also available.

369

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Heating Program Info State California Program Type Building Energy Code Provider California Energy Commission '''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to take effect on January 1, 2014, and represent significant energy and water savings compared to the current standards. Among many notable provisions, the new standards will

370

High-performance commercial building facades  

SciTech Connect

This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

2002-06-01T23:59:59.000Z

371

High-performance commercial building facades  

SciTech Connect

This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

2002-06-01T23:59:59.000Z

372

Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate  

SciTech Connect

This best practices guide is the 16th in a series of guides for builders produced by PNNL for the U.S. Department of Energys Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Butner, Ryan S.; Ortiz, Sallie J.

2011-09-01T23:59:59.000Z

373

Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate  

SciTech Connect

This best practices guide is the 15th in a series of guides for builders produced by PNNL for the U.S. Department of Energys Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Noonan, Christine F.

2011-09-01T23:59:59.000Z

374

Analysis of US commercial building energy use trends, 1972--1991  

SciTech Connect

Over the past two decades energy consumption in commercial buildings has been the fastest growing segment among the major end-use sectors in the US. This paper provides a decomposition of the major factors behind the trends in commercial energy use over this period. It examines the impact on overall commercial sector energy intensity from: (1) new buildings, (2) changes in the composition of buildings by geographic region and building type, (3) the growth in office equipment and computers, and (4) the influence of several common envelope conservation measures. A statistical decomposition of historical monthly electricity and gas consumption data is developed to separate energy use into heating, cooling, and ventilation (HVAC) and other components (non-HVAC). This data is then used in conjunction with historical commercial building floor space estimates to derive end-use intensities for these components of energy consumption. Deterministic analyses are performed to estimate the impacts of other factors. The impact of new buildings is measured by estimating the average improvement in heating efficiencies for buildings built after 1980. The effect of building composition on aggregate commercial building energy intensity is based upon estimates of historical floor space by building type and region and building-specific intensities derived from the 1989 Commercial Building Energy Consumption Survey (CBECS). Stocks of various types of office equipment were constructed from industry statistics and independent surveys. The stocks of selected office equipment were combined with estimates of unit energy consumption to estimate the impact on total commercial electricity consumption. For estimating changes in energy intensity due to the building retrofits, the study utilizes a new energy simulation tool developed as part of the Facility Energy Decision Screening (FEDS) system for the US Department of Energy.

Belzer, D.B.; Marsh, T.L.; Sands, R.D.

1994-08-01T23:59:59.000Z

375

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

376

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

377

Semantic Building Blocks for 21st Century Building Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Semantic Building Blocks for 21st Century Building Engineering Semantic Building Blocks for 21st Century Building Engineering Speaker(s): Mark Palmer Date: October 2, 2009 - 12:00pm Location: 90-3122 The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) works to advance innovation and competitiveness of the U.S. building and fire safety industries. This presentation will introduce some of the work at BFRL to improve the design, construction and operation of the built environment and to advance the semantic infrastructure for integrated project design and delivery. With this context established, the presentation will examine research challenges and next steps for developing reference information models, industry data dictionaries and rule libraries for multidisciplinary collaboration to

378

Archive Reference Buildings by Building Type: Restaurant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restaurant Restaurant Archive Reference Buildings by Building Type: Restaurant Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-sit_down_restaurant.zip benchmark-v1.1_3.1-sit_down_restaurant.zip benchmark-new-v1.2_4.0-full_service_restaurant.zip More Documents & Publications

379

INL High Performance Building Strategy  

SciTech Connect

High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nations premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, Federal Leadership in Environmental, Energy, and Economic Performance [2009], EO 13423, Strengthening Federal Environmental, Energy, and Transportation Management [2007], and DOE Order 430.2B, Departmental Energy, Renewable Energy, and Transportation Management [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design (LEED) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.

Jennifer D. Morton

2010-02-01T23:59:59.000Z

380

Experiments in Premature Adoption of Constructive ... - CECM  

E-Print Network (OSTI)

all over the world. Whether they are building games or solving ...... narios and representations in participatory ac- tivities with users. In John M. Carroll, edi-.

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New York Program Type Building Energy Code Provider NYS Department of State ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Energy Conservation Construction Code of New York State (ECCCNYS) requires that all government, commercial and residential buildings,

382

A one-story, slab-on-grad~ steel framed control building approxima  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

one-story, slab-on-grad~ steel framed control building approximately 50 by 120 feet one-story, slab-on-grad~ steel framed control building approximately 50 by 120 feet would be constructed along the eastern portion of the expansion site. The transformer, capacitor banks, and cooling equipment would be supported on about 200 individual concrete spread foundations. Construction of the substation expansion would require approximately six feet of fill over the entire area, or approximately 50-55 thousand cubic yards of fill. Construction of the access road would require approximately 20-25 thousand cubic yards of fill. Concrete footings and foundations would require approximately 1800-2000 cubic yards of concrete. Site grading and foundation work would begin in August, 1992, and continue over a six-month period. During that period, the average number of fill trucks per day would range

383

Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings.  

E-Print Network (OSTI)

??Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy (more)

Engblom, Lisa A. (Lisa Allison)

2006-01-01T23:59:59.000Z

384

Construction proprietary  

E-Print Network (OSTI)

2. Construction a. The composite mirrors The mirror was made of a graphite #12;ber backing, coated An aerogel radiator can in principle pro- vide hadron separation throughout the full momentum range. However proton aerogel gas GeV mrad 0 50 100 150 200 250 2 4 6 8 10 12 14 track parameters Direct Ray Tracing

385

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

386

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

387

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

388

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

389

Construction Permits and Fees (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

Industries that wish to build or modify facilities that emit air pollutants (emissions) into the air must obtain an air quality permit prior to constructing. Thus, these permits are called...

390

EA-0820: Construction of Mixed Waste Storage RCRA Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would...

391

Former Worker Medical Screening Program - Pinellas Former Construction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pinellas Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Pinellas...

392

Former Worker Medical Screening Program - Mound Former Construction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Mound Worker Population...

393

Battelle Laboratories-King Avenue, Former Construction Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Construction Workers Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Battelle Laboratories-King Avenue Worker...

394

Former Worker Medical Screening Program - Fernald Former Construction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Fernald Worker Population...

395

Survey of worldwide legislation on the control of construction noise  

Science Conference Proceedings (OSTI)

The sustained economic growth in many countries of the world in the past few years has led to significant increases in the construction activities for building new homes

2000-01-01T23:59:59.000Z

396

Alternative Energy in New State Construction (Texas) | Open Energy...  

Open Energy Info (EERE)

State Construction Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Biomass, Geothermal Heat Pumps, Passive Solar Space...

397

Documenting performance metrics in a building life-cycle information system  

SciTech Connect

In order to produce a new generation of green buildings, it will be necessary to clearly identify their performance requirements, and to assure that these requirements are met. A long-term goal is to provide building decision-makers with the information and tools needed to cost-effectively assure the desired performance of buildings, as specified by stakeholders, across the complete life cycle of a building project. A key element required in achieving this goal is a method for explicitly documenting the building performance objectives that are of importance to stakeholders. Such a method should clearly define each objective (e.g., cost, energy use, and comfort) and its desired level of performance. This information is intended to provide quantitative benchmarks useful in evaluating alternative design solutions, commissioning the newly constructed building, and tracking and maintaining the actual performance of the occupied building over time. These quantitative benchmarks are referred to as performance metrics, and they are a principal element of information captured in the Building Life-cycle Information System (BLISS). An initial implementation of BLISS is based on the International Alliance for Interoperability`s (IAI) Industry Foundation Classes (IFC), an evolving data model under development by a variety of architectural, engineering, and construction (AEC) industry firms and organizations. Within BLISS, the IFC data model has been extended to include performance metrics and a structure for archiving changing versions of the building information over time. This paper defines performance metrics, discusses the manner in which BLISS is envisioned to support a variety of activities related to assuring the desired performance of a building across its life cycle, and describes a performance metric tracking tool, called Metracker, that is based on BLISS.

Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

1998-08-01T23:59:59.000Z

398

Roseville Electric - Residential New Construction Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Construction Rebate Program New Construction Rebate Program Roseville Electric - Residential New Construction Rebate Program < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Solar Buying & Making Electricity Program Info State California Program Type Utility Rebate Program Rebate Amount Energy Efficiency: $500/unit Solar PV: $2/watt Shade Trees: $30/tree Provider Roseville Electric Roseville Electric provides financial incentives to encourage local builders to construct energy efficient homes which incorporate solar resources. Participating builders can choose to build Preferred Homes or

399

Building Energy Software Tools Directory: HOT2 XP  

NLE Websites -- All DOE Office Websites (Extended Search)

HOT2 XP HOT2 XP HOT2 XP logo. New member of the HOT2000 family of energy analysis software. Its graphical user interface and simplified input make it a quick and easy tool for analysing energy use in houses. However, the underlying engine is that of HOT2000 and thus provides a state of the art analysis. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users New program, over 300 users. Audience Renovators, builders, utilities, home inspectors, design evaluators, engineers, architects, building and energy code writers, Policy writers, curious homeowners. HOT2XP is also used as the compliance software for the

400

Guam - Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam - Building Energy Code Guam - Building Energy Code Guam - Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by the legislature before it is official. This entry and information will be updated accordingly. Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chapter 4: The Building Architectural Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: The Building : The Building Architectural Design Schematic Design Designing Using Computer Simulations Design of High Performance Features and Systems Designing for Daylighting Passive and Active Solar Systems Accommodating Recycling Activities LANL | Chapter 4 The Building Architectural Design Schematic Design Achieving a sustainable building requires a commitment from developing the initial F&OR documents through construction detailing and commissioning. Initial deci- sions, such as the building's location, general massing, and configuration profoundly affect the building's envi- ronmental impact and energy performance. Well- defined sustainable goals will guide the entire spectrum of decision-making throughout the design and con- struction process (see Chapter 2).

402

Find ENERGY STAR certified buildings and plants | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

» Buildings & Plants » Buildings & Plants » About us » Find ENERGY STAR certified buildings and plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants Registry of ENERGY STAR certified buildings and plants

403

Improve energy use in commercial buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve energy use in commercial buildings Improve energy use in commercial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing Develop programs and policies

404

City of Fort Collins - Green Building Requirement for City-Owned Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Collins - Green Building Requirement for City-Owned Fort Collins - Green Building Requirement for City-Owned Buildings City of Fort Collins - Green Building Requirement for City-Owned Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type Energy Standards for Public Buildings Provider The City of Fort Collins The City Council of Fort Collins passed a resolution in September 2006, establishing green building goals for new city-owned buildings of 5,000 square feet or more. New buildings must be designed and constructed to

405

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Compliance Regulations Resource Center About Building Energy Codes U.S. Energy Consumption by Sector (2011) Source: U.S. Energy Information Administration, Annual Energy Review According to the U.S. Energy Information Administration's Electric Power Annual, U.S. residential and commercial buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in significant cost savings in both the private and public sectors of the U.S. economy. Efficient buildings reduce power demand and have less of an environmental impact. The Purpose of Building Energy Codes Energy codes and standards set minimum efficiency requirements for new and renovated buildings, assuring reductions in energy use and emissions over

406

Project Construction Team | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Construction Team Project Construction Team Project Construction Team October 16, 2013 - 5:06pm Addthis Photo of two men reviewing a large print document. Both men are wearing construction hats and bright vests. A construction team reviews plans for a 1.9 megawatt methane power generator for a U.S. Marine Corps landfill gas-to-energy project. Assembling the right project construction team is crucial and begins with the request for proposal (RFP). Federal agencies create and RFP for construction services using construction documents developed during the final stage of building design. Construction documents are the blueprints on which every project is built and will be used to generate bids for the construction phase of the project. Renewable energy will either be specified in detail in the

407

Berkeley Lab Site Construction Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Old Town Demolition Old Town Demolition The demolition of Old Town Area Buildings 25A, 40, 41, 44, 44A, 44B, 52 and 52A has been completed to make way for the construction of the Solar Energy Research Center (SERC) and a General Purpose Laboratory (GPL). A phased plan has been developed to abate and demolish the remaining buildings within the Old Town Area, namely Buildings 4, 5, 7, 7C, 14, 16 and 16A. Subsurface remediation is subsequently planned to take place to address existing subsurface contamination. The demolition of the subject buildings is part of an overall plan to remediate and redevelop the Old Town area of the Lab. Critical Decision 1 (CD-1, Selection of Alternatives) was approved in October 2013 and $19.4M of funding has been approved for the characterization, deactivation, abatement, demolition and soil remediation

408

The design of a panelized roof system for residential construction  

E-Print Network (OSTI)

The cost of housing in the U.S. continues to rise faster than household income. Innovative building materials and construction technologies have the potential to reduce housing construction costs. One strategy to do this ...

Dentz, Jordan Lewis

1991-01-01T23:59:59.000Z

409

Buildings Energy Data Book: 7.1 National Legislation  

Buildings Energy Data Book (EERE)

4 4 Energy Independence and Security Act 2007, High Performance Commercial Buildings Create the Office of Commercial High Performance Green Buildings The Office of Commercial High Performance Green Buildings with The Office of Federal High Performance Green Buildings will establish a High Performance Green Buildings Clearinghouse to disseminate research through outreach, education, and technical assistance Zero Net Energy Initiative for Commercial Buildings was also included establishing specific goals: -- Net zero energy use in all new commercial buildings constructed by 2030 -- Net zero energy use in 50% of the United State commercial building stock by 2040 -- Net zero energy use in the entire United States commercial building stock by 2050 Source(s):

410

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

411

Green Energy Standards for Public Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Energy Standards for Public Buildings Green Energy Standards for Public Buildings Green Energy Standards for Public Buildings < Back Eligibility Fed. Government Local Government State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State West Virginia Program Type Energy Standards for Public Buildings Provider West Virginia Department of Administration In March 2012, West Virginia enacted the Green Buildings Act, which applies to all new construction of public buildings, buildings receiving state grant funds, and buildings receiving state appropriations. For those buildings that have not entered the schematic design phase prior to July 1, 2012, buildings must be designed and construction to comply with the ICC

412

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

413

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

414

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

415

Building Technologies Program Planning Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Program Planning Summary Building Technologies Program Planning Summary Introduction The U.S. Department of Energy's (DOE) Building Technologies Program (BTP) works in partnership with industry, state, municipal, and other federal organizations to achieve the goals of marketable net-zero energy buildings. Such buildings are extremely energy efficient, ideally producing as much energy as they use over the course of a year. BTP also works with stakeholders and federal partners to meet any remaining energy needs for their buildings through on-site renewable energy systems. Drivers Population growth and economic expansion, along with an accompanying increase in energy demand, are expected to drive energy consumption in buildings to more than 50 quadrillion Btu (quads)

416

Building Technologies Office: Take Action to Save Energy in Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Take Action to Save Take Action to Save Energy in Commercial Buildings to someone by E-mail Share Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Facebook Tweet about Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Twitter Bookmark Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Google Bookmark Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Delicious Rank Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Digg Find More places to share Building Technologies Office: Take Action to Save Energy in Commercial Buildings on AddThis.com... About Take Action to Save Energy Manage Organizational Energy Use Design & Construct New Buildings

417

BUILDING MATERIALS RECLAMATION PROGRAM  

Science Conference Proceedings (OSTI)

This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

2010-08-31T23:59:59.000Z

418

Hayward's Green Building Ordinance  

E-Print Network (OSTI)

Please accept on behalf of the City of Hayward this request for California Energy Commission (CEe) review and approval of Hayward's Green Building Ordinance.and related energy cost effectiveness study, which will mandate exceeding the 2008 Energy Code standards. As we have discussed previously, Hayward adopted a Green Building Ordinance last fall (see attached Tab 1). The Ordinance requires that new construction and non-residential development exceeding 1,000 square feet comply with the City's green building ordinance standards (described below), if a permit application is submitted for such developments after August 1 of this year, or after the CEC and Building Standards Commission (BSe) approve such standards. Hayward's ordinance indicates that new residential development shall be GreenPaint Rated, meaning achieving energy efficiency at least 15 % above State standards. Build It Green staff, who oversee the GreenPaint Rated program, have indicated that their new standards/guidelines will require projects Rated to exceed 2008 State energy efficiency standards by at least 15 % in order to be GreenPoint Rated. Their current standards require exceeding 2005 State energy efficiency standards by at least 15%. For non-residential development, certain standards related to energy efficiency need to be met in one of three ways: the lighting load for fixtures shall be reduced by at least 15 % below 2008 Title 24

Joe Loyer

2009-01-01T23:59:59.000Z

419

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

420

Green Building Incentive | Open Energy Information  

Open Energy Info (EERE)

Green Building Incentive Green Building Incentive Jump to: navigation, search Green buildings are designed and constructed using practices and materials that minimize the impacts of the building on the environment and on human health. Many cities and counties offer financial incentives to promote green building. The most common form of incentive is a reduction or waiver of a building permit fee. The U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) is a popular point-based certification program for green buildings. The LEED system awards points for site selection and development; material, energy and water efficiency; indoor air quality; innovation; and the application of renewable technologies. (Note that this category includes green building incentives

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Green Building Incentives | Open Energy Information  

Open Energy Info (EERE)

Building Incentives Building Incentives Jump to: navigation, search Green buildings are designed and constructed using practices and materials that minimize the impacts of the building on the environment and on human health. Many cities and counties offer financial incentives to promote green building. The most common form of incentive is a reduction or waiver of a building permit fee. The U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) is a popular point-based certification program for green buildings. The LEED system awards points for site selection and development; material, energy and water efficiency; indoor air quality; innovation; and the application of renewable technologies. (Note that this category includes green building incentives

422

Making America's Buildings Better (Fact Sheet)  

SciTech Connect

This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

Not Available

2012-03-01T23:59:59.000Z

423

A framework for simulation-based real-time whole building performance  

NLE Websites -- All DOE Office Websites (Extended Search)

A framework for simulation-based real-time whole building performance A framework for simulation-based real-time whole building performance assessment Title A framework for simulation-based real-time whole building performance assessment Publication Type Journal Article Refereed Designation Unknown LBNL Report Number 0360-1323 Year of Publication 2012 Authors Pang, Xiufeng, Michael Wetter, Prajesh Bhattacharya, and Philip Haves Journal Building and Environment Volume 54 Start Page 100 Pagination 100-108 Date Published 08/2012 ISSN 0360-1323 Keywords building controls virtual test bed, building performance, energy modeling, energyplus, real-time building simulation Abstract Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures. One approach to addressing this problems is to compare the predictions of an energy simulation model of the building to the measured performance and analyze significant differences to infer the presence and location of faults. This paper presents a framework that allows a comparison of building actual performance and expected performance in real time. The realization of the framework utilized the EnergyPlus, the Building Controls Virtual Test Bed (BCVTB) and the Energy Management and Control System (EMCS) was developed. An EnergyPlus model that represents expected performance of a building runs in real time and reports the predicted building performance at each time step. The BCVTB is used as the software platform to acquire relevant inputs from the EMCS through a BACnet interface and send them to the EnergyPlus and to a database for archiving. A proof-of-concept demonstration is also presented.

424

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

425

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

426

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

427

High Performance Buildings Database  

DOE Data Explorer (OSTI)

The High Performance Buildings Database is a shared resource for the building industry. The Database, developed by the U.S. Department of Energy and the National Renewable Energy Laboratory (NREL), is a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The Database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses.

The Database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site. Early partners using the database include:

  • The Federal Energy Management Program
  • The U.S. Green Building Council
  • The American Institute of Architects' Committee on the Environment
  • The Massachusetts Technology Collaborative
  • Efficiency Vermont
    • Copied (then edited) from http://eere.buildinggreen.com/partnering.cfm

428

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

429

Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State West Virginia Program Type Building Energy Code Provider West Virginia Division of Energy ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. Local jurisdictions must adopt

430

Building America Analysis Spreadsheets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America Analysis Spreadsheets America Analysis Spreadsheets Building America Analysis Spreadsheets The Building America Analysis Spreadsheets are companions to the House Simulation Protocols, and can assist with many of the calculations and look-up tables found in the report. The spreadsheets provide the set of standard operating conditions-including hourly and monthly profiles for occupancy, lighting, appliances, and miscellaneous electric loads (MELs)-developed by Building America to objectively compare energy use before and after a retrofit, and against a Benchmark new construction building. Building America analysts may also find the spreadsheets useful for documenting and comparing building characteristics for the Building America projects (pre-retrofit vs. post-retrofit, or new construction test

431

BECP News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

BECP News BECP News BECP News January 2012 Introduction The BECP News newsletter encourages the exchange of information among building professionals and organizations, state and local code officials, and researchers. Its goal is to facilitate timely development and early adoption of the building energy conservation standards. What can be done to curb the significant and ever-growing impact of building energy use? Adoption and implementation of building energy codes in communities across the United States are critical components in overall efforts to promote energy savings in buildings. Building energy codes lead to long-term energy savings by promoting construction of new energy-efficient buildings and introducing energy-efficient construction methods and technologies during

432

Building Energy Software Tools Directory: BuildingSim  

NLE Websites -- All DOE Office Websites (Extended Search)

a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90...

433

Building Energy Use Benchmarking Guidance | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Use Benchmarking Guidance Use Benchmarking Guidance Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

434

Energy Efficiency Building Code for Commercial Buildings in Sri Lanka  

SciTech Connect

1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

2000-09-30T23:59:59.000Z

435

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

436

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

437

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

438

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

439

Rewarding Green: NETL Recognized for Sustainable Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rewarding Green: NETL Recognized for Sustainable Buildings Rewarding Green: NETL Recognized for Sustainable Buildings Rewarding Green: NETL Recognized for Sustainable Buildings November 14, 2013 - 8:26am Addthis DOE’s recognition program for high-performance sustainable buildings acknowledges buildings like B39 and promotes adherence to the guiding principles in all new DOE construction, renovations, and building alterations. The Sustainability Performance Office strives to ensure that, per Executive Order 13514, at least 15 percent of DOE buildings meet the requirements of the guiding principles by 2015, improving building sustainability on a national scale. DOE's recognition program for high-performance sustainable buildings acknowledges buildings like B39 and promotes adherence to the guiding principles in all new DOE construction, renovations, and building

440

Structural Steel Attenuation of External Magnetic Fields in Buildings  

Science Conference Proceedings (OSTI)

This report investigates the passive attenuation of external power-frequency magnetic fields caused by structural steel members used in commercial building construction. This effect has not been considered in previous assessments of the field levels inside buildings.

2007-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "building construction overly" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High-Performance Building Design: Keys to Success  

SciTech Connect

The energy-design process optimizes the interaction between the building envelope and systems. Buildings designed and constructed using this process can save between 30% and 75% in energy costs.

Hayter, S. J.; Torcellini, P. A.

2000-01-01T23:59:59.000Z

442

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

443

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

444

Commercial Reference Building: Secondary School | OpenEI  

Open Energy Info (EERE)

Secondary School Secondary School Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Secondary School for each of the 16 climate zones,and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

445

Commercial Reference Building: Full Service Restaurant | OpenEI  

Open Energy Info (EERE)

Full Service Restaurant Full Service Restaurant Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Full-Service Restaurant for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

446

Commercial Reference Building: Stand-alone Retail | OpenEI  

Open Energy Info (EERE)

Stand-alone Retail Stand-alone Retail Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Stand-alone Retail for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

447

Commercial Reference Building: Quick Service Restaurant | OpenEI  

Open Energy Info (EERE)

Quick Service Restaurant Quick Service Restaurant Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Quick Service Restaurant for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

448

Commercial Reference Building: Midrise Apartment | OpenEI  

Open Energy Info (EERE)

Midrise Apartment Midrise Apartment Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Midrise Apartment, for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

449

Commercial Reference Building: Strip Mall | OpenEI  

Open Energy Info (EERE)

Strip Mall Strip Mall Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Strip Mall for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

450

Commercial Reference Building: Large Hotel | OpenEI  

Open Energy Info (EERE)

Hotel Hotel Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Large Hotel for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

451

Commercial Reference Building: Outpatient Health Care | OpenEI  

Open Energy Info (EERE)

Outpatient Health Care Outpatient Health Care Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Outpatient Health Care for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

452

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance High-Performance Sustainable Building Design for New Construction and Major Renovations to someone by E-mail Share Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Facebook Tweet about Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Twitter Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Google Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Delicious Rank Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Digg

453

BUILDING AND  

Science Conference Proceedings (OSTI)

... the costs of construction, operation, maintenance and renovation ... tion or use or to large natural disasters ... Engineers Smoke Control Manual based on ...

2007-03-13T23:59:59.000Z

454

CONSTRUCTION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONSTRUCTION CONSTRUCTION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov All Other Specialty Trade Contractors 238990 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov All Other Specialty Trade Contractors 238990 COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone (720) 356-1269 Email karen.downs@go.doe.gov Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction 237130 Highway, Street, and Bridge Construction 237310 Other Heavy and Civil Engineering Construction 237990 Other Building Equipment Contractors 238290 Other Building Finishing Contractors 238390 Site Preparation Contractors 238910 All Other Specialty Trade Contractors

455

Construction Cost Analysis : Residential Construction Demonstration Project Cycle II.  

SciTech Connect

The Residential Construction Demonstration Project (RCDP) is designed to demonstrate new residential building techniques and product innovations which advance the stage-of-the-art in constructing energy-efficient electrically heated residences. A secondary purpose is to obtain documented cost and energy savings data from which to make accurate assessments of the cost-effectiveness of various conservation innovations. The project solicits participation of regional homebuilders by offering them financial incentives for constructing homes to the Model Conservation Standards (MCS) and including at least one innovation.'' The innovations are determined by BPA and the States prior to construction and represent construction techniques or energy saving products that might reduce the cost of building MCS homes, or expand the options available to builders in achieving MCS levels of energy efficiency in homes. Besides covering some of the additional risk for employing the innovation, the incentive payment guarantees that builders will provide certain amounts of information regarding the cost and acceptability of building the homes. In addition, an incentive is paid to homeowners for their participation in data collection efforts following construction. Several one-time'' tests were performed on the houses and homeowners were required to report energy consumption and temperature data on a weekly basis for approximately 18 months. BPA and the States compile the information obtained from the builders and homeowners. Access to this data is provided for the purpose of analyzing the cost and performance of the RCDP homes, as well as understanding the value of the various innovations that are tested. 25 tabs., 4 figs.

Barnett, Cole; Thor, Philip W.

1990-06-01T23:59:59.000Z

456

PUMP CONSTRUCTION  

DOE Patents (OSTI)

A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

Strickland, G.; Horn, F.L.; White, H.T.

1960-09-27T23:59:59.000Z

457

Buildings","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

B7. Building Size, Floorspace, 1999" B7. Building Size, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",67338,6774,8238,11153,9311,10112,8271,6851,6628 "Principal Building Activity" "Education ....................",8651,338,444,883,1803,2144,1484,1311,"Q" "Food Sales ...................",994,302,"Q","Q","Q","Q","Q","N","N"

458

Technical Support Document: 50% Energy Savings for Small Office Buildings  

SciTech Connect

The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing